

1000 N.E. Circle Blvd., Corvallis, OR 97330

00097-90106

Introduction

The 19 programs of Clinical Lab and Nuclear Medicine Pac have been drawn from the fields of clinical chemistry, nuclear medicine, radioimmunoassay, and statistics.

Each program in the pac is represented by a magnetic program card and a section in this manual. The manual provides a description of the program with relevant equations, a set of instructions for using the program, and one or more example problems, each of which includes a list of the actual keystrokes required for its solution. Program listings for all the programs in the pac appear at the back of this manual. Explanatory comments have been incorporated in the listings to assist you should you want to study the actual workings of the program.

No knowledge of programming is required to use the programs in this pac. However, some familiarity with keyboard operations, as described in Sections 1 through 5 of the Owner's Handbook, is assumed. If you have already run a number of programs from Standard Pac or another applications pac, you will be able to use these programs with very little additional instruction. We recommend that you read only "A Word about these Programs" on pages iv and v of this manual. If, on the other hand, this is your first exposure to running prerecorded programs, be sure to read the entire introductory section on pages iv to xii.

We hope that Clinical Lab and Nuclear Medicine Pac will assist you in the solution of numerous problems around the laboratory. We have tried to provide you with the most commonly used statistics programs as well, but should you find the need for more, there is another pac, Stat Pac I, exclusively for statistics.

We would very much appreciate knowing your reactions to the programs in this pac, and to this end we have provided a questionnaire inside the front cover of this manual. Would you please take a few minutes to give us your comments on these programs? It is in the comments we receive from you that we learn how best to increase the usefulness of programs like these.

The program material contained herein is supplied without representation or warranty of any kind. Hewlett-Packard Company therefore assumes no responsibility and shall have no liability, consequential or otherwise, of any kind arising from the use of this program material or any part thereof.

.

CONTENTS

Prog	gram Page
Clin	ical Chemistry
1.	Beer's Law
2.	Protein Electrophoresis
3.	LDH Isoenzymes
4.	Body Surface Area
5.	Urea Clearance
6.	Creatinine Clearance
7.	Amniotic Fluid Assay
8.	Blood Acid-Base Status
9.	Oxygen Saturation and Content
10.	Red Cell Indices
Nucl	ear Medicine
11.	Total Blood Volume
12.	Schilling Test
13.	Thyroid Uptake
14.	Radioactive Decay Corrections

Radioimmunoassay

15.	Radioimmunoassay
	Computes least-squares regression line of logit of net counts vs.
	log concentration, including regression constants, correlation
	coefficient, and concentration for a given count.

Statistics

distribution.

E A

E3

16.	Basic Statistics
	Computes mean, standard deviation, standard error, and coefficient
	of variation for grouped or ungrouped data.
17.	
	Computes the chi-square statistic for goodness of fit. For given
	$x \ge 0$, finds the chi-square density function $f(x)$ and the cumu-
	lative distribution P(x).
18.	t Statistics

ii

A WORD ABOUT THESE PROGRAMS

This application pac has been designed for both the HP-97 Programmable Printing Calculator and the HP-67 Programmable Pocket Calculator. The most significant difference between the HP-67 and the HP-97 calculators is the printing capability of the HP-97. Most of the computed results in this pac are output by the command PRINTx. On the HP-97 these results will be output on the printer. On the HP-67 each PRINTx command will be interpreted as a PAUSE: the program will halt, display the result for about five seconds, then continue execution.

If you use an HP-67, you may want more time to copy down the number displayed by a PRINTx command. All you need to do is press any key on the keyboard during the pause interval in which the result is displayed. This action will cause the program to halt; execution of the halted program may be reinitiated by pressing **FS**. Values that are output by a PRINTx command are marked by three asterisks (***) in the keystroke solutions to example problems. The keystroke solutions reflect another slight difference between the HP-67 and the HP-97. It is sometimes necessary in these solutions to include operations that involve prefix keys, namely, **f** on the HP-97 and **f**, **g**, and **b** on the HP-67. For example, the operation $\mathbf{10}^{\times}$ is performed on the HP-97 as **f** $\mathbf{10}^{\times}$ and on the HP-67 as **g** $\mathbf{10}^{\times}$. In such cases, the keystroke solution omits the prefix key and indicates only the operation (as here, $\mathbf{10}^{\times}$). As you work through the example problems, take care to press the appropriate prefix keys (if any) for your calculator.

Programs 1 through 13 of this pac are alike in that many of the same operations are available in each of these programs. A look at the magnetic cards for these programs will show three instructions repeated in gold on every card of these thirteen: PTNT #, POFF?, and REPRINT. These three operations are intended primarily for use on the HP-97. In addition, either CLEAR or START appears on all of the first thirteen cards. Some discussion of these common operations may be helpful.

The instruction PTNT # allows you to key in a patient number which will be immediately printed in order to identify the data and results of the following calculations. The patient number used should be a whole number; the program will append two digits after the decimal point to identify the program being used, 01 to 13. For example, if the patient number 1234 is used in program 7, the program would print the identification 1234.07, which serves to identify the entire context of the calculations which are to follow. The use of the patient number for identification purposes is entirely optional and may be omitted.

The interrogative P OFF? asks the question: do you want to turn the print function off? When the program is loaded, a flag is set that causes all inputs and outputs of the program to be printed. If this information is not all desired, you may eliminate some or all of it, depending on the program, by turning the print

iv

---5.7

function off. It may later be turned back on at any time without affecting the operation of the program.

The instruction REPRINT allows for an additional printout of all data and results after a calculation has been completed. Frequently in the clinical lab, the results of a test must be reported to several different departments. The RE-PRINT feature allows you to obtain additional copies of the data and results directly from the program.

The instructions CLEAR and START are similar in that both have to do with initialization of the program and should be executed before any other operation in the program. They differ in that CLEAR is an optional instruction and START is mandatory. Basically, CLEAR simply sets certain registers to zero to insure that meaningless information is not output during a REPRINT. On the other hand, START loads registers with necessary initial values without which the program would fail to function properly.

RUNNING A PROGRAM

Loading a Program

Select the *Protein Electrophoresis* card, CL1-02A, from the card case supplied with this application pac.

Set the PRGM-RUN switch to RUN.

If you are using the HP-97, set the printer switch to MAN. All the programs in this pac are designed for manual printer setting.

Gently insert either end of the card (printed side up) in the reader slot of your calculator as shown in figure 1a or 1b.

Figure 1a. HP-97

Figure 1b. HP-67

When the card is part way in, a motor engages and passes it out the other side of the calculator. Sometimes the motor engages but does not pull the card in. If this happens, push the card a little farther into the machine. Do not impede or force the card; let it move freely.

The display will show "Error" if the card reads improperly. In this case, press CLX and reinsert the card.

Since Protein Electrophoresis is longer than 112 steps (the capacity of one side of a magnetic card), the display now shows "Crd" indicating that a

vi

second card pass is necessary to load the remaining steps. With the writing still visible to you, insert the *opposite* end of the card (figures 2a and 2b) and pass the card through the card reader again.

Figure 2a. HP-97

Figure 2b. HP-67

When the motor stops, remove the card from the other side of the calculator and insert it in the "window slot" of the calculator (figures 3a and 3b).

Figure 3a. HP-97

The program has now been stored in the calculator. It will remain stored until another program is loaded or the calculator is turned off.

E

Þ

EB

E

宇

Ę

The Magnetic Card

Complete instructions for running the program are found in the User Instructions form for that program. The first few times you run the program, you should refer to these instructions at each step of the operation. Thereafter, mnemonic symbols on the magnetic card itself will provide shorthand instructions to the program's operation.

Take a look at the card that you have inserted in the window slot of the calculator. Notice that the mnemonic symbols on the card are grouped above the user-definable keys \land through \boxdot . For example, the symbols " \rightarrow %" and "PTNT #" are associated with key \bigcirc . Symbols in gold are associated with the shifted keys \frown \land through \frown \boxdot .

Below-is a table of the important symbols and conventions you will find on magnetic cards.

SYMBOL OR CONVENTION	INDICATED MEANING
White mnemonic: x	White mnemonics are associated with the user- definable key they are above when the card is inserted in the calculator's window slot. In this case the value of x could be input by keying it in and pressing \blacktriangle .
Gold mnemonic: y x f E	Gold mnemonics are similar to white mnemonics except that the gold 1 key must be pressed before the user-definable key. In this case y could be input by pressing 1 1 .
x∔y A	♦ is the symbol for ENTER♥. In this case ENTER♥ is used to separate the input variables x and y. To input both x and y you would key in x, press ENTER♥, key in y and press A.

SYMBOLS AND CONVENTIONS (Continued)

<u></u>	ر د
SYMBOL OR CONVENTION	INDICATED MEANING
X	The box around the variable x indicates input by pressing STO A .
(x)	Parentheses indicate an option. In this case, x is not a required input but could be input in special cases.
→ x	 ◆ is the symbol for calculate. This indicates that you may calculate x by pressing key ▲.
★ x, y, z	This indicates that x, y, and z are calculated by pressing \triangle once. The values would be printed in x, y, z order.
◆ x; y; z	The semi-colons indicate that after x has been calculated using A , y and z may be calculated by pressing R/S .
	The quote marks indicate that the x value will be "paused" or held in the display for one second. The pause will be followed by the display of y.
◆ x	The two-way arrow \diamondsuit indicates that x may be either output or input when the associated user- definable key is pressed. If numeric keys have been pressed between user-definable keys, x is stored. If numeric keys have not been pressed, the program will calculate x.
P?	The question mark indicates that this is a mode setting, while the mnemonic indicates the type of mode being set. In this case a print mode is con- trolled. Mode settings typically have a 1.00 or 0.00 indicator displayed after they are executed. If 1.00 is displayed, the mode is on. If 0.00 is displayed, it is off.
START A	The word START is an example of a command. The start function should be performed to begin or start a program. It is included when initialization is necessary.
DEL	This special command indicates that the last value or set of values input may be deleted by pressing

ix

FORMAT OF USER INSTRUCTIONS

The completed User Instructions Form—which accompanies each program—is your guide to operating the programs in this Pac.

The form is composed of five labeled columns. Reading from left to right, the first column, labeled STEP, gives the instruction step number.

The INSTRUCTIONS column gives instructions and comments concerning the operations to be performed.

The INPUT DATA/UNITS column specifies the input data, and the units of data if applicable. Data input keys consist of () to () and decimal point (the numeric keys), **EEX** (enter exponent), and **CHS** (change sign).

The KEYS column specifies the keys to be pressed after keying in the corresponding input data.

The OUTPUT DATA/UNITS column specifies intermediate and final outputs and their units, where applicable.

The following illustrates the User Instruction Form for Protein Electrophoresis, CL1-02A.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Initialize.		A	0.00
3	(optional) Key in patient number.	Ptnt #		Ptnt # .02
4	To suppress output of data, turn			
	print function off.			0.00
5	To turn print back on later.		00	1.00
6	Key in the counts of the first			
	protein fraction.	Fract,	B	1.00
7	Repeat this step for the rest of			
	the fractions.	Fracti	B	i
8	Calculate the percentage each			
	fraction is of the whole.		C	%
9	(optional) Key in the total grams			
	of protein and find the grams in		<u> </u>	1
	each fraction.	Total Protein	D	grams
10	(optional) Find the albumin/		1	
·······	globulin ratio.		0	A/G
11	(optional) Obtain a reprint of all			

	STEP	INSTRUCT
		data and results (T
		and grams omitted
		Protein not input).
		<u> </u>
	12	For a new case, go
		
		ou loaded this pro done and we can
	you mu	ust reload the prog keys A through E
	Step 2	is an initialization
		now to perform ould see a display
	Step 3	is optional and all
T		output is desired. T d by ".02", whic
		the patient number
		and 5 have to do
		n through the keys n is on; pressing
	Success	sive presses of 🗗 🕻
		ing 1.00 (on) and n on) when you are
		n PRINTx comma
	•	begins the actual
	the cou	ints for the first pr
		ess B. This value ut of the first fraction
		nation counts in a

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
	data and results (Total Protein			
	and grams omitted if Total			
	Protein not input).		00	Ptnt # .02
				Fract,
				Fract _n
				(%)1
				(%) _n
				Total Protein
				grams₁
				grams _n
				A/G
12	For a new case, go to step 2.			

Since you loaded this program in "Loading a Program" on page vi, step 1 is already done and we can move to step 2. (If you turned your calculator off, you must reload the program.) Leave the magnetic card in the window slot above keys A through \blacksquare .

Step 2 is an initialization procedure, marked START on the magnetic card. Press A now to perform the initialization, as shown in the KEYS column. You should see a display of 0.00.

Step 3 is optional and allows for input of the patient number if identification of the output is desired. The number output at this step is the patient number followed by ".02", which marks the second program of the pac, CL1-02A. Key in the patient number 1234 and see an output of 1234.02.

Steps 4 and 5 have to do with the optional print mode, which may be turned off or on through the keystrokes **1 1**. When the program is loaded, the print function is on; pressing **1 1** will turn it off and display 0.00. Try it. Successive presses of **1 1** will turn the print function on, then off, alternately displaying 1.00 (on) and 0.00 (off). Try this, but leave 1.00 displayed (print function on) when you are finished. This will allow the input data to be output through PRINTx commands.

Step 6 begins the actual input of the fractionation data. You are to key in the counts for the first protein fraction (Fract₁ under INPUT DATA/UNITS) and press **B**. This value will be output and a 1.00 will be displayed to mark the input of the first fraction. Step 7 instructs you to input the remaining protein fractionation counts in a like manner, keying in each value and pressing **B**.

The number displayed after each value is input indicates the number of functions input so far. Try this sequence with the values from the table below.

Fraction	Substance	Counts
1	Albumin	67
2	α₁–globulin	4
3	α₂-globulin	10
4	β-globulin	14
5	γ-globulin	13

Use the keystrokes 67 B 4 B 10 B 14 B 13 B. At the end of this sequence the display should show 5.00.

Now that all fractions have been input, step 8 instructs you to find the percentages for the fractions input by pressing C. Each percentage is output by a PRINTx command, and the percentages will be output in the order the fractions were input. Press C now. The outputs you should see are, in this order, 62.04, 3.70, 9.26, 12.96, and 12.04.

Step 9 is optional. Here you may key in the total grams of protein and press to find the number of grams in each fraction. Key in 7, press , and you should see these outputs: 4.34, 0.26, 0.65, 0.91, and 0.84.

Step 10 is optional. You may press E to compute the albumin/globulin ratio. Press E now and find an A/G value of 1.63.

Step 11 is also optional. This is the REPRINT feature described on page v. If is pressed, the entire set of data and results will be output through PRINTx commands in the order shown in the OUTPUT DATA/UNITS column. You may do this now and check that the values returned by the REPRINT function are the same as those you keyed in or calculated earlier.

If your answers agree with ours, you are ready to try other programs in this pac. Otherwise, go back to the start of this section and try the procedure again.

EE -**KKE F**-3

BEER'S LAW

This program combines two independent routines in the area of spectrophotometry. The first routine, on keys \triangle and \square , solves Beer's law interchangeably to find either absorbance (optical density) or percent transmittance (%T). To find %T, key in absorbance and press key \triangle . The output will be %T. To find absorbance, key in %T and press key \square . Absorbance will be output.

The second routine, on keys \mathbb{C} , \mathbb{D} , and \mathbb{E} , allows calculation of the concentration of an unknown given the concentration of a standard and the absorbance of %T of the standard and unknown. If the percent transmittance of the standard $(\%T_s)$ is known, it may be keyed in to key \mathbb{C} . If the absorbance of the standard (A_s) is known instead, it may be keyed in *as a negative number* to key \mathbb{C} . Similarly, for the unknown, percent transmittance $(\%T_u)$ may be keyed in as a positive number or absorbance (A_u) as a negative number to key \mathbb{D} . Then the concentration of the standard (c_s) should be keyed in to key \mathbb{E} . This will allow output of the concentration of the unknown (c_u) .

Equations:

$$A = 2 - \log \% T$$

$$\%T = 10^{2-A}$$

$$c_u = c_s \times \frac{A_u}{A_s}$$

Reference:

Clinical Chemistry, ed. Henry, Cannon, and Winkelman, Harper and Row, 1974.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	(optional) Initialize for reprint.			0.00
3	(optional) Key in patient			
	number.	Ptnt #		Ptnt # .01
4	To suppress printing of data			
	and results, turn print			
	function off.		f D	0.00
5	To turn print function back on.		• •	1.00
6	To solve interchangeably for			
	A and %T, go to step 7; to find			· · · · · · · · · · · · · · · · · · ·
	an unknown concentration,			
	go to step 9.			
	A≓%T			- · · -
7	To find percent transmittance,	· · ·		
	key in absorbance.	A		%Т
8	To find absorbance, key in			
	percent transmittance.	%T	B	А
	Unknown concentration			
9	Key in A or %T for the			
	standard and the unknown			
	(follow A by CHS):			
	Standard	+%T _s (-A _s)	C	+%T _s (-A _s)
	 Unknown 	+%T _u (-A _u)	D	+%T _u (-A _u)
10	Key in concentration of			
	standard and compute			
	concentration of unknown.	Cs	E	Cu

1

7

7

E

3

3

3

3

╞

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
	Reprint			
11	Reprint all data and results.		0 8	Ptnt # .01
				A
				%Т
				+%T _s (-A _s)
				+%T _u (-A _u)
				Cs
				Cu

Example:

A standard solution with a solute concentration of 2 mg/ml is found to have an absorbance of 0.41 at 550 nm. An unknown from patient number 10183 is found to show 46% transmittance at the same wavelength. Convert this %T to absorbance. Also find the solute concentration in the unknown. After all calculations obtain a reprint.

2.00 *** (c_s) 1.65 *** (c_u)

Keystrokes:	Outputs:	
[] []	0.00	(Clear)
10183 f C	10183.01 **	* (Ptnt ID)
46 ₪	46.00 **	* (%T)
	0.34 **	* (A)
.41 CHS C	-0.41 **	* (-A _s)
46 ₪	46.00 **	* (%T _u)
2 €	2.00 **	* (c _s)
	1.65 **	* (c _u)
	10183.01 **	* (Ptnt ID)
	0.34 **	* (A)
	46.00 **	* (%T)
	-0.41 **	* (-A _s)
	46.00 **	* (%T _u)

第 三
E 3
13

PROTEIN ELECTROPHORESIS

This program is designed to aid in the calculations of protein fractionation. The required data for the program are the integration counts for each protein fraction and, optionally, the total protein. The results calculated by the program are the percentage of the total for each fraction and, if total protein has been input, the number of grams of each protein fraction. An optional output is the albumin/globulin ratio.

To operate the program, press key \square to initialize. Then for each fraction, key in its integration counts and press key \square . After the counts have been keyed in for every fraction, you may press key \square to find the percentage that each fraction is of the total. A single press of \square will cause all the percentages to be output in the same order as the counts were input. You may then, if you wish, key in the total protein in grams, press key \square , and output the grams of protein for each fraction.

The albumin/globulin ratio (A/G) may be calculated by pressing key \blacksquare . If A/G is to be found, albumin should be the first fraction input, followed by the four globulin counts.

Equations:

Let $Fract_i$ be the counts for the ith fraction, and (%)_i the percentage of the total for the ith fraction.

$$(\%)_{i} = \frac{\text{Fract}_{i}}{\sum_{i=1}^{n} \text{Fract}_{i}} \times 100$$

Let TPr be the total protein in grams and g_i be the number of grams of the i^{th} fraction.

$$g_i = \frac{Fract_i}{\sum_{j=1}^{n} Fract_j} \times TPr$$

$$A/G = \frac{Fract_1}{\sum_{j=2}^{5} Fract_j}$$

Remarks:

- 1. If the print function is turned off, input data will not be printed. Calculated results will still be printed regardless of the status of the print function.
- 2. If a reprint is called for by pressing **f E**, all possible inputs and outputs will be printed except that if no value was keyed in for total protein, neither it nor the grams of each fraction will be output.
- 3. The use of this program need not be restricted to protein fractionation. It may be used as a general-purpose total and percent-of-total program. The only restriction is that the number of inputs (fractions) is limited to 21.

Reference:

Clinical Chemistry, ed. Henry et. al., Harper and Row, 1974.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Initialize.		A	0.00
3	(optional) Key in patient			
	number.	Ptnt #		Ptnt # .02
4	To suppress output of data,			
	turn print function off.			0.00
5	To turn print back on later.			1.00
6	Key in the counts of the first		·	
	protein fraction.	Fract,	В	1.00
7	Repeat this step for the rest			
	of the fractions.	Fract _i	B	i
8	Calculate the percentage			·····
	each fraction is of the whole.		C	%
9	(optional) Key in the total			
	grams of protein and find the			
	grams in each fraction.	Total Protein	D	grams
10	(optional) Find the albumin/			
	globulin ratio.		Ē	A/G

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
11	(optional) Obtain a reprint of			
	all data and results (Total			
	Protein and grams omitted if		I	
	Total Protein not input).			Ptnt # .02
				Fract ₁
			I	Fractn
				(%) ₁
				(%) _n
				Total Protein
				grams ₁
				grams _n
		_		A/G
12	For a new case, go to step 2.			

Example:

The following integration counts are determined electrophoretically for serum proteins:

Albumin	67
α₁-globulin	4
α₂–globulin	10
β-globulin	14
γ-globulin	13

If the total amount of protein is 7.0 grams, find the percentage of the total and the number of grams for each protein fraction. Also find the albumin/ globulin ratio. The patient number is 10183.

Keystrokes:		Outputs:
Α		0.00
10183 🗗 🖸 ————	>	10183.02 *** (Ptnt ID)
67 в ———	>	1.00
4 B		2.00
10 B		3.00
14 B		4.00
13 B		5.00

¢,

62.04 *** (% albumin) 3.70 *** ($\% \alpha_1$) 9.26 *** (% α_2) 12.96 *** (% β) 12.04 *** (% y) 7.00 *** (Total Protein) 4.34 *** (g albumin) 0.26 *** (g α_1) 0.65 *** (g α_2) 0.91 *** (g β) 0.84 *** (g γ)

LDH ISOENZYMES

This program analyzes the results of the fractionation of lactic dehydrogenase isoenzymes and computes for each isoenzyme $(LDH_1 \text{ through } LDH_5)$ the percentage it represents of the whole. After key \blacktriangle is pressed to initialize the program, each enzyme value is input by keying in the value and pressing **B**. After all five LDH fractions have been input, key **C** may be pressed to find the percentage each enzyme is of the whole.

An additional feature of the program is the checking of the computed percentage of each enzyme against its accepted normal value. All five percentages are computed and output; if one or more of these values lie outside the accepted normal range, the word "Error" will be displayed at the end of all calculations. (This indicates only that a value is abnormal; the answers calculated are accurate.)

The abnormal value or values should then be determined by inspection. The normal values used by the program are shown below.

Enzyme	Normal Range
LDH1	18%—33%
LDH₂	28%—40%
LDH₃	18%—30%
LDH₄	6%—16%
LDH₅	2%—13%

These values for normal ranges may be changed easily within the program if you so desire. Simply look at the program listing and find the value you want to change by referring to the program comments. Delete the number as it now exists in the program and key in your own value. Do not forget to record the modified program on a blank magnetic card if you want to preserve it.

Equations:

Let LDH_i be the value of the ith LDH isoenzyme (i = 1,...,5) and LDH_i% be that enzyme's percentage of the whole.

$$LDH_i\% = \frac{LDH_i}{\sum_{j=1}^{5} LDH_j}$$

03-02

Remarks:

If the print function is turned off, input data will not be printed. Calculated results will still be printed regardless of the status of the print function.

Reference:

Clinical Chemistry, ed. Henry et. al., Harper and Row, 1974.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Initialize.		A	0.00
3	(optional) Key in patient			
	number.	Ptnt #		Ptnt # .03
4	To suppress printing of			
	input data, turn the print			,,,,
	function off.			0.00
5	To turn the print function			
	back on.			1.00
6	Key in the first LDH enzyme			
	value.	LDH ₁	B	1.00
7	Repeat step 6 for LDH			
	values 2 through 5.	LDH;	в	i
8	Calculate the percentage			
	each enzyme is of the total.*		C	LDH ₁ %
				LDH ₅ %

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
9	(optional) Obtain a reprint of			
	all data and results.*		08	Ptnt # .03
				LDH1
				LDH₅
				LDH ₁ %
				LDH₅ %
	*A display of "Error" following			
	execution of this step			
	indicates a percentage			
	value that lies outside the			
	normal range for that			
	enzyme.			

Example:

Electrophoretic separation of the LDH isoenzymes results in the following counts:

Enzymes	Counts
LDH₁	95
LDH₂	120
LDH₃	85
LDH₄	15
LDH₅	22

Find the percentage of the whole for each isoenzyme. The patient number is 10183. Obtain a reprint of the data and results.

Keystrokes:	Outputs:
Α	0.00
10183 f C	10183.03 *** (Ptnt ID)
95 B	1.00
120 B	2.00
85 ₪	3.00
15 B	4.00
22 ▣	5.00

С	28.19 *** (% LDH ₁)
	35.61 *** (% LDH ₂)
	25.22 *** (% LDH ₃)
	4.45 *** (% LDH ₄)
	6.53 *** (% LDH ₅)
	"Error"
CLX (clears "Error")	0.00
∅	10183.03 ***
	95.00 ***
	120.00 ***
	85.00 ***
	15.00 ***
	22.00 ***
	28.19 ***
	35.61 ***
	25.22 ***
	4.45 ***
	6.53 ***
	"Error"
	LIIOI

E::3

E-3

A visual scan of the results indicates that the message "Error" resulted from the percentage value of LDH_4 (4.45%) being below the normal range (6%—16%).

BODY SURFACE AREA

This program calculates body surface area by either the method of Dubois or the method of Boyd. In both cases, the required inputs are height and weight, which may be input either in metric (cm, kg) or English (in., lb.) units. Quantities in English units should be input as negative numbers; that is, **CHS** should be pressed after keying the number in.

To operate the program, the height in either cm or inches should be keyed in to \triangle , and the weight in either kg or pounds keyed in to \square . Then pressing \bigcirc will allow the calculation of body surface area in m² by the method of Dubois; pressing \square computes BSA in m² by the Boyd formula. Even if you have already found BSA by one method, you may also find it by the other method simply by pressing the appropriate key; the values of height and weight need not be re-input.

Equations:

Let Ht be height, Wt be weight, and BSA be the body surface area in m².

Ht (cm) =
$$2.54$$
 Ht (in.)
Wt (kg) = 0.45359237 Wt (lb.)

Dubois:

Boyd:

Remarks:

- 1. The Dubois formula for BSA is undefined for children with a BSA less than 0.6 m^2 . In such cases BSA should be calculated by the Boyd formula.
- 2. Turning off the print function will suppress printing of both data and results.

References:

D. Du Bois and E.F. Du Bois, Clin. Cal. 10, Arch. Int. Med., **17**, 863, 1916. Edith Boyd, *Growth of the Surface Area of the Human Body*, U. of Minnesota Press, 1935, p. 132.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	(optional) Initialize if reprint			
	desired.			0.00
3	(optional) Key in patient			
	number.	Ptnt #		Ptnt # .04
4	To suppress printing of data			
	and results.			0.00
5	To turn print function back on.			1.00
6	Key in height (+ cm, - in.)	Ht	A	Ht (cm)
7	Key in weight (+ kg, - lb.)	Wt	B	Wt (kg)
8	Compute BSA by method of			
	either			
	Dubois		С	BSA (m²)
	Boyd		D	BSA (m²)
9	(optional) Reprint all data			
	and results.		08	Ptnt # .04
				Ht input
				Wt input
				BSA (m²)

Example 1:

Patient number 10183 is a male, height 176 cm, weight 63.5 kg. What is his BSA by the Dubois formula? Compare by also finding the Boyd BSA.

Keystrokes:

Outputs:

10183 🚺 🖸 —————————————————————————————————	10183.04	*** (Ptnt ID)
176 🖪 ———	176.00	(Ht (cm))
63.5 E	63.50	(Wt (cm))
	1.78	*** (Dubois)
	1.76	*** (Boyd)

Example 2:

Patient number 10070 is a female, height 64 inches, weight 112 pounds. Find her BSA by the Boyd formula. Obtain a reprint. Remember to input height and weight as negative numbers.

Outputs:	
0.00	
10070.04 ***	* (Ptnt ID)
162.56	(Ht (cm))
50.80	(Wt (kg))
1.52 ***	' (Boyd)
10070.04 ***	(Ptnt ID)
-64.00 ***	(Ht)
-112.00 ***	(Wt)
1.52 ***	(BSA)

UREA CLEARANCE

This program calculates urea clearance given the urine flow rate and the concentration of urea in urine and blood. The urine flow rate may be corrected for the patient's body surface area, if desired. The program will calculate standard or maximum clearance depending on whether the corrected urine flow rate is above or below 2 ml/min. The percent of mean normal may also be found.

If the urine flow rate is to be corrected for body surface area, key \square \square should be pressed to indicate that. No action is necessary if the correction is not desired. If correction is to be made, the program will need to find the patient's body surface area (BSA) in register R_A . If the program *Body Surface Area* (CL1-04A) has been run immediately before this program, BSA will already have been stored in R_A . Otherwise you will need to key in the patient's BSA and store it in R_A .

When inputting the urine flow rate, you may either key in the flow rate (\dot{V} , in ml/min.) directly to key \square , or key in both the urine volume V in ml and the time t in min. to key \square . If the print function is on and inputs are being printed, in both cases the printout will be of \dot{V} , the flow rate in ml/min. The number in the display at the end of routine \square or \square is \dot{V}_{corr} , the flow rate after correction for BSA. It is the size of this number that determines whether the standard or the maximum clearance will be calculated. This number will also be printed if the print function is on.

Equations:

$$\dot{V}(ml/min) = \frac{V(ml)}{t(min)}$$

$$\dot{V}_{corr} = \begin{cases} \frac{1.73}{BSA} \dot{V} & \text{if corrected for BSA} \\ \dot{V} & \text{if no correction for BSA} \end{cases}$$

Maximum clearance ($\dot{V}_{corr} > 2$):

$$C_{\rm m}({\rm ml/min}) = \frac{U_{\rm urea} \dot{V}_{\rm corr}}{B_{\rm urea}}$$

Standard clearance ($\dot{V}_{corr} \leq 2$):

$$C_{\rm s}(\rm ml/min) = \frac{U_{\rm urea} \sqrt{V_{\rm corr}}}{B_{\rm urea}}$$

where

 U_{urea} = concentration of urea in urine B_{urea} = concentration of urea in blood

% mean normal $C_m = 1.33 C_m$

% mean normal $C_s = 1.85 C_s$

Remarks:

- 1. Any units may be used for U_{urea} and B_{urea} as long as they are consistent.
- Some users may prefer to ignore the distinction between standard and maximum clearance and use the maximum formula for all cases. This can be accomplished by using the program *Creatinine Clearance* (CL1-06A) and inputting U_{urea} and B_{urea} in place of U_{creat} and P_{creat}, respectively.
- 3. If the print function is turned off, neither inputs nor outputs will be printed.

Reference:

Clinical Chemistry, ed. Henry et al., Harper and Row, 1974.

STEP INSTRUCTIONS		STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.					
2	(optional) Initialize if reprint					
	desired.			0.00		
3	(optional) Key in patient					
	number.	Ptnt #		Ptnt # .05		
4	To suppress printing of data					
	and results, turn the print					
	function off.			0.00		
5	To turn the print function					
	back on.	Ţ		1.00		

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
6	If BSA is required and Body			
	Surface Area has not been			
	run, key in BSA.	BSA (m²)	STO A	
7	If \mathring{V} is to be corrected for BSA		0 B	BSA (m²)
8	Perform either one of the			2
	steps below:			
	 Key in urine volume and 		I	
	time	V (ml)	ENTER+	
		t (min)	A	Ů _{corr}
	 Key in urine flow rate 	V(ml/min)	B	Ů _{corr}
9	Key in the concentration of			
	urea in urine.	U _{urea}	C	U _{urea}
10	Key in the concentration of			
	urea in blood and find the			
	urea clearance.	B _{urea}		C _{urea} (ml/min)
11	Find the percent of mean			
	normal.		8	% m.n.
12	(optional) Reprint data and			
	results.		08	Ptnt # .05
				v
				Ů _{corr}
				U _{urea}
				B _{urea}
				C _s or C _m
				% m.n.
13	For a new case go to step 2.			

Example 1:

A patient, number 10183, is to be tested for urea clearance. A volume of 204 ml of urine is collected over a period of 120 min. The concentration of urea in this urine is found to be 903 mg/100 ml. A blood sample is taken halfway through the urine collection and found to have a urea concentration of 26 mg/100 ml. Determine the urea clearance. Do not correct for body surface area.

Example 2:

Patient number 10142 is a male, height 188 cm, weight 88.5 kg. A urine flow rate of 2.7 ml/min. is recorded. The concentration of urea is 798 mg/100 ml in urine and 21 mg/100 ml in blood. Determine the urea clearance corrected for body surface area using the Dubois formula for BSA.

Keystrokes:

Outputs:

Load side 1 and side 2 of Body Surface Area (CL1-04A).

	0.00	(Print off)
188 A	188.00	(Ht, cm)
88.5 B	88.50	(Wt, kg)
C	2.15	(Dubois BSA)

Load side 1 and side 2 of Urea Clearance (CL1-05A).

10142 f C	10142.05 *** (Ptnt ID)
	2.15 (BSA)
2.7 B	2.70 *** (V)
_	2.17 *** (V _{corr})
798 C	798.00 *** (U _{urea})
21 🖸	21.00 *** (B _{urea})
	82.53 *** (C _m , ml/min)
€	109.76 *** (% m.n.)

CREATININE CLEARANCE

This program allows the calculation of creatinine clearance given the urine flow rate and the concentration of creatinine in urine and plasma. The urine flow rate may be corrected for the patient's body surface area if desired.

To indicate that a correction should be made for the body surface area, press **1 2**. No action is necessary if the correction is not desired. If correction is to be made, the program will need to find the patient's body surface area (BSA, in m²) in register R_A . The program *Body Surface Area* (CL1-04A) automatically leaves BSA stored in R_A . If *Body Surface Area* has not been run immediately befroe this program, you will need to key in the BSA and press **STO A**.

When inputting the urine flow rate, you may either key in the flow rate (\mathring{V} , in ml/min.) directly to key B, or key in both the urine volume (V, in ml) and the time (t, in minutes) to key A. If the print function is on and inputs are being printed, in both cases the printout will be of \mathring{V} , the flow rate in ml/min. The number in the display at the end of routine \fbox{A} or B is \mathring{V}_{corr} , the flow rate after correction for BSA. (If no correction is desired, \mathring{V}_{corr} will be the same as \mathring{V} .) This number will also be printed if the print function is on.

Equations:

$$\dot{V}(ml/min) = \frac{V(ml)}{t(min)}$$

$$\dot{\mathbf{V}}_{corr} = \begin{cases} \frac{1.73}{BSA} \dot{\mathbf{V}} & \text{if corrected for BSA} \\ \\ \dot{\mathbf{V}} & \text{if not corrected for BSA} \end{cases}$$

$$C_{\text{creat}(ml/min)} = \frac{U_{\text{creat}} \dot{V}_{\text{corr}}}{P_{\text{creat}}}$$

where

 C_{creat} = creatinine clearance

 U_{creat} = concentration of creatinine in urine

 P_{creat} = concentration of creatinine in plasma

Remarks:

- 1. Any units may be used for U_{creat} and P_{creat} as long as they are consistent.
- 2. If the print function is turned off, neither inputs nor outputs will be printed.

Reference:

Clinical Chemistry, ed. Henry et al., Harper and Row, 1974.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS	
1	Load side 1 of program.				
2	(optional) Initialize if reprint			· · · · · · · · · · · · · · · · · · ·	
	desired.			0.00	
3	(optional) Key in patient				
	number.	Ptnt #		Ptnt # .06	
4	To suppress printing of data				
	and results, turn print				
	function off.			0.00	
5	To turn print function back				
	on later			1.00	
6	If BSA is required and Body				
	Surface Area has not been				
	run, key in BSA.	BSA (m²)	STO A		
7	If \mathring{V} is to be corrected for BSA.	· · · · · · · · · · · · · · · · · · ·	08	BSA (m²)	
8	Perform either one of the				
	steps below:				
	• Key in urine volume and				
	time	V (ml)	ENTER+		
		t (min)	Δ	Ů _{corr}	
	• Key in urine flow rate.	V(ml/min)	В	Ů _{corr}	
9	Key in the concentration of				
	creatinine in urine.	U _{creat}	C	Ucreat	
10	Key in the concentration of		[
	creatinine in plasma and find				
	the creatinine clearance.	P _{creat}	0	C _{creat} (ml/mir	

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
11	(optional) Reprint data and			
	results.			Ptnt # .06
				Ŷ
				Ů _{corr}
				Ucreat
				P _{creat}
				C _{creat}
12	For a new case go to step 2.			

Example 1:

A male, patient number 10095, is tested for creatinine clearance. A urine volume of 506 ml is collected over a 4-hour (240-min.) period. The concentration of creatinine is found to be 43.4 mg/dl in urine and 0.91 mg/dl in plasma. Find the creatinine clearance. Do not correct for body surface area.

Keystrokes:	Outputs:
10095 🖬 🖸 —————————————————————————————————	10095.06 *** (Ptnt ID)
506 ENTER+ 240 A	2.11 *** (Ů)
	2.11 *** (V _{corr})
43.4 C	43.40 *** (U _{creat})
0.91 D→	0.91 *** (P _{creat})
	100.55 *** (C _{creat} , ml/min)

Example 2:

Patient number 10124 is a female with a body surface area of 1.56 m^2 . Given a urine flow rate of 1.81 ml/min., a creatinine concentration of 46.5 mg/dl in urine and 1.03 mg/dl in plasma, find the creatinine clearance.

Keystrokes:	Outputs:
10124 🖬 🖸	10124.06 *** (Ptnt ID)
1.56 STO A	1.56 (BSA)
	1.56
1.81 B	1.81 *** (V)
	2.01 *** (V _{corr})
46.5 C	46.50 *** (U _{creat})
1.03 □	1.03 *** (P _{creat})
	90.62 *** (C _{creat} , ml/min)

AMNIOTIC FLUID ASSAY

	IOTIC FLU	ID ASSAY			
Α.,	Α.,	A.1.5. •.	Wk + b	Zone	

This program performs calculations for the spectrophotometric estimation of bile pigments in amniotic fluid. Measurement of absorbance changes in the fluid has been shown to be useful in determining the management of Rh-sensitized pregnancies. The absorbance of the fluid is measured at two wavelengths (typically, 365 nm and 550 nm) to form a baseline, and then at a third wavelength between these two (typically, 450 nm) to allow calculation of the difference (Δ) between the actual and the interpolated absorbances at the intermediate wavelength. Then, given the weeks of gestation, the "b" factor and, optionally, the Liley zone number may be found.

The inputs to the program, then, are the absorbances of the amniotic fluid at three wavelengths (A_{365} , A_{550} , and A_{450}). From these may be found ΔA_{450} , the difference in absorbance at the intermediate wavelength. The final input is the week of gestation (Wk), from which may be found the "b" factor and zone. The last two outputs are the most meaningful for the obstetrician; for interpretation, see references 1 and 2 below.

Equations:

$$\Delta A_{450} = A_{450} - e^{\left[.541 (\ln A_{365} - \ln A_{550}) + \ln A_{350}\right]}$$

$$b = \Delta A_{450}/a^{Wk}$$

where

a = 0.91509

Wk = week of gestation

Liley zones:

Zone I: b < 0.7

Zone II: $0.7 \le b \le 3$

Zone III: b > 3

Remarks:

 Some users may prefer to take absorbance readings at wavelengths other than those indicated here. Burnett³, for instance, advocates readings at 350 nm, 550 nm, and 455 nm. It is quite easy to modify the program to handle such a case. The only change required is the alteration of one constant occupying four steps of program memory, 024-027. At present in these locations the program holds the constant .541. For Burnett's values (350, 550, 455) this constant would have to be changed to .475. In general, if the three wavelengths used are x, y, and z, with x < z < y, the constant to be used is

$$\frac{y-z}{y-x}$$

The absorbances at wavelengths x, y, and z should be input to keys A, B, and C respectively.

2. If the print function is turned off, neither inputs nor outputs will be printed.

References:

125.00

ITTE

Ter-

11.1

D 7

F...7

- 1. R.C. Brown and W.J. Beckfield, "Computer-assisted spectrophotometric analysis of amniotic fluid in erythroblastosis fetalis," *Amer. J. Clin. Path.*, 57: 659-663, 1972.
- A.W. Liley, "Liquor amnii analysis in the management of the pregnancy complicated by rhesus sensitization," Amer. J. Obstet. Gynecol., 82: 1359-1370, 1961.
- 3. R. Burnett, "Instrumental and procedural sources of error in determination of bile pigments in amniotic fluid," *Clin. Chem.*, 18: 150-154, 1972.

STEP INSTRUCTIONS		STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.					
2	(optional) Initialize if reprint			G + F - F - F - F - F - F - F - F - F - F		
	desired.			0.00		
3	(optional) Key in patient					
	number.	Ptnt #	11 C	Ptnt # .07		
4	To suppress printing of data					
	and results, turn print					
	function off.			0.00		
5	To turn print function back					
	on later.		00	1.00		
6	Key in absorbance at 365 nm.	A ₃₆₅	A	A ₃₆₅		
7	Key in absorbance at 550 nm.	A ₅₅₀	B	A ₅₅₀		

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
8	Key in absorbance at 450 nm			
	and find ΔA_{450} .	A450	C	ΔA ₄₅₀
9	Key in week of gestation and			
	find b factor.	Wk	D	b
10	(optional) Find Liley zone			
	number (1, 2, or 3).		٩	Zone
11	(optional) To obtain a reprint			· · · · · · · · · · · · · · · · · · ·
	of data and results.			Ptnt # .07
				A ₃₆₅
				A ₅₅₀
				A ₄₅₀
	han da bahka da Manaka na manaka na mana na man			ΔA ₄₅₀
				Week
				b
				Zone

Example:

A sample of amniotic fluid from patient number 10070 is found to have absorbances of 0.43, 0.25, and 0.39 at wavelengths 365 nm, 550 nm, and 450 nm respectively. Find ΔA_{450} , the b factor, and the Liley zone number given that it is the 35th week of gestation.

Keystrokes:	Outputs:
10070 🖪 🖸 —————————————————————————————————	10070.07 *** (Ptnt ID)
.43 🖾	0.43 *** (A ₃₆₅)
.25 🖪	0.25 *** (A ₅₅₀)
.39 C	0.39 *** (A ₄₅₀)
	$0.05 *** (\Delta A_{450})$
35 🖸	35. *** (Wk)
	1.22 *** (b)
₿	2. *** (Zone)

BLOOD ACID-BASE STATUS

This program computes total plasma CO_2 (TCO₂) and base excess (BE) from the partial pressure of CO_2 (PCO₂), pH, and hemoglobin concentration (Hgb). The PCO₂ and pH values used should be found at 37°C; if they are found at a body temperature (BT) other than 37°C, the program will correct them to 37°C values if BT is also input. An additional, optional output of the program is the concentration of plasma bicarbonate ([HCO₃⁻]).

To operate the program, if the body temperature is different from 37° C, then key in BT in °C and press key A. If BT = 37° C, it need not be input; if it is, however, no harm will be done. Next key in PCO₂ in mm Hg and press **B**; the number displayed at the completion of this step is the value of PCO₂ corrected to 37° C. Then key in pH and press **C**; the result in the display at the end of this step is the pH value corrected to 37° C. Finally, press **D** to calculate TCO₂ in mmol/*l*. As an optional step, hemoglobin may now be input in units of g/100 ml. Pressing **E** will allow the calculation of base excess in mEq/*l* using an equation suggested by Siggaard-Andersen. The last value output is $[HCO_3^{-1}]$, which may be found by pressing **R**/**S** after the calculation of base excess.

Equations:

$$PCO_{2} (37^{\circ}C) = PCO_{2} (BT) \cdot 10^{0.019 (37-BT)}$$
$$pH (37^{\circ}C) = pH (BT) - 0.0146 (37 - BT)$$
$$TCO_{2} = s \cdot PCO_{2} [1 + 10^{pH-pK}]$$

where

s = solubility of CO₂ in plasma, mmol/l (taken to be
$$0.0307$$
)

pK = 6.11

$$[BE]_{b} = (1 - 0.0143 \text{ Hgb}) ([HCO_{3}^{-}] - (9.5 + 1.63 \text{ Hgb}) (7.4 - \text{pH}) - 24)$$

where

 $[BE]_b$ = base excess in mEq/*l* of blood Hgb = hemoglobin concentration in g/100 ml $[HCO_3^-] = s \cdot PCO_2 \cdot 10^{pH-pK}$

where

 $[HCO_3^{-}]$ = concentration of plasma bicarbonate in mmol/l.

Remarks:

- This program can also be used to correct PCO₂ and pH values from 37°C to body temperature. To do this, let x = (74 BT) °C. Key in x to key A. Then input PCO₂ and pH to keys B and C, respectively. The number displayed after each of these steps is the value of the parameter corrected to body temperature. For example, if it is desired to correct a 37°C PCO₂ value of 45 mm Hg to a body temperature value with BT = 40°C, let x = 34. Key in 34, press A, key in 45, and press B. The corrected PCO₂ is found to be 51.31 mm Hg.
- 2. The equation to correct pH to 37°C values is a simplication of a formula from Severinghaus. It ignores the pH and BE dependent terms. This introduces a very small error except at extreme conditions of acid-base status and large temperature shifts. For example, at a pH of 7.2 or 7.6, the error is 0.0013 units per °C.
- 3. If the print function is turned off, neither inputs nor outputs will be printed.

References:

John W. Severinghaus, "Blood gas calculator," J. Appl. Physiol., 21: 1108 - 1116, 1966.

Siggaard-Andersen, "Titrable acid or base of body fluids," Annals New York Academy of Science, 133: 41-48, 1966.

L.J. Thomas, Jr., "Algorithms for selected blood acid-base and blood gas calculation," J. Appl. Physiol., 33: 154-158, 1972.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2 of			
	program.			
2	(optional) Initialize if reprint			
	desired.		f A	0.00
3	(optional) Key in patient			
	number.	Ptnt #	0 C	Ptnt # .08
4	To suppress printing of data			
	and results, turn print			
	function off.			0.00
5	To turn print function back			
	on later.			1.00
6	If PCO ₂ and pH are to be cor-			
	rected to 37°C, key in body			
	temperature in °C.	BT (℃)	A	37 – BT
7	Key in partial pressure of CO₂ in			
	mm Hg.	PCO₂(mm Hg)	٦	PCO₂ (37°)
8	Key in pH.	рН	С	pH (37°)
9	Find total plasma CO2 in mmol/l.		D	TCO ₂ (mmol//)
10	(optional) Key in hemoglobin			
	concentration and compute		I	
	base excess and [HCO3-]	Hgb(g/100ml)	E	BE (mEq/l)
			RS	[HCO ₃ -](mmol/l)
11	To obtain a reprint.			Ptnt # .08
				ВТ
				PCO ₂
		1		рН
<u> </u>		<u> </u>	1	TCO ₂
				Hgb
			1	BE
	<u>+</u>	1		[HCO3-]

08-04

Example :

Patient number 10183 has a body temperature of 40°C. His PCO₂ at 40°C is found to be 51 mm Hg, his pH at the same temperature 7.31. His hemoglobin concentration is 16 g/100 ml. Find TCO₂, BE, and $[HCO_3^-]$.

OXYGEN SATURATION AND CONTENT

This program estimates oxygen saturation of blood from various body parameters and computes oxygen content. If the actual oxygen saturation is known, oxygen content may be computed directly.

Estimated saturation

Typically, the input parameters to the program are PCO_2 , pH, and PO_2 measured at 37°C, and the body temperature in °C. If the parameters PCO_2 and pH are known only at body temperature, they may be corrected to 37°C through use of the program *Blood Acid-Base Status*, CL1-08A. If CL1-08A is run before this program, the values of BT, PCO_2 , and pH may be recalled by this program for input to the appropriate keys. For example, pressing **1** will recall the value of BT. Pressing **A** will then input the recalled value to this program *and* recall the value of PCO_2 . Pressing **B** will input the recalled PCO_2 value and recall the value of pH. If CL1-08A has not been run previously, the recalled values will be meaningless numbers or zero.

After the input of PO_2 to **D**, an intermediate value of virtual PO_2 (VPO₂) will be calculated prior to the calculation of estimated saturation. The value found for VPO₂ will not be output but may be displayed after the calculation of saturation by pressing **RCL C**. VPO₂ is not a real physiologic PO₂. Its only use is in estimating O₂ saturation.

Suppose as an alternate case that BT,PCO₂, and pH are not known, but virtual PO₂, or alveolar PO₂ (P_AO_2) is known. In this case, only the known VPO₂ or P_AO_2 need be input in order to compute estimated saturation. Input VPO₂ or P_AO_2 to key **D** as *negative* numbers, i.e., key in the value followed by **CHS**, then press **D**. The output, as before, will be estimated oxygen saturation.

After computing saturation, the hemoglobin concentration in g/100 ml should be keyed into **E**. Output from this sequence will be the oxygen content as a volume percent.

Known saturation

If the actual O_2 saturation is known, the oxygen content may be computed directly. Simply key in the O_2 saturation, press **ENTERO**, key in hemoglobin concentration and press **E**. Oxygen content will be output.

Equations:

$$VPO_2 = PO_2 \cdot 10^{[0.024(37-BT) + 0.48(pH-7.4) + 0.06\log(40/PCO_2)]}$$

$$O_2 \text{ Sat} = \frac{(\text{VPO}_2)^4 - 15(\text{VPO}_2)^3 + 2045(\text{VPO}_2)^2 + 2000(\text{VPO}_2)}{(\text{VPO}_2)^4 - 15(\text{VPO}_2)^3 + 2400(\text{VPO}_2)^2 - 31,100(\text{VPO}_2) + 2,400,000}$$

$$O_2 \text{ content} = 1.34 \cdot \frac{\text{Sat } (\%)}{100} \cdot \text{Hgb} + 0.0031 \text{ VPO}_2$$

Remarks:

- 1. In the computation of VPO_2 , it is important to input the values for pH and BT exactly, as these have a great influence on the value of VPO_2 . PCO₂ has relatively little influence.
- 2. The equation for VPO_2 is a hybrid of the equation used by Thomas and that used by Kelman. There is some disagreement regarding the best value of the pH multiplier, 0.48 being used by most workers, but see, for example, Kelman.
- 3. The calculation of saturation from PO_2 will give inaccurate results for fetal hemoglobin, present in babies less than six months old, and for some abnormal adult hemoglobins and certain other blood conditions. The results of the estimation and any subsequent calculations based on it, should be viewed with caution unless the dissociation curve has been previously established to be normal. If both PO_2 and O_2 saturation are measured, the program may be used as a convenient means to check for the normality of the dissociation curve.
- 4. If the print function is turned off, neither inputs nor outputs will be printed.
- 5. After a keystroke sequence in which I is pressed to find saturation,
 I should also be pressed to complete the sequence even if Hgb is not input and the calculated oxygen content is meaningless.

References:

L.J. Thomas, Jr., "Algorithms for selected blood acid-base and blood gas calculation," J. Appl. Physiol., 33: 154-158, 1972.

G. Richard Kelman, "Digital computer subroutine for the conversion of oxygen tension into saturation." J. Appl. Physiol., 21: 1375-1376, 1966.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	(optional) Initialize if reprint			
	desired.			0.00
3	(optional) Key in patient			
	number.	Ptnt #		Ptnt # .09
4	To suppress printing of data			
	and results, turn print			
	function off.			0.00
5	To turn print function back			
	on later.			1.00
6	If oxygen saturation is to be			
	estimated, go to step 7; if it			
	is known already, go to step 14.			
	Estimated saturation			
7	If BT was stored from Blood			
	Acid-Base Status (CL1-08A),			
	it may be recalled.		08	BT (℃)
8	Input body temperature in °C.	BT (℃)	А	PCO ₂ (if stored)
9	Input PCO₂ in mm Hg.	PCO ₂ (mm Hg)	B	pH(if stored)
10	Input pH.	рН	С	рН
11	Input PO ₂ in mm Hg (CHS for			
	VPO_2 or P_AO_2) and find			
	oxygen saturation.	PO ₂ (mm Hg)	D	Sat (%)
12	Key in hemoglobin and find			
	oxygen content as a volume			
	percent.	Hgb (g/100ml)	G	O ₂ content

1

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS	
13	To obtain a reprint.			Ptnt # .09	
				ВТ	
				PCO ₂	
				pН	
				PO ₂	
				Sat (%)	
			I	Hgb	
				O ₂ content	
	Known saturation				
14	Key in saturation and				
	hemoglobin concentration and				
	find oxygen content as a				
	volume percent.	Sat (%)			
		Hgb (g/100ml)	E	O ₂ content	

Example 1:

Patient number 10183 has a body temperature of 40°C. The following parameters are measured at 37°C: $PCO_2 = 45 \text{ mm Hg}$, pH = 7.35, and $PO_2 = 75 \text{ mm Hg}$. Find the estimated O_2 saturation. Given a hemoglobin concentration of 16 g/100 ml, find oxygen content.

Example 2:

Alveolar PO₂ ($P_A O_2$) is known to be 103 mm Hg in patient number 10184. Find the estimated O₂ saturation. Given a hemoglobin concentration of 14.5 g/100 ml, find the oxygen content.

Keystrokes:	Outputs:
10184 f C→	10184.09 *** (Ptnt ID.)
103 CHS D	-103.00 *** (P _A O ₂)
	97.72 *** (Sat %)
14.5 ₺	14.50 *** (Hgb)
	19.31 *** (O ₂ cont.)

Example 3:

Oxygen saturation is measured at 92%. Hemoglobin concentration is 16 g/100 ml. What is the oxygen content?

92 ENTER+ 16 E	 92.00 *** (Sat %)
	16.00 *** (Hgb)
	20.04 *** (O ₂ cont.)

10-02

RED CELL INDICES

		U				
	RED	CELL	INDICES			
COUNT	н	CT()	Hgb • MCV	• MCH	+ MCHC	

This program computes red cell indices based on three measured values: red cell count, hematocrit, and hemoglobin. The indices computed are mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), and mean corpuscular hemoglobin concentration (MCHC).

The red cell count in millions per mm³ should be input to key \triangle and hematocrit as a percent to key \square . Then hemoglobin in g/dl (g/100 ml) is keyed in, and \square is pressed to allow calculation of MCV in cubic microns (μ^3). Pressing \square will cause the output of MCH in picograms, pg (or micromicrograms, $\mu\mu g$). Finally, key \square is pressed to compute MCHC in g/dl (g/100 ml).

Equations:

MCV
$$(\mu^3) = \frac{\text{Hct } (\%) \times 10}{\text{Count } (10^6/\text{mm}^3)}$$

$$MCH (pg) = \frac{Hgb (g/dl) \times 10}{Count (10^{6}/mm^{3})}$$

MCHC (g/dl) =
$$\frac{\text{Hgb } (g/dl) \times 100}{\text{Hct } (\%)}$$

Remarks:

If the print function is turned off, neither inputs nor outputs will be printed.

Reference:

Davidson and Henry, Todd-Sanford Clinical Diagnosis by Laboratory Methods, W.B. Saunders Co., 1969.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1 Load side 1.				
2	(optional) Initialize if reprint			
	desired.		f A	0.00
3	(optional) Key in patient			
	number.	Ptnt #		Ptnt # .10
4	To suppress printing of data			
	and results, turn print			
	function off.			0.00
5	To turn print function back			
	on later.			1.00
6	Key in red cell count in			
	millions per mm ³ .	Count (10 ⁶ /mm ³)	A	Count
7	Key in hematocrit.	Hct (%)	в	Hct (%)
8	Key in hemoglobin in g/100ml			
	and find mean corpuscular			
	volume in μ^3 .	Hgb (g/dl)	С	MCV (μ ³)
9	Compute mean corpuscular			
	hemoglobin in pg ($\mu\mu$ g).		٥	MCH (pg)
10	Compute mean corpuscular			
	hemoglobin concentration			
	in g/dl (g/100ml).			MCHC (g/dl)
11	To obtain a reprint of data			
	and results.		08	Ptnt # .10
				Count
				Hct (%)
				Hgb
				MCV
				мсн
				MCHC

10-03

Example:

A sample of venous blood from patient 10183 reveals a red cell count of 2.25 x 10^{6} /mm³, a hematocrit of 21%, and hemoglobin of 7.2 g/dl (g/100 ml). Find the indices MCV, MCH, and MCHC.

Keystrokes:	Outputs:
10183 🕜 🖸 🗕	10183.10 *** (Ptnt ID)
2.25 ▲	2.25 *** (Count)
21 ▣	21.00 *** (Hct %)
7.2 ℃	7.20 *** (Hgb)
	93.33 *** (MCV)
□	32.00 *** (MCH)
€	34.29 *** (MCHC)

10-04

TOTAL BLOOD VOLUME

This program computes total blood volume by the radioisotope dilution technique. The inputs to the program are the background counts per minute (Bck), the volume of radioactive solution injected (V Inj), the dilution of the standard solution (Std Dil), the counts per minute of the standard (Std CPM), and the counts per minute of the sample of whole blood (WB CPM). From these values the program will compute total blood volume (TBV).

Equations:

$$TBV = Dil \times V Inj \times \frac{Std CPM - Bck}{WB CPM - Bck}$$

Remarks:

- 1. Total blood volume will be computed in the same units as volume injected. Typically the units used will be milliliters (ml).
- 2. Equal volumes of whole blood, diluted standard solution, and distilled water should be used for the measurement of whole blood counts, standard counts, and background counts. These three counts need not be counts *per minute;* they may be counts recorded over any length of time, so long as the same time interval is used for all three counts.
- 3. This same program may be used to find total plasma volume provided that a sample of plasma rather than whole blood is counted for the final input. Total blood volume may be determined from total plasma volume from the equation

Total blood volume =
$$\frac{\text{Total plasma volume}}{(1 - \text{Hct} \times 0.9)}$$

- 4. If the patient has had prior radioactivity administered, a patient background correction may be necessary. To do this, a count must be made of a blood sample before the current dose is administered. These pre-dose counts should be subtracted from the post-dose whole blood counts to give the corrected counts to be input at the final step.
- 5. If the print function is turned off, neither inputs nor outputs will be printed.

ÈÌ E3 E3 ÉЗ ĿЭ E 3 Er: T

Reference:

Beierwaltes, Keyes, and Carey, Manual of Nuclear Medicine Procedure, Chemical Rubber Co., 1971.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1.			
2	(optional) Initialize for reprint.		C A	0.00
3	(optional) Key in patient			
	number.	Ptnt #	00	Ptnt # .11
4	To suppress printing of data			
	and results, turn print			
	function off.		00	0.00
5	To turn print function back			
	on later.			1.00
6	Key in background counts.	Bck	A	Bck
7	Key in volume of fluid			
	injected.	Vol. inj.	B	Vol. inj.
8	Key in dilution of standard.	Std. dil.	C	Std. dil.
9	Key in standard counts.	Std. CPM	D	Std. CPM
10	Key in whole blood counts			
	and find total blood volume.	Blood CPM	E	TBV
11	To obtain a reprint.		A 8	Ptnt # .11
				Bck
				Vol. inj.
				Std. dil.
				Std. CPM
				Blood CPM
				TBV

Example:

5 ml of radioiodinated serum albumin (RISA) are injected into patient 10183. The stock RISA is diluted by a factor of 250 and a 1 ml aliquot of this standard is found to have an activity of 2518 counts over a five-minute period. A 1 ml sample of the patient's whole blood, collected 10 minutes after injection, is found to have an activity of 837 counts over a five-minute period. A five-minute count of 1 ml distilled water yields 152 counts. What is the patient's total blood volume?

Keystrokes: Outputs: 10183 10183.11 152 10183.11 5 500 250 250.00 2518 2518.00 837 837.00 4317.52 ***

:			
l	***	(Ptnt ID)	
)	***	(Bck)	
)	***	(V Inj)	
)	***	(Dil)	
)	***	(Std CPM)	
)		(WB CPM)	
2	***	(TBV, ml)	

ALC: N

SCHILLING TEST

This program performs the calculations involved with the Schilling test for the determination of vitamin B_{12} absorption. The inputs to the program are the background counts per minute, the dilution and counts per minute of the standard, the volume of urine excreted, and the counts per minute of the urine. The output is the % of dose excreted.

The program is set up to handle urine volume (U Vol) in liters (l). It is assumed that if the urine volume collected was less than 1 l, the volume was brought up to 1 l by the addition of water. If the volume was a liter or more, no dilution should be made.

Equations:

$$\% \text{ excretion } = \frac{V}{\text{Dil}} \left[\frac{\text{Urine CPM} - \text{Background CPM}}{\text{Standard CPM} - \text{Background CPM}} \right] \times 100$$

$$\text{where V} = \begin{cases} 1 \text{ if U Vol} \le 1 l \\ U \text{ Vol if U Vol} > 1l \end{cases}$$

Remarks:

- 1. The background, standard, and urine counts should be of equal volumes counted over equal time intervals (which need not be one minute).
- 2. The patient should not have had recent prior radioactivity.
- 3. If the print function is turned off, neither data nor results will be printed.

Reference:

Beierwaltes, Keyes, and Carey, Manual of Nuclear Medicine Procedures, Chemical Rubber Co., 1971.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1.			
2	(optional) Initialize if reprint is		1	
	desired.	1		0.00
3	(optional) Key in patient			
	number.	Ptnt #	0 G	Ptnt # .12
4	To suppress printing of data			
	and results, turn print			
	function off.		00	0.00
5	To turn print function back			
	on later.			1.00
6	Key in background counts.	Bck		Bck
7	Key in dilution of the standard.	Std Dil	B	Std Dil
8	Key in standard counts.	Std CPM		Std CPM
9	Key in volume of urine			
	collected.	U Vol (<i>l</i>)		U Vol
10	Key in the urine counts and			
	calculate percentage of dose			
	excreted.	U CPM		%
11	To obtain a reprint of data			
	and results.			Ptnt # .12
				Bck
				Std Dil
				Std CPM
				U Vol
				U CPM
				%

A capsule of radioactive B_{12} is administered orally to patient 10183. Over the following 24 hours, a volume of 2.54 *l* of urine is collected. A 20 ml aliquot of the urine is counted for 10 minutes to give 1923 counts. A 1 ml sample of the standard is diluted to 20 ml and counted for 10 minutes, giving 1757 counts. 20 ml of tap water is used for a background count; over a tenminute interval, 127 counts are recorded. Find the percent of dose excreted.

Keystrokes:	0
10183 🚺 🖸 —————————————————————————————————	10
127 🗛	
20 B→	
1757 ───→	1
2.54 D	
1923 E→	1

Outputs:	
-	
0183.12 ***	(Ptnt ID)
127.00 ***	(Bck)
20.00 ***	(Std Dil)
1757.00 ***	(Std CPM)
2.54 ***	(U Vol)
1923.00 ***	(U CPM)
13.99 ***	(% excreted)

EE

-1

THYROID UPTAKE

This program computes thyroid uptake as a percentage of an administered dose of radioiodine. The inputs to the program are the counts per minute for the standard, the standard background, the patient counts (after ingestion of the dose), and the patient background. After these variables have been input, pressing **E** will allow computation of the percent uptake.

After calculation of the uptake, two corrections may be made to the computed value. The first correction involves recent prior radioactivity in the patient. The second correction involves a significant difference in activity between the standard and the dose. These are discussed in more detail below.

If the patient has had recent prior radioactivity, the computed uptake must be corrected to account for this. In such a case the patient counts and the back-ground counts *before* ingestion of the present dose must be known. In addition, it will be necessary to correct these predose counts for radioactive decay over the elapsed time between the measurements of the predose counts and of the counts after ingestion of the dose. The program *Radioactive Decay Corrections* (CL1-14A) may be used to account for this decay. *Radioactive Decay Corrections* will compute and store a decay factor D that will be used by this program, *Thyroid Uptake*, to adjust the predose counts to the present time.

To correct for prior radioactivity, then, you should first load side 1 and side 2 of *Radioactive Decay Corrections* (CL1-14A). Select the radioisotope of the *prior* radioactivity. Key in 1, press \square , then key in the time interval over which the decay has occurred, in the format DD.HH (days.hours), remembering always to allow 2 places for hours. (For example, a period of 1 day 6 hours should be keyed in as 1.06.) After keying in the elapsed time, press \square , then press \square . The decay factor D will be displayed and automatically stored. Now load side 1 and side 2 of *Thyroid Uptake* and follow the basic procedure to find the uncorrected percentage uptake. After computing % uptake from key \square , key in the predose patient counts, press \square , key in the predose background counts and press \square . The corrected percentage uptake will be computed.

The second possible correction to be made is to account for a significant difference in the activities of the standard and the dose. These activities should be measured before the dose is administered. The counts at this point are referred to as precounts. If the standard and dose precounts agree within $\pm 3\%$, no correction is necessary. If the precounts differ by more than 3%, however, then the computed thyroid uptake should be corrected. To make the correction, after pressing **E** to find the uptake, key in the standard precount,

press ENTER, key in the dose precount, and press **f B**. The program will compute the corrected thyroid uptake.

The two corrections to computed uptake operate independently of each other. Either, both, or neither correction may be made. If both are to be made, they may be made in either order. If a reprint is called for after a correction is made, the reprint will show the corrected value of uptake but will not show the inputs that went into the correction (i.e., the patient and background predose counts or the standard and dose precounts).

Equations:

% uptake = K
$$\times \frac{\text{NPC}}{\text{Std CPM} - \text{Std Bck}} \times 100$$

where

and K is a correction factor.

1 if no correction

$$K = \frac{NPC - D \times (Ptnt Predose Ct - Bck Predose Ct)}{NPC}$$
 if prior radioactivity
Std. Precount if different activities

where

D is the radioactive decay factor.

Remarks:

- 1. The counts need not be input as counts *per minute;* however, all counts should be measured over the same time interval.
- 2. If the print function is turned off, neither inputs nor outputs will be printed.

Reference:

Beierwaltes, Keyes, and Carey, Manual of Nuclear Medicine Procedures, Chemical Rubber Co., 1971.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	If correction is to be made			
	for prior patient radio-			
	activity, go to step 2.			
	Otherwise go to step 6.			
2	Load side 1 and side 2 of			
	Radioactive Decay Cor-			
	rections (CL1-14A) and select			
	the radioisotope of the prior			· · · · · · · · · · · · · · · · · · ·
	radioactivity.			
3	Key in a 1 for the initial			
	activity.	1	А	1.00
4	Key in time elapsed in format			
	Days.Hours (e.g., 1 day			
	6 hours is keyed in as 1.06).	t(dd.hh)	8	t(dd.hh)
5	Compute the decay factor			
	(will be stored automatically).	·····	C	D
	Basic Procedure			
6	Load side 1 and side 2 of			
	Thyroid Uptake (CL1-13A).			
7	(optional) Key in patient			
1	number.	Ptnt #	DQ	Ptnt # .13
8	To suppress printing of			
	data and results, turn print			
	function off.		00	0.00
9	To turn print function back			
	on later.		00	1.00
10	Key in counts for the standard.	Std. CPM	<u> </u>	Std. CPM
11	Key in background counts			0.0.0114
	for the standard.	Std. Bck.	B	Net Std. Cts.
12	Key in counts for the patient.	Ptnt, CPM	6	Ptnt. CPM

-
EJ
F3
13
F 3

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNIT
13	Key in background counts for		1	<u> </u>
	the patient.	Ptnt. Bck.		Net Ptnt. Ct
14	Compute thyroid uptake as		1	
	a percent.			% Uptake
-	Corrections			<u>·</u>
15	For prior radioactivity, go to	1	 	
	step 16, for differences in	1	 	
	standard and dose, go to	<u> </u>		
	step 19. For no correction,	T	1	
	go to step 20.	· · · · · · · · · · · · · · · · · · ·		
	Prior Radioactivity			
16	For prior radioactivity, CL1-14A			
	should have been run at			
	step 2.			
17	Now key in patient predose			
	counts and predose			
	background and compute the			
	corrected percent uptake.	Predose Cts.		
		Predose Bck.	00	% Uptake
18	For differences in dose and			
	standard, go to step 19.			
	Otherwise go to step 20.			·····
	Differences in dose and			···.
	standard			
19	Key in standard and dose			
	precounts and find the cor-			
	rected percent uptake.	Std. Prect.	ENTER	
T		Dose Prect.	88	% Uptake

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
	Reprint			
20	To obtain a reprint of data			
	and results.		00	Ptnt # .13
				Std. CPM
				Std. Bck.
	447			Ptnt. CPM
				Ptnt. Bck.
				% Uptake

Example 1:

Before a dose of radioiodine (¹³¹I) is administered to patient 10183, a count is made of the patient's current level of radioactivity from a prior ingestion of ¹³¹I. The patient's predose activity is found to be 75 counts per minute (CPM) and the background predose activity 25 CPM. Twenty-four hours after ingestion of the dose, the patient's activity is measured as 350 CPM with a background of 100 CPM. The activity of a standard of ¹³¹I is measured at 1500 CPM with a background of 200 CPM. Find the percentage uptake corrected for prior radioactivity.

Keystrokes:

Outputs:

Load side 1 and side 2 of Radioactive Decay Corrections (CL1-14A).

Select ¹³¹I as prior radioisotope.

	→	193.20	(¹³¹ I half-life)
1 🗛		1.00	
0.24 B	→	0.24	(24 hours)
C	→	0.92	(Decay factor)

Load side 1 and side 2 of Thyroid Uptake (CL1-13A).

•	•
10183 🖪 🖸 ────→	10183.13 *** (Ptnt ID)
1500 🗛	1500.00 *** (Std CPM)
200 ₪	200.00 *** (Std Bck)
	1300.00 (Net Std CPM)
350 C→	350.00 *** (Ptnt CPM)
100 🖸	100.00 *** (Ptnt Bck)
	250.00 (Net Ptnt CPM)
	19.23 *** (% uptake)
75 ENTER+ 25 € A	75.00 *** (Ptnt Predose)
	25.00 *** (Bck Predose)
	15.70 *** (Corrected uptake)

3
8 -3

Example 2:

r

A standard and a dose are measured (before ingestion of the dose) at activities of 14,500 and 12,500 counts. Since the activities differ by more than 3%, a correction will have to be made to the computed percentage uptake. After ingestion of the dose, the standard activity is found to be 11,500 counts with a background count of 1000. The patient's activity is found as 2650 counts with a background of 500 counts. Find the corrected uptake.

Keystrokes:
11500 🖪
1000 B
2650 ℃
500 ◘
14500 ENTER+ 12500 f B →

Outputs:		
11500.00 **	** (Std Cts)	
1000.00 **	** (Std Bck)	
10500.00	(Net Std Cts)	
2650.00 **	** (Ptnt CPM)	
500.00 **	** (Ptnt Bck)	
2150.00	(Net Ptnt Cts)	
20.48 **	** (% Uptake)	
14500.00 **	** (Std Prects)	
12500.00 **	** (Dose Prects)	
23.75 **	** (Corrected up	take)
RADIOACTIVE DECAY CORRECTIONS

This program is designed to allow calculation of the decay in radioactivity of an isotope over a specified time interval. The half-lives of 15 different radioisotopes are stored by the program and may be used in calculating the decay. Generally, to use the program you will select an isotope, key in the activity A_0 at the initial time, then key in the elapsed time t and calculate the present activity A. There are thus three variables needed to define the problem entirely: A_0 , t, and A.

An additional feature of the program is its ability to calculate *any* one of these variables given the other two. Thus you are not restricted to finding the present activity given the initial activity and time; you may also solve for initial activity given time and present activity, or for time given initial activity and present activity.

The radioisotope to be selected must be specified in one of two ways. Six isotopes are available directly by pressing user-definable keys **E** and **T A** through **f E**. Nine additional isotopes are available by keying in a digit, 1 through 9, and pressing **D**. For instance, to specify use of the radioisotope ⁵⁷Co, simply press **T B**. To specify the isotope ¹⁴C, key in the number 2 and press **D**. A table of the correspondence between the isotopes and the numbers 1-9 may be found in the User Instructions. A list of available isotopes and their assumed half-lives is shown below.

You may use any units for the initial and present radioactivity, so long as they are consistent. The elapsed time must be input in the units Days. Hours (DD.HH), where two full decimal places must be allotted to the hours. For instance, an elapsed time of 5 days 18 hours would be keyed in and displayed as 5.18; a time of 1 day 6 hours as 1.06; and a time of 12 hours as 0.12.

Equations:

$$A = A_0 \left(\frac{1}{2}\right)^{t/\tau_{1/2}}$$

$$t = \frac{\tau_{1/2} \ln (A/A_0)}{\ln (1/2)}$$

where:

 A_0 = initial radioactivity A = present radioactivity

t = time elapsed, in hours

 $\tau_{1/2}$ = half-life of radioisotope, in hours

Isotope	τ _{1/2} (hrs)
⁵¹ Cr	667.2
⁵⁷ Co	6480
^{99m} Tc	6
¹²⁵ I	1440
¹³¹ I	193.2
¹³⁷ Cs	262980
³ H	107470
¹⁴ C	5.058×10^{7}
¹⁸ F	1.87
³² P	343.2
⁷⁵ Se	2880
⁸⁵ Sr	1536
^{113m} In	1.73
¹³³ Xe	126.5
¹⁹⁷ Hg	65

Remarks:

TT

EII

EIZ

E 17

E.7

- 1. It is also possible to use this program for isotopes other than those provided by the program. In such a case, instead of selecting a radioisotope by the usual means, simply key in half-life in hours of the new isotope and press **STO B**. Then execute the rest of the program in the same fashion as usual.
- 2. Hours are not always rounded nicely to days for output. For example, a time of 6 days 23.8 hours would be computed in days. hours format as 6.238. In display mode FIX DSP 2, this would appear as 6.24, even though 7.00 might be the preferred rounded format.

3. Neither inputs nor outputs will be printed by the program.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.		· · · · · ·	
2	Select one of the fifteen radio-			
	isotopes and display half-life			
	in hours:			
	• Chromium—51 (⁵¹ Cr)			667.20
	• Cobalt—57 (⁵⁷ Co)		08	6480.00
	 Technetium—99m (^{99m}Tc) 			6.00
	 Iodine—125 (¹²⁵I) 			1440.00
	 Iodine—131 (¹³¹I) 		00	193.20
	• Cesium—137 (¹³⁷ Cs)		E	262980.00
	• Hydrogen—3 (³ H)	1	٥	107470.00
	• Carbon—14 (14C)	2	D	50580000.00
	Flourine—18 (¹⁸ F)	3		1.87
	 Phosphorus—32 (³²P) 	4		343.20
	• Selenium—75 (⁷⁵ Se)	5	D	2880.00
	• Strontium—85 (⁸⁵ Sr)	6	D	1536.00
Ī	• Indium113m (^{113m} In)	7	D	1.73
	• Xenon—133 (¹³³ Xe)	8	D	126.50
	• Mercury—197 (¹⁹⁷ Hg)	9		65.00
3	Key in two of the following			
	three quantities:		+	
	Activity at time zero	A		Ao
	• Time elapsed in days.hours			
	format*	t (dd.hh)	B	t (dd.hh)
	Present activity	A		Α
4	Compute remaining variable:	·····		
	Activity at time zero		A	Α,
	• Time elapsed in days.hours			
	format		B	t (dd.hh)
	Present activity		G	A

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
5	For a new isotope, go to step 2;			
	to change one or both input		 	
	parameters, go to step 3.			
	*Recall that two digits must			
	always be allocated for hours.			
	For example, 1 day 6 hours is			
	keyed in as 1.06.			

Example:

An activity of 200 μ Ci is measured for a standard of ⁵¹Cr. What is the activity after a week?

Keystrokes:	C	Outputs:	
(† A)		667.20	$(\tau_{1/2} \text{ for } {}^{51}\text{Cr})$
200 🗛	>	200.00	(A_0)
7 в	>	7.00	(t = 7 days)
G		167.97	$(A, \mu Ci)$

RADIOIMMUNOASSAY

This program performs the calculations for a logit/log plot of radioimmunoassay data. The program allows for any number of replicates in the counts input and for any number of standards. Outputs include correlation coefficient r, slope m, and intercept b of the least-squares regression line computed. Then, given counts for an unknown, the program will compute the corresponding concentration.

To run this program, first press \triangle to initialize. Then key in the non-specific binding (or blank) counts, NSB, and press \square ; repeat for as many replicates as desired. After all replicates have been keyed in, press \square 's to compute the average non-specific binding count. (This step is *not* optional; do not omit it.) The same procedure is repeated for the counts at zero concentration, B_0 , which are input to key \square . After input of all replicates \square 's is pressed to compute the average B_0 .

The next step in the operation of the program is the input of the data for the standards. The counts for the first standard are input to key \square ; as many replicates as desired may be keyed in. After all replicates for the first standard have been keyed in, the concentration of the standard is input to key \blacksquare . This procedure (replicates to key \square , concentration to key \blacksquare) is repeated for as many standards as desired. Pressing key \blacksquare \triangle will then cause the output of the correlation coefficient r, the slope m, and the intercept b of the least-squares logit/log regression line computed from the standards. (The values of r, m, and b must be found before going to the next step, which is the calculation of the concentration of an unknown.) The regression performed is an unweighted regression.

At this point, the counts of an unknown may be keyed into **1 B**; repeat for any number of replicates. After all replicates have been keyed in, **1 C** may be pressed to find the concentration of that unknown. Repeat for as many unknowns as desired.

Two output options are available in this program. If neither option is selected, the only values output will be r, m, b, and the concentration of each unknown. Selection of the PRINT mode on key **1 D** allows output of the following values as well: all input values (counts and standard concentrations) and the average of each set of counts input (assuming replicates). The second option, on key **1 E**, is called PLOT. If this option is selected, the net B/B_0 and the log and logit (x and y) values for standards and unknowns will also be output. This information is intended to assist those who wish to make a plot by hand of the logit-log relationship.

Equations:

Let

4.41

r 1

atta ni

NSB = average of replicate counts for non-specific binding
B_0 = average of replicate counts for zero concentration
B_i = average of replicate counts for i th standard (i = 1, 2,, n)
C_i = concentration of i th standard

Let

where:

 $\begin{aligned} x_i &= \log C_i \\ y_i &= \log it \left(\frac{B_i - NSB}{B_0 - NSB} \right) \\ &= \ln \left[\frac{(B_i - NSB)/(B_0 - NSB)}{1 - (B_i - NSB)/(B_0 - NSB)} \right] \\ &= \ln \left(\frac{B_i - NSB}{B_0 - B_i} \right) \\ &\text{net } B_i/B_0 = \frac{B_i - NSB}{B_0 - NSB} \end{aligned}$

5. 5.

The program fits a line of the form y = mx + b to the (x_i, y_i) pairs. All sums below are from 1 to n.

$$m = \frac{\sum xy - \frac{\sum x \sum y}{n}}{\sum x^2 - \frac{(\sum x)^2}{n}}$$
$$b = \overline{y} - m \overline{x}$$
$$\overline{y} = \frac{\sum y}{n}$$
$$\overline{x} = \frac{\sum x}{n}$$
$$\sum xy - \frac{\sum x \sum y}{n}$$
$$\left[\sum x^2 - \frac{(\sum x)^2}{n}\right]^{1/2} \left[\sum y^2 - \frac{(\sum x)^2}{n}\right]^{1/2}$$

Let

B = average of replicate counts for an unknown $C_u = concentration of unknown$

$$C_{u} = 10^{x}$$

where $x = \frac{1}{m} \left[\ln \left(\frac{B - NSB}{B_{0} - B} \right) - b \right]$

F-1

F-**H**

Remarks:

- 1. The term "intercept" is used in this program to refer to the point on the logit axis (the y-axis) where it is intersected by the regression line. It does not mean, as it is sometimes used in RIA documents, the concentration for which the value of the logit function is zero.
- 2. After computation of r, m, and b, these values may be found in the following registers: r in R_c and Z, m in R_B and Y, and b in R_A and X.

References:

Rodbard, Bridson, and Rayford, "Rapid calculation of radioimmunoassay results", J. Lab. Clin. Med., 74:770 (1969).

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	To allow output of input data			
	and intermediate results, turn			
	print function on.			1.00
3	To turn print function off later.			0.00
4	To allow output of (log conc.,			
	logit) values, turn plot			· · · · · · · · · · · · · · · · · · ·
	function on.		A E	1.00
5	To suppress further output of			
	plot data.	· · · · · · · · · · · · · · · · · · ·		0.00
	Setup			
6	Initialize.			
7	Key in non-specific binding			
	counts; repeat for as many		1	
	replicates as desired.	NSB	B	i
8	After all replicates, find	1	1	
	average NSB.	1	RS	NSB

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
9	Key in counts for zero dose;			
	repeat for as many replicates			
	as desired.	Bo	C	i
10	After all replicates, find			
	average B ₀ .		RS	Ē,
	Standards			
11	Key in counts for first standard;			
	repeat for as many replicates			
	as desired.	В	٥	i
12	Key in concentration of first	-		
	standard; optional outputs			
	are shown in parentheses;			
	1.00 indicates first standard.	Conc.	C	(B)
				(net B/B₀)
				(Conc.)
				(Logit)
				(Log conc.)
				1.00
13	Repeat steps 11 and 12 for			
	all standards.			
	Results			
14	Calculate correlation coef-			
	ficient (r), slope (m), and			
	intercept (b) of regression line.		f A	r
				m
				b
	Unknowns			
15	Key in counts for an unknown;			
	repeat for as many replicates			
	as desired.	В	06	i

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
16	Find concentration of			
	unknown; optional outputs			
<u> </u>	are shown in parentheses.			(B)
				(net B/B _o)
				Conc.
				(Logit)
				(Log)
17	Repeat steps 15 and 16 for			
	any number of unknowns.			
	New Case			
18	For a new assay, go to step 6.			

Example:

Below are the data for non-specific binding (NSB), zero concentration (B_0) , and various standards for a radioimmunoassay.

Description	Counts per minute	Concentration (pg)
NSB	425, 339, 342, 369	-
Bo	10670, 10570, 10925	-
Standard 1	9176, 9850	25
Standard 2	8453, 7967	50
Standard 3	6323, 6057	100
Standard 4	3866, 4088	200
Standard 5	2027, 2221	400
Standard 6	1251, 1462	800

Find r, m, and b for the regression line. Find the concentrations corresponding to the unknown counts below.

Unknown	Counts per minute
1	10230, 10170
2	3270, 3400

Use the PRINT and PLOT options for complete outputs.

Keystrokes:	Outputs:
	1.0
	1.0
425 B	425.0
	1.0
339 ₪	339.0
	2.0
342 ▣	342.0
	3.0
369 ₪	369.0
	4.0
R.S	368.7
_	
10670 C	10670.0
	1.0
10570 C	10570.0
	2.0
	2.0
10925 C	10925.0
	3.0
 R/S	10721.6
9176 🖸	9176.0
	1.0
9850 ◘	9850.0
	2.0
ac B	0512.0
25 Ē ───→	9513.0
	0.8
	25.0 2.0
	2.0
	1.4
	1.0
8453 🖸	8453.0
—	

13

00 (Print on) 00 (Plot on) 00 *** (1st NSB) 00 ******* 00 00)) *** Ю)0 *** ю 75 *** (Avg. NSB) $00 *** (1^{st} B_0)$ 00 *** 00 00 *** 00 00 67 *** (Avg. B_0) 00 *** (1st of std. 1))0)0 *** 00 00 *** (Avg. for std. 1) 88 *** (net B_1/B_0) 00 *** (Conc. of std. 1) 02 *** (Logit = y_1) 40 *** (Log = x_1) (Std. 1) 00 00 *** (1st of std. 2)

1.00

15-07	
7967 ◘	7967.00 ***
	2.00
50 🗉	8210.00 *** (Avg. for std. 2)
	$0.76 *** (net B_2/B_0)$
	50.00 *** (Conc. of std. 2)
	1.14 *** (y ₂)
	$1.70 *** (x_2)$
	2.00 (Std. 2)
6323 ◘	6323.00 *** (1 st of std. 3)
	1.00
6057 ₺	6057.00 ***
	2.00
100 E	6190.00 *** (Avg. for std. 3)
	0.56 *** (net B_3/B_0)
	100.00 *** (Conc. of std. 3)
	0.25 *** (y ₃)
	$2.00 *** (x_3)$
	3.00 (Std. 3)
3866 ◘	3866.00 *** (1 st of std. 4)
	1.00
4088 ◘	4088.00 ***
	2.00
200 €	3977.00 *** (Avg. for std. 4)
	$0.35 *** (net B_4/B_0)$
	200.00 *** (Conc. of std. 4)
	-0.63 *** (y ₄)
	2.30 *** (x ₄)
	4.00 (Std. 4)
2027 🖸→	2027.00 *** (1 st of std. 5)
	1.00
2221 ◘	2221.00 ***
	2.00

E

E

F 3

E-3

15-09

Notes

This program computes the basic statistics of one variable: mean (\bar{x}) , standard deviation (s), standard error $(s_{\bar{x}})$, and coefficient of variation (C.V. %).

The input data to the program may be either grouped or ungrouped. Ungrouped data should be input to key **B** and grouped data to key **C**; keys **f B** and **f C** provide error correction for the ungrouped and grouped cases, respectively. If an incorrect entry is made, it may be corrected by keying in that entry a second time and pressing the appropriate error correction key. Suppose, for example, that 7.31 is one data point in a set of ungrouped data, but that a mistake is made in entering it. Instead of 7.31, the value 4.31 is input to key **B**. To correct this mistake, you would simply key in 4.31 and press **f B**. At this point the error has been eliminated. Now enter the correct data, 7.31, and press **B**.

Equations:

Ungrouped data:

Let $\{x_1, x_2, ..., x_n\}$ be the set of data points.

Mean
$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

s = $\sqrt{\frac{\sum x_i^2 - \frac{(\sum x_i)^2}{n}}{n-1}}$

Standard error
$$s_{\bar{x}} = \frac{s}{\sqrt{n}}$$

Coefficient of variation C.V.
$$\% = \frac{s}{\overline{x}} \times 100$$

Grouped data:

Let $\{x_1, x_2, ..., x_n\}$ be a set of data points occurring with the respective frequencies $f_1, f_2, ..., f_n$.

Mean
$$\overline{\mathbf{x}} = \frac{\Sigma \mathbf{f}_i \mathbf{x}_i}{\Sigma \mathbf{f}_i}$$

Standard deviation s =
$$\sqrt{\frac{\sum f_i x_i^2 - \frac{(\sum f_i x_i)^2}{\sum f_i}}{\sum f_i - 1}}$$

Standard error s_x = $\frac{s}{\sqrt{\sum f_i}}$

Coefficient of variation C. V.
$$\% = \frac{s}{\overline{x}} \times 100$$

Remarks:

- 1. Grouped and ungrouped data may be mixed in the same set of data.
- The preprogrammed and and keys may be used to input and correct ungrouped data in place of keys and and the standard deviation may also be done by the preprogrammed keys and standard keys and standard durgrouped and ungrouped data.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1.			
2	Initialize.		A	0.00
3	To allow printing of input data,			
	turn print function on.			1.00
4	To turn print function off later.			0.00
5	For ungrouped data, go to			
	step 6; for grouped data, go			
	to step 9.			
	Ungrouped data			
6	Perform this step for $i = 1$,			
	2,, n:			
	Input data point.	Xi	B	i
7	To correct an erroneous entry.	X _k	0B	i
8	Go to step 11.			
	Grouped data			
9	Perform this step for $i = 1$,			
	2,, n:			
	Input frequency and data.	fi	ENTER+	
		Xi	C	i

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
10	To correct an erroneous entry.	f _k	ENTER+	
		X _k		i
	Results			
11	Compute mean and standard			
	deviation.			x
				s
12	Compute standard error and			
	coefficient of variation.		E	9 ,
				C.V.%
13	For a new set of data, go			
	to step 2.			

Example 1:

Hemoglobin concentration was measured for nine male patients. Compute the basic statistics for these data.

Hemoglobin concentration (g/dl)

13.8	17.4
16.9	13.4
16.5	17.9
17.7	15.2
16.0	

0.00

1.00

1.00

16.90 *** 2.00

16.50 *** 3.00

17.70 ***

4.00

 $13.80 *** (x_i)$

(Print on)

(i)

Keystrokes:		Outputs:
Α	>	0
f A		1
13.8 в ————		13
		1
16.9 B		16
		2
16.5 B		16
		3
17.7 в ———	>	17
		4

		3
_		E
5		3
		3
		-1
_		
	a i	- 1
he		
	-	
		3
		3
		3

Example 2:

A certain test was performed on college students ranging in age from 18 to 22 years. The number of subjects of each age is shown in the table. Compute the mean age of the students in the test.

Age	18	19	20	21	22
# Subjects	5	9	13	7	1

Keystrokes: Α –

Outputs:

0.00

If Example 1 has just been run, turn print off:

ſ A	0.00	(Print off)
5 ENTER+ 18 C	1.00	
9 ENTER+ 19 C	2.00	
13 ENTER 20 C	3.00	
7 ENTER 21 C	4.00	
1 ENTER 22 C	5.00	
▣→	19.71 ***	(Mean)
	1.05 ***	(Std. dev.)

(

CHI-SQUARE EVALUATION AND DISTRIBUTION

This program allows you to perform two important calculations concerning the chi-square statistic. The first of these calculates the value of the χ^2 statistic for the goodness of fit test. The second evaluates the chi-square density f(x) and the cumulative distribution P(x) given x and the degrees of freedom ν .

The χ^2 statistic may be computed for the case where the expected frequencies are equal as well as for the case where they are different. If they are equal, only the observed frequencies O_i need be input to key **B**; error correction is available on key **I B**. After calculation of χ^2 from key **D**, the expected frequency E may be calculated. If the expected frequencies are different, both the observed and expected frequencies should be input to key **C**. Error correction is provided on key **I C**.

To make calculations involving the chi-square distribution, first input the degrees of freedom ν to key [c]. Then key in the value of x and press [c] D to find the density f(x) or [c] [c] to find the cumulative distribution P(x).

Equations:

Chi-square evaluation:

$$\chi^{2} = \sum_{i=1}^{n} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

where:

 O_i = observed frequency

$$E_i = expected frequency$$

If the expected values are equal

$$\left(E = E_i = \frac{\Sigma O_i}{n} \text{ for all } i\right)$$

then

$$\chi^2 = \frac{n\Sigma O_i^2}{\Sigma O_i} - \Sigma O_i$$

Chi-square distribution:

Chi-square density:

$$f(x) = \frac{1}{2^{\frac{\nu}{2}}\Gamma\left(\frac{\nu}{2}\right)} x^{\frac{\nu}{2}-1}e^{-\frac{\nu}{2}}$$

where:

E T

F - **A**

1 - 7

-

 $x \ge 0$ v is the degrees of freedom.

Series approximation is used to evaluate the cumulative distribution

$$P(x) = \int_0^x f(t) dt$$

$$= \left(\frac{x}{2}\right)^{\frac{\nu}{2}} \frac{e^{-\frac{x}{2}}}{\Gamma\left(\frac{\nu+2}{2}\right)} \left[1 + \sum_{k=1}^{\infty} \frac{x^{k}}{(\nu+2)(\nu+4)\dots(\nu+2k)}\right]$$

where:

where:

$$\Gamma\left(\frac{\nu}{2}\right) = \begin{cases} \left(\frac{\nu}{2}-1\right)!, \nu \text{ even} \\ \left(\frac{\nu}{2}-1\right)\left(\frac{\nu}{2}-2\right) \dots \left(\frac{1}{2}\right) \Gamma\left(\frac{1}{2}\right), \nu \text{ odd} \end{cases}$$

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$

The program computes successive partial sums of the above series. When two consecutive partial sums are equal, the value is used as the sum of the series.

Remarks:

- 1. In order to apply the goodness of fit test to a set of given data, it may be necessary to combine some classes to ensure that each expected frequency is not too small (not less than, say, 5).
- 2. The program for distribution requires that $\nu \le 141$. If $\nu > 141$, erroneous overflow will result.
- 3. If both x and ν are large, the calculation of f(x) may cause overflow.

References:

(Evaluation) J.E. Freund, Mathematical Statistics, Prentice Hall, 1962.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Initialize.		A	20.00
3	To allow printing of data and			
	results, turn the print function			
	on.			1.00
4	To turn the print function off			
	later.		f A	0.00
5	For χ^2 evaluation, go to			
	step 6; for χ^2 distribution,			
	go to step 15.			
	χ^2 evaluation			
6	If the expected frequencies			
	are equal, go to step 7;			
	if they are not equal, go to			
	step 11.			
	Expected frequencies equal			
7	Perform this step for $i = 1$,			
	2,, n:			
	Key in observed value.	Oi	B	i

(Distribution) Abramowitz and Stegun, Handbook of Mathematical Function	ns,
National Bureau of Standards, 1968.	

F 3

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
8	To correct an erroneous entry.	O _k	I B	i
9	Calculate the χ^2 statistic and			
	(optionally) the average			
	expected frequency.		٥	X²
			RS	E
10	For a new case, go to step 2.			
	Expected frequencies			
	unequal			
11	Perform this step for $i = 1$,			
	2,, n:			
	Key in observed and	O _i		
	expected frequency.	E,	C	i
12	To correct an erroneous	O _k	ENTER+	
	entry.	E _k		i
13	Calculate the χ^2 statistic.		D	X ²
14	For a new case, go to step 2.			
	χ^2 distribution			
15	Key in degrees of freedom.	ν	E	Γ(ν/2)
16	Key in x and compute either			
	Density	x		f(x)
	or			
	Cumulative distribution	x	00	P(x)
17	For a new case, go to step 2.			

Example:

Ten one-minute counts of a Cesium-137 check source yielded the following results. Use this program to evaluate the counting instrument. (Note that with 10 data points, the degrees of freedom $\nu = 9$.)

25601	25553
25546	25841
25592	25560
25820	25633
25569	25464

ŧ

17-05

Keystrokes:	Outputs:
	1.00 (Print on)
25601 B	25601.00 ***
_	1.00
25546 в	25546.00 ***
	2.00
25592 B→	25592.00 ***
	3.00
25820 B►	25820.00 ***
	4.00
25569 B→	25569.00 ***
	5.00
25553 B	25553.00 ***
	6.00
25841 B►	25841.00 ***
	7.00
25560 B→	25560.00 ***
	8.00
25633 B	25633.00 ***
	9.00
25464 в	25464.00 ***
	10.00
	$5.10 *** (\chi^2)$
R/S	25617.90 *** (E)
9 €	9.00 *** (ν)
_	11.63 *** ($\Gamma(\nu/2)$)
5.10 ┏ ፪	5.10 ***
	0.17 *** (P (χ^2))

Since P (χ^2) is between 0.1 and 0.9, the counting instrument is assumed to be operating properly.

Notes

Ξ

F

t STATISTICS

This program will compute either of two test statistics which are used to compare population means: the paired t statistic or the t statistic for two means.

The paired t statistic applies to a set of *paired* observations drawn from two normal populations with unknown means μ_1 , μ_2 :

Xi	X 1	X2		Xn
y _i	У 1	y2	••••	Уn

The paired t statistic can be used to test the validity of the hypothesis that the means are equal. If the computed value of t is significant (as determined by t Distribution, CL1-19A), then we reject the hypothesis that the population means are equal.

The x- and y-values are input to key \blacksquare . Error correction is provided by key \blacksquare \blacksquare . After the input of all x-y pairs, the t statistic may be found by pressing \square .

The t statistic for two means applies to independent random samples $\{x_1, x_2, ..., x_{n_1}\}$ and $\{y_1, y_2, ..., y_{n_2}\}$ drawn from two normal populations with unknown means μ_1, μ_2 and the same unknown variance σ^2 . The t statistic is used to test the validity of the hypothesis that the populations means differ by some amount d (i.e., that $\mu_1 - \mu_2 = d$). Note that d may be chosen to be zero.

To operate this routine, the x-values should first be keyed in to key \square . Error correction is available on key \square \square . After all x-values have been input, the value of d should be input to key \square \square . Then the y-values should be keyed in to key \square . After input of all the y-values, the t statistic may be found by pressing \square .

tr d

Equations:

Paired t statistic

let

 $D_{i} = x_{i} - y_{i}$ $\overline{D} = \frac{1}{n} \sum_{i=1}^{n} D_{i}$ $s_{D} = \sqrt{\frac{\Sigma D_{i}^{2} - \frac{1}{n} (\Sigma D_{i})^{2}}{n - 1}}$ $s_{\overline{D}} = \frac{s_{D}}{\sqrt{n}}$

The test statistic

 $t = \frac{\overline{D}}{s_{\overline{D}}}$

which has n - 1 degrees of freedom (df) can be used to test the null hypothesis

 $H_0: \mu_1 = \mu_2$

t statistic for two means

Define

$$\overline{\mathbf{x}} = \frac{1}{n_1} \sum_{i=1}^{n_1} \mathbf{x}_i$$

$$\overline{y} = \frac{1}{n_2} \sum_{i=1}^{n_2} y_i$$

$$t = \frac{\bar{x} - \bar{y} - d}{\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sqrt{\frac{\Sigma x_i^2 - n_1 x^2 + \Sigma y_i^2 - n_2 y^2}{n_1 + n_2 - 2}}$$

We can use this t statistic which has the t distribution with $n_1 + n_2 - 2$ degrees of freedom (df) to test the null hypothesis

 $H_0: \boldsymbol{\mu}_1 - \boldsymbol{\mu}_2 = d$

References:

(Paired t) B. Ostle, Statistics in Research, Iowa State University Press, 1963.

(t for two means) K.A. Brownlee, Statistical Theory and Methodology in Science and Engineering, John Wiley and Sons, 1965.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and 2 of program.		I	
2	Initialize.		A	
3	To allow output of data and			
	results, turn print function on.		08	1.00
4	To turn print function off later.			0.00
5	For t statistic for two means,		1	
	go to step 11; for paired t			
	statistic, go to step 6.			
	Paired t statistic		1	
6	Repeat this step for all data) <u></u> · - · · · ·		
	pairs (i = 1, 2,, n):		1	
	Key in x- and y-values.	Xi	ENTER	
		y,	B	i
7	To correct an erroneous entry.	X _k	ENTER+	
		Уĸ	0B	i
8	Compute paired t statistic.		G	t
9	(optional) Compute degrees		l	
	of freedom, mean difference,			
	and standard deviation of D.		RS	df
	• · · · · · · · · · · · · · · · · · · ·			Đ.
			1	SD
10	For a new case, go to step 2.		1	
	t statistic for two means		1	
11	Repeat this step for all		1	
	x-values (i = 1, 2,, n ₁):		1	1
	Key in x-value.	Xi	D	i
12	To correct an erroneous entry.	X _k	00	i i

	F	
	I	
	È	
	L	
	-	
	-	
	E	
		-
	-	
		-1
	-	
-		
	-	
		3
_		
	F	3
	7	
		_
	-	
		3
		-
	Ļ	
	- 	
	F	
	L	
	F	
	١	_
	ŧ	3

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
13	Key in difference to be tested.	d		d
14	Repeat this step for all			
	y-values (i = 1, 2,, n ₂):			
	Key in y-value.	y,	٥	i
15	To correct an erroneous			
	entry.	Ук		i
16	Compute t statistic for two			
	means.		E	t
17	(optional) Compute degrees			
	of freedom.		RS	df
18	(optional) Change value of			
	d and repeat step 16.	d	STO 7	
19	For a new case go to step 2.			
		¢		

Example 1:

The hemoglobin concentration in blood samples from six patients was measured by two different methods. Use the paired t-statistic to determine if there is a significant difference between the two methods of measurement.

	Met	hod
Sample	1 (g/dl)	2 (g/di)
1	17.6	17.4
2	13.0	12.9
3	15.3	15.3
4	15.0	15.2
5	15.0	15.0
6	14.6	14.5

 Keystrokes:
 Outputs:

 \triangle 0.00

 \uparrow 1.00 (Print on)

 17.6 ENTER:
 17.4 B

 17.40 **** (y_1)

 1.00 (i = 1)

13 ENTER+ 12.9 B	13.00 ***
	12.90 ***
	2.00
15.3 ENTER 15.2 B	15.30 ***
	15.20 *** (Error!)
	3.00
15.3 ENTER 15.2 Ⅰ B	15.30 ***
	15.20 *** (Corrected)
	2.00
15.3 ENTER 15.3 B→	15.30 ***
	15.30 ***
	3.00
15 ENTER 15.2 B →	15.00 ***
	15.20 ***
	4.00
15 ENTER+ 15 B→	15.00 ***
	15.00 ***
	5.00
14.6 ENTER 14.5 B→	14.60 ***
	14.50 ***
	6.00
ⓒ	0.60 *** (t)
R/S	5.00 *** (df)
	0.03 *** (D)
	0.14 *** (S _D)

To interpret these results, load *t Distribution* (CL1-19A) and find the cumulative distribution I(x) for x = 0.60 and 5 degrees of freedom.

Keystrokes:	Outputs:
5 A .60 D	 0.43 *** (I (0.60))

The probability of |t| > 0.60 is thus 57%. We conclude that the hypothesis that the means are equal cannot be rejected.

Example 2:

3

t 3

6 ° 3

• =

E

<u>in : a</u>

E

Hemoglobin concentration was measured for nine male and seven female patients. Use the t-statistic for two means to test the hypothesis that the difference between the means is negligible (i.e., d = 0).

Hgb concentration (g/dl)		
Men	Women	
13.8	11. 9	
16.9	14.4	
16.5	13.7	
17.7	16.8	
16.0	11.7	
17.4	14.9	
13.4	12.3	
17.9		
15.2		

Keystrokes:	Outputs:
Α	0.00
If example 1 has not just b	een run:
f A	→ 1.00 (Print on)
13.8 🖸	→ 13.80 *** (x ₁)
	1.00 $(i = 1)$
16.9 🖸 ———	16.90 ***
	2.00
16.5 🖸	16.50 ***
	3.00
17.7 🖸 ————	17.70 ***
	4.00
16 🖸	16.00 ***
	5.00
17.4 🖸 ————	► 17.40 ***
	6.00
13.4 🖸 ———	13.40 ***
	7.00
17.9 🖸 ———	→→ 17.90 ** *
	8.00
15.2 🖸 ———	→ 15.20 ***
	9.00
0 🖪 🖪	0.00 *** (d = 0)

18-07

11.9 🖸	11.90 *** (y ₁)
	1.00 (i = 1)
14.4 ◘	14.40 ***
	2.00
13.7 ◘	13.70 ***
	3.00
16.8 ◘	16.80 ***
	4.00
11.7 ◘	11.70 ***
	5.00
14.9 ◘	14.90 ***
	6.00
12.3 D	12.30 ***
	7.00
	2.76 *** (t)
R/S	14.00 *** (df)
Load t Distribution (CL1-19A).	
14 ▲ 2.76 D	0.98 *** (I (2.76))

Thus the value of t is significant and we should reject the hypothesis that the average hemoglobin concentrations in males and females are equal.

E3 ŧ3 **E**3 Notes

t **DISTRIBUTION**

r DiSTRIBU	HON			
x+f+x+	х - Р х -	x + · x ·	PRINT?	

This program calculates three parameters of the t distribution given x and the degrees of freedom ν . The density function f(x) is computed as well as two measures of the area under the distribution curve, P(x) and, for x > 0, I(x), where

$$P(x) = \int_{-\infty}^{x} f(y) \, dy$$

F3 The second n T : **T** i E i. 122 R-3

13

Equations:

$$f(x) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\pi\nu} \Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{x^2}{\nu}\right)^{-\frac{\nu+1}{2}}$$

(1)
$$\nu \text{ even}$$

$$I(x) = \sin \theta \left\{ 1 + \frac{1}{2} \cos^2 \theta + \frac{1 \cdot 3}{2 \cdot 4} \cos^4 \theta + \dots + \frac{1 \cdot 3 \cdot 5 \dots (\nu - 3)}{2 \cdot 4 \cdot 6 \dots (\nu - 2)} \cos^{\nu - 2} \theta \right\}$$

(2)
$$\nu \text{ odd}$$

$$I(\mathbf{x}) = \begin{cases} \frac{2\theta}{\pi} \text{ if } \nu = 1 \\ \frac{2\theta}{\pi} + \frac{2}{\pi} \cos \theta \left\{ \sin \theta \left[1 + \frac{2}{3} \cos^2 \theta + \dots + \frac{2 \cdot 4 \dots (\nu - 3)}{1 \cdot 3 \dots (\nu - 2)} \cos^{\nu - 3} \theta \right] \right\} \text{ if } \nu > 1 \end{cases}$$

where

$$\theta = \tan^{-1}\left(\frac{x}{\sqrt{\nu}}\right)$$
$$P(x) = \begin{cases} \frac{1+I(x)}{2} \text{ if } x > \\ \frac{1-I(x)}{2} \text{ if } x \le \end{cases}$$

0

0

Remarks:

The program requires $\nu < 141$. Otherwise an erroneous overflow will result.

Reference:

Abramowitz and Stegun, Handbook of Mathematical Functions, National Bureau of Standards, 1970.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2			
	of program.			
2	To allow printing of inputs,			
	turn print function on.	1		1.00
3	To turn print function off			
	later.		E	0.00
4	Key in degrees of freedom.	ν	A	ν
5	Key in x and compute either			
	Density function	x	B	f(x)
	or			•···-
	Cumulative distribution	×	C	P(x)
	or			
	• Integral, $-x$ to x ($x > 0$).	×	D	l(x)

Example 1:

Find the density function and P(x) for x = 1.6 with 9 degrees of freedom.

Keystrokes:	Outputs:	
9 ▲	9.00 (v)	
1.6 B→	0.11 *** (f (x))	
1.6 €	0.93 *** (P (x))	
Example 2:		
Find I(x) for $x = 1.83$ and $\nu = 11$.		
Keystrokes:	Outputs:	

11 🗛	11.00 (<i>v</i>)
1.83 ◘	0.91 *** (I (x))

19-04

PROGRAM LISTINGS

The following listings are included for your reference. A table of keycodes and keystrokes corresponding to the symbols used in the listings can be found in Appendix E of your Owner's Handbook.

Program

E · **3**

6 : 3

E-3

.3

E 3

E3

F3

E 3

Pro	gram	Page
1.	Beer's Law	L01-01
2.	Protein Electrophoresis	L02-01
3.	LDH Isoenzymes	L03-01
4.	Body Surface Area	L04-01
5.	Urea Clearance	L05-01
6.	Creatinine Clearance	L06-01
7.	Amniotic Fluid Assay	L07-01
8.	Blood Acid-Base Status	L08-01
9.	Oxygen Saturation and Content	L09-01
10.	Red Cell Indices	.L10-01
11.	Total Blood Volume	.L11-01
12.	Schilling Test	.L12-01
13.	Thyroid Uptake	.L13-01
14.	Radioactive Decay Corrections	.L14-01
15.	Radioimmunoassay	.L15-01
16.	Basic Statistics	.L16-01
17.	Chi-square Evaluation and Distribution	.L17-01
18.	t Statistics	.L18-01
19.	t Distribution	.L19-01

113 114 115	RCLI INT							
116 117 118	8 1 +							
119	PRTX SPC	Patient	IU.					
121 122 123	RCLD PRTX RCLE	А. %Т.						
124 125 126	PRTX SPC SPC							
127 128	RCLC PRTX	+ % T ₃						
129 138	RCLA PRTX	+ % T _u	(-A _u).					
131 132 133	SPC RCLB PRTK	C _s .						
133 134 135	PRTK RCL7 PRTX	C _u .						
136	RTN							
1								
ļ								
1								
							1	
			BELS	IE	FLAGS		SET STATUS	
A A→%T	⁸ %T→A	^C +%T _s (-A _s)	^D +%T _u (-A _u)	E Cs→Cu	⁰ Print	FLAGS	SET STATUS	DISP
A→%T a Clear ⁰ Used	6 %T→A b	LAI C +%T ₆ (-A ₅) C Ptnt #	BELS ^D +%T _u (-A _u) ^d P off? ³ Store A _s	E C _s →Cu e Reprint 4 Store Au	1.	FLAGS ON OFF 0 1 1 2 2 2 2		

Protein Electrophoresis

ÈÌ

1-1

1

1

<u>ل</u>ــــــ

DISP

FIX LO SCI 13

ENG []

Body Surface Area

A Ht (+cm)	^B Wt (+kg)	000013				ON OFF 0 X 11 1 1 K 2 11 K 3 11 K		
	B Wt (+ka)	C → Dubois	D → Boyd	E	⁰ Print	FLAGS	TRIG	DISP
			BELS		FLAGS		SET STATUS	
145 146 147	PRTX SPC RTN							
142 143 144	PRTX SPC RCLA	BSA (n						
139 140 141	RCLE PRTX RCLC	Ht inpu Wt inpu						
136 137 138	PRTX SPC	Patient	ID					
132 133 134 135	9 4							
129 130 131 132	SPC SPC RCL1 INT							
	0 RTN FLBLe			·				
125	RTN FLBLØ CFØ							
128 121 122	GTD8 SF8 1							
119	RTN #LBLd F0?	Print to	ggle					
116	PRTX		_					

Urea Clearance

Creatinine Clearance

						ļ		
		1						
						1		
							1	
							E I	
	е ў	Li IC.u	ABELS	lé	FLAGS ⁰ Print	1 <u> </u>	SET STATUS	DISI
A Vît		^C U _{creat} ^C Ptn1 #	DP _{creat}	e Reprint	1	FLAGS ON OFF 0 1 2 3	DEG S	
				riepinit.	1	10 X L		
^a Clear ⁰ Usedi	^b Cor BSA?	2	3	4	² Cor BSA	1 [] 🛛		FIX SCI ENG

Amniotic Fluid Assay

								-		
86)			857	RCLB		Δ	4450 (y)	
88					858	XZY				
88					059	÷		Ι.		
- 68			A365	i	060	ST09		0	γ/a [×]	
60					861	F8?				
88					862	PRTX				
00					963	RTN				
00					864	*LBLE				
00.					865	3				
118					066	RCL9		[
81.			A650		967	÷				
81			1		868	x> Y?		l	< 0.7	
81.					869 878	GT01		1 11	o < 0.7, I	have zone 1.
814					878	6101 R4				
01					872	X> Y?			>2	ve zone 3.
010			A450		873	6103		I "''	1 / J, na	ve zone 3.
81 81			1		073	2				
81					875	GTO		1 08	herwise,	have zone 2.
82					875	#LBL1				
82					877	+LBL1 1				
82			1		878	6TO				
82					879	#LBL3				
824					868	3				
82			1	This changes if	081	#LBL0				
02				different wavelengths	092	STOR		7.0	ne numb	er.
82				of light are used.	883	FIX		201		51
821				or light are used.	884	DSPØ				
02					885	F8?				
83					886	PRTX				
83					087	RTN				
83					888	#LBLa				
83					889	CLX		Init	ialize	
834				-	890	STOR			141125	
83				50	091	ST09				
836					892	STUA				
637					893	RTN				
838			1		894	#LBLc				
835					895	INT		Pati	ent ID =	Ptnt # .07
848	SPC				896					
841	RTN				697	8				
842					898	7				
843	stoa		Week	(x)	899	+				
844	FIX			(4)	180	STOI				
845	5 DSP8				101	PRTX				
946	F8?				192	SPC				
847					183	RTN				
846			1		184	#LBLd				
849					185	F0?		Prin	t toggle	
858			1		196	STOP				
651			Slope	constant a	187	SFØ				
852			1		108	1				
053			1		109	RTN				
854					110	#LBL8				
855					111	CFØ				
856	y x		a ^x		112			L		
0	11	2	з	REGI	STERS	Te	17	10		lo
ľ	ľ	ŕ	ľ	1	5	6	7	8	one	9 b
S0	S1	S2	53	S4	S5	S6	\$7	S8		S9
A		В	- I		D	L	l le	1	1	L
Week	«	∆ A ₄₅₀	_	A450	A550		A365		Ptn	t # .07

	0741							
	RTN BLe	Reprint		-				
115	FIX	Reprint						
116 1	DSP2	i i						
117	SPC					1		
118	SPC							
	RCLI							
120	INT							
121 122	è	1						
123	7					1		
124	+							
125	PRTX	Ptnt # .07	,	1				
126	SPC							
	RCLE	A365						
	PRTX RCLD	A550		1				
	PRTX							
	RCLC	A450						
132	PRTX							
133	SPC							
	RCLB	∆ A ₄₅₀						
135 136	PRTX SPC							
130	RCLA	Week						
138	DSPO			1				
	PRTX							
	RCL9	b						
	DSP2 PRTX	1						
	RCL8	Zone						
	DSP8							
	PRTX							
146	RTN							
1								
				1				
				1				
							1	
1								
Į							1	
1								
1							1	
							1	
1		1					1	
							1	
					T		CET STATUS	
			ELS		FLAGS		SET STATUS	
^ A366	B A550	^C A ₄₅₀ →∆	^D Wk≁b	E Zone	⁰ Print	FLAGS	TRIG	
^A A365 ^a Clear	B A550			e Reprint	0 Print	ON OFF	TRIG	FIX
^365	~550	^C A ₄₅₀ →∆	^D Wk≁b	2016	⁰ Print	ON OFF	TRIG	DISP FIX SCI ENG

Blood Acid-Base Status

001 #LBLA	BT	857 -		
802 F8?		058 10× 059 .		
903 PRTX 884 F0?		969 8		
884 F8? 885 SPC		86 1 3		
886 3		862 8		
867 7		863 7		
888 X2Y		864 ×		s(10 ^{pH-pK})
689 -	37-BT	865 ST05 866 LSTX		3,10)
010 ST09	F1 set for BT.	867 +		
011 SF1 012 RTN		868 RCLD		
013 #LBLB		069 ×		
014 STOE	PCO ₂	870 STOA		TCO2
815 F8?		071 F8?		
016 PRTX		072 PRTX		Clear flag 1.
017 F1?	To correct for BT, GTO 0.	873 CF1 874 RTN	1	Clear nag 1.
010 CT00	For 37°, GTO 1.	875 #LBLE	1	
819 GTO1 820 #LBL8		876 ST08		Hgb
821 RCL9		077 F0?		
822 .	Correct PCO2 to 37°.	078 SPC		
023 O		879 F8?		
024 1		888 PRTX 881 RCL5		
025 9		081 RCL5 082 RCLD		
826 × 827 18×		983 ×		
028 ×		884 ST06		[HCO3]
829 #LBL1		885 9		
838 STOD	PCO ₂ (37°C)	886 .		
031 RTN		087 5		
832 *L8LC	рН	088 ENT† 089 1		
833 STOC 834 F8?		890		
034 F07		891 6	1	
836 F1?	To correct for ST, GTO 0.	0 92 3	1	
837 GT00		893 RCL8		
838 GT02	For 37°, GTO 2	894 × 895 +		
839 *LBL8		695 + 696 7	1	
848 RCL9 841 -	Correct pH to 37°	897		
842 8		898 4		
843 1		899 RCLB		
844 4		188 -		
045 6		101 × 102 -	1	
846 × 847 -		183 2		
847 - 848 #LBL2		104 4		
849 STOB	pH (37°C)	105 -		
858 RTH		186 1	1	
051 #LBLD	Compute TCO ₂ .	187 RCL8		
852 RCLB		188 - 189 8		
853 6 854 .		110 1	1	
#54 #55 1		111 4		
856 1		112 3		
		STERS		10
0 1 2	3 4	⁵ s(10 ^{pH-pK}) ⁶ [HCO ₃ ⁻]	7 BE	^в Нgb ⁹ 37-ВТ
S0 S1 S2	S3 S4	S5 \$6	S7	58 59
А ТСО ₂ В рн (37°)	C pH input	D PCO ₂ (37°) E	PCO ₂ input	Ptnt # .08

113	x			169 170	CHS PRTK		вт	
114	-			171	SPC			
115	X	BE		172	#LBL0		PCO ₂ input	
116	ST07 F8?	1		173	RCLE		roo ₂ input	
117 118	PRTX			174	PRTX RCLC		pH input	
119	RTN			175	PRTX	1		
120	RCL6	[HCO3_]		177	RCLA	l l	TCO2	
121	F8?			178	PRTX	1		
122	PRTX RTN				SPC			
123 124	\$LBLa	Initialize.		188	RCLØ		Hgb	
124	8	initialize.		181	PRTX RCL7		BE	
126	\$T06			182				
127	ST07			184			[HCO3_]	
128	ST08	1		185	PRTX			
129	ST09			186				
1 30 131	STOI RTN							
131	*LBLc			-1		1		
133	INT	Patient	D = Ptnt # .08.	1				
134	•							
135	8	1						
136	8							
137	+ stoi					- 1		
138 139	PRTX							
148						1		
141	RTN					i		
142	*LBLd					1		
143		Print tog	gle	l				
144		1						
145 146								
147		1		l l				
148	*LBL0							
149								
150				4				
151 152								
152		Reprint						
154	SPC	1		4				
155	5 RCLI							
156							1	
157 156								
150								
160	8 +	1					1	
161	I PRTX	Patient	ID	ļ			1	
16							1	
16 16		lf no B	T entered, GTC	+ o.				
16		1 100	, entered, er d	- 1			1	
16	6 3			1			1	
16	57 7			1				
16			BELS		FLAGS		SET STATUS	
A	B PCO2	Срн	D TCO2	^E Hgb→BE	⁰ Print	FLAGS	TRIG	DIS
81	b PCU2		d P off?	e Reprint	¹ BT	0 N OFF	DEG 😰	FIX
	ľ	Full #		4	12		GRAD []	SCI
^a Clear								
^a Clear ⁰ Used	¹ PCO ₂ (37)	² pH (37)	8	9	3	2 D N 3 D N	RAD 🙄	ENG

Oxygen Saturation and Content

801 #LBLA	BT	057 GTO0 058 #LBL1	
002 F0?		859 CHS	If input < 0, make positiv
883 PRTX		859 \$LBL8	
884 3		861 STOC	VPO2
99 5 7		062 ENT†	
886 X2Y		863 ENT†	
887 ~ 888 sto9	37-BT	864 ENT†	1
008 STO9 009 RCLD	Rcl PCO ₂ (if input).	965 1	
010 RTN		866 5	
011 *LBLB	PCO ₂	867 -	
012 F0?	PC02	868 ×	
013 PRTX		869 2	
014 STOD		878 0	
015 KCLB	Rcl pH (if input).	871 4	
016 RTN		072 5	
017 #LBLC	pH	073 + 074 ×	
018 F0?		075 2	Compute oxygen
019 PRTX		076 EEX	saturation.
828 STOB		877 3	Saturation.
021 RTN		978 +	
022 \$LBLD 023 F0?		079 ×	
		080 ST07	
824 PRTX 825 STOE	PO ₂ input	681 CLX	
826 X(87	If input < 0, consider a	s 682 1	
827 6101	VPO ₂ .	0 83 5	
828 RCL9	Otherwise compute VP	0 ₂ . 084 -	
029 .		£85 ×	
838 8		886 2	
831 2		087 4	
832 4		088 0 889 0	
033 ×		889 0 990 +	
034 RCLB		091 ×	
Ø35 7		892 3	1
836 .		693 1	
837 4		894 1	1
838 - 839 .		895 8	
048 4		696 8	
941 8		897 -	
842 X		898 ×	
843 +		899 2	
844 4		100 4	1
8 45 8		101 EEX	
046 RCLD		102 5 103 +	
847 ÷		104 EEX	
048 LOG		185 2	
849 - 858 8		186 ÷	
850 0 851 6		187 ST÷7	1
852 ×		188 RCL7	O ₂ saturation (%).
653 +	1	109 SF2	F2 set to indicate
854 18×	l	110 F0?	saturation computed.
855 RCLE	1	111 SPC	
856 ×		112 F0?	
	2 3 4	REGISTERS 5 6 7	Sat ⁸ Hob ⁹ 37-BT
			Sut
) S1	S2 S3 54	S5 S6 S7	20 39

Rci BT	21	3 RTN			
	21 21 21	0 PRTX 1 RCLA 2 PRTX		Content	
	- 28	6 RCL7 7 PRTX		Saturation	
O ₂ content	28 28	3 RCLE 4 PRTX		pH PO ₂ input	
	28	B PRTX		PCO ₂	
	197	- B PRTX		вт	
Compute oxygen content	194	1 3 5 7			
	196 191 192	9 + PRTX		Patient 1D	
	187 188	INT .			
	184	SPC SPC			
	181 182	0 RTN			
Otherwise store Sat.	178 179	RTN #LBL0			
If Sat. computed, do not	175 176	6700 SF0 1			
Rcl Hgb (if input).	172 173	RTN #LBLd		Print toggle	
	If Sat. computed, do not input it. Otherwise store Sat. Store Hgb. Compute oxygen content. O ₂ content Initialize	Rcl Hgb (if input). 173 174 174 If Sat. computed, do not 175 input it. 177 Otherwise store Sat. 179 Otherwise store Sat. 189 182 181 182 183 183 182 184 182 185 199 Store Hgb. 186 193 193 194 193 195 199 Compute oxygen content. 193 193 193 194 194 195 194 196 195 Compute oxygen content. 193 193 194 194 195 195 194 196 26 201 26 202 26 194 26 203 26 194 26 204 26 205 27 206 26 207	171 ST01 172 RTM 173 #LBLJ 174 F82 175 GT08 174 F82 175 GT08 176 SF8 input it. 177 176 SF8 input it. 177 178 RTM Otherwise store Sat. 179 181 6 182 RTM 183 #LBL8 184 SPC 185 SPC Store Hgb. 186 187 INT 188 . 199 9 199 9 199 9 199 9 199 9 199 9 199 9 199 9 199 191 191 192 192 PRTX 193 SPC 194 3 195 7	171 ST01 172 RTM 173 stBLd 174 F0? 175 GT00 If Sat. computed, do not input it. 177 177 1 Otherwise store Sat. 179 181 0 182 RTM 183 elle 184 SPC 185 SPC 186 CF8 187 ALBLE 188 elle 189 elle 181 0 182 RTM 183 elle 184 SPC 185 SPC 186 CRLI 187 INT 188 - 199 9 191 192 192 PRTX 193 SPC 194 3 195 7 196 RCL9 197 - 198 PRTX 291 RCL8 202 PRTX 203 RCLE 204 PRTX 205 SPC 206 RCL 207 PR	Image: Project and Provided and Pr

Red Cell Indices

F3

F. 3

63

E.J

Total Blood Volume

13

13

F. 3

DISP

FIX 26 SCI ENG n 2

Schilling Test

		·	
881 #LBLA	Background counts.	057 .	Patient ID = Ptnt # .12
002 STOE	Background counts.	858 1	Fatient ID - Fuit # .12
883 F8?		859 2	
884 PRTX		868 +	
005 RTN		061 ST01	
BBG *LBLB	Standard dilution.	062 PRTX	
007 STOD		063 SPC	
008 F0?		864 RTN 865 #LBLd	
009 PRTX			Print toggle
010 RTH		066 F0?	
011 #LBLC 012 STOC	Standard counts.	067 GTO0 068 SF6	
		869 1	
013 F0?		878 RTN	
014 PRTX 015 RTN		071 #LBL0	
		072 CF0	
	Urine volume, (V)	973 0	
	office volume: (V)	074 RTN	
018 F8? 019 PRTX		074 KIN 075 #LBLe	
		876 SPC	Reprint
		077 SPC	1
021 #LBLE 022 STOA	Urine counts. (U)	078 RCLI	1
823 F89		879 INT	1
		075 INI 080	1
	1 U	081 1	1
825 1 826 XIY		082 2	1
027 RCLE	Bck U 1	083 +	
828 -	Net 1	884 PRTX	Patient ID
829 1	1 Net 1	885 SPC	
030 RCLB	V 1 Net 1	086 RCLE	Bck
031 X≤Y?	ls V ≤ 1?	087 PRTX	2011
032 R4	Yes, eliminate V.	988 RCLD	Std. dilution
033 ×	No, $V > 1$, multiply by V.	889 PRTX	
034 ×		890 RCLC	Std. CPM
835 RCLC		091 PRTX	
036 RCLE		092 RCLB	Urine vol.
037 -	Net std. counts.	893 PRTX	
838 ÷		894 RCLA	Urine CPM
839 RCLD		895 PRTX	
848 ÷		896 SPC	e e e e e e e e e e e e e e e e e e e
041 EEX		097 RCL9	% excreted
842 2	Convert to %.	898 PRTX	
943 x		899 RTN	
044 ST09	% of dose excreted.	1	
045 F0?		1	1
846 SPC			1
847 F8?		1	1
848 PRTX		1	1
849 RTN			1
850 #LBLa			1
051 0	Initialize.		
052 STOE			
053 STOI		1	1
854 RTN		1	1
855 #LBLc			
856 INT			
		STERS	
1 2	3 4	5 6 7	8 9 %
D 51 52	S3 S4	\$5 \$6 \$7	S8 S9
י sז 52	p3 p4	⁵⁵ ⁵⁷	30 34
	l		<u>kk</u>
Urine CPM Urine	Vol. Std. CPM	Std. dilution Bck	' Ptnt # .12
,		L	

3									
3									
3									
3									
3									
3									
3									
3									
3									
3									
3									
3									
3									
3									
3				BELS		FLAGS		SET STATUS	
	ABck	^B Std. dil.	C Std. CPM	^D Urine Vol.	^E CPM →%	⁰ Print	FLAGS	TRIG	DISP
•				1.	e Bearint	1	ON OFF	1 1	
	^a Clear	b	^c Ptnt #	d P off?	e Reprint		່ວ່ສີ	DEG 😡	FIX 🖬
1		b 1 6	^c Ptnt # 2	⁰ P off? 3 8	Reprint	2	0N OFF 0 20 0 1 0 20 2 0 20 3 0 20	DEG 😨 GRAD 🗆 RAD 🗋	FIX IX SCI II ENG2

Radioactive Decay Corrections

I.

and the second

Lij

Radioimmunoassay

			_		
981 *LBL	A Ini	tialize.	057 F8?		
	\$		858 PRTX		
003 CLA			859 RCLE		
084 F2			868 -		
005 610			- 861 RCLD		
896 ¥LBL		n-specific binding	862 RCLE	4	
007 GSB		ints (NSB).	063 -	0	et B/8o
886 RT			064 ÷ 065 F1?		
009 GSB 010 STD	•				
011 RT		erage NSB.	066 PRTX 867 F89		
012 *LBL	- 1		068 SPC		
013 GSB		o dose counts (B ₀).	069 R4		
014 RT			878 F8?		
015 ESB			871 PRTX		oncentration.
016 STO		rage Bo.	872 F8?	Ŭ	DICEITERACION.
017 RT	N		873 SPC		
818 *LBL	1 Cor	npute average counts.	874 LOG	lo	g conc. (x).
019 RCL	6		875 G\$B3		git (y).
828 RCL:	9		076 F1?	1	
021 ÷			077 PRTX		int logit.
022 STO		ΣB/n	078 X#Y		•
623 FØ			079 F12		
824 SP			880 PRTX	Pr	int log conc.
025 F0 026 PRT			081 F1? 882 SPC		
027 F0			882 370		
028 SP			884 F8?		m x- and y-values for
829 FØ			085 SPC	re	gression.
838 SP			886 RTN		
831 *LBL	~	r for n, ΣB	087 *LBLa	-	
	8	in 101 n, 20	088 RCL 3	1 4	mputer, m, b.
033 STO			089 x		i
034 STO			898 P#S		
035 R			891 RCL9		
836 RT			892 ÷		
037 #LBL		nts for standards and	893 RCL8		
038 #LBL		nowns.	894 X2Y 895 -		
848 PRT.			096 STOP		
041 ST+			097 ENTT	Σχ	(γ – (Σx Σγ)/n
1	i l		898 ENTT		
043 ST+			899 P#S		
844 RCL	9		188 S		
845 RT	N		181 ×		
846 *LBL			192 ÷		
847 RCL		dard concentration.	183 P2S		
048 RCL:	9		184 RCL9		
849 ÷	.		185 1		
858 STO.		ΣB/n	196 -		
051 0 052 ST01			187 +	1	
852 STO			100 STOA 109 PRTX	1	
854 R			189 PRTX 118 RCLB	1	
855 F8			111 RCL5	1	
856 SP			112 RCL4		
	- 1	REGI	STERS		
0 1	2 3	4	5 6	7 8	9
S0 S1	S2 S3		S5 S6	57 S8	B, used n, used S9
		Σχ	Σχ² Σγ	Σγ²	Σχγ п
^	B Used, m	с	D Bo	E NSB	i B

	¹ Find B	² Clear ΣB	³ Logit	4	2		DEG 🕱 GRAD 🗆	FIX ÌX SCI □
Start ^a →r, m, b	[™] NSB; →NSB ^b Unkn B	$\stackrel{\sim}{=} B_0; \rightarrow \overline{B}_0$ $\stackrel{c}{=} \rightarrow Conc$	Std B d Print?	• Std conc • Plot?	[°] Print ¹ Plot	FLAGS ON OFF		
A Ctart		<u> </u>	0	E Std conc	0	ELACE		DISP
108	- FRIA	Print in	ogit (y). BELS	<u> </u>	FLAGS	<u> </u>	SET STATUS	
167 168	F1? PRTX							
166	RCLO	1					1	
165	SPC	Estima	ated concentratio	m.			1	
164	PRTX						1	
162	109 10×			1			1	
161 162	÷ sto9						1	
168	RCLB	x (log	conc.) = (y - b)/	m			1	
159	-	1		1			1	
158	RCLC						1	
157	ST08	Calcula	ate logit (y).				1	
155	SSB3						1	
154	SPC	1					4	
153 154	PRTX F89						1	
152	F1?				55 NIN			
151	÷		50		97 Ø 98 rtn		1	
150	-	net B/i	B.		96 CF1		1	
149	RCLE				95 *LBL0			
148	RCLD	1			84 RTN			
147	-				93 1		1	
145	RCLE	8		2	82 SF1		1	
144	F8? Prix	_			01 CTOO			
143	SPC				99 +LBLE 99 F1?		Plot toggle	
142	FØ?				98 KIN 99 ¥LBLe			
141	R↓				97 Ø 98 RTN			
148	\$109				96 CF8		1	
139	ST08				95 ¥LBLØ		1	
137	8	Ē×ΣE	s/n	1	94 RTH		1	
136 137	stor	=			93 1		1	
135	RCL9				92 SFØ			
134	RCLB	unkno	wn.		91 ETDO		1	
133	*LBLc	Compu	ute concentration		98 F0?		Print toggl	e.
132	RTN				88 RTN 89 ¥LBLd			
131	RCLC				87 LN 80 PTN			
130	RCLB				86 ÷			
129	RCLA	1		11	85 -		1	
127 128	SPC SPC			11	84 RCLI		Logit≖In	$\left(\frac{B - NSB}{B_0 - B}\right)$
126	PRTX				B3 RCLD		1	/ B - NSB
125	STOC	b = y -	- mx		92 -		1	
124	-		-	10				
123	×	1			79 #LBL3 30 RCL1		Logit calcu	ulation.
122	RCLB				78 GTO2 79 #LBL3			
121	Ŧ			17				
120	PZS			1			1	
119	PRTX	m		1			1	
117	STOR			1				
116	- +	1		17	73 SPC			
115	÷			11	72 F19		erint log C	unic. (X).
	RCL9	1			1 PRTX		Print log c	000 (~)
113					7 8 F1?			

Basic Statistics

1							
			1				
[
ł							
1							
		LABEL	3	FLAGS		SET STATUS	
^A START ^a Print?	^Β x _i (Σ+) ^b x _k (Σ-)	$\begin{array}{c c} & LABEL! \\ \hline C & f_i \uparrow x_i \left\{ \Sigma + \right\} & D \rightarrow \\ \hline c & f_k \uparrow x_k \left(\Sigma - \right) & d \end{array}$	S x,s ^E →s _x ,Cv		FLAGS ON OFF 0 3 81 1 81 2 80 3 86	TRIG DEG R GRAD () RAD ()	DISP FIX B SCI D ENG D n_2

Chi-square Evaluation and Distribution

Start. L points to R _A . Input 0 _i (Σ+). F1 set for equal E _i . Σ0 _i Σ0 _i ²	859 #LBLc 859 ESB7 860 ESB9 861 ESB7 862 ES10C 063 - 864 x ² 865 RCLC 866 ÷ 866 ÷ 867 RCLB 868 - 868 - 869 ENS 878 ENS 879 ES10B 071 1 972 EST-i 873 RCL; 874 RTM 875 RTM	Correct erroneous 0 _k †E _i (Σ-).
Input 0 _i (Σ+). F1 set for equal E _i . Σ0 _i	860 CSB9 861 CSB7 962 STOC 963 - 965 RCLC 865 FCLD 866 - 965 CCLB 868 - 969 CHS 879 STOB 871 1 972 ST-i 973 RCLi 874 RTH	
Input 0 _i (Σ+). F1 set for equal E _i . Σ0 _i	860 CSB9 861 CSB7 962 STOC 963 - 965 RCLC 865 FCLD 866 - 965 CCLB 868 - 969 CHS 879 STOB 871 1 972 ST-i 973 RCLi 874 RTH	
Input 0 _i (Σ+). F1 set for equal E _i . Σ0 _i	061 CSB7 062 STOC 063 - 064 X* 065 RCLC 086 + 087 RCLB 088 - 089 CHS 0870 STOB 071 1 072 ST-i 073 RCLi 074 RCLi	
Input 0 _i (Σ+). F1 set for equal E _i . Σ0 _i	062 STOC 063 - 064 x ² 065 RCLC 065 RCLB 068 - 069 CHS 079 STOB 071 1 072 ST-i 073 RCLi 074 RTN	
Input 0 _i (Σ+). F1 set for equal E _i . Σ0 _i	063 - 064 X ² 065 RCLC 066 ÷ 067 RCLB 068 - 069 CHS 070 ST0B 071 1 072 ST-i 073 RCLi 073 RCLi	
F1 set for equal E _i . Σ0 _i	064 X 065 RCLC 866 ÷ 067 RCLB 068 - 069 CHS 070 STOB 071 1 072 ST-i 073 RCLi 073 RCLi	
F1 set for equal E _i . Σ0 _i	065 RCLC 866 ÷ 867 RCLB 869 - 869 CHS 878 STOB 071 1 872 ST-i 873 RCL: 874 RTN	
Σ0,	866 ÷ 867 RCLB 868 − 869 CHS 878 ST0B 871 I 872 ST-i 873 RCLi 874 RTN	
Σ0,	067 RCL0 068 - 065 CHS 070 STOB 071 I 072 ST-i 073 RCLi 073 RCLi 074 RTH	
	068 - 069 CHS 070 STOB 071 1 072 ST-i 073 RCL: 074 RTN	
	069 CHS 070 STOB 071 1 072 ST-i 073 RCLi 074 RTN	
	070 STOB 071 1 072 ST-i 073 RCLi 074 RTN	
	071 1 072 ST-i 073 RCL; 074 RTN	
Σ0,²	072 ST-i 073 RCLi 074 RTN	
Σ0 _i ²	073 RCL i 074 RTN	
Σ0; ²	874 RTN	1
Σ0; ²		
Σ0; ²		
	••••	Calculate χ^2
	076 F1?	1
	977 GT06	If equal E _i , GTO 1.
i l		Recall χ^2
	879 GSB4	1
Correct erroneous 0 (2-).	0210 R/S	1
	881 GT06	"Error"
	082 #L8L8	
	883 RCLA	Calculate χ^2 for equal
		E _i .
		1
i		
		x ²
		1
		Calculate E.
1		
1		
loout 0. tE. (Σ+)		Print contents of Y- and
input 0(16) (4*).		X-registers if FO set.
		Aregisters in to set.
	181 XZY	
	182 GS88	
	103 RTN	
	184 #L8L4	
	185 GSB7	Space and print.
	106 #LBL8	
$(0; -E_i)^2$		Print.
Σ		
¢;		
	••••	Space
		1
1		
		8 9
\$3 \$4	S5 S6 S7	S8 S9
		<u>_</u>
	3 4	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

⁰ Used	¹ Used	2 Use		³ Used	⁴ Print, s	ipc 2		1 1 28	GRAD 🗆 RAD 🗇	SCI ENG
<u>Start</u> ^a Print?	^b 0 _k (Σ-)	_	E _k (Σ-)	$d_x \rightarrow f(x)$	e x → P(;	() ¹	Used	0 DN OFF	DEG 🕱	FIX
^ <u></u>	^θ 0 _i (Σ+)		LΑΒ Ε ₁ (Σ+)	ELS $D \rightarrow \chi^2; E$	[€] ν→Γ (ν	/2) 0	Print	FLAGS	TRIG	DIS
168	CHS			EI C		224	RTH FLAGS	T	SET STATUS	
167	÷					223	8			
165	RCLB 2					222	CF8			
164	Y*					220 221	RTN \$LBLØ			
162 163	-					219	1			
161	RCLA 1					218	SFØ			
168	STOP					216 217	F8? GT08		i interoggie	
158	CSB8					215	#LBLa		Print toggle	
157 1 58	SF1 #LBL5		A - 11A	•		214	RTN			
156	*LBLd		$x \rightarrow f(x)$)		212 213	× ESB8			
155	R/S					211	RCLE			
153 154	GSB8 GSB7					218	6103			
152	STOC					288 289	+ X≠Y?			
151	×					287	STOD +			
149 150	RCLC					206	×			
148	Pi IX					205	RCLD			
147	#LBL2		-			203 204	\$101 *			
146	6701	1	_			202	+			
144	LSTX	1			1	201	2			
143 144	× STOC	1				200	RCL I			
142	XZY					198 199	#LBL3 RCLB		Sum terms of	of series
141	RCLC					197	STOD			
139	-1					196	1			
138 139	XZY					195	stôj			
137	6102					193 194	RCLA X			
136	X=Y?					192	2			
134	5					191	STOE			
133 134	*LBL1		ν odd.			198	×			
132	R/S	ļ				188 189	RCLE			
131	STOC	1				187	RCLA Ŧ			
130	6587					186	RCLB			
128 129	N! ESB8		(v/2 - 1)	11		185	ESB5		First find f()	к).
127	-					183 184	#LBLe CF1		$x \rightarrow P(x)$	
126	1				1	182	RTN			
124 125	X≢Y? G101		It v is od	id, GTO 1.		181	GSB7			
123	LSTX		M			160	F1?			
122	INT					178 179	F1? 65 89			
121	STOA					177	STOE			
119 128	÷					176	÷			
118	X2Y 2				1	175	RCLC			
117	STOC					173 174	¥× ÷			
116	1					172	RCLA			
114	¢LBLE GSBB		v → Γ (v/	2)		171	2			
						170	x	1		

6-4

Đ3

53

Đ3

EB

63

t Statistics

-		8 57 ₽ X	
801 #LBLA 802 8	Start.	858 ST08	\$D
863 ST01		859 RCL1	1
804 \$102		868 {X	
005 ST03		₿61 *	1 1
906 RTN		862 +	1
807 #LBLa	Print toggle.	863 SPC	, t
008 F8?		964 PRTX 965 R/S	
889 GTO8 818 SF8		865 R/S 866 RCLC	
811 1		967 PRIX	
BIZ RTN		868 RCLA	
813 #LBL0		869 PRTX	
814 CF8		978 RCLB	
815 8		871 PRTX	
016 RTN		872 RTN	
017 *LBLB	Input x _i , y _i for paired t.	073 #LBLD	Input x _i or y _i for t for
018 F0? 019 GSB9		874 6888 875 st+2	two means.
019 GSB9 020 -		875 51+2 876 X*	
821 \$1+2		877 ST+3	1
822 X2		978 RCL1	
023 ST+3		879 1	
024 RCL1		+ 98 8	1
825 i		ØB1 STOI	4 1
026 +		882 RTN	
027 ST01		083 #LBLd 084 GSB1	Correct x _k or y _k for t
028 RTN		885 688 0	for two means.
829 #LBL6 838 F8?	Correct xk, yk for paired	086 ST-2	
031 GSB9	t.	087 X*	
032 -		888 ST-3]
833 ST-2		089 RCL1]
834 X ²		698 1	
835 ST-3		891 -	
836 RCL1		892 STO1 893 RTN	
837 J		093 RTN 094 #LBLe	
030 - 839 stoi		895 \$107	Input d.
840 RTN		096 RCL1]
841 #LBLC	Compute paired t	89 7 ST04	Save n_1 , Σx , Σx^2 .
842 RCL2	Compute paired t.	898 RCL2	Sale (1), 24, 24 .
043 RCL1		899 ST05	
844 ÷		188 RCL3	
045 STOA 846 RCL3	D	101 STO6 102 0	
846 RCL3 847 RCL2		103 ST01	Clear for Σy.
848 X2		104 ST02	1
849 RCL1		105 ST03	
056 ÷		106 RCL7	1
851 -		187 6SB1	
852 RCL1		108 6580	
853 1		109 CSB1 110 RTN	
654 - 655 STOC		110 KIN 111 #LBLE	
855 STUC	df	112 RCL6	Compute t for two means.
	REGI	STERS	
0 1 2 n Used	3 4	$5 \qquad 6 \qquad 7 \qquad d$	8 9 df
n Used S0 S1 S2	Used n1 S3 S4	S5 S6 S7	58 59
A B Sn	C df	D E	P
D SD	<u> </u>		

Used	¹ Space	2	3	4	2			GRAD	SCI ENG n_2
a Print?	^b x _k †γ _k (Σ-)	c	^d x _k , γ _k (Σ-)	e d	1	-		DEG 🕱	FIX IX
A Start	^θ x _i †y _i (Σ+)	C →t,	D x _i , y _i (Σ+)	E →t;df	-	rint	FLAGS	TRIG	DISP
	VL PL I	5	Space.			FLAGS	1	L SET STATUS	
167 1 58	RTN #LBL1								
166	PRTX								
165	F0?								
163 164	x2y #LBLØ								
162	ESB9								
161	FU? SPC								
159 168	X27 ' F0?	['	This contents of A an						
158	#LBL9		Print contents of X an						
157	RTN								
155 156	PRTX SPC								
154	RCL8		ff						
153	R/S	t							
151	PRTX								
150 151	SPC								
149	XZY							1	
148	-							1	
147	RCL 7								
145 146	-								
144	RCL 1 ÷								
143	RCL2								
142	÷								
140 141	RCL4							1	
139	x RCL5	1							
138	1X								
137	+								
135 136	RCL4 1/X							1	
134	1/X								
133	RCL 1								
132	٢X							1	
130	\$10 8							1	
129 138	STOR								
129	2								
127	+								
125	RCL 4								
124 125	RCL 1			1				1	
123	÷							1	
122	RCL 1								
121	X2	1						1	
119 120	RCL2								
118	RCL3								
117	-			1					
116	#UL4 +				-				
115	X= RCL4				171	RTN			
114					170	SPC			

t Distribution

ET T

m

5

ω.

bi.

6.7

£.3

