HEWLETT-PACKARD

HP-67/HP-97

Users' Library Solutions Reliability/QA

INTRODUCTION

In an effort to provide continued value to it's customers, Hewlett-Packard is introducing a unique service for the HP fully programmable calculator user. This service is designed to save you time and programming effort. As users are aware, Programmable Calculators are capable of delivering tremendous problem solving potential in terms of power and flexibility, but the real genie in the bottle is program solutions. HP's introduction of the first handheld programmable calculator in 1974 immediately led to a request for program solutions — hence the beginning of the HP-65 Users' Library. In order to save HP calculator customers time, users wrote their own programs and sent them to the Library for the benefit of other program users. In a short period of time over 5,000 programs were accepted and made available. This overwhelming response indicated the value of the program library and a Users' Library was then established for the HP-67/97 users.

To extend the value of the Users' Library, Hewlett-Packard is introducing a unique service—a service designed to save you time and money. The Users' Library has collected the best programs in the most popular categories from the HP-67/97 and HP-65 Libraries. These programs have been packaged into a series of low-cost books, resulting in substantial savings for our valued HP-67/97 users.

We feel this new software service will extend the capabilities of our programmable calculators and provide a great benefit to our HP-67/97 users.

A WORD ABOUT PROGRAM USAGE

Each program contained herein is reproduced on the standard forms used by the Users' Library. Magnetic cards are not included. The Program Description I page gives a basic description of the program. The Program Description II page provides a sample problem and the keystrokes used to solve it. The User Instructions page contains a description of the keystrokes used to solve problems in general and the options which are available to the user. The Program Listing I and Program Listing II pages list the program steps necessary to operate the calculator. The comments, listed next to the steps, describe the reason for a step or group of steps. Other pertinent information about data register contents, uses of labels and flags and the initial calculator status mode is also found on these pages. Following the directions in your HP-67 or HP-97 **Owners' Handbook and Program Listing I** and Program Listing I 19, HP-97), key in the program from the Program Listing I and Program Listing I and Program Listing indicates on which calculator the program was written (HP-67 or HP-97). If the calculator indicated differs from the calculator you will be using, consult Appendix E of your **Owner's Handbook** for the corresponding keycodes and keystrokes converting HP-67 to HP-97 keycodes and vice versa. No program conversion is necessary. The HP-67 and HP-97 are totally compatible, but some differences do occur in the keycodes used to represent some of the functions.

A program loaded into the HP-67 or HP-97 is not permanent—once the calculator is turned off, the program will not be retained. You can, however, permanently save any program by recording it on a blank magnetic card, several of which were provided in the Standard Pac that was shipped with your calculator. Consult your **Owner's Handbook** for full instructions. A few points to remember:

The Set Status section indicates the status of flags, angular mode, and display setting. After keying in your program, review the status section and set the conditions as indicated before using or permanently recording the program.

REMEMBER! To save the program permanently, **clip** the corners of the magnetic card once you have recorded the program. This simple step will protect the magnetic card and keep the program from being inadvertently erased.

As a part of HP's continuing effort to provide value to our customers, we hope you will enjoy our newest concept.

TABLE OF CONTENTS

- SPECIFICATION COMPLIANCE FROM LIMITS AND REGRESSION ANALYSIS Calculates predicted value from regression analysis constants, and standard normal deviate from standard deviation and specification limits. Also calculates x or y value at 90%, 95% or 99% limits about the regression line. Very useful for calculating a table of values from regression constants for determining probability of specification compliance in process control or EVOP applications.
- LOWER LIMIT OF RELIABILITY BINOMIAL DISTRIBUTION This program calculates the lower limit of reliability at a specified confidence level using the binomial distribution.
- RELIABILITY AND PROBABILITY OF FAILURE OF SERIES AND PARALLEL SYSTEMS . 17 Computes the reliability and failure probability of a parallel system, series system or combination parallel/series system given mission time, number of components and component failure rates.
- MIL STD 883 CALCULATED LEAK RATE Gives the calculated leak from the measured leak rate using the equation given the MIL-STD-883, Method 1014, Condition A.
- MLE: $\hat{\theta}$ FROM HAZARD RATE Given failure numbers and operating time for a sample test data, program computes differential operating times, maximum likelyhood estimator ($\hat{\theta}$) from operating times; failure dates [Z(t_i)]; parameter λ and finally MLE; $\hat{\theta}$ from hazard rate (i.e. λ).

- SYSTEMS RELIABILITY-SERIES AND PARALLEL WITH DIFFERENT FAILURE RATE λ 43 This program calculates the reliability of the system when components or units of different failure rate λ are placed in series or parallel by using concept of unreliability to avoid tedious and lengthy calculations specially when system is in parallel.

Program Description I

Program Title RELIABILITY: INTRA-CLASS CORRELATION

Contributor's Name Hewlett-Packard Address 1000 N.E. Circle Blvd. City Corvallis

Program Description, Equations, Variables, etc. Let the scores (measures) \mathbf{X}_{ij} represent the j-th subject's score on the i-th test (measurement). In the ANOVA model $X_{ij} = \mu + a_j + e_{ij}$, μ the mean "true" measure over all subjects, a_j the deviation of the j-th subject from that mean, and e_{ij} the error in test i on the j-th subject, the reliability of the set of tests is the ratio $\mathbf{P}_I = \sigma_A^2/\sigma_X^2$, of true-difference variance to observed-score variance. This ratio is estimated by the formula

$$\mathbf{r}_{I} = \frac{\mathbf{MS}_{Bet} - \mathbf{MS}_{With}}{\mathbf{MS}_{Bet} + (c-1)\mathbf{MS}_{With}}$$

where MS_{Bet} is the between mean squares, MS_{With} the within mean squares, and c is a factor dependent on sample size given by

$$c = \frac{1}{J-1} \left[\sum n_j - \frac{\sum n_j^2}{\sum n_j} \right]$$

where J is the number of subjects, n_j the number of test scores for subject j. Standard formulas are used for the mean squares, and the ANOVA F-ratio is computed as a by-product of the main program.

Operating Limits and Warnings This estimate is based on the ANOVA randomeffects model, and violations of its assumptions (e.g., normal distribution of the a_j , homogeneity of variances) should be held to a minimum for an accurate estimate. Winer (op. cit.) and other texts fully explain these assumptions and possible effects of departures. Most ill effects are minimized by use of equal n_j 's, for all j = 1, 2, ..., J.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

State Oregon

Sketch(es)

Sample Problem(s) The	follo	wing	data	renro	egent	the s	score	a of	three sub	
jects on repeat										
intra-class cor										
	TCTG0.		. OIIG		,,		, cara	0110	AROTA I •	
Ν.1										
j	1	2	3	4	5	6				
1	10	8	5	12	14	11				
2	6	9	8	13						
3	14	13	10	17	16					
	•									
Solution(s) $r_T = 0$.	36; 1	F = 3	.79							
-										
Keystrok			_		Outp	uts:				
[f][CLREG] 10 [A]		_	[B]							
6 [A] 9 [A] ···· 13										
14 [A] 13 [A]	16 [A]									
	-	[C] →			0.36					
	[]	R/S] →	•		3.79					
Reference(s) Winer,	B. J	S [.]	tatis	tical	prin	ciples	s in	expe	rimental	

Reference(s) Winer, B. J., <u>Statistical principles in experimental</u> <u>design</u>, pp. 165, 283-287, McGraw-Hill, 1971. This program is a translation of the HP-65 Users' Library Program # 03102A submitted by James M. Price.

User Instructions

INTRA-CLASS CORRELATION

STEP	INSTRUCTIONS	INPUT DATA/UNITS	K	EYS	OUTPUT DATA/UNITS
1	Enter program				
2	Initialize		f	REG	
3	(Repeat for i=1, 2,, n _i) Enter	X _{ij}	A		i
4	(Repeat for i=1, 2,, n _j) Enter (After all n _j Steps #3; repeat for	- 1			
	j=1, 2,, J)		B		0.00
5	Compute r _T		C		r _T
6	(Optional) Compute ANOVA F		R/S]	F
	(degrees of freedom are found by:				
	RCL, 6, 1, - and RCL, 4, RCL, 6, -)				
	For new data, go to step 2.				
			L		
			[
			L		
			[
		ļ	L		
)					
		-			
		1			

97 Program Listing I

Ļ			7/ rrograi		ungı		
STEP	KEY ENTR	Y KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBLA	21 11	r	0 57		35 09	c
002	ST+7	35-55 07	accum. X	058		36 07	e
003	χ2	53		059		36 08	
004	ST+2	35-55 02	2	060		-45	
005	RCL8	36 08	accum, X ²	061		36 07	
006	1	<i>0</i> 1		062		36 09	
007	+	-55		063		<u>01</u>	
008	STOS	35 08	-	063		-45	
009	RTN	24	increment count			36 08	
010	*LBLB	21 12		065		-35	
				066		-55	
011	RCL7	36 07 75 55 61		067			-
012	ST+1	35-55 01		068		-24	rI
013	χ2 2010	53		069		51	1
014		36 08	(EX) ²	070		36 07	
015	÷	-24	recall cell size	071		36 08	_
016	ST+3	35-55 03	$(\Sigma X)^2/n$	072		-24	F
017	LSTX	16-63		673	? R/S	51	
018	ST+4	35-55 04	accum. ņ _i			ſ	
019	χz	53					
020	ST+5	35-55 05	accum. n ²				
021	1	01	ll				
022	ST+6	35-55 06					
023	CLX	-51					
024	ST07	35 07		080			
025		35 08					
026		24					
027	*LBLC	21 13					
021 028		36 03					
020		36 01					
029	XS	53					
031	RCL4	36 04					
032	÷	-24					
033		-45					
034	RCL6	36 06		090			4 1
035		01					
036	-	-45	df between				
037	÷	-24	MS between				
038		35 07	→ R7				
039		36 0 2	, K/				
040	RCL3	36 03					
041	-	-45					
042	RCL4	36 04					1
043		36 06				1	1
044		-45		100			1
045		-24	df within		<u> </u>	1	1
046		35 08	MS within	+			1
847		36 06	→ R8	├ ───┤		<u>†</u>	1 1
048		01				<u> </u>	1 1
049		-45				<u>├</u>	1 1
04 <i>5</i> 050		52		┣───┥		+	SET STATUS
050 051		36 04				┼╌╂────	
051 052		36 05				FLAGS	TRIG DISP
053 054		36 04		110			DEG ⊠ FIX ⊠ GRAD □ SCI □
054		-24					
055		-45					
<u>056</u>	X	-35					
<u> </u>				GISTERS	le le	7	8 9
0	1	$^{2}\Sigma\Sigma X_{11}^{2}$	$^{3}\Sigma n_{1}X_{1}^{2}$ $^{4}\Sigma n_{1}$	$5 \Sigma n^2$	· 6 J	used	used c
	X33			S5	S6	S7	S8 S9
S0	S1	S2	53 54	35	50	C'	
		l		D		E	
A		В	С				•
ł						L	

Program Description I

Contributor's Name Hewlett-Packard Company		
Address 1000 N.E. Circle Boulevard		
	State Oregon Zip Code 97330	
City Corvallis		
Program Description, Equations, Variables		
$X_i = X_o + \Delta x$	A = intercept value	
	B = slope	
	<pre>S = standard deviation L = lower specification limit</pre>	
$X_{i+1} = X_i + \Delta x$	U = Upper specification limit	
	Y = ordinate	
$\mathbf{Y} = \mathbf{A} + \mathbf{B} \mathbf{Y} \mathbf{i}$	X = abscissa	
$Y_i = A + B X i$	$\Delta x = change in X value$	
	7 = standard normal deviate	
$Z_{L} = \frac{Y_{1} - L}{S}$; $P_{L} = f(Z_{L})$ Note 1	subscripts:	
S $\Gamma = 1(2L)$ Note I	o = original value	
	i = any other value	
$Z_{\rm m} = \frac{U - Y_{\rm i}}{1}$	-	
$Z_u = \frac{U - Y_1}{S} ; P_u = f(Z_{\bar{u}}) \text{ Note } 1$	L = lower limit	
V _ A		
$Y_u = U - ZS$; $X_u = \frac{Y_u - A}{B}$		
В		
Y A		
$Y_L = L + ZS$; $X_L = \frac{Y_L - A}{B}$		
B		
NOTE 1 : P_L and P_u are the probability of specification limits respectively. The normal probability distribution at the	ey are found from a table of the	
Operating Limits and Warnings		
and a second		

PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description 11

Sketch(es)	i	X _i	Y _i	$z_{\rm L}$	Zu	P_{L}	Pu	NOTE:
	0	15.00	42.50	-1.88	9.38	.030	1.000	obtain P _L and
	1	20.00	50.00	0.00	7.50	.500	1.000	P _u from table
	2	25.00	57.50	1.88	5.63	.970	1.000	of normal
	3	30.00	65.00	3.75	3.75	1.000	1.000	distribution
	4	35.00	72.50	5.63	1.88	1.000	.970	
	5	40.00	80.00	7.50	0.00	1.000	.500	
	6	45.00	87.70	9.38	-1.88	1.000	.030	
			·					

Sample Problem(s) The following information is obtained from a regression analysis for a linear equation: A = 20; B = 1.5; S = 4.0. What are the probabilities of meeting specification limits of L = 50 and U = 80 as X varies from 15.0 to 45.0 in steps of 5.0? What are the X values at the specification limits and the x and y values at the lower and upper 90% confidence limits?

Solution(s) Insert program: 20 +, 1.5 +, 4.0 +, 15.0 , [f] [A] 50 +, 80 +, 5.0 [R/S]
[A] y₀ = 42.50; [B] Z_L = -1.88; [C] Z_u = 9.38; [D] X₁ = 20.00; [A] y₁ = 50.00
[B] Z_L = 0.00; [C] Z_u = 7.50; [D] X_L = 25.00 . . . etc. to complete the
table shown under sketches.
For the x values at the specification limits [CLX] [E] Y_L = 50.00;
[R/S] X_L = 20.00; [f] [STF] [1] [CLX] [E] Y_u = 80.00; [R/S] X_u = 40.00
For 90% limits [f][CLF][1]
[GTO][1][R/S][E] Y_{L90} = 55.13; [R/S] X_{L90} = 23.42; [f] [STF] [1] [GTO] [1] [R/S] [E]
Y_{u90} = 74.87; [R/S] X_{u90} = 36.58

Reference(s) This program is a translation of the HP - 65 Users' Library Program # 03202A submitted by George J. Sellers.

User Instructions

SPECIFICATION	COMPLIANCE	from	LIMITS and	REGRESSION	ANALYSIS
Y _i	Z _i	Zu	× _{i+1}	X,Y,	Δt, Z

1Enter Program2Enter A3B4S5Xo		+ + +	
3 B 4 S			
4 S			
5 X _o			
_6 L			
7 U			
8 Δ x		R/S	
9			Yo
10			
11			Z _u
			X ₁₊₁
Repeat 9 through 11 for			
13 for X _L at L			L
14		R/S	х _L
15 for X _u at U		[f][STF][1][CLX]	
16			U V
			X _u
18 for 90% limits	L	f][CLF][1][GTO][1 R/S E	
19			Y _{L90}
20	Γf	[[STF][1][GTO][1	X _{L90}
21	Ľ*	R/S E	
22			Y _{u90} X _{u90}
24 for 95% limits substitu	te GT02 for GT01		
in steps 18 and 21 25 for 99% limits substitu	to CTO3 for CTO1		
in steps 18 and 21			
26 for X_L , Y_L at a given Z	, enter Z	[f][CLF][1][E]	X ₇ at Z
			XL at Z
28 for X _u , Y _u at a given Z	, enter Z	[f][STF][1][E]	Y _u at Z
29			X _I at Z
			<u> </u>
Note: when calculati	ng X and Y at U		
	fSF1; at L flag 1		•
must be f ⁻¹ SF			

Program Listing I

8							ung i				
STEP	KEY ENTRY	KEY CODE		СОММ	ENTS	STEP			KEY CODE	COM	MENTS
801	*LBLa 21					057			36 01	1	
002	STC8	35 08				058			-45		
003	R4	-31				059			36 02		
004	ST03	35 03				060			24		
005	R↓	-31				061			51		
006	STO2	35 02				062	*LBL4		21 04		
00 7	R↓	-31				063	CHS		-22		
008	ST01	35 01				064	RCL6		36 06		
003	R∕S	51				065			22 05		
010	ST05	35 05				866			21 01		
011	R↓	-31				067			Ū1		
8 12	ST06	35 06				068			-62		
013	R↓	-31				869	2		02		
014	ST04	35 04				870			08		
815	CLX	-51				671	1		Ø1		
016	ENT1	-21				072			07		
017	ENTT	-21				073			51		
018	ENTT	-21				073			21 02		
019	R/S	51				075			02 02		
020	*LBLA	21 11									
						076 077			Ø1 60		
Ø21	RCL8	36 08 76 00				877	•		-62		
Ø22	RCL2	36 02 75				075			Ø6		
023	X	-35				079	4		0 4		
824	RCL1	36 01				080			05		
625	+	-55				881			51		
026	STO7	35 07				082			21 03		
627	R∕S	51				083			03		
028	*LBLB	21 12				084			02		
029	RCL4	36 04				085	•		-62		
030	-	-45				086	3		03		
031	RCL3	36 03				087	2 3 7		<i>02</i>		
032	÷	-24				088	3		8 3		
033	R∕S	51				089	7		07		
034	*LBLC	21 13				090			51		
035	RCL6	36 06						\mathbf{t}		1	:
036	RCL7	36 07				+		╋			
037	-	-45						┢			
038	RCL3	36 03						┢		ł	
839		-24						┢──		4	
040	R∕S	51						┢		4	
041	*LBLD	21 14						┢		4	
842	RCL8	36 08						╋—		4	
042 043	RCL5	36 05						+		4	
043 044	KULU +	-55						┢		4	
044 845	STO8	- <i>33</i> 35 08				100		┢	· ····	4	
04J 045	R/S	55 6 8 51						┢		4	
								_		4	
847 840	*LBLE	21 15						\vdash		1	
04 8 048	STO9	35 09 76 07						_		ł	
649 659	RCL3	36 Ø3						┢		l	
850	X	-35						1_		SET STATUS	
051		23 01							FLAGS	TRIG	DISP
052	GTO4	22 04						\bot			1
053	RCL4	36 04						\bot		DEG 🛛	FIX 😰
054	★LBL5	21 05				110		┢	1 🗆 💆	GRAD 🗆	SCI 🗆
055	÷	-55						⊢	2 🗆 🐴	RAD 🗆	ENG 🗆
056	R/S	51							3 🗆 🕱	l	n <u>2</u>
						GISTERS			<u></u>		
0	1	2 B	3	S	4 L	5	6 U		7 V	8 V.	9
L	A			<u>ა</u>		Δx			Y _i	X ₁	A
S0	S1	S2	S3		S4	S5	S6		S7	S8	S9
L					I				<u> </u>		l
А	B	3		С		D		Е		I	
						1		L			

Program Description I

Program Title PARAMETER ESTIMATION (EXPONENTIAL DISTRIBUTION)
Weilicht Destand Commons
Contributor's Name Hewlett - Packard Company
Address1000 N.E. Circle Boulevard
City Corvallis State Oregon Zip Code 97330
Program Description, Equations, Variables
<u>Case 1</u>
Let X be the sample mean of a random sample of size n from a truncated
exponential distribution with pdf.
$f(x) = \sigma^{-1} e^{-x/\sigma} / (1 - e^{-x \cdot \sigma}) \qquad 0 \le x \le x_0$
The maximum likelihood estimator $\hat{\sigma}$ for σ is the solution of
$\overline{\mathbf{X}} - \hat{\mathbf{\sigma}} + \mathbf{X}_{\circ} \ (\mathbf{e}^{\mathbf{X} \circ / \hat{\mathbf{\sigma}}} - 1)^{-1} = 0$
Case 2
Let $X_{(1)} < X_{(2)} \cdot \cdot \cdot < X_{(r)}$ denote the first r order statistics from
a random sample of size n from a distribution with pdf.
$f(x) = \sigma^{-1} EXP(-(x-\theta)/\sigma)$ $\theta \leq X \leq \infty$
The minimum variance unbiased estimators for σ and θ are
$\sigma^* = (r-1)^{-1} \sum_{j=2}^{r} (n-j) (X_{(j+1)} - X_{(j)})$
$\Theta^* = X_{(1)} - \sigma^*/n$
Operating Limits and Warnings In case 1, σ is finite only if $X < X_0/2$. If $X > X_0/2$, then $\hat{\sigma}$ is infinite - this means that the truncated exponential distribution is not a good model for the observations. Program may not work when \overline{X} is very close to $X_0/2$.
This program has been verified only with respect to the numerical example given in <i>Program Description II</i> . User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sketch(es)	
Sample Problem(s)	
CASE 1 $X^\circ = 5$, $X = 2$	
·	
$CASE 2 \qquad n = 5, r = 4 X$	(j), j = 1,, 4 = 11.12,12.55,13.47,14.58
	(J)
	• • • • • • • • • • • • • • • • • • •
And a 1 1	
ан амаманан алан ал	· · · · · · · · · · · · · · · · · · ·
Solution(s)	· · · · · · · · · · · · · · · · · · ·
CASE 1 $\hat{\sigma} = 4.065$	
CASE 2 $\sigma^* = 3.567, \Theta^* = 1$	0.407
Keystrokes:	Outputs:
5 [ENT↑] 2 [A] →	4.065
5 [ENT ⁺] 4 [ENT ⁺] 11.12 [B] 12.55 [C] 13.47 [C]
14.58 [C] [D] →	3.567
[E] →	10.407
Reference (s)	
Johnson and Kotz, "Continuous Univari Houghton Mifflin Co., 1970.	ate Distributions - 1,
This program is a translation of the	HP - 65 Users' Library Program
# 03652A submitted by Richard Freedma	n.

User Instructions

	PARAMETER	ESTIMATION	(EXPONENT	DISTRIBUTION)	5
[dev]	σ	n,r,X°	X _(i)	۵*	⊝*	

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter Program			
	CASE 1			
2		X°		
3	Note: X must be less than Xº/2	x	A	σ
	For new Case 1 go to 2			
	CASE 2			
4		n		
5		r	↑	
6		X ₍₁₎	B	
7	Repeat 7 for j = 2,3,, r	X(j)	[C] [_]	_j
8		()/	[D] []	σ*
9			E	Θ*
	for new Case 2 go to 4			

97 Program Listing I	97	Program	Listing	
----------------------	----	---------	---------	--

12						L .	
STEP 001	Key entry *LBLA	KEY CODE	COMMENTS	STEP	KEY ENTRY		COMMENTS
		21 11	Iterate to find	057	R↓	-31	
002	ST01	35 01	root of likelihood	058	STO3	3 5 03	
003	STO3	35 03	equation	059	6	ÐŪ	
004	R↓	-31	· •	060	ST06	35-06	
005	STO4	35 04	σ ← σ ー Δσ	061	RTN	24	
006	*LBL1	21 01		062	*LBLC	21 13	
007	RCL1	36 01		063	RCL5	36 05	
008	GSBE	23 15		1	X≢Y		
009	ST02	35 02		864		-41	
010	RCL1	36 01		065	ST05	35 05	
011	+	-55		066	_	-45	
		23 15		067	RCL3	36 03	
012	GSBE			868	RCL4	36 04	
013	RCL2	36 02		869	-	-45	
014	-	-45		070	х	-35	S ← S+(n-j)
015	LSTX	16-63		071	ST-6	35-45 06	
016	ENTŤ	-21		872	RCL4	36 04	(X _(j) - Last)
017	Х	-35		073	1	01	
018	X≢Y	-41		874	+	-55	
019	÷	-24		074 075		35 04	
820	RCL1	36 01					1
021	XZY	-41		076	RTN	24	
022	-	-45		077	*LBLD	21 14	
	STC1			078	RCL6	36 06	
023		35 01		079		36 02	
824	LSTX	16-63		080		-24	
025	ABS	16 31	Continue	081	ST06	35 06	
826	EEX	-23	iterations until	082	RTN	24	
827	3	03		083		21 15	
028	CHS	-22	Δσ < 0.001	084	RCL1	36 01	far 1 . 1
829	X¥Y?	16-35		085		36 06	[Note that label E
0 30	GT01	22 01		086		36 03	is used twice
631	RCL1	36 01					intentionally]
032	RTN	24		087		-24	
033	*LBLE	21 15		088		-45	
833 834	ENT:	-21	Compute	089	RTN	24	_
			likelihood	090]
Ø35	ENTT	-21	equation				
036	RCL4	36 04	equation	T			1
037	X≢Y	-41					1 1
038	÷	-24				1	1
639	e×	33					1 (
640	1	01				1	1
841	-	-45					4
04 2	178	52					4
843	RCL4	36 04					4
044	x	-35					4
045	-	-45		100			4
846	RCL3	36 03		L		╡─────	1 1
048 047							1 I
	- 574	-45					j l
048	RTN	24					j l
049	*LBLB	21 12					
050	ST01	35 Ø1	X.				SET STATUS
051	STC5	35 05	X(1)		······································	FI 400	
852	R↓	-31	last $\neq X(1)$	├ <u></u>		FLAGS	TRIG DISP
053	1	01	(+)	┝───╋			DEG 🙀 FIX 🛛
054	STC4	35 04		110			DEG 🙀 FIX 🕅 GRAD 🗖 SCI 🗆
055	-	-45		►			
056	ST02	35 02					RAD 🗆 ENG 🗆 n 2
	0102	00 02					
0	11	2	REGIS	5	6	7	8 9
ľ	σ, x ₍	Temp,r-		Last	ຶ s	ľ	Used
S0	S1	S2	S3 S4	S5	S6	S7	S8 S9
						_ I	
A		В	С	D		E	I
L							

Program Description I

Program Title LOWER LIMIT OF RELIABII	LITY - BINOMIAL DISTRIB	UTION
Contributor's Name Hewlett - Packard (Address 1000 N.E. Circle Boulevard City Corvallis	Company State Oregon	Zip Code 97330
Program Description, Equations, Variables		
$(1 - \gamma) = \sum_{j=0}^{x} \left[\frac{N!}{j! (N - j)!} \right] P$	j (1 - P) ^{N-j}	
where N = total number of item j = number of items fail		
γ = confidence level (in P = probability of failu (1-P) = reliability = R _{L.X}		
$\alpha = \frac{(1-\gamma) - (1-\gamma)}{(1-\gamma)}$ calcul	ated allowable err	or
· · · · · · · · · · · · · · · · · · ·		
	for most cases y will r this range.	

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sketch(es)	
	······································
Sample Problem(s) A) Twenty rocket motors are fired	with one failure; what is
the demonstrated reliability at the lower 90% of	confidence level?
B) Fifty components are tested at	1 1/2 times their normal
rated loading; what is the maximum number of fa	allures that can be obtained
and still demonstrate a .87 reliability at a 95	5% confidence level?
C) What is the reliability of 1 f	ailure out of 15 tests of
the 90% confidence level calculated to four dec	cimal places ($\alpha \leq .001$).
	,
Solution(s) A) 20 [†], 1 [A] [B]	→ 0.82
B) 50 [†], 1 [A], .95 [C]	0.91
50 [†], 2 [A], .95 [C]	0.88
50 [‡], 3 [A], .95 [C]	0.85
only 2 failures ca	n be obtained
C) 15 [†], 1 [A], .001 [STO] [7] [B]	→ 0.7645
Reference(s) This program is a translation of th	ne HP - 65 Users' Library
Program # 03820A submitted by George J. Sellers	S

User Instructions

1 LOWER LIMITS of RELIABILITY - BINOMIAL DISTRIBUTION	
Enter N+, j R _{L.90} R _{LX}	
INPUT	Γ

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter Program			
2	Enter N			
3	Enter j		A []	
4	for R _{L.90}		B	R _{L.90}
5	for R _{L.X} Enter .X			R _{L.X}
6	for α < .1 Enter α after step 3 α		STO 7	
	go to step 4 or 5			
				-
L				

97 Program Listing I

16				7/	Pro	gram	Lis	ting I				
STEP	KEY ENTR	к к			сомм		STEP	KEY ENTRY		KEY CODE	СОМ	MENTS
001	*LBLA	2	1 11				057			-22		
602	CLRG		6-53				058			16-32		
003	STOI		5 46				059			22 01		
004	ST02	3	5 02				060			36 07		
005	R↓	_	-31				061			36 06		
006	ST01	3	5 01				062			36 05		
007	•		-62				963 964			- 4 5 36 - 95		
008	1	_	01				064 065			36 05		
009			5 87				065 066			-24 16 31		
010		16 2					060 067			16-35		
011	ST05		15 Ø5				068			22 02		
012 017		3	15 03				069			36 06		
013 014	CLX ENT†		-51				070			36 05		
014 015			-21 -21				071			-55		
015 016			-21				072			02		
018 017			51				073			-24		
018		2	1 13				074			36 05		
019	≠LBLU 1	2	.1 13 01				075			-24		
019 020			-45				076			01		
021	CHS		-22				077			-55		
022		3	5 05				078			36 03		
023			1 12				079			-35		
024		. –	01				080			02		
025		· 3	6 03			1	081			-24		
025		-	-45				082	ST03		35 03		
027		3	5 04			1	083	0		00		
028	RCL2		6 02				084	ST06		35 06		
029			5 46				085			22 12		
030	*LBL1		1 01				<i>086</i>			21 02		
031	1		01				687			36 04		
832	RCL1	3	6 01				088	R∕S		51		
033	N :	1	6 52									
034	RCLI	3	6 46				090					
035	N:	1	6 52									
0 36	÷		-24									
037	RCL1		6 01									
638	RCLI	3	6 46									
039	-		-45									
040	N !	1	6 52						L			
041	÷		-24									
042	RCL3		6 03						⊢			
043	RCLI	3	6 46									
044 845	yx N		31				100		┣			
845 845	X	-	-35						⊢			
046 047	RCL4		6 04	1					\vdash			
047 049	RCL1		6 01 E 4E						⊢			
048 049	RCLI	3	6 46 - 45				\vdash		⊢			
849 850	- Yx		-45						-	i	SET STATUS	1
050 051	x X		31 -35						\vdash			
651 652	ST+6	35-5							\vdash	FLAGS	TRIG	DISP
052 053	DSZI	- 35-5 - 16 - 2							\vdash	ON OFF 0 □ ΩX	DEG 🛛	FIX 🛛
053 054	521 SF1	16 2					110		\vdash		GRAD	SCI 🗖
054 055	RCLI		6 4 6						Γ	2 🗆 🖾	RAD 🗆	ENG 🗆
056	1	0	040 Ø1							3 🗆 🛛 🛛		n. <u>2</u>
[1			<u> </u>		REGIS	TERS					
0	1		2	³ P			⁵ (1 - ·	$()^{6} (1 -$	γ)	7 1 Y	8	9 Logic
L	N		j			$ \frac{4}{R_{I.X}} $ (1 - P)		calcula	te	<u>ed '</u>	<u> 1</u>	Logic
S0	S1		S2	S3		S4	S5	S6		S7	S8	S9
<u> </u>		<u> </u>		.			D		E			
A		в			С		U		Ē		ľ	
L		1	-									

Program Description 1

Reliability and Probability of Failure of Series and Parallel Systems Program Title Hewlett-Packard **Contributor's Name** 1000 N.E. Circle Blvd. Address State Zip Code 97330 City Corvallis Oregon Given the mission time t, number of parallel **Program Description, Equations, Variables** components n_i , failure rates λ_{ii} and reliability block diagram of a parallel, series or combination parallel/series system, the program calculates the following values: Probability of Failure $Q_s(t) = 1 - R_s(t)$ Reliability $R_{s}(t) = \prod_{i=1}^{K} R_{i}(t)$ where k = number of parallel groupings in series l≥j≥n_i $R_{i} = R_{i(j-1)} + (1 - R_{i(j-1)})R_{i,i}$ $R_{ii} = \exp(-\lambda_{ii}t)$ n is a positive integer and $\lambda \ge 0$. **Operating Limits and Warnings**

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description 11

User Instructions

REL	IABIL	ITY AN	D PROBAE PARALLEI	SYSTEMS	FAILURE	\square			
	t	ni	λ_{ii}	$Q_{s}(t)$					- <i>dų</i> :

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program			
2	Initialize		F A	1.00
3	Enter mission time	t		t
4	Enter number of	n _i	B	n _i
	parallel components			
5	Perform step 5 for	λ _{ij}	C	j
	i = 1, 2,, n-1			
6	Compute $R_{s}(t)$	λ _{in}		R _s (t)
7	Compute $Q_{s}(t)$			Q _s (t)
	(optional)			
	(for new case, go			
	to step 2)			

97 Program Listing I

20			7/ riugiam		ung i		
STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001		16 11	Initialize	057	' RCL6	36 06	
002	PIS	16-51		058	S CHS	-22	
003	STO4	35 04		059	ENT†	-21	
004	ST05	35 05		060	91	01	
005	STO8	35 08		061		~55	
006	1	01		862		22 02	
007	STOE	35 06					1
668	RTN	24					1
009	*LBLA	21 11					1
010	ST05	35 05	Store 1 in R ₆				1 1
011	RTN	24	Display 1 in R ₆				1
012	*LBL1	21 01	Enter t				
013	Ø	00		├ ───┼			4
614	ST01	35 01	Initialize Store O in R ₁ , R ₃	070		·	1
015	ST03	35 03	Store o in k1, k3			t	
016	RCL6	36 06					4
017	RTN	24		┠────┼			-
018	*LBL2	21 02		┝──┤			ł
819	RTN	24		┝───┤			ł [
020	*LBLB	21 12		<u>├</u> ──-			4
021	STOS	35 08		├ ──			4 1
022	RTN	24		┝		l	4
023	*LBL3	21 03		┣────┤			4
023 024	RCL1	21 03 36 01		080	,,,,,,,		1
825	RTN	24					
025 026	*LBLC						
028 027	ENT†	21 13	Display counter				
027 028		-21	Calculate R _i				
	RCL5	36 05	Ŧ				
029 070	X	-35					
030	CHS	-22					
031 070	e*	33					
832	ST04	35 04					
033	RCL3	36 03					ĺ
034	CHS	-22		090			
035	ENTT	-21					
036	1	01					
037	÷	-55					
038	RCL4	36 04	$(1 - R_{i(j-1)}) R_{ij}$				
039	X	-35	(1 ~1(j=1)) ~1j				
040	RCL3	36 03					
041	+	-55					
842	STO3	35 03					
843	RCL1	36 01					
644	1	01	Update counter	100			
045	+	-55					
046	ST01	35 01					
847	RCL8	36 08		<u> </u>			
048	X≠Y?	16-32	Test counter	+			
849	GTO3	22 03		┝ <u></u> ┣			
050	RCL3	36 03		├─── ─┤		ار ا	SET STATUS
051	ENTT	-21				├─- ╊───────	
052	RCL6	36 06	R _s (t)	<u>├──</u> -		FLAGS	TRIG DISP
Ø53	x	-35					DEG 🖾 FIX 🖾
854	STOE	35 06	Store R _s (t)	110		0 [] [23] 1 [] [23]	DEG 🖾 FIX 🖾 GRAD □ SCI □
855	GT01	22 81					RAD D ENG D
035 056	*LBLD	21 14	Calculate $Q_{s}(t)$				RAD ENG n_8
0.00		LI 17		TEPS			L
0		2		5	6	7	8 9
ľ	Counter	: [$R_{i(j-1)}$ R_{ij}	t	R _s (t)		n _i
S0	S1	S2	S3 S4	S5	S6	S7	
1				-		ļ	
A	B		C	D	-	Ε	I
ľ	ľ		-				
L	I		l				I

Program Description I

Operating Limits and Warnings

Mathematically there is no limit, but calculation time is less for 1% than for .01%. 1% is adequate for most experimental setups.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es)

Sample Problem(s) For the inputs $R = 7.2 \times 10^{-8}$ $t_1 = 3600 \text{ sec}$ $t_2 = 300 \text{ sec}$ v = 1.1684 cc ERROR = .01 The program should return the value 8.058 -07. Keying RCI it took 6 iterations to obtain the answer.	L 3 will tell you that
Solution(s) Keystrokes: 7.2 [EEX][CHS][8][STO][8], 3600 [STO][1], 300 [STO][1 1.1684 [STO][3], 2.678 [STO][4], .01 [STO][5] [SCI][DSP][3][A] [RCL][3]	Outputs: 2], → 8.058 -07 → 6.000 00
Reference(s) MIL-STD-883A "Military Standard Test Methods and Procedures	s for Microelectronics"
Method 1014.1 Seal This program is a translation of the HP-65 Users' Library H submitted by Richard T. Lamoureux.	Program #04109A

User Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
l	ENTER PROGRAM			
2	INPUT DATA,			
	MEASURED RATE SCC/SI	EC R	STO 8	R
	PRESSURIZATION TIME	SEC t _l	STO 1	t
	MEASUREMENT TIME SEC	t ₂	STO 2	t ₂
	PACKAGE VOLUME CC	v	STO 3	v
	RATIO MOL WT AIR TO	Hea	STO 4	2.678
	ALLOWED ERROR	10-2	STO 5	
3	SET DISPLAY		DSP 3	
4	START PROGRAM			L
	L IS CALCULATED LEAK	RATE		
5	NUMBER OF ITERATIONS		RCL 3	n
	REQUIRED			
6	FOR NEXT CASE ENTER			
	MEASURED RATE	R	STO 8	R
	PRESSURIZATION TIM	E t _l	STO 1	t
	MEASUREMENT TIME	t ₂	STO 2	t ₂
	PACKAGE VOLUME	v	STO 3	v
7	START PROGRAM		Â	L
				•

97 Program Listing I

24			9/ Pr	ogram	LIS	ling I			
STEP	KEY ENTRY	KEY CODE		MENTS	STEP	KEY ENTRY	KEY CODE	сом	MENTS
001		21 11	Start Cal		057	ST07	35 07		
802		36 08			058	1	01		
003		-22			059	ST+3	35-55 03		
004 005		35 07 36 04			060	GTOB	22-12	「L _{i+1}	
00E		36 04 36 03			061	RTN	24	T · T	
007		-24			862	*LBLC	21 13	• 1	c · 1 ·
008		35-35 01			863		36 07	Display	IINAL L
005		35-35 02			864		-22 51		
010		00			065 066		24		
011		35 03				1.111	1		
012		21 12	ł						
013 014		36 Ø7	Begin loc	р					
014 015		36 02 -35	calculat	e R	070				
012 016		-33							
817		36 07			<u>├</u>				
019		36 01			┣┣				
019		-35					+		
828		33							
021		01							
822		-45							
023 024		-35							
024 025		36 04 - 75			080				
023 026		-35 05							
020 027		-35							
828		36 07							
029		-35	R ¹						
030		36 08	begin te	act					
031		-45	Deginite	286	+				
032		35 <i>06</i>							
033		36 08							
034		-24			090				
035 036		16 31 36 05							-
030 037		16-34							
038		22 13	End test						
039		36 07	Decta an	laulation					
040	RCL6	36 06	new L	lculation					[
041		36 0 2	new L						ł
042		04							
0 43		<u>00</u>							
844 845		-35			100				
043 046		36 07 -35							
847		02							
048		07			┝━━──┼		+		
849		-45					+		
050		36 01						SET STATUS	
051		-35					FLAGS	TRIG	DISP
05 2		36 07 35					ON OFF		
053 054		-35 -24			110				FIX 🕱
054 055		-24 -55			110		$1 \square \mathbf{X}$ $2 \square \mathbf{X}$	GRAD	SCI □ ENG □
055 056		-22			\vdash				n_ <u>3</u>
		Har Bar	L	REGIS	STERS				
0	1 t _h	² t ₂	³ v		⁵ 10 ⁻²	⁶ R ¹ -R	7 L	⁸ R	9
	$\frac{1}{b}$		n			S6	S7	S8	S9
S0	S1	S2	S3	S4	S5	50	31	30	39
A	1	В		1	D	I	E	I	•

Program Description I

Program T	Title MLE: $\hat{\theta}$ FROM HAZARD RATE	
	and the second	
Contributo	r's Name Hewlett-Packard Company	
Address	1000 N.E. Circle Boulevard	
City	Corvallis	State Oregon Zip Code 97330

Program Description, Equations, Variables Given the test failure data of the sample, the program computes differential failure times (Δt_i); mean time to failure (MTTF); failure rate $Z(t_i)$; parameter λ (constant hazard rate) and θ from this hazard rate. Following formulas and variables are used: where $i = 0, 1, 2, 3, \dots$ failures 1) $\Delta t_i = t_i - t_{i-1};$ 2) MTTF = $\hat{\theta} = \Sigma t_i / N_o$; where t_i = time to failures No = total # of failures 3) $Z(t_i) = \frac{n(t_i) - n(t_i + \Delta t_i)}{\Delta t_i} \cdot \frac{1}{N_s(t_i)}$; where $[n(t_i) - n(t_i + \Delta t_i)]$ is # of failures in that time difference. time difference. $N_s(t_i) = #$ survived at t_i . 4) $\lambda = \frac{\Sigma Z(t_i)}{N_0} = \overline{Z}(t_i)$; $\lambda = \text{parameter (hazard rate)}$ i.e. mean of total $Z(t_i)$ i.e. mean of total Z(t_i)'s. 5) $\hat{\theta}_{Z(t)} = \frac{1}{\lambda}$; [MLE from hazard rate] hazard rate **Operating Limits and Warnings**

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

25

Program Description 11

Ske	tch(es)			 								-	-			i •					: 					
			F	, r					Е	A	Т	Т	A			ED				ΡE		-		-		-	
	•	+			 					•	:		•		,		~-					:					
	4				 ••••		•	+		·	•		•				~ .		4		:	•••••••• • •		1			
•				•	۰ ۱		ł	4 3 -		*			1				** * *				i -						 •••••••
+		• • • • •		•		• · · · ·		1		•										 					1		
				1		 1 1 1		1					1											1			
					 •	• ~~ ~ ~ ~ · ·		• •		•			*	~			•	•			1		4	ł	1		

Sample Problem(s) Te rpm: results we		on testing ma	chines with	a known load and
	OPERATING	TIME		
1	6	annana an	Find t	he following:
2			1) A	t _i : differential time failures
4	45		2) MT 3) Z(
	88 114			parameter : constant hazard rate
8 9	140 190			E: 9 from hazard rate
10	251			
···· ·				
				· · · · · · · · · · · · · · · · · · ·
Solution(s) Failure	# Operating T	ime∆t _i	Z(t _i)	
1	6 22	6 16	0.0167	$\lambda = \frac{\Sigma Z(t_1)}{\Sigma Z(t_1)} = 0.1151$
23	30	16	0.0069 0.0156	No 10
4	45	15	0.0095	$\lambda = .01151$
5	62	17	0.0098	
b 7	88 114	26	0100//	$\hat{\theta} = \frac{1}{2} = 86.8919$
/ \$	140	26 26	0.0096 0.0128	$\lambda = 00.0919$
9	140	50	9.0100	
10	251	61	0.0164	
· · · · · · · · · · · · · · · · · · ·	$\Sigma t_1 = 948$	$\Sigma Z(t_i)$	= 0.1151	

Reference(s) This program is a translation of the HP-65 Users' Library Program #05105A submitted by Ashok H. Doshi.

COMPLETE KEYSTROKES FOR THE EXAMPLE

	[f] [REG]	0.00	(Clear registers)
251	[A]	251.00	(t ₁₀)
190	[R/S]	61.00	(Δt ₁₀)
	[R/S]	190.00	[Recall last input]
140	[R/S]	50.00	(Δtg)
	[R/S]	140.00	[Recall last input]
114	[R/S]	26.00	(Δt ₈)
	[R/S]	114.00	[Recall last input]
88	[R/S]	26.00	(Δt7)
	[R/S]	88.00	[Recall last input]
62	[R/S]	26.00	(Δt6)
	[R/S]	62.00	[Recall last input]
45	[R/S]	17.00	(Δt ₅)
	[R/S]	45.00	[Recall last input]
30	[R/S]	15.00	(Δt4)
	[R/S]	30.00	[Recall last input]
22	[R/S]	8.00	(Δt ₃)
	[R/S]	22.00	[Recall last input]
6	[R/S]	16.00	(Δt ₂)
	[R/S]	6.00	[Recall last input]
0	[R/S]	6.00	(Δ t1)
	[R/S]	0.00	[Recall last input]
	[B]	94.80	(ê)
6	[C]	0.0167	[Z(t ₁)]
16	[R/S]	0.0069	[Z(t ₂)]
8	[R/S]	0.0156	[Z(t ₃)]
15	[R/S]	0.0095	[Z(t ₄)]
17	[R/S]	0.0098	[Z(t ₅)]
26	[R/S]	0.0077	[Z(t ₆)]
26	[R/S]	0.0096	[Z(t ₇)]
26	[R/S]	0.0128	[Z(t ₈)]
50	[R/S]	0.0100	[Z(t9)]
61	[R/S]	0.0164	[Z(t ₁₀)]

User Instructions

	1 MLE: $\hat{\theta}$ FROM HAZARD RATE Δt_{i} MLE $\hat{\theta}$ Z(t _i)	λ	Z (t)	
тер	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter Program			
2	Initialize			
3	Clear Registers		f REG	0.00
4	Input last operating time	t _n		t _n
5	Input preceeding times	tr	R/S	Δti
6	repeat 5 - 6 for tr = r = n-1, n-2,3,2,1,0			t _r
7	Compute MTTF: θ			e e e e e e e e e e e e e e e e e e e
				0
8	Input Δt_1 (first time diff.)	Δt ₁		Z(t ₁)
9	Input next time diff.			
	Δt_{i} ; i = 2,3,4,n-1,n	Δt _i	R/S	Z(t _i)
	Repeat 9 for i = 1,2,3,n			
10	Compute parameter λ			λ
11	Compute MLE: $\hat{\theta}$ from the hazard rate			MLE: $\hat{\theta}_{Z(t)}$
12	For new case go to step 2			
·				
				······
		·····		

.

Program Listing I

			71 Flugran		11161		29
STEP	KEY ENTR	Y KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
801	*LBLA	21 11		T	· · · · · · · · · · · · · · · · · · ·		
002		21 03	Calculate the				
003		35-55 01	operating time differences				
004		51	all le chees	060			
005		-45					
005		16 25 46				 	
008 007		16 23 46 22 04					
007						<u> </u>	
		22 03		 			
009		21 04					1
010		51					
011		16-63				<u> </u>	4 1
012		22 03				ļ	
013		21 12	•				
014		36 01	Calculate MTTF: $\hat{\theta}$	070			
015		36 46					
B 16		-22					
617	· ÷	-24					
018	RTN	24					1
019	*LBLC	21 13					Í Í
020		52	Calculate Z(t _i)] [
021		36 46	(failure rate)				1
022		-22	(Tallule Tale)				
023		-24		h			1 1
024		35-55 02		080		1	1
024		35-33 82 36 02				+	1
							4 1
026		-63 04					4 1
027		21 01					4
028		51					4
829		52					4
030		36 46					4 1
031		01					1
032	ST+5	35-55 05		-			
033		36 05					1
634		-41		090			1
035		-31			1		1 1
036		-55					1 1
037		-24				· · · · · · · · · · · · · · · · · · ·	1 1
038		-22			<u> </u>	+	† 1
839		35-55 02			 	+	1
						<u> </u>	1
040 841		22 01		}	+		1
041 042		21 14	Calculate the		ļ	<u>+</u>	4 1
042		36 02	parameter λ				4 1
043		36 46	(constant hazard	L	Į	 	4 1
844		-22	rate)	100	 		4 1
045		-24			ļ		4 1
B46		-63 04			L	L	4 1
047		24	1			ļ	4
Ø48	*LBLE	21 15	Calculate MLE:				1 1
049	GSBD	23 14					
050		52	θ _{Z(t)}				SET STATUS
051		-63 04	1			FLAGS	TRIG DISP
052		24	1		1	ON OFF	
		1	1				DEG DI FIX DI
			1	110			GRAD 🗆 🛛 SCI 🗆
			1				
			1		1	3 🗆 🙀	n_2
			REG	ISTERS	· · · · · · · · · · · · · · · · · · ·		
0	1	2	3 4	5	6	7	8 9
L	USEI			USED	S6	S7	USED S8 S9
S0	S1	S2	S3 S4	S5	100	57	
A	L	В	C	D		E	1 1
ľ		-				L	

Program Description I

Program Title MLE: $\hat{\theta}$ BY LEAST SQUARE METH	ор
H1 D 1 1	
Contributor's Name Hewlett-Packard	
Address 1000 N.E. Circle Boulevard	
City Corvallis	State Oregon Zip Code 97330
Program Description, Equations, Variables The program uses least square techni	que to compute maximum likelihood
estimator. By using the probability	
where:	
a contra de la contr	
$R(t_i) = \frac{N_s}{N_o} ;$	$N_s = numbers survived at time t_i$
	N _o = total number failed
a and a state of the state of t	
$\sum_{i=1}^{n} t_{i} 1_{n} R(t_{i})$	
least square $\lambda = - \frac{\sum_{i=1}^{n} t_i l_n R(t_i)}{\sum_{i=1}^{n} t_i l_n R(t_i)}$; for detail see page 4 of 7
$\frac{n}{r}$ t^2	,,,
$ \begin{array}{c} \mathbf{n} \\ \mathbf{z} \\ \mathbf{i}=1 \end{array} \mathbf{t}_{\mathbf{i}}^{2} \\ \end{array} $	
A 1	
and $\hat{\theta} = \frac{1}{\lambda}$;	maximum likelihood estimator
· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	
Operating Limits and Warnings	
	n a standard an an a standard and a

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Developing θ by generating the parameter λ using reliability for least square method

Using Least Square Estimate

To Find value of parameter
$$\lambda$$

 $R(t_i) = e^{-\lambda t_i}$
 $\ln R(t_i) = -\lambda t_i$
 $s (\lambda) = \Sigma [\ln R(t_i) - (-\lambda t_i)]^2$

Now taking derivative w.r.t. λ on both sides and equating to zero for maximum we get:

$$\frac{d s(\lambda)}{d \lambda} = \Sigma^{2} [\ln R(t_{i}) + \lambda t_{i}] (t_{i}) = 0$$

$$\Sigma 2 [\ln R(t_{i}) + \lambda t_{i}](t_{i}) = 0$$

$$\Sigma 2 [t_{i} \ln R(t_{i}) + \lambda t_{i}^{2}] = 0$$

$$2\Sigma [t_{i} \ln R(t_{i}) + \lambda t_{i}^{2}] = 0$$

$$\sum_{i=1}^{n} t_{i} \ln R(t_{i}) + \lambda \sum_{i=1}^{n} t_{i}^{2} = 0$$

$$\lambda = \frac{-\sum_{i=1}^{n} t_{i} \ln R(t_{i})}{\sum_{i=1}^{n} t_{i}^{2}}$$

Program Description 11

Sketch(es)					
· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · ·	 1 1		
	· · · · · · · · · ·	• • •	 		
		·· · · ·			
				· · · · · · · · · · · · · · · · · · ·	
	i				

Sample Problem(s) Ten tires were put on testing machines with a known load and rpm.								
The test results of failures were as follows:								
	FAILURE #	OPERATING TIM	IE					
	1							
	2		FIND THE FOLLOWING:					
	3	30	l) probability of survival R(t _i)					
The langest in the same land the set of the	4		2) MLE: θ by using least square method					
	5	 62 .						
1	6	88						
	7	114						
	8	140						
	9	190						
	10	251						

Solution(s)

For solution please see pages attached next 4 of 7 and 5 of 7.

Reference(s) Authors Own Notes On "Quality Assurance and Reliability". This program is a translation of the HP-65 Users' Library Program #05106A submitted by Ashok Doshi.

COMPLETE KEYSTROKES FOR THE EXAMPLE

	Press	Disp	olay
	[f] [REG]	0.00	[Clear Registers]
6	[A]	36.00	[t ₁ ²]
22	[A]	484.00	[t ² ₂]
30	[A]	900.00	[t ² ₃]
45	[A]	2025.00	[t]
62	[A]	3844.00	[t ₅]
88	[A]	7744.00	[t ₆ ²]
114	[A]	12996.00	[t ₇]
140	[A]	19600.00	[t ² ₈]
190	[A]	36100.00	[t ₉ ²]
251	[A]	63001.00	[t ₁₀]
	[B]	0.9000	[R(t ₁)]
	[B]	0.8000	[R(t ₂)]
	[B]	0.7000	[R(t ₃)]
	[B]	0.6000	[R(t ₄)]
	[B]	0.5000	[R(t ₅)]
	[B]	0.4000	[R(t ₆)]
	[B]	0.3000	[R(t ₇)]
	[B]	0.2000	[R(t ₈)]
	[B]	0.1000	[R(t ₉)]
	[B]	0.0000	[R(t ₁₀)]
.9 [C] $[\ln R(t_1)]$ -0.1054 [ln R(t₂)] .8 [C] -0.2231 .7 $[\ln R(t_3)]$ [C] -0.3567 .6 [C] -0.5108 $[\ln R(t_{1})]$ [C] .5 -0.6931 $[\ln R(t_5)]$.4 [C] -0.9163 $[\ln R(t_6)]$.3 [C] $[\ln R(t_7)]$ -1.2040 .2 $[\ln R(t_8)]$ [C] -1.6094 .1 $[\ln R(t_0)]$ [C] -2.3026 $+ [ln R(t_{10})]$.0 + (not possible) --6 [D] 6.00 [t₁] [CHS] [R/S] - 0.6324 $[t_1 \cdot \ln R(t_1)]$ 22 22.0000 [D] [t₂] [CHS] [R/S]- 4.9082 [t₂ · 1n R(t₂)] 30 [D] 30.0000 $[t_3]$ $[t_3 \cdot \ln R(t_3)]$ [CHS] [R/S]- 10.7010 45 [D] 45.0000 [t4] [CHS] [R/S] - 22.9860 $[t_4 \cdot \ln R(t_4)]$ 62 [D] 62.0000 [t₅] [CHS] [R/S] - 42.9722 $[t_5 \cdot \ln R(t_5)]$ 88 88.0000 [t₆] [D] - 80.6344 $[t_6 \cdot \ln R(t_6)]$ [CHS] [R/S]114 114.0000 [D] [t₇] $[t_7 \cdot \ln R(t_7)]$ [CHS] [R/S]- 137.2560 140 [D] 140.0000 [t₈] - 225.3160 [CHS] [R/S] $[t_8 \cdot \ln R(t_8)]$ 190 [D] $[t_{q}]$ 190.0000 [CHS] [R/S]- 437.4940 $[t_q \cdot \ln R(t_q)]$ [Delete]→251 251.0000 [D] [t₁₀] [R/S] $[t_{10} \cdot \ln R(t_{10})]$ [θ] [E] 152.3834

DISPLAY

34

PRESS

.1054

.2231

.3567

.5108

.6931

.9163

1.2040

1.6094

2.3026

this one

on1y

	В	Y LEAST SQ	UARE ESTIMATE	METHOD USING R(t)	
	ie $\lambda =$	$- \underbrace{\overset{10}{\Sigma} t}_{\overset{1}{\underline{i=1}}}$	$\frac{1}{1} \frac{1}{1} \frac{1}$	(as formed previo	ously)
1	<u>t</u> i 6	<u>R(ti)</u> 0.90	$\frac{\ln R(t_1)}{-0.1054}$	$\frac{t_i \ln R(t_i)}{-0.6324}$	± 1 36
2	22	0.80	- 0.2231	- 4.9082	484
3	30	0.70	- 0.3567	- 10.7010	900
4	45	0.60	- 0.5108	- 22.9860	2025
5	62	0.50	- 0.6931	- 42.9722	3844
6	88	0.40	- 0.9163	- 80.6344	7744
7	114	0.30	- 1.2040	- 137.2560	12996
8	140	0.20	- 1.6094	- 225.3160	19600
9	190	0.10	- 2.3026	- 437.4940	36100
10	251	0,00			63001
					1/6730

 $\lambda = -962.90$ 146730

 $\therefore \lambda = -\frac{-962.90}{146730} = 0.0066 \quad \therefore \hat{\theta} = \frac{1}{\lambda} = 152.3834$

User Instructions

1 MLE:	$\hat{\boldsymbol{\theta}}$ by least square method		5
	$R(t_i) = L_N R(t_i) = t_i L_N R(t_i)$	θ	

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter Program			
2	Initialize		RTN	
3	Clear registers		f REG	0.00
	-			
4	Input t _i (operating time)	t,	A	t ²
	repeat 4 for i = 1, 2, 3, n			-
5	Compute R(t _i) Probability of survival		B	R(t _i)
	repeat 5 for i = 1, 2, 3,n			
6	Input probability of survival R(t _i)	R(t _i)		L _N R(t _i)
	repeat 6 for i = 1, 2, 3, n			
7	Input operating time t _i	t		
8	Input L _N R(t _i)	$L_{N} R(t_{i})$	R/S	t _i L _N R(t _i)
	repeat 7-8 for i = 1, 2, 3, n			
9	Compute $\hat{\theta}$			θ
10	For new case go to step 2			
ļ				
Ļ				

97 Program Listing I

			7/ Frogram		ning i		3
STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
801	*LBLA	21 11	Compute t ²				
002		53	out a				
003	ST+1	35-55 01					
004		01		060			
005		35-55 02					
006		-41					
007		24					
008		21 12	Compute R(t)				
009		36 02	Compute R(t _i) probability of				
010		-21	survival				
011		-21	Sulvivai				
012		-21					
013		Ū1					
814		35-55 03		070			
015		36 03					
816		-41					
017		-31					
018		-45			-		
019		-41					
020		-24			1		
021		-63 04			1		
822		24			1		
023		21 13	Input R(t _i)				
024		32	Compute $L_N R(t_1)$	080			
025		24					
026		21 14	Input t _i		<u> </u>		
027		-21	Input ti		1		
028		51	Input L _N R(t _i)				
029		-35	Input D _N R(t ₁)				
030		35-55 04	$C_{OMPULTO} [t \cdot P(t)]$				
031		24	Compute [t _i R(t _i)]				
032		21 15					
833		36 84	Compute A				
034		36 01	Compute 0	090			
035		-24			1		
036		-22			1		
037		52					
038		24				· · · · · · · · · · · · · · · · · · ·	
		· · · · · · · · · · · · · · · · · · ·					
040			-1				
	· · · - ·		-				
			-1				
			-		1		
			1	100	1	1	1
			1		1	<u> ·</u>	1
			1		t	t	1
			1		1		1
			1		1	1	
			-1			<u> </u>	
050			1				SET STATUS
			1			FLAGS	TRIG DISP
		1	-1			ON OFF	
]				DEG 🖄 FIX 😨 GRAD 🗆 SCI 🗍
				110		1 🗆 🛛	GRAD GRAD
						2 🗆 🛛	RAD ENG
						3 🗆 🖄	n_ <u></u>
				GISTERS			<u> </u>
0	1 Used	l ² Used	[#] ³ Used ΣIt · LyR	5	6	7	8 9
L		<u>of fai</u>	1. Used $\sum_{i=1}^{NR}$			S7	S8 S9
S0	S1	S2	S3 S4	S5	30	5'	
ļ		<u> </u>		D		E	
А		В	с				ľ
I		1					

Program Description I

Program Title	SYSTEMS RELIABILTY - S	SERIES AND PARALLEL WITH S	
	FAILURE RA	ΑΤΕ λ	
Contributor's Na	me Hewlett-Packard (Company	
Address	1000 N.E. Circle Boul	levard	
City	Corvallis	State Oregon	Zip Code 97330

Program Description, Equations, Variables Program calculates total systems reliability
when units (composed of differential components) are placed in series or
parallel, by using the concept of unreliability to calculate systems reliability
in parallel, avoiding very lengthy and tedious calculations. Saves considerable
amount of time. Equations used are as follows:
j_i is number of components of corresponding λ_i
λ_i is failure rate/hr of differential components (say r types) (where i = 1, 2, 3, r)
$\sum_{i=1}^{r} j_i \lambda_i$; total failure rate/hr of a unit
$-\frac{n}{2} \lambda_{iji} \cdot t$
Unit $R_s(t) = e$; Unit reliability for t hours. Unit $Q_s(t) = 1-R_s(t)$; Unit unreliability for t hours.
Series $R_{sys} = \prod_{m=1}^{n} R_m = \prod_{m=1}^{n} e^{-\left[\sum_{i=1}^{r} \lambda_{i} j_{i} \cdot t\right]_{m}} = \left[e^{-\sum_{i=1}^{r} \lambda_{i} j_{i} \cdot t}\right]^{n}$
Series Q _{sys} = 1 - R _{sys}
Parallel R' _{sys} = 1 - $\prod_{m=1}^{n} Q'_{m}$ = $[1 - [1 - \prod_{m=1}^{n} [R_{s}(t)]_{m}]$
Operating Limits and Warnings
All units placed in series or parallel <u>must</u> have same λ failure rate
per hour.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description 11

39

[A]	0.00		
2 [EEX]	2.	00	
6	2.	06	
[CHS]	2.	-06	[\lambda_1]
[*]			
[2]			[# of components]
[X]	0.00		
[B]	4.00000000	-06	[Σ λ _i j _i]
10 [EEX]	10.	00	
6	10.	06	
[CHS]	10.	-06	
[+]	10.000000000	-06	
3	3.		
[X]			
[B]	3.40000000	-05	
[EEX]	1.	00	
6	1.	06	
[CHS] [†]	1.000000000	-06	
1	1.		
[X]	1.000000000	-06	
[B]	3.50000000	-05	
2 [EEX]	2.	00	
6	2.	06	
[CHS]	2.	-06	
[†]	2.00000000	-06	
2	2.		
[X]			
[B]	3.90000000	- 05	
1000 [C]	0.961751		[R _s (1000)]
[R/S]	0.038249		$[0_{8}(1000)]$
3 [D]	0.889585		[R ⁽¹⁰⁰⁰⁾ when we input n=3 units in series]
[R/S]	0,110415		$[Q_{sys}^{(1000)}$ of 3 units in series]
3 [E]	0.000056		[Q's(1000) of 3 units in parallel]
[R/S]	0.999944		[R's(1000) of 3 units in parallel]

User Instructions

1 SYSTEM	RELIABILITY -	- SERIES	OR PARALLEL	SYSTEM	WITH :	SAME λ	7
S Init	Σλ _i j	Unit R _s (t)) Q _s (t) Seri	es] Q _{sys —} (Parall Q' _{sy} R	el sy	/
				INDUT			

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program			
2	Initialize, clear registers		A	0.00
3	Input λ_i for each component	λ.		
4	Input j _i # of components	$\frac{\lambda_{\mathbf{i}}}{\mathbf{j}_{\mathbf{i}}}$	X	λ ₁ j
5	Sum & Recall $\Sigma \lambda_{iji}$		B	λ _i j _i Σλ _i ji
	repeat 3-5 for i = 1, 2, 3,r			
6	Input time 't' for reliability	t	С	Unit R _s (t)
7	Calculate unreliability		R/S	Unit Q _s (t)
8	Input no. of units in series to calculate	n		Series R _{svs}
	systems reliability in series			
9	Calculate unreliability for new 'n'		R/S	Series Q _{sys}
⊢́	Go to step 8			Series (sys
10	Input no. of units in parallel for	n		Parallel
	systems unreliability			Q'sys
11	Calculate reliability of parallel system		R/S	Parallel
**	Calculate reliability of parallel system			R'sys
	For new 'n' go to step 8 or 10 as requires			
	For new in go to step o or to as requires			
	For a new case go to step 2			
	· · · · · · · · · · · · · · · · · · ·			
				<u> </u>
		1 1		
		<u> </u>		

42					Siam						
STEP	KEY ENTR			COMN	IENTS	STEP	KEY ENTRY		KEY CODE	COM	MENTS
001	*LBLA	21 11	Ini	tializ	e, clear						
002		16-53	reg	giste <mark>r</mark>	8						
003		24		-							
004	*LBLE	21 12				060					
005	ST+1	35-55 01	Cal	culate	Σλ _{iji}						
006	RCL1	36 01	(to	otal u	nit						
007	SCI	-12			rate)						
008	DSP9	-63 09		******	iuce,			1			
009	RTN	24									
818	*LBLC	21 13									
011	RCL1	36 01	Cal	mlate	unit's	0		1			
012		-35			ity and						
013		-22		celiab							
614		33	, un	errap	IIICY	070		\mathbf{T}			
015		-11						\mathbf{t}			
016		-63 06									
017		35 02									
018		51						╞			
019		-22									
020		01									
021	+	-55	ļ					\vdash			
022		35 03						╞	· · · -		
023	RTN	24									
024		21 14				080					
825		36 02	0.1	.			· · · · · · · · · · · · · · · · · · ·	┢			
026		-41		ulate	R _{sys} ity in	-		-			
027		31	rel	liabil	ity in	 					
028		-11	1		or 'n'	L		┣			
028 029		-63 06	suc	h uni	ts	<u> </u>					
030	R/S	51				 		┢─			
031	CHS	-22	Yiel	d unr	eliability						
032	1	01	in	serie	s Q _{sys}	<u> </u>					
033	+	-55			298	<u> </u>		┞			
033 034	RTN	24				090		⊢			
034 035	*LBLE	21 15				090					
036	RCL3		Calc	ulate	Qeve			-			
038 037	κυ±3 Χ≠Υ	36 03	unr	eliab:	ility to	·		 			
	n+1 Yx	-41 31		d para				1			
038 079					reliab.			┢			
039	FIX	-11		'n' 1				_			
040	DSP6	-63 06						┨──			
Ø41 840	R∕S cus	51	Yiel	ds R _{sy}	vs			_			
042 047	CHS	-22	rel	iabil	ity of	L					
843 844	1 +	01 -55	sys	tem in	n parallel	100		┨			
						100		_			
045	RTN	24	1			ļ					
\vdash			1								
┝			4			└──		┢			
┝──┼			4					-			
			4						J	SET STATUS	······································
050								_	ļ		
┠			ł						FLAGS	TRIG	DISP
├ ───┼		-	ł					⊢			
┠∔			ł			110		┝	0 🗆 🛛 1 🗆 🖾		FIX ⊠ SCI □
┣───┤			ł					+		GRAD □ RAD □	
			ł				<u> </u>	-	2 🗆 🛛		
┝───┴			<u> </u>			STERS	l	<u> </u>			I
0	1	2	3		4 HEGI	5	6		7	8	9
ľ	USED) ² USED	ע א	SED	1 [°]	Ĭ	ľ				
S0	S1	S2	S3		S4	S5	S6		S7	S8	S9
[⁻]	1				ļ						
A		В		С	1	D	<u> </u>	E		I	
		1									

97 Program Listing I

Program Description I

Program Title	SYSTEMS RELIABI		AND PARALLEL WITH <u>I</u> E RATE λ	DIFFERENT
Address	lame Hewlett-Pa 000 N.E. Circle Bo vallis	ackard Compan oulevard		Zip Code 97330
Program Desc	ription, Equations, Varia	ables		
uses unr	iability of each	component or ot to find re	program uses R _{SS} = unit) and for paral liability of the sys ilure rate/hour.	= Î R _i (where i=1 llel system it stem. R _{sp} = 1 - Q _{sp}
	The program is ve	ery useful to	check out any deper ency of the system.	ndent failures,
• • • • • •		···· ··· ··· ··· ··· ···		
	· · · · · · · · · · · · · · · · · · ·			
· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
Operating Lim	its and Warnings			
· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sketch(es)			_]	
	<u> </u>					PARALLEL
]	system
SER	RIES SYSTE	EM				
Sample Problem(s) Two 6 X 10 ⁻⁶ F/Hr and			_			
6 X 10 ⁻⁶ F/Hr and	d 23 X 10 ⁻⁶ F/H1	r respect	ively of	a command	modu	ilure rates le of a bility for
6 X 10 ⁻⁶ F/Hr and spacecraft are to re-entry. Find o	d 23 X 10 ⁻⁶ F/H o be mounted for out syst ems rel:	r respect r maximum iability	ively of possible for 1000	a command systems i hours. If	modu relia f the	le of a bility for y are mounted
6 X 10 ⁻⁶ F/Hr and spacecraft are to re-entry. Find o	d 23 X 10 ⁻⁶ F/H o be mounted for out syst ems rel:	r respect r maximum iability	ively of possible for 1000	a command systems i hours. If bove).	modu relia f the	le of a bility for y are mounted
6 X 10 ⁻⁶ F/Hr and spacecraft are to re-entry. Find o in series or para	d 23 X 10 ⁻⁶ F/Hn o be mounted for out systems rela allel. (Please t = 1000	r respect r maximum iability refer to	ively of possible for 1000 sketch a	a command systems i hours. If bove).	modu relia f the	le of a bility for y are mounted
6 X 10 ⁻⁶ F/Hr and spacecraft are to re-entry. Find o in series or para	d 23 X 10^{-6} F/Hz o be mounted for out systems rel: allel. (Please t = 1000 λ_1 = 6 X 10^{-6}	r respect r maximum iability refer to Failures	ively of possible for 1000 sketch a /hour	a command systems i hours. If bove).	modu relia f the	le of a bility for y are mounted
6 X 10 ⁻⁶ F/Hr and spacecraft are to re-entry. Find o in series or para	d 23 X 10 ⁻⁶ F/Hn o be mounted for out systems rela allel. (Please t = 1000	r respect r maximum iability refer to Failures	ively of possible for 1000 sketch a /hour	a command systems i hours. If bove).	modu relia f the	le of a bility for y are mounted
6 X 10 ⁻⁶ F/Hr and spacecraft are to re-entry. Find o in series or para	d 23 X 10^{-6} F/Hz o be mounted for out systems rel: allel. (Please t = 1000 λ_1 = 6 X 10^{-6}	r respect r maximum iability refer to Failures	ively of possible for 1000 sketch a /hour	a command systems i hours. If bove).	modu relia f the	le of a bility for y are mounted
6 X 10 ⁻⁶ F/Hr and spacecraft are to re-entry. Find o in series or para	d 23 X 10^{-6} F/Hz o be mounted for out systems rel: allel. (Please t = 1000 λ_1 = 6 X 10^{-6}	r respect r maximum iability refer to Failures	ively of possible for 1000 sketch a /hour	a command systems i hours. If bove).	modu relia f the	le of a bility for y are mounted
6 X 10 ⁻⁶ F/Hr and spacecraft are to re-entry. Find o in series or para	d 23 X 10^{-6} F/Hz o be mounted for out systems rel: allel. (Please t = 1000 λ_1 = 6 X 10^{-6}	r respect r maximum iability refer to Failures	ively of possible for 1000 sketch a /hour	a command systems i hours. If bove).	modu relia f the	le of a bility for y are mounted

 $Q_{ss}(1000) = 0.028584$

 $R_{sp}(1000) = 1 - Q_{sp} = [1 - (1 - R_1)(1 - R_2)] = 0.999864$

 $Q_{sp}(1000) = (1-R_1)(1-R_2) = (1-e^{-\lambda_1 t})(1-e^{-\lambda_2 t}) = 0.000136$

Reference(s) 1) "Probabilistic Reliability: An Engineering Approach" Martin Shooman, McGraw-Hill. 2) HP-65 Owners Handbook This program is a translation of the HP-65 Users' Library Program #05109A submitted by Ashok Doshi.

COMPLETE KEYSTROKES FOR THE EXAMPLE

	[f] [REG]	0.00	[Clear Registers]			
	[DSP] [6]					
1000	•	1000	[Input Time t]			
	[A]	1.00				
6	[EEX]	6. 00)			
6		6. 06	i i i i i i i i i i i i i i i i i i i			
	[CHS]	606	[Input λ ₁]			
	[B]	0.994018	[Inter-mediate R _{ss}]			
23	[EEX]	23. 00)			
6		23. 06	5			
	[CHS]	2300	5 [Input λ_i]			
	[B]	0.971416	[R _{ss} - Reliability in series]			
	[C]	0.028584	[Q _{ss} - Unreliability in series]			
6	[EEX]	6. 00	_			
6		6, 00	5			
	[CHS]	600	δ [Input λ _i]			
	[D]	0,005982	[Q _{sp} - Intermediate Unreliability in parallel]			
23	[EEX]	23 00				
6		23 00	5			
	[CHS]	23 -0	6 [Input λ _i]			
[D]		0.000136	[Q _{sp} -Unreliability in			
	[E]	0,999864	<pre>parallel] [R_{sp}-Reliability in parallel]</pre>			

User Instructions

1	SYSTEMS	RELIABILITY	IN	SERIES	AND	PARALLEL	DIFFERENT	λ	2
	t	R _{ss}		Q_{ss}		Q _{sp}	R _{sp}		

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program			
2	Clear registers		f REG	0.00
3	Input time t	t	A	1.00
	-			
4	Input λ_i for each component	λι	B	R _{SS}
	repeat 4 for i = 1, 2, 3,n	-		series
5	Calculate unreliability (Series)		С	Q _{ss} series
	• • •			series
6	Input λ_i for each of the component to	λ	D	Q _{sp}
	calculate unreliability of parallel system	_		parallel
	repeat 6 for i = 1, 2, 3,n			
7	Calculate reliability of parallel system		E	R _{sp} parallel
				parallel
	For a new case go to step 2			
-				

Program Listing I

				7/	I I U	gram			ng i					47
STEP	KEY ENTRY	Y K	EY CODE		COMM	ENTS	STEP	KE	Y ENTRY	ł	KEY CODE	CO	MMENTS	
00i	*LBLA		21 11	Sto	re tim	e and				Γ				
002	ST+3	35-5	5 03			storage						1		
003	1		Ũ1			1 and 4				↓				
004	ST+1		55 01				060			 		1		
005	ST+4	35-5	5 04							_				
006		_	24											
007 000			21 12		culate							4		
00 8	RCL3	3	36 03 35	re	liabil	ity R _{ss}						4		
009 010	x Chs		-35 -22		the se	eries				┝		-		
615	e ^x		-22 33	sys	stem					┢		1		
012		75-7	33 15 Ø1								- · · <u>-</u>	1		
012			36 0 1	77.5	11 - D					┢		1		
014			24	Ile.	las K _s	_s -series	070			+	<u></u>	1		
015		2	21 13									1		
016			6 01	Cale		ummaldal						1		
017		-	-22		ity of	unreliab-						1		
013			Ū1		ries s							1		
019			-55							\mathbf{t}		1		
020			24	y דנ פסי	elds Q _a cies s	SS ^{VI} Vstam				1		1		
021	*LBLD	2	21 14		ulato]		
0 22	RCL3		16 03	par	allel	Q _{sp} of system]		
0 23	Х		-35		the t]		
024			-22		eliab:		080							
025			33		ncept	·								
026	CHS		-22		-									
027	1		01]		
028	+		-55											
029	ST×4		15 04	yie]	lds Q _{si}	for								
030	RCL4	3	16 04	par	allel	system								
031	RTN	_	24			•						ļ		
032	*LBLE		1 15									ļ		
033	RCL4	ۍ	16 04	Calc	ulate	R _{sp}		ļ		 		ł		
034	CHS		-22	rel	liabili	ity of	090					ł		
035 07/	1		01 55			system						4		
036 077	+ 876		-55	Yie	elds R _s	sp for						{		
037	RTN	- +	24	par	allel	system						ł		
										╂	···-	ł		
040										+		4		
										+		1		
		- -								+		1		
								<u> </u>		+		1		
	_	-+-					100			+		1		
								1		+		1		
										1		1		
		_						<u> </u>		1		1		
		-										1		1
	· · · ·							1			· · · · · · · · · · · · · · · · · · ·	<u> </u>		
050	· · · · ·	1										SET STATU	IS	
											FLAGS	TRIG	DIS	ip
											ON OFF	1		
							110	 			0 🗆 🛛	DEG 🛛		X
	······						110	 		\vdash				
├ ───┤										+	2 🗆 🖄	RAD 🗆	ENG	
						DECI		L						
0	1		2	3		HEGI:	STERS	T	6		7	8	9	
ľ	USED)	[SED	USED	-				[
S0	S1		S2	S 3		S4	S5		S6		S7	S8	S9	
				1										
A		в			С		D			Ē		I		

NOTES

NOTES

.

NOTES

Hewlett-Packard Software

In terms of power and flexibility, the problem-solving potential of the Hewlett-Packard line of fully programmable calculators is nearly limitless. And in order to see the practical side of this potential, we have several different types of software to help save you time and programming effort. Every one of our software solutions has been carefully selected to effectively increase your problem-solving potential. Chances are, we already have the solutions you're looking for.

Application Pacs

To increase the versatility of your fully programmable Hewlett-Packard calculator, HP has an extensive library of "Application Pacs". These programs transform your HP-67 and HP-97 into specialized calculators in seconds. Each program in a pac is fully documented with commented program listing, allowing the adoption of programming techniques useful to each application area. The pacs contain 20 or more programs in the form of prerecorded cards, a detailed manual, and a program card holder. Every Application Pac has been designed to extend the capabilities of our fully programmable models to increase your problem-solving potential.

You can choose from:

Statistics Mathematics Electrical Engineering Business Decisions Clinical Lab and Nuclear Medicine Mechanical Engineering Surveying Civil Engineering Navigation Games

Users' Library

The main objective of our Users' Library is dedicated to making selected program solutions contributed by our HP-67 and HP-97 users available to you. By subscribing to our Users' Library, you'll have at your fingertips, literally hundreds of different programs. No longer will you have to: research the application; program the solution; debug the program; or complete the documentation. Simply key your program to obtain your solution. In addition, programs from the library may be used as a source of programming techniques in your application area.

A one-year subscription to the Library costs \$9.00. You receive: a catalog of contributed programs; catalog updates; and coupons for three programs of your choice (a \$9.00 value).

Users' Library Solutions Books

Hewlett-Packard recently added a unique problem-solving contribution to its existing software line. The new series of software solutions are a collection of programs provided by our programmable calculator users. Hewlett-Packard has currently accepted over 6,000 programs for our Users' Libraries. The best of these programs have been compiled into 40 Library Solutions Books covering 39 application areas (including two game books).

Each of the Books, containing up to 15 programs without cards, is priced at \$10.00, a savings of up to \$35.00 over single copy cost.

The Users' Library Solutions Books will compliment our other applications of software and provide you with a valuable new tool for program solutions.

Options/Technical Stock Analysis	Medical Practitioner					
Portfolio Management/Bonds & Notes	Anesthesia					
Real Estate Investment	Cardiac					
Taxes	Pulmonary					
Home Construction Estimating	Chemistry					
Marketing/Sales	Optics					
Home Management	Physics					
Small Business	Earth Sciences					
Antennas	Energy Conservation					
Butterworth and Chebyshev Filters	Space Science					
Thermal and Transport Sciences	Biology					
EE (Lab)	Games					
Industrial Engineering	Games of Chance					
Aeronautical Engineering	Aircraft Operation					
Control Systems	Avigation					
Beams and Columns	Calendars					
High-Level Math	Photo Dark Room					
Test Statistics	COGO-Surveying					
Geometry	Astrology					
Reliability/QA	Forestry					

RELIABILITY/QUALITY ASSURANCE

Calculations related to reliability/quality assurance are included in this book, e.g., intra-class correlation, specific compliance, parameter estimation, lower limit and bounds of reliability, failure of serves, leak rate, maximum likelihood estimator, system reliability, distribution function, comparison of hazard models, etc.

RELIABILITY: INTRA-CLASS CORRELATION

SPECIFICATION COMPLIANCE FROM LIMITS AND REGRESSION ANALYSIS

PARAMETER ESTIMATION (EXPONENTIAL DISTRIBUTION)

LOWER LIMIT OR RELIABILITY - BINOMIAL DISTRIBUTION

RELIABILITY AND PROBABILITY OF FAILURE OF SERIES AND PARALLEL SYSTEMS

MIL - STD - 883 CALCULATED LEAK RATE

MLE: $\hat{\theta}$ FROM HAZARD RATE

MLE: $\hat{\theta}$ BY LEAST SQUARE METHOD

SYSTEMS RELIABILITY-SERIES AND PARALLEL WITH SAME FAILURE RATE λ

SYSTEMS RELIABILITY-SERIES AND PARALLEL WITH DIFFERENT FAILURE RATE λ

1000 N.E. Circle Blvd., Corvallis, OR 97330 Reorder No. 00097-14030 Printed in U.S.A. 00097-90205 Revision C 10-78