HEWLETT?PACKARD

Service Manual

H/P Part No. 09100- 90034

HEWLETT-PACKARD

CALCULATOR

Models: 9100A
9100B

SERIALS PREFIXED
945-03675 — 9100A

938-02251 — 9100B
Page 73, Manual Backdating Changes adapts this manual to all prior serial prefixes.

Copyright Hewlett-Packard Company, 1971
P.O. Box 301, Loveland, Colorado, 30537 U.S.A,

09100-90034

Microfiche No. 09100-20036

Printed JAN 1971

PSEUDO-HARDWARE PROBLEMS

INTROODUCTION Several operating characteristics of the 9100A/B Calculator could be inter-
preted as instrument malfunctions; therefore, the Field Service Engineer
should ensure that an instrument malfunction exists prior to troubleshooting a
calculator, This section will cover the most common pseudo-hardware of the
A/B, A and B, respectively.

9100A/B
IMPROPER - If the calculator’s memory is unchanged except for core memory location 0-0
MAGNETIC '+ {or the starting address), which is changed to 7?8, check to be sure the
CARD ENTRY . customer is not putting the magnetic card in backwards, that is, the printed

side of the card toward the display bezel rather than toward the keyboard. If

the card is put in the cardreader backward and the ENTER key is pressed, the

read heads of the cardreader will have no data input; therefore, the program
-~ counter of the calculator will not be advanced. When the card is ejected from
+« the cardreader, the read heads pick up the electrical noise of the card-eject
s+ switch and load an octal code 77 into the memory location 0-0 (or the
. starting address). The same symptom will be observed if an unrecorded or
i’ accidentally erased magnetic card is used.

PROGRAM STEPS If, after one pass through a program, a register {or registers) previously
IN MEMORY containing program steps now contains Y = {) or ACC + instructions (octal
CHANGED IO codes 40 and 60 respectively), check to be sure that the program has not

Y —{)ORACC+ loaded data in registers that previously contained program steps.

The explanation of why octal code 40 and 60 are predominate in this
situation begins with the core memory and ends with the display. Throughout
the following discussion the 9100A will be used as an illustration, but the
material applies equally to the 9100B {unless otherwise stated).

The core memory of the calculator {See Figure 1} contains 19 accessible
registers (0-9, a-f, X, ¥, Z). {The 9100B also has an additional negative page
{—) containing registers (—)0-9, (—)a-f.) The registers contain 14 characters,
each character contains 6 bits {F20 F25).

PSEUDO-HARDWARE PROBLEMS

9100A/B

CHARACTERS
o0 1 2 3 45 6 7 8 9 g b g

o ‘.’

P
’ rﬁ“gli 2 :
A1
A 1T ?
/§//2- °
AL °

o ‘—Z — o PROG;MM
ZZ/ 4‘ - 8 & DARTEAGISZTTDE%%GE
L /4/4 i
LA 8
AT ki
REEEr s .

L] T e - c2 c
4254/- s
el v .]

L] L] ACCUMULATE
4 4 F REGISTERS
42£f§ .
242/2 r o

1 .

LT]
g% e AT
Cl e
3

Figure 1. The 9100A’s 19 Accessible Registers

Each character location will contain either an instruction or a digit. First, let's
cover the situation of a character holding an instruction. The six bits are
assigned the following octal weight:

BIT F20 F21 Fe2 F23 F24 F25
OCTAL WEIGHT 1 2 4 10 20 40

A maximum of octal code 77 can be stored in a character, giving each
character location the capability of storing any calculator instruction (see
caleulator pull-out card). The following chart contains examples of a character
storing different calculator instructions.

PSEUDO-HARDWARE PROBLEMS

9100A/B
PROGRAM STEPS
IN MEMORY F20 | F21 | F22 | F23 | F24 | F25 BITS
CHANGED TO OCTAL WEIGHT
Y —+{)ORACC+ KEYS TOTAL OCTAL WEIGHT
{Continued) ACC + 0 0 0 o 1 1 60
STOP 1 o | o 0 0 1 a1
VX 0 1 1 1 1 1 76
PAUSE 1 1 1 1 0 1 57
NOTE

The octal code 77 is not required for a keyboard instruction,
but is used as an internal calculator instruction {In 10). {In the
o 9100B octal code 77 is the SUB RETURN instruction.)

When a character contains a digit rather than an instruction, only bits F20,
F21, F22 and F23 are required to define that digit. Bits F24 and F25 contain
the sign and blanking information. If bit F24 is a one, the digit is negative. If
bit F25 is a one, the digit is blanked.

F20 | F21 | F22 | F23 | F24 | F25 BITS BLANKED |t

:'ftf: 1 2 4 10 20 40 [OCTAL WEIGHT|

TOTAL

». OCTAL WEIGHT}

- 1 1 o | 0o | o 1 0 21 NO _

3 1 1 0 0 0 0 3 NO +

i 5 1 0 1 0 1 0 25 NO _

T 7 1 1 1 0 0 0 7 NO +
9 1 0 0 1 1 0 31 NO -

The CRT display is stored in the X, Y, and Z registers. The display of ane of
these registers in floating point is shown in Figure 2. It consists of ten digits
{Dg - D), two exponent digits (Eq and Eg} and two guard digits (G4 and
Gpl, which are always blanked. The two guard digits perform the function of
rounding.

Dg Dg D7 Dg Dy Dy D3 Do D¢ Dp {Gq Gg) Eq Eg
| I
maost least blanked exponent
significant significant guard
digit digit

Figure 2. Display of Register X, Y or Z

PSEUDO-HARDWARE PROBLEMS

9100A/B

If the CRT display in Figure 2 were being held in any register, it would be ¥
held in the following manner:

Register X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 Xa Xb Xc Xd
Display Dg B0y Do Dy Dy Dg Dg Dy Dg Dg Eg Eq Gy Gy }M

This can be demonstrated in the following manner:

SET: RUN

PRESS: 1 PRESS: 6
;) . ;
" 3 - X~ ()
" 4 “ g
" 5 " GOTO {1 ()
. s " o
. ;) o
. 8 SET: PROGRAM
Y 9
' 0
" 7
. 8
* ENT EXP

NOTE

For a 9100B, use the {+) page for all examples.

Pressing the STEP PRGM key will cause the contents of the 9 register to be

displayed one character at a time in octal form.

Character 90 91 92 93 94 95 96 97 98 99 %a 9b 9c 9d
Qctal 00 M 10 07 06 05 04 03 02 01 Q7 06 10 OF
Decimal 0 9 8 7 6 & 4 3 2 1 7 6 8 7
Display Dg Dy Dy D3 D4 Ds Dg Dy DB Dg Eg Eq GD Gy

This procedure loaded 12 significant digits into the 9 register. The demonstra-
tion for a partial display produces quite different results:
SET: RUN
PRESS: 1
" 2
’ 3
“ X={}
9
" GOTO() ()
- 9 e
SET: PROGRAM

e

PSEUDO-HARDWARE PROBLEMS

PR R

S1D0A/B
PROGRAM STEPS .+ The STEP PRGM key will display the contents of the 9 register in octal form
IN MEMORY 3 one character at a time.
CHANGEDTO _
Y-{)ORACC+ - RS g4 o4 g7 93 04 965 96 97 98 99 %a 9b 9¢ 9d
{Continued) ~# Location
i Octal 40 40 40 40 40 40 40 03 02 Gt 02 00 40 40
Decimal - - - - - - - 3 2 1 2 0

Display Dg Dy Dy Dg Dy Dg Dg Dy Dg Dg Eg Eq Gy G1

In this example the octal code 40 is predominant, meaning an insignificant
zero which is blanked. Storing a negative number produces slightly different
results,

SET: RUN
PRESS: 1
* 2
" 3
" CHG SIGN
" X—0)
' 9
" GOTOQL)()
" 9
" 0
SET: PROGRAM

The STEP PRGM key will display the contents of the 9 register in octal form,
one character location at a time,

Register 94 91 92 93 94 95 906 97 98 99 9a 9b 9c 9d
Laocation

Octal 40 40 40 40 40 40 40 03 02 21 02 00 40 40
Decimal - - - - - - - 3 2 1 2 0]

Display Dg Dy Dy Dy Dy Ds Dg Dy Dg Dg Eg E, Go Gj

In this example the octal code in location 9-9 contains a twenty bit, which
means that the number is negative. If the CHG SIGN had been pressed first,
still another example of a negative entry would have occurred.

SET: RUN

PRESS: CHGSIGN PRESS: 9
o 1 g 0
z 2 SET: PROGRAM
z 3

fj * X =)

¥ " 9

& % GOTO () ()

PSEUDO-HARDWARE PROBLEMS

9100A/B

The STEP PRGM key will display the contents of the 9 register in octal form,
one character location at a time.

Register 94 91 92 93 94 96 96 97 98 99 9a 9b 9c 9d
{.ocation

Octal 60 60 60 60 60 B0 60 23 22 21 02 00 60 &0
Decimal - - - - - - - 3 2 1 2 0
Display Dp Dy Do D3 D3 Dg Dg Dy Dg Dg Ep Ey Gg Gy

Pressing CHG SIGN first has loaded octal code 20°s in all of the digits. I the
digit was a blanked zero, it is an octal code 40; the two taken together result
in octal code 60 which is a negative, blanked decimal zero.

Now, back to the problem. The operator complained that after one pass
through the program, steps previously containing program steps now contain
Y — (} instructions (octal code 40) or ACC + instructions {octal code 60). If
he has stored a positive number with insignificant zeros over the register
containing program steps, he has octal code 40's in the character locations
that contain the insignificant zeros. If he has loaded a negative partial display
over a register containing program steps, he has octal code 60's in the
characters not containing digits.

With zeros in the X and Y registers and the DEGREES - RADIANS switch in
the DEGREES position, pressing TO POLAR will cause 90 and zero, respec-
tively, to appear in the X and Y registers. Performing the same operation with
the DEGREES- RADIANS switch in the RADIANS position will cause
1.670 796 326 00 and zero to appear in the Y and X registers. This occurs
because of the algorithm used in the TO POLAR conversion, which is:
ARC TAN % =P

If the X and Y registers contained zeros, the calculator would divide zero into
zero and obtain the instrument’s interpretation of infinity (9.999 999 999 99).
The ARC TAN of 9.999 999 999 99 is 90 degrees. 90 degrees in radians is
1.570 796 326 00.

Pressing two keys simultaneously will result in any of three occurrences:

1. The number in the X register will not change.
Either key may be entered in the X register.

3. Zeros will be entered in the X register.

This is normat operation and requires no service action.

INCORRECT
POLAR
CONVERSION

PRESSING
TWO KEYS

SIMULTANEOUSLY

AMBIGUQUS
EQUALITY

INCORRECT
INT X KEY
OPERATION

DISPLAY CHANGES
IF AN “IF”
KEY IS PRESSED

PSEUDO-HARDWARE PROBLEMS

Ed
-

<. e ody et e
SRR A L S

AT o I

"

9100A/B

The “IF" instructions compare all twelve digits (i.e. ten displayed digits and two
guard digits) and the two-digit exponent, of the numbers in the X and Y registers
when testing for the condition indicated. However, if a number consists of digit
nine (9} in the first eleven places and (one of digits} five (5} through nine (8) in
the twelfth place, then that number is considered to be equal to the next higher
{more positive) power of ten.

For example,

9.099 999 999 9(5 thru 9) x 102 = 103
similarly,

9.999 999 999 9(5 thru 9) x 1072 = 10"

Despite their equality to the next higher power of ten, those numbers which
have unequal digits only in the twelfth place are not considered to be equal to
each other.

For example:
9.999 999 999 95 x 102 is not equal to
9.999 999 999 96 x 102.

The rounding performed on the calculator display when the FLOATING -
- FIXED - POINT switch is in the FIXED POINT position could lead an
operator to believe the INT X key is not functioning properly. For example,
placing the number 5.9 in the X register and setting the DECIMAL DIGITS to
0 will cause the calculator to display six (6). If the INT X key is then pressed,
the display will change to five (5). This occurs because the FLOATING -
- FIXED POINT switch affects only the calculator display, not the number
stored in the calculator’s internal register {which is always in floating
notation}. Even though the calculator was displaying six (6}, the internal
registers were carrying the number as 5.9. When INT X was pressed the
decimal part of the number (stored in the internal registers) was dropped,
causing the calculator to display five (5).

Pressing an “IF" key when a calculator is not running a program may cause
the program counter to change location and, occasionaily, may result also in a
change of the display. This will occur because the calculator will process the
key as though it were in a program and {depending on which “IF" key was
pressed and the program steps in the memory) process the next two
instructions in the calculator’s memory or branch to the third following step
and process it. The rule of thumb is: any “IF"” key executed in this manner,
will be executed as though the instruction were in the memory and
encountered using the STEP PRGM key.

PSEUDO-HARDWARE PROBLEMS

3100A
if incorrect program steps (classically, octal code 77) are being loaded into INCORRECT
the core memory (say, in the area of steps 2-1 thru 2-7} from a magnetic PROGRAM STEP
card, the program on the card may not have an END instruction. Some LOADED INTO
knowledge of the magnetic card reader operation is required to explain how MEMORY FROM
this can happen. MAGNETIC CARD

" A-——""

DATA TRANSFER
BEGINS

B
TOTAL
PROGRAM
RECORDED—_

BAD INSTRUCT]dN LOADED
Figure 3. A Program Recorded On A Magnetic Card

When a magnetic card is recorded, the data transfer begins at point A in fig.
3. The program is fully recorded on the card at point B in fig. 3, but the
recording will continue until the card is ejected. At C the unused memory is
being recorded. At D the program counter reaches d-d and resets to 0-0. The
recording process is uninterrupted and the beginning of the program is
recorded again,

When a magnetic card is entered in the calculator, the data transfer begins at
point A (see Figure 3). The program is fully entered in the calculator memory
at point B. At this time, had there been an END instruction on the magnetic
card, the cardreader heads would stop reading the magnetic card. |f, however,
there were no END instruction, the cardreader heads would continue reading
the balance of the card. At D, the program counter reaches d-d and resets to
0-0 and the cardreader heads continue reading the card. At the end of the
magnetic card, as it is ejected from the cardreader, circuit switches, which
sense the presence of the magnetic card in the cardreader, close. The
cardreader heads, which are stili sensitive, pick up the electrical noise of the

circuit switches’ closure and transfer a bad instruction to the calculator
memory.

10

KEYBOARD
DIGIT ENTRY
BECOMES A
PART OF THE

NUMBER IN THE

X REGISTER

PROGRAM
EXECUTION
STARTS WHEN
STEP PRGM
IS PRESSED

PSEUDO-HARDWARE PROBLEMS

e

SRR

X
=

e
%

&

e

9100A

The following instructions do not terminate a preceding digit entry in the
9100A:

IF FLAG
SET FLAG
PAUSE

END

CHG SIGN
*

ENTER EXP

This characteristic of the 9100A operation can yield several different pseudo -
hardware problems. For example, here is one:

During diagnostic program execution, the PAUSE key is held pressed.
When the program stops, there will be a three (3) in the X register. If the
digit key five (5} is pressed the X register will contain thirty-five {35).

The way around this “problem” is, prior to making a digit entry, press any
key that will terminate digit entry, such as CLEAR X.

Any of the following instructions will initiate automatic program execution if
they are encountered in the calculator memory with the STEP PRGM key
when the calculator is in the RUN mode:

CONTINUE
PRINT/SPACE

FMT

CONTINUE - When STEP PRGM is pressed at this instruction the CONTINUE
will override the STEP PRGM condition and automatically continue execution
of the program.

FMT and PRINT/SPACE - Both of these instructions are used to control
peripheral equipment. When a program is running, the program stops at these
instructions and waits for a “continue’ signal from the peripheral equipment
before continuing with the program. in the RUN mode, when STEP PRGM is
pressed at either of these instructions, the “continue” signal from the
peripheral equipment will cause the program to continue running.

PSEUDO-HARDWARE PROBLEMS

. ".:‘:':,, 'j"“"‘,:‘:'.ﬁ‘-'“:"‘;i“"'_'A = %'*’f‘“: *‘. e i @m Lt R

9100A

To overcome the above situations:

1. Using the STEPPRGM key, step to (not through) the particular
instruction.

2. Manually branch (using the GO TO) around the instruction {be sure to
also branch around the instruction associated with a FMT).

3. Manually key the instructions that were skipped.

The error lamp being lit when the calculator is switched ON is 2 normal
operation and should be of no concern; provided, the light can be reset by
pressing any key on the calculator keyboard.

"

TURNING
CALCULATOR
ON LIGHTS
ERROR LAMP

12

UNUSUAL Z
REGISTER
DISPLAY

UNEXPECTED
RESULTS
OBTAINED
FROM
OPERATIONS

FOLLOWING “IF”

INSTRUCTIONS

PSEUDO-HARDWARE PROBLEMS

91008

Occasionally, when the PROGRAM - RUN switch is set to PROGRAM, an
unusual display may appear in the Z register. This may consist of a random
number between the address and the octal code; alternatively, an improper
address or octal code, consisting of more than two digits, may appear. This
display is the transfer vectors stored in the instrument when a subroutine is
called. To clear it, switch to RUN and press the SUB/RETURN key: then,
readdress the program counter to the required address and switch back to
PROGRAM,

The four conditional keys (IF FLAG, IF X <Y, IFX=Y, IFX>Y} are
specifically intended to be followed by a branching address; therefore, in a
few cases, unexpected results will be obtained if operational keys are
substituted for the branching address. The following is a list of precautions
that must be observed when using certain operational keys following "IF"
keys.

Applicable to ail four “IF"” keys when the condition is met.
1. IFX=Y

CHG SIGN

Regardless of the steps preceding the “IF”, changes the sign of the
exponent of the number in X. The sign of the number remains
unchanged.

2. IFX=Y
L

1

If the program steps are on the {+) page: .1 = X
If the program steps are on the (—) page: —.1—+ X
3 IFX=Y
RCL
The contents of (+} F are recalled to X, but the Y register remains
unchanged; also, the program counter branches to a random address.

Pages cannot be crossed without care. Any of the instructions listad below, if
contained in the step following the "IF"”, constitute the start of an address so
that the next two steps must contain the remainder of the address:

SUB/RETURN
+

any alphameric

PSEUDO-HARDWARE PROBLEMS

91008

A CONTINUE cannot be used as a “‘no operation’” in the step after an “IF"
instruction, if it is followed by any one of the following:
SUB/RETURN
+

any atphameric

This is because the CONTINUE does not clear the "GO TO" condition set up
when an “IF"” instruction is met. For example, assume the following program
steps are executed and the IF X =Y instruction is met:

STEP KEY
2 IF X=Y
3 CONT
4 -
5 3
6 7

The program counter will branch to (—)3-7. Had the IF X =Y instruction
been failed, the number 37 would have been entered in the X register.

Applicable only to the IF FLAG instruction when the flag is not set.

STEP KEY
ENTER EXP
6
IF FLAG
3
4
any alphameric

~ M N W N

The "not met” IF FLAG does not reset the ENTER EXP instruction; this
results in the alphameric character being entered as a digit of the exponent. If
RCL is used in place of the alphameric, then the contents of F are recalled to
X but nonsense appears in the Y register.

STEP KEY
7 GOTO()!()
B8 CHG SIGN
9 2
10 3

Wilt send the program counter to (+)2-3 if the program counter is on the {—)
page and to (—)2-3 if the program counter is on the (+) page.

X

e,
s

13

UNEXPECTED RESULTS
OBTAINED FROM A
GOTO()()
INSTRUCTION

14

KEYSTROKES DO
NOT APPEARIN X

SUBROUTINE
CALLED FROM
KEYBOARD WILL
NOT RETURN
CONTROLTO
MAIN PROGRAM

PRESSING STEP PRGM
CAUSES MULTIPLE
KEY EXECUTION

PSEUDO-HARDWARE PROBLEMS

RS RE o

et
IR

RS e SO

g

o A S B

CE
R

M

31008

A 9100A program cannot be stopped (with the STOP key} during a
GOTO () () instruction; the 9100B can. To see how this can create a
pseudo-hardware problem, consider the following example:

STEP KEY
CLEAR
1
N
PAUSE
GOTO{) ()
0
2
END

0~ ;R WA =

if the program is started and STOP is pressed to stop the program, the
tollowing two manual keyboard entries may not appear in the X register. This
is because the STOP key will not work during PAUSE {where this program
spends most of its time). The GOTO () ({) requires the second longest
execution time and since the STOP will work during the GO TO () (), the
odds are good that the STOP key will take effect there. f that is the case, the
next two digit entry keystrokes are used to fill the "GO TO" address. If the
STOP takes effect during any of the other program steps, the following digit
entry keys will be entered in the X register. To avoid this situation,
PRESS: STOP, STOP.

If the program counter is addressed from the keyboard to the starting address
of a subroutine and the CONTINUE key is pressed, then after the subroutine
is completed, the program will not return to the correct address. This occurs
because the transfer vector (return address) was never stored. Normally, a
subroutine is called during program execution, which is when the transfer
vector is stored; subroutines addressed from the keyboard have no way of
returning to the main program.

Occasionally, when in the RUN mode, pressing STEP PRGM once will cause sev-
eral keys to be executed.

When STEP PRGM is pressed at a FMT instruction both the FMT and the
next instruction will be executed as one instruction. The next time
STEP PRGM is pressed, the second instruction after the FMT will be
executed.

The IF FLAG., X <Y, X =Y, X>Y will cause the program counter to
branch immediately if the condition is not met and execute the third
instruction following the qualifier,

