HP67HP97

Business Decisions Pac

The program material contained herein is supplied without representation or warranty of any kind. Hewlett-Packard Company therefore assumes no responsibility and shall have no liability, consequential or otherwise, of any kind arising from the use of this program material or any part thereof.

Introduction

The 22 programs of the Business Decisions Pac have been selected from the areas of investment analysis, real estate, banking, leasing, securities, and statistics, areas which require rapid and accurate analysis of data. Programs for the most frequently occurring business decisions are included in the pac.

Each program in this pac is represented by one magnetic card. The manual provides a description of the program, a set of instructions for using the program, and one or more examples, each of which includes a list of the actual keystrokes required for its solution. Program listings for all of the programs in the pac appear at the back of this manual. Explanatory comments have been incorporated in the listings to facilitate your understanding of the actual working of each program. Thorough study of a commented listing can help you to expand your programming repertoire since interesting techniques can often be found in this way.

On the face of each magnetic card are various mnemonic symbols which provide shorthand instructions for the use of the program. You should first familiarize yourself with a program by running the examples in the manual. Thereafter, the mnemonics on the cards themselves should provide the necessary instructions, including what variables are to be input, which user-definable keys are to be pressed, and what values will be output. A full explanation of the mnemonic symbols for magnetic cards may be found in appendix A.

If you have already worked through a few programs in the Standard Pac, you will understand how to load a program and how to interpret the User Instructions form. If these procedures are not clear to you, take a few minutes to review the sections, Loading a Program and Format of User Instructions, in your Standard Pac.

We hope that the Business Decisions Pac will be of assistance in the solution of your problems. We would very much appreciate knowing your reactions to the programs in the pac, and to this end we have provided a questionnaire inside the front cover of this manual. Would you please take a few minutes to give us your comments on these programs? It is in the comments we receive from you that we learn how best to increase the usefulness of programs like these.

Applications Table	Real Estate	Banking	Leasing	Investments	Securities	Insurance	Forecasting & Planning	Consumer Finance	Industrial Production	Accounting
Internal Rate of Return	X		х	X					x	х
Internal Rate of Return-Groups	X		x	x					x	x
Discounted Cash Flow Analysis	X		x	x					x	х
Direct Reduction Loans/Sinking Fund	X	х		х		X		x		
Accumulated Interest/ Remaining Balance	X	x						x		
Wrap-Around Mortgage	Х									
Constant Payment to Principal Loan	x	x								
Add-on Rate Loan/ Rule of 78's	X	x						x		
Savings Plan—Leases		X	X	X		X		Х		
Advance Payments			X							
Savings-Compounding Different from Payments		x				x		х		
Simple Interest/ Interest Conversions	X	x						x		
Depreciation Schedules	X		X					X	X	Х
Days Between Dates		Х		X	X			Х	X	
Bond Price & Yield				Х	X			Х		
Interest at Maturity/ Discounted Securities					x					
Linear Regression/ Exponential Curve Fit					x		x		x	
Multiple Linear Regression					x		x		x	
Break-Even Analysis							X		х	
Invoicing										Х
Payroll										Х
Inventory									X	

Table of Contents

Intro	oduction
App	lications Table
Con	tents
A W	ord About Program Usage
Pr	ogram Page
1.	Internal Rate of Return 01-01
	Yield of a sequence of uneven cash flows.
2.	Internal Rate of Return—Groups of Cash Flows
	Yield of groups of uneven cash flows.
3.	Discounted Cash Flow Analysis—Net Present Value 03-01
	Finds the net present value of future cash flows.
4.	Direct Reduction Loans—Sinking Fund
	Solves problems when payments are made at the end of
	the compounding periods (ordinary annuity).
5.	Accumulated Interest/Remaining Balance 05-01
	Calculates accumulated interest and remaining balance.
	and generates an amortization schedule(s).
6.	Wrap-Around Mortgage
7	Calculates yield of wrap-around mortgage.
7.	Constant Payment to Principal Loan
0	Generates schedule for constant payment to principal loan.
8.	Add-on Rate Installment Loan/Rule of 78's
9.	Calculations involving add-on loans and loans using the rule of 78's.
7.	Savings Plan—Leases
	Solves problems involving payments at the beginning of the compounding periods (annuity due), and compounded amounts.
10.	Advance Payments
	Payment and yield calculations when additional
	payments are made in advance.
11.	Savings—Compounding Periods Different from
	Payment Periods
	Calculations when deposits and compounding periods differ.
12.	Simple Interest/Interest Conversions 12-01
	Simple interest calculations and nominal to effective interest
10	rate conversions.
13.	Depreciation Schedules
	Straight line, SOYD, declining balance, and crossover between
14.	straight line and declining balance. Days Between Dates
17.	Calendar routine.
15.	Bond Price and Yield
	Calculates price and yield of semiannual coupon bonds.
16.	Interest at Maturity/Discounted Securities
	Price or yield of interest at maturity or discounted securities.

Prog	gram	Page
17.	Linear Regression—Exponential Curve Fit	
18.	Fits a set of data points x, y, z to a straight line. Also determines goodness of fit.	
19.	Break-even Analysis	19-01
20.	Invoicing	20-01
21.	Guide for writing a payroll program.	
22.	Inventory	22-01
Prog	ram Listings	. L00
	Appendices	
	Magnetic Card Symbols and Conventions	

A WORD ABOUT PROGRAM USAGE

This application pac has been designed for both the HP-97 Programmable Printing Calculator and the HP-67 Programmable Pocket Calculator. The most significant difference between the HP-67 and the HP-97 calculators is the printing capability of the HP-97. The two calculators also differ in a few minor ways. The purpose of this section is to discuss the ways that the programs in this pac are affected by the differences in the two machines, and to suggest how you can make optimal use of your machine, be it an HP-67 or an HP-97.

Some of the computed results in this pac are output by PRINTx statements. On the HP-97, these results will be output on the printer. On the HP-67, each PRINT command will be interpreted as a PAUSE: the program will halt, display the result for about five seconds, then continue execution. The term "PRINT/PAUSE" is used to describe this output condition.

If you own an HP-67, you may want more time to copy down the number displayed by a PRINT/PAUSE. All you need to do is press down any key on the keyboard. If the command being executed is PRINTx (four rapid blinks of the decimal point), pressing down a key will cause the program to halt. Execution of the halted program may be re-initiated by pressing R/S.

A "display" subroutine has been incorporated into some of the programs in this pac. The function of this routine is to test flag 0 and display the result with a PRINT/PAUSE if the flag is set or by halting execution if the flag is not set. When this option is available, the user may set and clear flag 0 by pressing . Successive use of ! E will alternately display 1.00 and 0.00, indicating that the print mode is on or off respectively.

The HP-97 users may also want to keep a permanent record of the values input to a certain program. A convenient way to do this is to set the Print Mode switch to NORMAL before running the program. In this mode, all input values and their corresponding user-definable keys will be listed on the printer, thus providing a record of the entire operation of the program.

Another area that could reflect differences between the HP-67 and the HP-97 is in the keystroke solutions to example problems. It is sometimes necessary in these solutions to include operations that involve prefix keys, namely, f on the HP-97 and f, g, and h on the HP-67. For example, the operation is a primary key on the HP-97, and is performed on the HP-67 as f. In such cases, the keystroke solution omits the prefix key and indicates only the operation (as here, 2). As you work through the example problems, take care to press the appropriate prefix keys (if any) for your calculator.

INTERNAL RATE OF RETURN

Figure 1

Note:

The above diagram is representative of diagrams which will be used in this pac. The horizontal line represents the time period(s) involved, while the arrows represent the cash flows.

The interest rate that equates the present value of all future cash flows with the original investment is known as the internal rate of return (IRR, also called discounted rate of return or yield). Given a non-zero initial investment and up to 44 **positive** cash flows, this program calculates the periodic IRR. If there are negative as well as positive cash flows, the program accepts up to 22 cash flows.

If more than 44 positive cash flows are entered, all cash flows over 44 will be ignored. There will be no indication, however, that more than 44 cash flows have been entered. Likewise, if more than 22 positive and negative cash flows are entered, erroneous results will occur.

Zero should be entered for periods with no cash flow.

When more than 22 cash flows are involved (all of which must be positive), the user is asked to enter the largest cash flow in step 3 because of the storage techniques being used. This value is then used to scale all other cash flows, and depending on these values, accuracy may be reduced. Consequently, the resulting periodic rate of return should be considered accurate to within $\pm .01\%$ (.0001 decimal). This largest cash flow must be entered again in sequence in step 4. If a cash flow larger than the value entered for CF MAX is keyed in at step 4, erroneous results may occur.

The answer produced is the periodic rate of return. If the cash flow periods are

other than annual (monthly, quarterly) the answer should be multiplied by the number of periods per year to determine the annual internal rate of return.

In many instances another program may be more suitable for calculating IRR. If all cash flows are equal and equally spaced, or if all cash flows except the last are equal and equally spaced, DIRECT REDUCTION LOANS (BD-04) is a better choice. If the cash flows occur in groups of uneven amounts, IRR-GROUPS (BD-02) may be more suitable.

This program was designed for optimum operation when the interest rate being solved for is between 0 and 100%. The program will often solve for interest rates outside this range, but occasionally may halt prematurely with ERROR in the display. This is an error condition generated by an intermediate calculation, and indicates that the program cannot solve that particular problem.

The calculated answer may be verified by using DISCOUNTED CASH FLOW ANALYSIS—NET PRESENT VALUE (BD-03), to calculate the net present value. The NPV should be close to 0.

Note:

When the sign of the cash flows is reversed more than once, more than one interest rate is considered correct in the mathematical sense. While this program may find one of the answers, it has no way of finding or indicating other possibilities.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Input initial investment.	INV	A	INV
3	If there are > 22 cash flows, key			
	in the largest cash flow.	CF MAX	B	CF MAX
4	Beginning with the first period,			
	key in all cash flows in sequence,			
	pressing after each value.	CF	G	# of CFs
5	Calculate the periodic internal			
	rate of return	· · · · · · · · · · · · · · · · · · ·	D	IRR (%)

Example 1:

Income property requiring a \$250,000 equity investment and to be sold in ten years is expected to generate the "after tax" cash flows shown below. What is the expected yield or IRR?

End of Year	Cash Flow	End of Year	Cash Flow
1	\$46,423	6	\$ 23,199
2	40,710	7	21,612
3	36,638	8	20,037
4	34,097	9	18,460
5	32,485	10	311,406 (property
			sold)

Example 2:

Property requiring a \$30,000 investment will be sold at the end of 2 years. If the investment results in the monthly net cash flows shown below, what is the IRR?

End of Month	Cash Flow	End of Month	Cash Flo	w
1	\$ 16	13	\$ 201	
2	50	14	195	
3	175	15	178	
4	181	16	197	
5	143	17	210	
6	147	18	220	
7	151	19	206	
8	176	20	194	
9	184	21	187	
10	193	22	190	
11	157	23	201	
12	190	24	35,000	(property sold)

Keystrokes:	Outputs:
30000 A 35000 B	
16 C 50 C 175 C 181 C	
143 C 147 C 151 C 176 C	
184 C 193 C 157 C 190 C →	12.00 (12 cash flows input)
201 C 195 C 178 C 197 C	
210 C 220 C 206 C 194 C	
187 C 190 C 201 C 35000 C →	24.00 (all cash flows input)
D	1.15 (monthly IRR)
12 ×	13.79 (an annual IRR of 13.79%)

Figure 2

This program solves for the internal rate of return (IRR) when groups of uneven cash flows are involved. Given a non-zero initial investment (INV), the cash flows (CF) and the corresponding number of times each cash flow occurs (#), the periodic IRR is calculated.

Up to 20 groups of positive or negative cash flows, with each group containing a maximum of 99 cash flows, may be entered. If more than 20 groups are input, erroneous results will occur.

Zero should be entered for periods with no cash flow.

The program works with even dollar amounts. When dollars and cents are involved, the cents will be lost.

If a cash flow (other than the investment) exists with more than 8 digits (i.e., more than \$99999999.00) the user is asked to enter this value in step 3 because of the storage techniques being used. The value is then used to scale all other cash flows, and depending on these values, accuracy may be reduced. This large cash flow must be entered again in sequence in step 4.

The answer produced is the *periodic rate of return*. If the cash flow periods are other than annual (monthly, quarterly) the answer should be multiplied by the number of periods per year to determine the annual internal rate of return.

The calculator must be in FIX mode, as the program is dependent upon the display setting. To obtain 4 decimals of accuracy, the program card was recorded in FIX 4 mode. More or less accuracy may be obtained by changing the display setting from DSP 4 to DSP 5, DSP 6, DSP 2, etc. However, time for solution increases as accuracy is improved.

If the user wishes to re-calculate the IRR without changing the data in any manner, simply input the number of groups and press . This feature is useful if the calculator is halted prematurely, as it is not necessary to re-enter all of the data.

This program was designed for optimum operation when the interest rate being solved for is between 0 and 100%. The program will often solve for interest rates outside this range, but occasionally may halt prematurely with ERROR in the display. This is an error condition generated by an intermediate calculation, and indicates that the program cannot solve that particular problem.

The calculated answer may be verified by using DISCOUNTED CASH FLOW ANALYSIS—NET PRESENT VALUE (BD-03), to calculate the net present value. The NPV should be close to 0.

Note:

When the sign of the cash flows is reversed more than once, more than one interest rate is considered correct in the mathematical sense. While this program may find one of the answers, it has no way of finding or indicating other possibilities.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Input initial investment.	INV	A	INV
3	If one cash flow has more than			
	8 digits, key it in.	LRG CF	B	LRG CF/10k*
4	Beginning with the first period,			
	key in each cash flow and the			
	number of times it occurs,			
	pressing c after each group.	CF	ENTER+	
		#	C	# of groups
5	Calculate the periodic internal			
	rate of return.		0	IRR (%)
6	To recalculate the IRR, enter			
	the number of groups.	# of groups	00	IRR (%)
	* k = 1 (LRG CF has 9 digits)			
	k = 2 (LRG CF has 10 digits)			

An income property is available for \$50,000. The annual income over a 23-year projection period (all payments received at the end of the year) may be grouped as follows:

Number of Years	Cash Flow (\$)
First 5 Years	9,000
Next 4 Years	7,500
Next 4 Years	6,000
Next 3 Years	7,500
Last 7 Years	5,000

If the investor wishes a 15% return, does the property meet his objectives?

Keystrokes:	Outputs:
50000 A	
9000 ENTER • 5 C	
7500 ENTER 4 C	
6000 ENTER 4 C	
7500 ENTER 3 C	
5000 ENTER ↑ 7 C	5.0000 (5 groups of cash flows entered)
D	15.2681 (annual IRR of 15.2681%)

Since the IRR is more than 15%, the property meets the investor's objectives.

Example 2:

An investment of \$620,000,000 is expected to have the following annual income stream for the next 15 years.

Number of Years	Cash Flow (\$)
First 10 Years	100,000,000
Next 5 Years	5,000,000

What is the expected rate of return?

Keystrokes:	Outputs:	
620000000 A 100000000	₿	
100000000 ENTER+ 10 C		
5000000 ENTER+ 5 C D	→ 10.0649	(annual IRR of
		10.0649%)

DISCOUNTED CASH FLOW ANALYSIS NET PRESENT VALUE

Assuming a minimum desired yield (cost of capital, discount rate), this program finds the present value of the future cash flows generated by the investment and subtracts the initial investment from this amount. If the final net present value is a positive value, the investment exceeds the profit objectives assumed. If the final net present value is a negative value, then the investment is not profitable to the extent of the desired yield. If the net present value is zero, the investment meets the profit objectives.

The function associated with the key (#) is designed to accommodate those situations where a series of the cash flows are equal. You enter the number of times these equal periodic cash flows occur with and then the amount only once with . The program automatically assumes 1 for #. If the cash flow occurs only once, there is no need to enter anything for #.

Zero must be entered for all periods with no cash flow. When a cash flow other than the initial investment is an outlay (additional investment, loss, etc.) the value must be entered as a negative number with CHS.

Cash flows are assumed to occur at the end of cash flow periods.

This program can also be used to find the present value of a series of irregular cash flows that cannot be accommodated by the DIRECT REDUCTION LOANS program by simply entering zero as the initial investment.

An option is provided to print the initial investment and the NPV after each cash flow. Pressing sets and clears the print flag. Successive use of will alternately display 1.00 and 0.00, indicating that the print mode is on or off respectively.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1.			
2	Optional: Select			
	print/pause mode.		00	1.00 or 0.00
3	Key in			
	Initial investment amount	INV	A	INV
	Periodic interest (discount) rate	i (%)	B	i (%)

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
4	Key in the number of equal			
	cash flows if greater than 1.	#	C	#
5	Key in cash flow amount(s) and			
	calculate net present value.	CF	D	NPV
6	Optional: Display total number			
	of cash flows entered so far.		E	n
7	For next cash flow(s) go to			
	step 4.			
8	For a new case go to step 2.			

An investor has an opportunity to purchase a piece of property for \$70,000. If the going rate of return on this type of investment is 13.75%, and the after-tax cash flows are forecast as follows, should the investor purchase the property?

Year	Cash Flow	(\$)
1	\$14,000	
2	11,000	
3	10,000	
4	10,000	
5	10,000	
6	9,100	
7	9,000	
8	9,000	
9	4,500	
10	71,000	(property sold in 10th year)

Neystrokes:	Outputs:	
70000 A 13.75 B		
14000 🖸 ————	-57692.31	(NPV after 1 cash
		flow)
11000 🖸 —————————————————————————————————	-49190.92	(NPV after 2 cash
		flows)
3 C 10000 D ————	-31172.57	(NPV after 5 cash
		flows)
9100 D ————	-26971.76	(NPV after 6 cash
		flows)
2 C 9000 D	-20108.39	(NPV after 8 cash
		flows)

Since the final NPV is positive, the investment meets the profit objectives.

Example 2:

The Cooper Company needs a new photocopier and is considering leasing the equipment as an alternative to buying. The end-of-the-year net cash cost of each option is:

Net Cash Cost
\$ 533
948
1,375
1,815
2,270
\$6,941

Net Cash Cost
\$1,310
1,310
1,310
1,310
1,310
\$6,550

Looking at total cost, leasing appears to be less. But, purchasing costs less the first two years. Mr. Cooper knows that he can make a 15% return on every dollar he puts in the business; the sooner he can reinvest money, the sooner he earns 15%. Therefore, he decides to consider the **timing of the costs**, discounting the cash flows at 15% to find the present value of the alternatives. Which option should he choose?

Keystokes:	Outputs:
PURCHASE	
0 A 15 B 533 D 948 D	
1375 □ 1815 □ 2270 □ ———	4250.71

LEASE 0 A 5 C 1310 D 4391.32

Leasing has a present value cost of \$4391.32, while purchasing has a present value cost of \$4250.71. Since these are both expense items, the lowest present value is the most desirable. So, in this case, purchase is the least costly alternative.

DIRECT REDUCTION LOANS SINKING FUND

Figure 3

This program may be used to solve problems when payments are made at the end of the compounding periods (ordinary annuity). Direct reduction loans and mortgages are typical examples.

The following variables may be inputs or outputs:

- n is the number of compounding periods. (For a 30 year loan with monthly payments $n = 12 \times 30 = 360$.)
- i is the periodic interest rate expressed as a percent. (For other than annual compounding, divide the annual percentage rate by the number of compounding periods in a year, i.e., 8% annual interest compounded monthly equals 8/12 or 0.667%.)
- PMT is the periodic payment amount.
- PV is the present value of the cash flows.
- FV is the future value of a series of cash flows.
- BAL is the balloon payment or remaining balance at the end of a series of payments.

In this program, A is used to input/calculate n, B to input/calculate i, C to input/calculate PMT, D to input/calculate PV, and E to input/calculate FV(BAL). After all inputs have been entered, it is possible to calculate the unknown value by pressing the appropriate user definable key.

When the START function (A) is executed, it sets PMT, PV, and BAL to zero (n and i are not affected). START provides a safe, convenient, easy to remember method of preparing the calculator for a new problem. It is not

necessary to use START between problems containing the same combination of variables. For instance, any number of n, i, PMT, PV problems involving different numbers and/or different combinations of known values could be done in succession without using START. Only the values which change from problem to problem would have to be keyed in. To change the combination of variables without using START, simply input zero for any variable which is no longer applicable. To go from n, i, PMT, PV problems to n, i, PMT, FV problems a zero would be input (0) for PV.

START should always be used immediately after loading DIRECT REDUCTION LOANS/SINKING FUND.

Iterative interest solutions are accurate to the number of significant figures of the display setting. It is possible to obtain more significant figures by changing the display setting from DSP 2 to DSP 3, DSP 4, DSP 5, etc. before calculating. However, time for solution increases as accuracy is improved.

Problems with negative balloon payments may have more than one mathematically correct answer (or no answer at all). While this program may find one of the answers, it has no way of finding or indicating other possibilities.

The values for n, i, PMT, PV, and FV(BAL) are stored in registers A—E respectively. They may be displayed by recalling the appropriate register.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Initialize (START)		f A	0.00
3	Input the known values:			
	Number of periods	n	A	n
	Periodic interest rate	i (%)	В	i (%)
	Periodic payment	PMT	G	PMT
	Present value	PV	0	PV
	Future value, balloon			
	payment, or balance	FV(BAL)	•	FV(BAL)
4	Calculate the unknown value:			*
	Number of periods		A	n
	Periodic interest rate		B	i (%)
	 Periodic payment 		C	PMT
	Present value		D	PV
	• Future value, balloon			
	payment, or balance		E	FV(BAL)

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
5	For a new case, go to step 3			
	and change appropriate values.			
6	For a new type of problem, go			
	to step 2.			

A borrower can afford a \$368.21 monthly principal and interest payment on a 30 year, 94% mortgage. What is the largest such mortgage he can obtain?

Keystrokes:	Outputs
368.21	360.00 (total monthly periods
30 ENTER 12 × A — →	in mortgage life)
9.25 ENTER • 12 → B	0.77 (monthly interest rate)
D	44757.63 (mortgage amount)

Example 2:

A 30 year, \$50,000 mortgage has monthly payments of \$320, including principal and interest. What is the annual percentage rate?

Keystrokes:		Outputs:
1 A 30 ENTER• 12 × A		
50000 D 320 C B		0.55 (monthly percentage
12 ×	→	rate) 6.62 (annual percentage

Example 3:

An investor wishes to purchase a mortgage with a balloon payment to yield him 14% per annum. What maximum price can he pay if there are 60 monthly payments of \$250 and a \$10,000 balloon at the end of year 5? If he purchases the mortgage for \$14,500, what annual yield is he achieving?

Keystrokes:	Outputs:	
f A 14 ENTER 12 ÷ B		
60 A 250 C 10000 E	15730.27	(maximum price to pay to yield 14%)
14500 D B		(monthly percent yield) (annual % yield at \$14,500 price)
Example 4:		
You have an opportunity to purchase a 6 years (monthly payments). What she achieve a 13% yield?		
Keystrokes:	Outputs:	
f A 10000 D 8 ENTER• 12 ÷ B		
6 ENTER 12 × A C	175.33	(monthly payment)
Now determine the purchase price of	the note.	
13 ENTER• 12 🖶 B	8734.26	(purchase price)
Example 5:		
A borrower is charged 2 points for the imortgage amount is \$60,000 for 30 yea with monthly payments, what annual paying? (1 point is equal to 1% of the	rs, and the inte percentage rat	rest rate is 8¾% per year, e (APR) is the borrower
Keystrokes:	Outputs:	
First calculate the periodic payment as	mount.	
1 A 60000 D 30 ENTER 12 X A 8.75 ENTER 12 T D	472.02	(months of a
8.75 ENTER• 12 🖶 B C Now calculate the mortgage amount le		(monthly payment)
RCL D 2 % - D		(effective amount borrowed)
To obtain the annual percentage rate,	press:	
B 12 ▼	8.97	(% APR)

3

3

]

3

]

]

]

]

]

]

]

Example 6:

You are setting up a travel fund for a trip to Australia. If you start in a month, depositing \$150 per month in a 5½% account, compounded monthly, how long will it take from today to accumulate \$2500 for the trip?

 Keystrokes:
 Outputs:

 ↑ A 150 C
 5.5 ENTER 12 → B

 2500 E A
 16.10 (months)

Example 7:

A corporation has determined that a certain piece of equipment costing \$50,000 will be required in 3 years. Assuming a fund paying 7% compounded quarterly is available, what quarterly payment amount must be placed in the fund in order to cover this cost if savings are to start at the end of this quarter?

 Keystrokes:
 Outputs:

 ↑ A 50000 € 3 ENTER•

 4 × A7 ENTER•

 4 ♣ B €
 3780.69 (quarterly payment)

ACCUMULATED INTEREST/REMAINING BALANCE

Figure 4

This program finds both the total interest paid over a specified number of payment periods and the remaining balance at the end of the last specified period, given the periodic interest rate, periodic payment amount, loan amount, and the beginning and ending payment numbers for the time span being considered. The payments associated with both the beginning (J) and the ending (K) payment period are included in the calculation.

The program can be used for loans with a balloon payment as well as loans arranged to be fully amortized provided two cautions are observed. First, the balloon payment of the loan must be at the same time as, and in addition to the last payment. Second, care should be taken not to enter a value for K that is after the last payment since the program has no way of knowing the term of the loan.

An option is available to output the amortization schedule between payments J and K (f A).

The data generated is valid for loans that have a balloon payment, as well as those that are arranged to be fully amortized. For loans with a balloon payment, the remaining balance of the last payment period is the balloon payment due in addition to the last periodic payment.

For loans scheduled to be fully amortized, the remaining balance after the last payment period may be slightly more or less than zero. This is because the program assumes that **all** payments are equal to the value entered for PMT. In fact for most loans, the last payment is slightly more or less than the rest.

The calculator performs all internal calculations to ten digits. If the user wishes to round the schedule to dollars and cents, the following sequence may be used:

- 1. Press GTO .113
- 2. Switch to PRGM mode.
- 3. Press RND
- 4. Switch back to RUN mode.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Optional: Select print/pause			
	mode for amortization			
	schedule.		08	1.00 or 0.00
3	Key in			
	Starting period number	J	A	J
	Ending period number	К	A	к
	Periodic interest rate	i (%)	В	i (%)
	Periodic payment amount	PMT	0	PMT
	Initial loan amount	PV	D	PV
4	Compute the total interest paid			
	between periods J and K			
	inclusive, and the remaining			
	balance at the end of period K.		8	INT
			R/S	BAL
	OR			
5	Generate the amortization			
	schedule between payments J			
	and K inclusive. If the			
	print/pause mode is on (1.00),			
	the results are printed			
	automatically.		(A	J

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
6	Calculate amount paid to			
	interest for period J.		R/S	PMT to INT
7	Calculate amount paid to			
	principal for period J.		R/S	PMT to PRIN
8	Calculate remaining balance at			
	the end of period J.		R/S	BAL
9	Calculate total interest paid			
	between periods J thru K		**	
	inclusive.		R/S	TOT INT
10	Increment J for next period.		R/S	J + 1
	If $J \leq K$, go to step 6 for next			
	period's values. Otherwise,			
	stop.			
11	For a new case, go to step 2 and			· · · · · · · · · · · · · · · · · · ·
	change appropriate input			
	values.			

A mortgage is arranged such that the first payment is made at the end of October, 1975 (i.e., October is payment period 1). It is a \$20,000 loan at 9%, with monthly payments of \$167.84. What is the accumulated interest for 1975 (periods 1-3) and 1976 (periods 4-15) and what would the remaining balance be at the end of each year?

Example 2:

Generate an amortization schedule for the first two payments of a \$30,000, 7% mortgage having monthly payments of \$200. Then jump ahead and generate the data for the 36th payment.

Outputs: Kevstrokes: 1 A 2 A 7 ENTER 12 - B 200 C 30000 D 1 A ----1.00 (starting 1st period) 175.00 (payment to interest) R/S 25.00 (payment to principal) R/S 29975.00 (remaining balance) R/S -175.00 (total interest to date) 2.00 (starting 2nd period) R/S 174.85 (payment to interest) R/S 25.15 (payment to principal) 29949.85 (remaining balance) 349.85 (total interest to date)

Keystrokes:

Outputs:

Now let's skip ahead to the 36th payment period.

WRAP-AROUND MORTGAGE

WRAP-AROU	ND MORTGAGE			
PV ₁ *PMT ₁ *n ₁	PV2+PMT2+n2	BAL	+Yield	7

A wrap-around mortgage is essentially the same as a refinancing mortgage, except that the new mortgage is a junior lien mortgage granted by a different lender, who assumes the payments on the existing mortgage, which remains in full force. The new (second) mortgage is thus "wrapped around" the existing mortgage. The "wrap-around" lender advances the net difference between the new (second) mortgage and the existing mortgage in cash to the borrower, and receives as net cash flow the difference between debt service on the new (second) mortgage and debt service on the existing mortgage.

This program calculates the periodic yield to the lender () of a wrap-around mortgage, with or without a balloon payment. A routine to solve for the periodic payment () necessary to amortize a mortgage is also available.

The value of each mortgage, as well as the periodic payments, life of each mortgage (number of periods remaining), and balloon payment on the wraparound mortgage (if it exists) must be entered to calculate the yield.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Key in the following information			
	from the original mortgage:			
	Remaining balance	PV ₁	ENTER+	PV ₁
	Periodic payment	PMT ₁	ENTER+	PMT ₁
	 Number of periods remaining 	n ₁	A	n ₁
3	Key in the following information			
	from the wrap-around			
	mortgage:			
	Total wrap-around amount	PV ₂	ENTER+	PV ₂
	Periodic payment on wrap-	****		
	around	PMT ₂	ENTER+	PMT ₂
	Number of periods in term of			
	wrap-around	n ₂	0	n ₂

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
4	Optional: If a balloon payment			
	exists on the wrap-around at			
	period n ₂ , key in the balloon			
	amount.	BAL	D	BAL
5	Calculate the periodic yield of			
	the wrap-around to the lender.		Ø	Yield (%)
6	Optional: If a payment amount			
	is not known, it may be calculat-			
	ed by keying in:			
	Total number of periods	n	C A	n
	Periodic interest rate	i (%)	0 B	i (%)
	Loan amount	PV	00	PV
7	Calculate periodic payment		00	PMT
	The payment is stored in R _c ,			
	and may be recalled at a later			
	time.		RCL C	PMT

A mortgage loan on an income property has a balance of \$200,000. The loan has a remaining life of 12 years, and a monthly payment of \$2030.21 A lender has agreed to "wrap" a \$300,000 second mortgage at 9.5%, with full amortization in level monthly payments over 12 years. What is the effective yield (IRR) to the lender on net cash advanced?

Since the payment on the wrap-around is not given, it must be calculated, and is automatically stored in Register C.

```
144 f A 9.5 ENTER 12 f B
300000 f D f C 3499.12 (payment of second or wrapped mortgage)
```

Now calculate the yield.

300000 RCL C 144 C E 12
→ 14.50 (% effective yield)

06-03

Note:

Recalling a number causes the stack to lift unless the proceding keystroke was **ENTER+**, **CLX**, or **E+**. See Appendix D in your Owner's Handbook.

Example 2:

A customer has an existing mortgage with a balance of \$125,000, a remaining term of 200 months, and a \$1051.61 monthly payment. He wishes to obtain a \$200,000, 9½% wrap-around with 240 monthly payments of \$1681.71 and a balloon payment at the end of the 240th month of \$129963.35. If you accept the proposal, what is your rate of return?

Keystrokes: Outputs: 125000 ENTER 1051.61 ENTER

200 A

200000 ENTER+1681.71 ENTER+

240 C

129963.35 **D E** 12 **X** — 11.84 (% rate of return)

CONSTANT PAYMENT TO PRINCIPAL LOAN AMORTIZATION SCHEDULE

This type of loan is structured such that the principal is repaid in equal installments with the interest paid in addition. Therefore, each periodic payment is different; it has a constant amount applied to the principal and a decreasing amount to the interest.

The first part of the program displays the payment number and calculates the payment to interest, total payment, remaining balance, and total interest. The constant payment to principal required as input data (CPMT) can be found by simply dividing the loan amount by the total number of payment periods. The schedule may be started at any desired payment period; that is, the value entered for K need not be 1.

The second part of the program calculates the accumulated interest between any two payments J and K. The necessary inputs are the periodic interest rate, constant payment, initial loan amount, and the numbers of the starting and ending payments in the time frame.

A print option is available () to automatically print the entire amortization schedule, or the accumulated interest. Successive use of will alternately display 1.00 and 0.00 indicating that the print mode is on or off respectively.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1.			
2	Optional: Select print/pause			
	mode		08	1.00 or 0.00
3	Key in:			1970A
	• First period of the desired			
	schedule (need not be 1)	К	Α	К
	Periodic interest rate	i (%)	В	i (%)
	Constant payment to			
	principal	СРМТ	0	CPMT
	Initial loan amount (present)	****		174.80.
	value)	PV	D	PV

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
4	Generate the amortization			
	schedule for payments K			
	through term of loan. If the print			
	mode is on (1.00), the schedule			
	may be terminated prior to			
	completion by pressing R/S.		G	PMT to INT
			R/S	TOT PMT
			R/S	BAL
			R/S	TOT INT
			R/S	K + 1
			etc.	
	OR			
5	To find the accumulated interest			
	between any two points (J, K),			-
	key in:			
	Periodic interest rate	i (%)	В	i (%)
	Constant payment to			
	principal	СРМТ	C	CPMT
	Initial loan amount (present			
	value)	PV	D	PV
	Starting period number	J	ENTER+	J
	Ending period number	К	f A	ACC INT

A twenty year, 8% loan for \$100,000 is being amortized by annual payments to principal of \$5,000 plus interest on the remaining balance. Generate a 2-year amortization schedule for this loan.

Keystrokes:	Outputs:
1 ▲ 8 B 5000 C 100000 D E →	8000.00 (1st year's payment
	to interest)
R/S ———	13000.00 (total 1st payment)
R/S	95000.00 (remaining balance)

07-03

R/S		8000.00	(total interest paid to date)
R/S	•	2.00	(now starting 2 nd period)
R/S		7600.00	(2 nd year's payment to interest)
R/S		12600.00	(total 2 nd payment)
R/S		90000.00	(remaining balance)
R/S		15600.00	(total interest paid
			to date)

Example 2:

In the previous example, how much interest is accumulated during years 5 to 10 (inclusive)?

ADD-ON RATE INSTALLMENT LOAN/ **INTEREST REBATE—RULE OF 78's** ADD-ON/RULE OF 78'S +PMT:FC N+ODD AIR AMT PMT PMT PMT PMT PMT PMT PMT "Odd Davs" 2 3 4 n-2 n-1 **AMT**

Figure 5

This program calculates the monthly payment amount, total finance charge, and the Annual Percentage Rate (APR) for an add-on rate loan.

When a loan is initiated in the middle of a month, the first payment is generally not required until the end of the first full month. The number of days from the beginning of the loan to the beginning of the first month (see above diagram) are called "odd days" and affect (decrease) the APR to be quoted with the loan. The calculation of the APR considers these odd days.

Note:

The payment amount (PMT) must be calculated in order to calculate the APR.

The second part of this program calculates the unearned interest (rebate) as well as the remaining principal due for a prepaid consumer loan using the rule of 78's.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Key in:			
	Number of monthly pay-		_ ···	
	ments in loan	N	ENTER+	N
	"Odd-days" to beginning of			
	first month (0-30)	ODD	A	ODD
	Add-on interest rate (annual)			
	rate)	AIR (%)	B	AIR (%)
	◆ Loan amount	AMT	C	AMT
3	Calculate monthly payment.		0	PMT

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
4	Calculate total finance charge.		R/S	FC
5	Calculate the annual			
	percentage rate.		8	APR (%)
6	Key in all of the following:		-	
	Total number of monthly			
	payments in loan	N		N
	Number of the last payment			
	made	К	f B	К
	Monthly payment amount	PMT	00	PMT
	Total finance charge	FC	00	FC
7	Calculate the unearned			
	interest (rebate).		00	REB
8	Calculate the remaining			
	balance.		R/S	BAL

Keystrokes:

A 36 month car loan for \$3,500 with a 6% add-on rate is initiated such that there are 18 "odd days". Calculate the monthly payment required to amortize this loan, the total finance charge, and the annual percentage rate.

Example 2:

A \$1000 loan, with a total finance charge of \$180.00 is being paid at \$39.33 per month for 30 months. What is the unearned interest (rebate) and remaining balance after the 25th regular payment?

SAVINGS PLAN—LEASES

Figure 6

This program may be used to solve problems when payments are made at the beginning of the compounding periods (annuity due). The program also calculates all variables in compound interest situations. Savings plans and leasing problems are typical examples.

The following variables may be inputs or outputs:

- n is the number of compounding periods. (For a 30 year loan with monthly payments $n = 12 \times 30 = 360$.)
- i is the periodic interest rate expressed as a percent. (For other than annual compounding, divide the annual percentage rate by the number of compounding periods in a year, i.e., 8% annual interest compounded monthly equals 8/12 or 0.667%.)
- PMT is the periodic payment amount.
- PV is the present value of the cash flows or compounded amount.
- FV is the future value of a compounded amount or a series of cash flows.
- BAL is the balloon payment or remaining balance at the end of a series of payments.

In this program, A is used to input/calculate n, B to input/calculate i, C to input/calculate PMT, D to input/calculate PV, and E to input/calculate FV or BAL. After all inputs have been entered, the unknown value may be calculated by pressing the appropriate user definable key.

involving different numbers and/or different combinations of known values could be done in succession without using START. Only the values which change from problem to problem would have to be keyed in. To change the combination of variables without using START, simply input zero for any variable which is no longer applicable. To go from n, i, PMT, PV problems to n, i, PV, FV problems a zero would be stored (0) in place of PMT. START should always be used immediately after loading SAVINGS PLAN—LEASES.

Interative interest solutions are accurate to the number of significant figures of the display setting. It is possible to obtain more significant figures by changing the display setting from DSP 2 to DSP 3, DSP 4, DSP 5, etc. before calculating. However, time for solution increases as accuracy is improved.

Problems with negative balloon payments may have more than one mathematically correct answer (or no answer at all). While this program may find one of the answers, it has no way of finding or indicating other possibilities.

The values for n, i, PMT, PV, and FV(BAL) are stored in registers A—E respectively. They may be displayed by recalling the appropriate register.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2			
2	Initialize (START)		f A	0.00
3	Input the known values:			
	 Number of periods 	n	A	n
	Periodic interest rate	i (%)	B	i (%)
	Periodic payment	PMT	0	PMT
	Present value	PV	D	PV
	• Future value, balloon pay-			
	ment, or balance	FV(BAL)	0	FV(BAL)
4	Calculate the unknown value:			
	 Number of periods 		А	n
	Periodic interest rate		В	i (%)
	Periodic payment		©	PMT
	Present value		0	PV
	Future value, balloon pay-			
	ment, or balance		3	FV(BAL)

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
5	For a new case, go to step 3			
	and change appropriate values.			
6	For a new type of problem, go			
	to step 2.			

What annual interest rate must be obtained to amass \$10,000 in 8 years on an investment of \$6,000, with quarterly compounding?

Example 2:

The buyer of 3 acres of land can afford to pay \$375.00 per month toward interest and principal. If the asking price is \$35,000 and the seller wants 8% annual interest with payments in advance, how long will it take to pay off the mortgage?

Example 3:

An annuity of \$100 per month will begin in 2 years and continue for 3 years. What is its present value if the interest rate is 12%, compounded monthly?

Keystrokes: Outputs:

Calculate the present value of the annuity when it commences (2 years from now).

```
1 A 100 C
3 ENTER 12 ★ A
12 ENTER 12 → B D → 3040.86 (present value when annuity commences)
```

Now find the present value of the annuity today.

STO E 0 C 2 ENTER•

12 X A D _______ 2394.88 (present value today)

Example 4:

Today you begin annual withdrawals of \$2,500 from a \$40,000 fund earning 6% annual interest. How long will it be before the fund is reduced to \$25,000?

Keystrokes: Outputs:

1 A 6 B 2500 C 40000 D

25000 **E** A 26.19 (years to reach balance of \$25,000)

Example 5:

The Cooper Company needs a photocopier, and the one that best suits its needs costs \$10,000. If the copier is purchased, the company would need a 5-year loan, with monthly payments of \$220.00. Mr. Cooper may also elect leasing as an alternative way of financing. The leased photocopier would have 36 monthly payments (in advance) of \$250.00 with a 33% purchase option at the end of 36 months. Which alternative is the least costly?

Keystrokes: Outputs:

First find the annual interest rate of the lease option.

f A 36 A 250 C 10000 D

33 **%** E B 12 ★ 11.47 (% annual interest rate)

Now insert DIRECT REDUCTION LOANS/SINKING FUND (BD-04) and find the annual interest rate of the loan.

f A 5 ENTER 12 × A

220 € 10000 □ B 12 × — 11.51 (% annual interest rate)

Since the lease option has a lower annual interest rate, it is the least costly alternative.

ADVANCE PAYMENTS

Payments on loans are typically made at the end of the period (in arrears). However, there are situations where payments are made in advance (leasing is a good example). Sometimes these agreements call for extra payments to be made when the transaction is closed, before the payments would normally be due. Or, the transaction has advance payments and a residual value at the end of the normal term.

This program solves for the periodic payment amount necessary to achieve a desired yield when a number of payments are made in advance. And, given the periodic payment, the program finds the yield. Either amount may be calculated when a residual value exists.

The necessary inputs are the total number of periods in the loan (n), the number of payments made in advance (A), the loan amount (PV), and either the periodic payment amount (PMT) or the periodic yield (i). The residual value at the end of the nth period (RESID) is optional.

The value of A must be less than the value of n. If this condition is not met, the display flashes the illegal input. Pressing R/S halts the flashing, and the values of n and A must be re-entered.

When A=0 or 1, BD-04 or BD-09 could be used. A=0 implies an ordinary annuity calculation, while A=1 means an annuity due calculation.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Key in the following:			
	Number of periods in term			
	of loan	n	ENTER+	n
	Number of payments made			
	in advance	Α	A	Α
	Loan amount	PV	D	PV
3	Optional: Key in residual value			
	at end of nth period.	RESID	ß	RESID
4	Key in one of the following:			
	Periodic payment	PMT		PMT
	Periodic interest rate	i (%)		i (%)

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
5	Calculate the remaining			
	variable.		1 B	i (%)
				PMT
6	For a new case, go to 2 and			
	change the appropriate values.			

A lease has been written to run for 60 months. The leased equipment has a value of \$25,000 with a \$600 monthly payment. The lessee has agreed to make 3 payments in advance at the time of closing. What is the annual yield? (There is no residual value at the end of 60 months.)

Keystrokes:	Outputs:	
60 ENTER+ 3 A		
25000 D 600 f B 12 ×	17.33 (% annual yield)	

Example 2:

A copier worth \$22,000 is to be leased for 48 months. The lessee has agreed to make 4 payments in advance, with a purchase option at the end of 48 months enabling him to buy the copier for 30% of the purchase price. What monthly payment is necessary to yield the lessor 12% annually?

Payments into a savings plan may not occur with the same frequency as the compounding frequency offered. This program solves for the number of payments, the periodic payment amount, or future value.

The diagrams above depict two of the many combinations that may be encountered. Note that payments are assumed to occur at the beginning of the payment period (annuity due).

Another assumption of this program is that payments deposited for a partial compounding period will accrue simple interest for the remainder of the compounding period. Thus, a deposit at the beginning of the 2nd month of a quarter into a savings plan that compounds quarterly is assumed to accrue two months simple interest. This is often the case, but is not true for all institutions.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Key in the number of payment			
	periods per year.	Р	ENTER+	Р
3	Key in the number of com-			
	pounding periods per year.	С	A	P/C

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
4	Key in the periodic interest rate	i (%)	B	i (%)
	and two of the following:			
	Total number of payments	n	f A	n
	Periodic payment amount	PMT	00	PMT
	Final amount (future value)	FV	08	FV
5	Calculate the remaining value			
	Total number of payments		O A	n
	Periodic payment amount		00	PMT
	Final amount (future value)		08	FV
6	For a new case, go to step 2.			

Quarterly deposits of \$95 are to be made into a savings account paying 5% compounded monthly. What amount will be in that account after 7 years (i.e., 28 total payments)?

Keystrokes:	Outputs:
4 ENTER• 12 A	0.33
5 ENTER 12 → B	
7 ENTER+ 4 × f A	
95 (C (E ——————————————————————————————————	3203.59 (amount after 7 years)

Example 2:

Assuming the previous calculation has just been performed as shown, determine the future value if the quarterly payment amount were \$100 instead of \$95.

Keystrokes:	Outputs:	
	3372.20	(amount after 7 years)

Example 3:

Kovetrokoga

In 2 years, you will need \$4000. If a savings account will pay 5¼% compounded quarterly, what amount must you deposit each month to accumulate the desired amount?

Neystrokes:	Outputs:	
12 ENTER• 4 A	3.00	
5.25 ENTER 4 # B		
2 ENTER 12 × 7 A		
4000 [E [C]	157.78 (monthly deposit	
	necessary)	

SIMPLE INTEREST/INTEREST CONVERSIONS

This card actually contains three independent programs. The first part of the program (A—E keys) permits the user to solve for any variable of an accrued simple interest calculation. Given three of the four variables (number of days, annual interest rate, beginning amount, or accrued interest) the fourth is calculated. Accrued interest can be based on a 360 or 365 day year. In addition, the user may choose to add the calculated accrued interest to the initial principal to determine the final amount.

Three keys (A, B, B, C) address finite compounding, that is, quarterly compounding, monthly compounding, etc. Given the number of compounding periods in a year, and one of the rates (nominal or effective), the other rate can be calculated. If for example, you require the periodic interest rate for a calculation, given the effective rate, use this program to determine the annual nominal rate first. Dividing the annual nominal rate by the number of compounding periods in a year will give the required periodic interest rate.

The most common and straightforward definition of effective interest rate has been implemented (see Appendix B). Occasionally other definitions will be used and the results will not compare exactly with those calculated by these programs. For example, since the maximum annual nominal rate that savings institutions can offer is regulated by law, they may modify the process (also regulated) so that the effective rate is even higher (e.g., for daily compounding, the periodic rate may be divided by 360 and then compounding accomplished for 365 periods). It is important then, when attempting to match results, to understand the process employed.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Initialize.		R/S	0.00
	Simple Interest		,	
3	Key in three of the following:			
	Number of days	DAYS	A	DAYS
	Annual interest rate	RATE (%)	B	RATE (%)
	Beginning amount	B AMT	0	B AMT
	Accrued interest (360 day			
	year)	I 360	D	I 360
	OR			
	Accrued interest (365 day			
	year)	I 365	•	I 365
4	Calculate the remaining			
	variable			
	Number of days		A	DAYS
	Annual interest rate		В	RATE (%)
	Beginning amount		C	B AMT
	Accrued interest (360 day			
	year)		0	I 360
	 Final amount (optional) 		0	FIN AMT
	Accrued interest (365 day			
	year)		•	I 365
	● Final amount (optional)		•	FIN AMT
	Interest Conversions			
5	Go to either step 6 for finite			
	compounding or step 8 for			
	continuous compounding.			

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
6	Key in:			
	Number of compounding			
	periods/yr and one of the			
	following:	C/YR	n A	C/YR
	Annual nominal rate	NOM (%)	f B	NOM (%)
	Annual effective rate	EFF (%)	00	EFF (%)
7	Calculate the remaining rate			
	Annual nominal rate	****	Ø B	NOM (%)
	Annual effective rate		00	EFF (%)
	Go to step 6 for new data.			``
8	Key in one of the following:			
	Annual nominal rate	C NOM (%)	6 0	C NOM
	Annual effective rate (for	, , , , , , , , , , , , , , , , , , ,		, , , , , , , , , , , , , , , , , , ,
	continuous compounding).	C EFF (%)	O E	C EFF
9	Calculate the remaining rate			
	Annual nominal rate		00	C NOM (%)
	Annual effective rate (for			
	continuous compounding).		00	C EFF (%)
10	For continuous compounding			
	on a 365/360 day basis key in:			
	Annual nominal rate	C NOM (%)		
11	Calculate the continuous ef-			
	fective rate (365/360 basis).		GSB 8	C EFF (%)

Calculate the accrued interest and final amount (both 360 and 365 day basis) for a \$30,000, 8%, 90 day interest at maturity note.

Example 2:

What is the nominal rate if the effective annual rate is 13% compounded quarterly?

Example 3:

A bank offers a savings plan with a 5% annual nominal interest rate. What is the annual effective rate if compounding is continuous?

Example 4:

In the above example, what is the annual effective rate if compounding is continuous on a 365/360 basis?

DEPRECIATION SCHEDULES

Three methods of depreciation are commonly used: straight-line, sum-of-the-years'-digits, and declining balance. This program evaluates the depreciation schedules for these three methods, and calculates the crossover point between straight line and declining balance depreciation. For the schedules, the output is the annual depreciation amount (DEP), remaining depreciable amount (RDV), remaining book value (RBV), and the total depreciation to date (TOT DEP), as well as an increment for the next year's schedule.

An option is available to output the depreciation schedule beginning at a specified year. Pressing **[] E** sets and clears the print flag. Successive use of **[]** will alternately display 1.00 and 0.00, indicating that the print mode is on or off respectively.

Values for the last year of an asset with fractional years life (i.e., the 21st year's values for an asset with 20.5 years life) are calculated correctly. However, all other values represent a full year's depreciation. For this reason only integer values (whole number, 1.0, 2.0, 17.0 etc.) may be entered for YR (the key). The program makes no checks on this value and generates invalid results if other than whole numbers are entered.

Straight Line Depreciation

The annual depreciation allowance using this method is determined by dividing the cost or other basis of valuation (starting book value) less its estimated salvage value by its useful life expectancy. This program develops the starting book value (SBV), salvage value (SAL), life expectancy (LIFE), and first year of the schedule (YR). (The schedule may be started at any point in the useful life.)

Fractional years life must be entered as an integer plus a fraction. Thus a life of 12 years 3 months would be keyed in as 12.25 for LIFE.

Sum of the Years' Digits Depreciation

The sum-of-the-years' digits method is an accelerated form of depreciation, allowing more depreciation in the early years of an asset's life than allowed under the straight line method. This program generates the schedule output, given the starting book value (SBV), the salvage value (SAL), expected useful life in years (LIFE), and beginning year (YR) for the schedule. (The schedule may be started at any point in the useful life.)

Fractional years asset life must be entered as an integer plus a fraction. Thus a life of 12 years 3 months would be keyed in as 12.25 for LIFE.

Variable Rate Declining Balance Depreciation

The variable rate declining balance method is another form of accelerated depreciation; as such it provides for more depreciation in earlier years and decreasing depreciation in later years. The program generates the depreciation schedule given the starting book value (SBV), salvage value (SAL), useful life expectancy (LIFE), the declining rate factor (FACT), and the first year of the desired schedule (YR). The schedule may be started at any point in the useful life.

The "variable rate" is indicated as either a factor or percent with equal frequency in the business community. Thus, "1.5 declining balance factor" and "150% declining balance" have the same meaning. The number to be keyed in for FACT (**E**) in this program, should be in factor form, that is 1.25, 1.5, 2, and not 125, 150 or 200.

This method of depreciation is unique in that it may generate depreciation greater than the depreciable value for some assets, while it may not generate sufficient depreciation for others. The crossover calculation () is provided to assist in determining the best time to switch to straight line depreciation (tax laws permitting) so that an asset may be fully depreciated.

Fractional years life must be entered as an integer and a decimal. Thus, a life of 12 years 3 months would be keyed in as 12.25.

Crossover Point

As indicated in the description above, the declining balance method of depreciation may not fully depreciate an asset in the asset's lifetime. In these circumstances there is an optimum point in the useful life where a switch from the declining balance method to the straight line method should be made. This is the "crossover point", the first year in which the depreciation by the straight line method is greater than if depreciation were continued using declining balance method. (In accordance with Internal Revenue Service Publication 534, the straight line depreciation is determined by dividing the remaining depreciable value by the remaining useful life.)

Given the starting book value (SBV), salvage value (SAL), useful life expectancy (LIFE), and declining balance factor (FACT), this routine calculates the last year that the declining balance method should be used, and the remaining life and remaining book value after this "last year" so that a switch to straight line depreciation can be made. As in the previous routine, the factor (FACT) should be entered in factor form (1.25, 1.5, 2.0), not as a percent (125, 150, 200).

1. Use **f** o to determine the "crossover point" and associated values.

- 2. Use **1** C to generate a declining balance depreciation schedule for the early years up to and including the year indicated as being the "last year". Since the same input values are used, only a value for YR (**D**) need be keyed in before pressing **1** C.
- 3. Now use A to generate a straight line depreciation schedule for the remaining years. The remaining book value at the end of the last "declining balance year" is keyed in for starting book value (A), and the remaining life is keyed in for the asset's life (C). There is no need to enter the salvage value as it has been retained throughout this process.

For this portion of the depreciation schedule, the value for "total depreciation to date" will be in error by an amount equal to the amount depreciated during the declining balance calculations.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2			
2	Optional: Select print mode	The second secon	0 3	1.00 or 0.00
3	Key in all of the following:			
	 Starting book value 	SBV	STO A	SBV
	Salvage value	SAL	STO B	SAL
	◆ Life of the asset	LIFE	STO C	LIFE
4	For depreciation schedules,			
	key in:			
	Year for which depreciation		·	
	is to be calculated.	YR	STO D	YR
5	To calculate straight line			
	depreciation schedule		Ø A	YR
			R/S	DEP
			R/S	RDV
			R/S	RBV
			R/S	TOT DEP
			R/S	YR + 1
			etc.	
	For new case go to steps 3 and			
	4 and change appropriate			
	inputs.			

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
6	Calculate the SOYD schedule		0 B	YR
			R/S	DEP
			R/S	RDV
		· · · · · · · · · · · · · · · · · · ·	R/S	RBV
			R/S	TOT DEP
			R/S	YR + 1
			etc.	
	For new case go to steps 3 and			
	4 and change appropriate			
	inputs.			
7	Calculate the declining balance			
	schedule (the appropriate			
	factor must be entered).	FACT	STO E	FACT
			0 C	YR
		-1-11	R/S	DEP
			R/S	RDV
			R/S	RBV
			R/S	TOT DEP
			R/S	YR + 1
			etc.	
	For new case go to steps 3 and			
	4 and change appropriate			
	inputs.			
8	To find crossover point the			
	declining balance factor must			
	be stored.	FACT	STO E	FACT
9	Calculate last year to use de-			
	clining balance method.		00	LAST YEAR
10	Calculate remaining life.		R/S	REM LIFE
11	Calculate remaining book			
	value.		R/S	RBV

For a starting book value of \$375,000, a salvage value of \$30,000 and an expected life of 40 years, generate the 1st year's depreciation schedule using each of the common methods. Assume a declining balance factor of 1.5. Then jump ahead to the 15th year and generate the data for that year.

R/S	16829.27	(total depreciation to date)
Jump ahead to the 15th year.		
15 STO D & B		(15th year)
R/S	10939.02	(15th year's
R/S	12/727 00	depreciation)
R/S	136/3/.80	(remaining depreciable value)
R/S	166737 80	(remaining book
	100757.00	value)
R/S	208262.20	(total depreciation
		1st through 15th
		year)
Declining Balance		
1 STO D 1.5 STO E 7 C	1.00	(1st year)
R/S		(1st year's
		depreciation)
R/S	330937.50	(remaining depre-
R/S	260027 50	ciable value)
R/S	300937.30	(remaining book value)
R/S ————	14062.50	(total depreciation
		to date)
Keystrokes:	Outputs:	
Now jump to the 15th year.		
15 STO D f C	15.00	(15th year)
R/S —		(15th year's
		depreciation)
R/S	181369.51	(remaining depre-
R/S	211260 51	ciable value)
R/S	211369.51	(remaining book
		value)
R/S —	163630.49	(total depreciation
		1st through 15th
		year)

Example 2:

Having just performed the previous calculation, determine the crossover point and the associated remaining life and remaining book value. Generate the depreciation data for the declining balance "last year," and then switch to the straight line method to generate the depreciation data for the year following the declining balance "last year."

Keystrokes:	Outputs:	
1 D	18.00	(last year to use declining balance)
R/S	22.00	(asset's remaining life after 18 years)
R/S	188471.01	•
18 STO D f C — — — — —	18.00	(18 th year)
R/S		(18th year's depreciation)
		(remaining depreciable value)
R/S	188471.01	(remaining book value)
188471.01 STO A 22 STO C	186528.99	(total depreciation 1st through 18th year)
1 STO D 7 A	1.00	(1st year)
R/S		(19 th year's depreciation)
Note:		
Although 1 was keyed in for YR—the fir this is the 19 th year of the asset's life.	st year of str	aight line depreciation-

151267.78 (remaining depreciable value)

181267.78 (remaining book value)

DAYS BETWEEN DATES

This program calculates the number of days between two dates on an actual or 30/360 basis (30 day month, 360 day year). When the actual number of days is desired, the two dates must occur between January 1, 1901 and December 31, 2099. There is no limitation for the 30/360 basis.

The earlier date is keyed in for DT 1 (A), the later date is keyed in for DT 2 (B). The calculation is performed by pressing C for the actual number of days or by pressing D for the number of days on a 30/360 basis. Both input dates are retained, so that only a changed date must be keyed in for a new calculation.

The date format for input is MM.DDYYYY (March 3, 1976 is keyed in as 3.031976). The program does not check input data. Thus, if an improper format or an invalid date (i.e., February 30) is keyed in, erroneous answers will result.

An important feature of this program is that it is designed to be used in conjunction with BOND PRICE AND YIELD (BD-15). When the settlement date is entered for DT 1 and the redemption date (maturity date, call date, etc.) is entered for DT 2, pressing **©** or **D** also causes the number of remaining semiannual coupon periods to be stored for use by the bond program. The number of semiannual coupon periods on an actual day basis is determined by subtracting the number of leap days (February 29 of a leap year) from the actual number of days (the displayed value) and dividing this by 182.5 (days per semiannual period). On a 30/360 basis the number of semiannual coupon periods is found by dividing the number of days (displayed value) by 180 days per semiannual period).

In addition, the settlement date is retained throughout the bond calculations. Therefore, on return to this program, it is only necessary to key in a new DT 1 if the settlement date is different.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Key in the following:			
	● Earliest date (DT 1)	MM.DDYYYY	А	DT 1
	Latest date (DT 2)	MM.DDYYYY	В	DT 2
3	Calculate the number of days			
	between the two dates on an			
	"actual" day basis.		C	Actual Days

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
4	Calculate the number of days			
	between the two dates on a			
	30/360 basis.		D	30/360 Days
5	For a new case, go to step 2			
	and change DT 1 and/or DT 2			
	as appropriate.			

Calculate the actual number of days between June 24, 1974 and December 5, 1985.

Keystrokes:Outputs:
6.241974 ▲ 12.051985 В С → 4182.00 (actual)

Example 2:

Having just performed the above calculation, now calculate the actual number of days between June 24, 1974 and March 21, 1990.

Keystrokes:3.211990 ■ C

5749.00 (actual)

Example 3:

Calculate the number of days, on both an actual and 30/360 basis, between May 1, 1975 and November 1, 1980.

 Keystrokes:
 Outputs:

 5.011975 ▲ 11.011980 B C →
 2011.00 (actual)

 1980.00 (30/360)

BOND PRICE AND YIELD

This program calculates the "flat" price (i.e., not including accrued interest) or annual yield of a semiannual coupon bond. Data required for input are the number of coupon periods (PER) between settlement date and redemption date (maturity date, call date, etc.), the annual coupon rate expressed as a percent (CR), the redemption value (RV) if other than 100, and either the annual yield expressed as a percent (YLD) or the bond price (PRICE).

All prices are expressed as a percent of the face value. (e.g., since most bonds have a face value of \$1,000, a call price of 107 implies an actual redemption value of \$1,070 if the bond is "called".)

The amount of the accrued interest for the expired portion of the current coupon period is available in register 8 and may be recalled ([BCL] 8).

Each time the coupon rate is entered by pressing B, the redemption value is automatically set to 100. This is the proper value for a price-to-maturity calculation, and no value must be keyed in for redemption value (RV). If however, the price-to-call is desired and the call price is other than 100, the call price has to be entered for RV after the coupon rate has been keyed in.

All input data are retained so that when alternative calculations are to be performed, only changed data must be keyed in. This permits, for instance, calculating the price for each of several different yields. In addition, the settlement date is retained throughout the bond calculations, and need not be reentered when returning to the calendar program for another bond calendar calculation

The number of remaining coupon periods between settlement date and redemption date may be calculated and entered in two ways. If the calendar program is used to calculate the number of days between the settlement date and redemption date, the number of remaining semiannual coupon periods is automatically calculated and stored in register 0 for use by the bond program. In this case the instruction to enter the number of remaining coupon periods in step 3 below may be ignored. If however, the number of remaining coupon periods is already known, or the method used to calculate this value by the calendar program is deemed inappropriate, it may be entered in step 3. Choosing between an actual or 30/360 calendar calculation depends on trade custom for the particular security. Corporate bonds are traditionally traded on a 30/360 basis, while many government securities use an "actual" calendar.

This program may be used for after-tax as well as before-tax yield calculations. The procedure is to reduce the coupon and redemption values to their after-tax net values prior to entering them in the program. This can be important when

comparing a bond with taxable coupons to one whose coupons are tax-free.

The program may also be used to calculate a yield when a bond is purchased, and then sold prior to redemption by the issuer. The procedure is simple to treat the exit date and price as the redemption date and reemption value respectively. The yield calculated is the precise yield if the exit date is also a coupon date, and is an approximate yield for other exit dates.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
11	Optional: Use program BD-14			
	to calculate the number of re-			
	maining coupon periods.			
2	Load side 1 and side 2 of the			
	bond program.			
3	Key in:			
	Number of remaining cou-			
	pon periods (may be omitted			
	if step 1 is performed)	PER	A	PER
	Annual coupon rate	CR (%)	В	CR (%)
	Redemption value if other			
	than 100.	RV	o	RV
4	To determine the yield, key in			
	the bond price.	PRICE	•	PRICE
5	Calculate the annual yield.		C	YLD (%)
6	To find the price, key in the			
	annual yield rate.	YLD (%)	C	YLD (%)
7	Calculate the "flat" price.		a	PRICE
8	Optional: Recall the accrued			
	interest		RCL 8	ACC INT
	AND			
	add it to the "flat" price to obtain			
	total bond value as of the			
	settlement date.		Đ	Bond Value

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
9	For a new case go to step 1 or 3			
	and change appropriate values.			
	NOTE: When CR is entered,			
	RV is automatically set to 100.			

What is the price of a semiannual 3% bond to yield 10% with settlement date of January 1, 1972? The bond matures March 6, 1978, and a 30/360 calendar is used.

Keystrokes:	Outputs:	
Enter program BD-14		
1.011972 A 3.061978 B D	2225.00 (days settlement to maturity, 30/360 basis)	
Now enter program BD-15		
3 B 10 C E	68.29 (price-to-maturity)	

Example 2:

Having performed the above calculation, determine the price of the same bond using the "actual" number of days. Remember, the settlement date has been retained and need not be reentered.

Keystrokes:	Outputs:
Enter program BD-14 3.061978 E C	2256.00 (actual days settlement to maturity)
Enter program BD-15	
3 B 10 C E	68.31 (price-to-maturity)

Example 3:

A U.S. Treasury Note with a 5.75% coupon and 88 days from settlement to maturity is purchased at 100 18/32. If there are assumed to be 183 days in a coupon period, what is the yield-to-maturity?

Keystrokes:	Outputs:	
5.75 B 88 ENTER 183 ÷ A	 0.48	(fraction of a coupon period remaining)

3.34 (% annual yield-tomaturity)

Example 4:

Assuming that the previous problem has just been performed as shown, calculate the yield if there are assumed to be 182 days in a coupon period instead of 183.

Keystrokes: Outputs:

88 ENTER 182 A C 3.35 (% annual yield-to-maturity)

Example 5:

An **annual** coupon bond with a 5% coupon is settled on March 1, 1974. If the yield is 5.5%, and the bond matures on February 1, 1984 what is the price-to-maturity on a 30/360 basis?

Keystrokes: Outputs:

Enter program BD-14

Determine the number of **annual coupon periods** remaining by dividing by the number of days in a coupon period.

360 € 9.92 (number of annual coupon periods)

Enter program BD-15

9.92 (the correct value for PER is entered)

The coupon rate and yield rate must be multiplied by a factor prior to input. This factor is determined by dividing the number of coupon periods per year into 2. For annual coupon bonds the factor is therefore 2 (for quarterly coupons the factor is 0.5 etc.).

5 ENTER • 2 ★ B 5.5 ENTER • 96.24 (price-to-maturity)

Example 6:

A semiannual coupon bond with a 5% coupon rate maturing February 6, 1993 was purchased November 15, 1973 for a price of 99. The bond is callable on February 6, 1980 at a call price of 101. What is the yield-to-call and yield-to-maturity if the 30/360 calendar is used?

Kevstrokes: Outputs: Enter program BD-14 11.151973 ▲ 2.061980 B D → 2241.00 (days settlement to call) Enter Program BD-15 5 B 101 D 99 E C ─── 5.33 (% yield-to-call) Enter program BD-14 2.061993 B D ------6921.00 (days settlement to maturity) Enter program BD-15 5 B 99 **E C** ─── 5.08 (% yield-tomaturity) Example 7: Having just completed the before tax yield-to-maturity calculation in the previous example, the bond purchaser wishes to perform an after tax yield-tomaturity calculation. He is in a 40% income tax bracket and a 25% tax is to be applied to capital gains. **Keystrokes: Outputs:** First, calculate and enter the after tax value of the coupon. 5 ENTER ◆ ENTER ◆ .4 × - B ----3.00 (net after tax coupon) Now calculate and enter the net after tax proceeds when the bond is redeemed for 100 at maturity. 100 ENTER • ENTER • 99 ■ -------1.00 (capital gain) .25 🗷 — 0.25 (capital gains tax) 8 0-----99.75 (net proceeds from bond redemption) (The price and remaining coupon periods have been retained from the previous calculation.)

3.06 (% after tax vield)

INTEREST AT MATURITY/DISCOUNTED SECURITIES

The first part of this program calculates the price or yield of interest at maturity securities. The necessary inputs are the days from issue to maturity (DIM), the days from settlement to maturity (DSM), the calendar basis (360 or 365), the coupon rate (CR), and either the price (to calculate yield) or the yield (to calculate price).

The second part of the program calculates the price or yield of discounted securities such as U.S. Treasury Bills. The required inputs are the number of days from settlement to maturity and one of the following: discount rate (to calculate price and/or yield), yield (to calculate price) or price (to calculate yield).

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2			
	Interest at Maturity			
2	Enter the following:			
	Days issue to maturity	DIM	ENTER+	DIM
	Days settlement to maturity	DSM	A	DSM
	• Basis (360 or 365)	BASIS	В	BASIS
	Coupon rate (as a percent)	CR (%)	C	CR (%)
3	Enter one of the following:			
	Yield (%)	YLD (%)	D	YLD (%)
	● Price	PRICE	E	PRICE
4	Calculate remaining variable		D	YLD (%)
			E	PRICE
	Discounted Securities			
5	Key in days settlement to			
	maturity	DSM	f A	DSM
6	Input one of the following:			
	Discount rate	DR	8 B	DR
	Yield (as a %)	YLD (%)	O D	YLD (%)

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
	• Price	PRICE	E	PRICE
7	Calculate either or both		D	YLD (%)
			8	PRICE

Find the yield of the following interest at maturity security:

DIM = 220 DSM = 117 Basis = 360 CR = 5% Price = 99.531250

Keystrokes:	Outputs:	
220 ENTER+ 117 A		
360 B 5 C		
99.531250 E D ———	6.38 (% yield)	

Example 2:

Having just performed the above calculation, what is the price of this interest at maturity security to give a yield of 7%?

Keystrokes:	Output:	
7 D E	99.33	(price)

Example 3:

Keystrokes:

Given the number of days from settlement to maturity and the discount rate of the following security, find the price and yield.

$$DSM = 81$$
$$DR = 5.60$$

Outputs:

81 f A 5.6 f B	•
	98.74 (price)
0 0 	5.67 (% yield)

16-03

Find the yield of the following discounted security:

Keystrokes: Outputs:

307 (A 96.27 (E

4.54 (% yield)

LINEAR REGRESSION—EXPONENTIAL CURVE FIT

This program performs a least squares regression to determine both a linear and exponential fit for the given set of data pairs (x, y).

Linear regression is a statistical method for finding a straight line that best fits a set of data points. Forecasting and market projections are business applications where linear regression could be used to fit a set of data.

The equation of this straight line expresses the linear relationship between an independent (x) and dependent (y) variable and is of the form:

$$y = a + bx$$

where:

y = dependent variable

a =the value of y when x = 0, called the "y-intercept"

b = the slope of the straight line

x = independent variable

In addition to calculating values for the slope and y-intercept, this program also calculates the coefficient of determination r^2 . This is an indication of the "goodness of fit" for the calculated straight line, and is a number between 0 and 1. Values closer to 1 indicate "better" fits than values closer to 0.

If the coefficient of determination is lower than expected, perhaps the data points could be better represented as a curve, rather than a straight line.

The program also determines the best exponential curve fit of the form:

$$y = ae^{bx} (a > 0 \text{ and } y > 0)$$

where:

y = dependent variable

a =the value of y when x = 0, called the "y-intercept"

e = a constant (2.718281828)

b = the slope or rate of growth of the curve

x = independent variable

The coefficient of determination is also calculated for the exponential curve.

The exponential curve fitting technique is often used to determine the growth rate of a variable such as a stock's value over time, when it is suspected that the performance is non-linear. The value for b is the decimal value of the *continuous* growth rate. For instance, assume after keying in several end-of-month price quotes for a particular stock, it is determined that the value for b is 0.10. This means that over the measured period the stock has experienced a 10%

continuous growth rate. (An option is available to convert this decimal continuous growth rate to an effective rate in percent. See program BD-12 for a description of continuous and effective interest rates.)

When evaluating the exponential curve, only positive y-values may be input. If a value of y is entered as a negative number, the linear regression slope, intercept, and goodness of fit will be calculated, and then the display will show ERROR. This means that at least one y-value is less than or equal to zero, and the exponential curve may not be evaluated.

When the user has data where the x-values are evenly spaced (i.e., the difference between any two successive x-values is always the same), the trend line key () may be used. In this case, it is necessary to key in only the y-values; the x-values are automatically incremented by 1. This feature may be used for inputting data for lines or exponential curves. Remember that if any y-values are input which are less than or equal to zero, the exponential curve fit cannot be calculated.

3

If any (x, y) data pair was input incorrectly it may be deleted by re-entering the incorrect pair and pressing \blacksquare . Likewise, if the last trend value was input incorrectly, key in the incorrect value and press \blacksquare .

After determining whether the linear or exponential fit is better, the user may then key in x-values and generate projected y-values (\hat{y}) , by pressing \square for the line, or by pressing \square for the curve.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2			
2	Optional: Set print/pause mode		08	1.00 or 0.00
3	Initialize (START)		Α	0.00
4	If data is unevenly spaced, key			
	in x and y-values, until each pair			
	has been entered.	X	ENTER+	
		у	B	# entries
5	To delete an incorrect data pair			
	(x _k , y _k)	X _k	ENTER+	
		Уk	0 B	# entries - 1
6	If data is evenly spaced, key in			

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
	successive y-values until all			
	have been entered.	у	C	# entries
7	To delete the last y-value	у		# entries -1
8	Calculate. If the print/pause flag			
	is on (1.00), these values are			
	automatically printed.		ſ A	a)
			R/S	b >linear
			R/S	r²)
			R/S	a)
			R/S	b exp.
			R/S	r²)
	Optional: Calculate			
	growth rate		R/S	% growth rate
9	Optional: Key in an x-value and			
	calculate a corresponding			
	y-value on the line. This may be			
	repeated as often as desired.	х	D	$\hat{\mathbf{y}}$ (lin.)
10	Optional: Key in an x-value and			
	calculate a corresponding			
	y-value on the curve. This may			
	be repeated as often as desired.	x	E	ŷ (exp.)
11	Return to step 2 for a new set of			
	data.			

You bought a house three years ago for \$47,500. The first year it appreciated \$5,000. The second year its value rose to \$60,000. Today you figure the market price to be \$64,000 if you were to sell. What will your house be worth next year?

Keystrokes: Outputs:

Since the data is evenly spaced, the trend line function could be used.

Α	 →	0.00
47500 C	→	1.00

52500 C	2.00	
60000 €	3.00	
64000 C	4.00	
Now calculate the equation of the line (o	r curve if t	hat gives a better fit).
f A →	41750.00	(linear a)
R/S -	5700.00	(linear b)
R/S	0.99	(linear r ²)
R/S	43021.27	(exponential a)
R/S	0.10	(exponential b)
R/S	0.98	(exponential r ²)
Since linear regression gives a better fit,	use D to p	project new values.
5 D	70250.00	(projected value at
		5th year)

Example 2:

A stock's price history is listed below. What effective growth rate does this represent? If the stock continues this growth rate, what is the price projected to be at the end of 1976 (year 5)?

End of Year	Price
1972 (1)	521/2
1973 (2)	551/4
1974 (3)	(missing data)
1975 (4)	75
1976 (5)	?

Keystrokes:	Outputs:	
A	0.00	
1 ENTER• 52.5 B	1.00	
2 ENTER • 55.25 B ———	2.00	
4 ENTER • 75 B	3.00	(total number of entries)
f A	42.63	(linear a)
R/S	7.84	(linear b)
R/S	0.95	(linear r ²)
R/S	45.06	(exponential a)
R/S	0.12	(exponential b)
R/S	0.96	(exponential r ²)
R/S -	13.17	(percent annual growth rate)
The exponential curve gives a better fit.		
5 E	83.65	(projected price at

the end of 1976)

MULTIPLE LINEAR REGRESSION

This program performs a least squares multiple linear regression for a series of data points x, y, z. Linear regression is a statistical method for finding a straight line that best fits a set of data points. The equation of this straight line expresses the linear relationship between independent (x and y) and dependent (x) variables and is of the from:

$$z = a + bx + cy$$

Independent variables are input by pressing **B**. If one or more of the data points was entered incorrectly, simply re-enter the incorrect value(s) and press **f A**. Then continue as before. The three coefficients (a, b, c) are calculated by pressing **C**.

In addition, the program also calculates the coefficient of determination $r^2(\mathbf{D})$. This is an indication of the "goodness of fit" for the calculated straight line, and is a number between 0 and 1. Values closer to 1 indicate "better" fits than values closer to 0.

Having determined the equation (the \bigcirc key), the user can then project estimates of z for given x, y values (\bigcirc). The sums (Σx_i ; Σy_i ; Σz_i), the sums of squares (Σx_i^2 ; Σy_i^2 ; Σz_i^2), and the sums of cross products ($\Sigma x_i y_i$; $\Sigma x_i z_i$; $\Sigma y_i z_i$) are stored in registers 7–9, 4–6, and 1–3 respectively.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2			
2	Optional: Select print/pause			
	mode		08	1.00 or 0.00
3	Initialize (START)		Α	0.00
4	Key in x and y, and correspond-			
	ing z value	х	ENTER+	
		у	ENTER+	
		Z	В	# entries
5	Repeat step 4 for all x, y, z data			
	pairs.			***

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
6	If a data pair was input incor-			- "-
	rectly, re-enter incorrect x, y, z			
	values	x	ENTER+	
		У	ENTER+	
		z	f A	# entries - 1
7	Calculate coefficients:		C	а
			R/S	b
			R/S	С
	If the print/pause mode is on			
	(1.00), b and c are auto-			
	matically calculated.			
8	Optional: Calculate the coeffi-			
	cient of determination: r2		D	r²
9	Optional: Key in x and y values			
	and calculate the estimated			
	z value. (This may be repeated			
	as often as desired.)	х	ENTER +	
		у	G	2
10	For a new case, go to step 2.			

A commercial land appraiser has examined 5 vacant lots in the downtown section of a local community, all of which have different depths, frontages, and values as shown below. Based on this data, what is the relationship between depth, frontage, and lot value? What is the coefficient of determination? What predicted value would a lot have with a 50 foot depth and 70 foot frontage? With a 75 foot depth and 80 foot frontage?

Lot Depth (feet)	Lot Frontage (feet)	Lot Value
70	70.8	\$101,000
90	60.0	82,190
85	90.0	170,000
40	70.0	100,000
100	60.0	90,000

Keystrokes:	Outputs:					
A 70 ENTER 70.8 ENTER 101000 B						
90 ENTER • 60 ENTER • 82190 B						
85 ENTER+ 90 ENTER+ 170000 B						
40 ENTER+ 70 ENTER+ 100000 B						
100 ENTER • 60 ENTER • 90000 B →	5.00	(number of entries)				
C	-118499.03	(a)				
R/S	314.71	(b)				
R/S	2892.02	(c)				
Hence, $z = -118499.03 + 314.71x + 2892.02y$						
D	0.98	(r^2)				
50 ENTER ↑ 70 E	99678.08	(value of 50×70				
		foot lot)				
75 ENTER € 80 E ——————————————————————————————————	136466.08	(value of 75×80 foot lot)				

Notice that if your lot has a depth of 50 feet and a frontage of 10 feet a negative \$ value results (-73843.26). You may have difficulty selling this property!

BREAK-EVEN ANALYSIS

Break-even analysis is basically a technique for analyzing the relationships among fixed costs, variable costs, and income. Until the break-even point is reached, at the intersection of the total income and total cost lines, the producer operates at a loss. After the break-even point, each unit produced and sold makes a profit. Break-even analysis may be represented as follows:

Given four of the following variables: fixed costs (F), sales price per unit (P), variable costs per unit (V), number of units sold (U), and gross profit (GP), this program evaluates the remaining variable. To calculate the break-even values, simply let the gross profit equal zero.

The degree of operating leverage (OL) at a point is defined as the ratio of the percentage change in net operating income to the percentage change in units sold. The greatest degree of operating leverage is found near the break-even point, where a small change in sales may produce a very large increase in profits. This happens because the profits are close to zero near the break-even point. Likewise, firms with a small degree of operating leverage are operating farther from the break-even point, and they are relatively insensitive to changes in sales volume.

The necessary inputs to calculate the degree of operating leverage are fixed costs (F), sales price per unit (P), variable costs per unit (V), and number of units (U).

For subsequent calculations, it is necessary only to input new data.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1			
2	Key in four of the following in			
	any order:			
	● Fixed costs	F	A	F
	Sales price per unit	Р	В	Р
	Variable costs per unit	٧	0	٧
	Number of units	U	0	U
	Gross profit	GP	E	GP
3	Calculate the remaining			
	variable.		A	F
			B	. Р
			G	٧
			D	U
			E	GP
4	To calculate the degree of			
	operating leverage		f A	OL

The Cooper Company sells finance textbooks at \$13 apiece. Given costs and revenues below, how many textbooks must be sold to break even?

Fixed Costs	
Typesetting Graphics production Printing and binding	\$ 4,000 5,000 3,000
Total fixed costs	\$12,000
Variable costs per copy	
Distribution Commissions Royalties	\$1.00 3.75 2.00
Total variable costs per copy	\$6.75
Sales price per copy	\$13.00

Keystrokes:

Outputs:

12000 A 13 B 6.75 C

0 6 0 ----

1920.00 (number of units)

Example 2:

Having just completed the above problem, what is the Copper Company's degree of operating leverage at 2000 units? At 5000 units?

Keystrokes:

Outputs:

2000 D f A -----

25.00 (this is close to the break-even point)

5000 **D f A** ———

1.62 (the company is farther from the breakeven point and less sensitive to changes in sales volume)

INVOICING

Given a discount rate (DISC), number of units (UNITS), and price per unit (PRICE) for each line item, this program calculates the net line total (NLT), maintains a running subtotal (ST) and grand total (GT), and determines each line total's percent of the grand total (%T). A maximum of 20 line items may be input. If more than 20 are input, ERROR is displayed.

If after calculating a net line total (E) it is discovered that one of the last input values was keyed incorrectly, press I D to delete the last line total. The previous subtotal is displayed. If a prior line total was incorrect, it is necessary to input the appropriate discount, number of units, and price before I D is pressed to delete the corresponding line total.

The discount rate, number of units and unit price are retained and must only be keyed in when they change.

Pressing f sets and clears the print/pause option. Successive use of f swill alternately display 1.00 and 0.00, indicating that the print/pause mode is on or off respectively.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1			
2	Optional: Select print/pause	1		
	mode.		0 0	1.00 or 0.00
3	Initialize (START)		A	0.00
4	Key in:			
	Discount rate	DISC (%)	В	DISC (%)
	Number of units	UNITS	G	UNITS

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
	Price per unit	PRICE	D	PRICE
5	Calculate net line total		G	NLT
6	Optional: Display running			
	subtotal		0 A	ST
7	Optional: Display running			
	grand total		1 B	GT
8	Display each line total's percent			
	of the grand total		00	% T ₁
	Use R/s if print/pause mode is			
	off (0.00).		R/S	% T ₂
			R/S	% T ₃
			etc.	
9	If last net line total was incorrect		00	ST
10	For additional items, same			
	grand total, go to step 4 and			
	change appropriate inputs. For			
	a new case (clear everything)			
	go to step 3.			

Example 1:

The controller of a small company can take advantage of several discounts if he pays the three bills shown below. What amount should be remitted for each bill, what is the grand total to be paid, and what percentage of the grand total is each payment?

Bill 1 (2% discount if paid today)

Line Item	# of Units	Unit Price
1	25	\$ 2.75
2	60	1.50
3	71	1.50

Bill 2 (2% discount if paid today)

Line Item	# of Units	Unit Price	
1	12	\$10.50	
2	17	37.20	

Bill 3 (3% discount if paid today)

Line Item	# of Units	Unit Price	
1	155	\$.28	
2	38	.92	
3	217	.56	

Keystrokes:	Outputs:	
A 2 B 25 C 2.75 D E	67.38	
60 C 1.50 D E ────	88.20	
71 C E	104.37	
	259.95	(Subtotal—Bill 1)
12 C 10.50 D E ───	123.48	
17 C 37.20 D E	619.75	
f A	743.23	(Subtotal—Bill 2)
3 B 155 C .28 D E ───	42.10	
38 € .92 □ ■	33.91	
217 C .56 D E	117.87	
f A	193.88	(Subtotal—Bill 3)
f B →	1197.06	(Grand total)
1 C →	5.63	\
R/S -	7.37	
R/S	8.72	Each net line
R/S	10.32	total's percent
R/S -	51.77	of the grand
R/S	3.52	total.
R/S -	2.83	
R/S -	9.85	<i>!</i>
R/S	100.00	

PAYROLL

This section gives an illustration of a payroll program for a small business, which may be modified to suit the employer's particular needs. Since each individual business will have its own needs, requiring modification of this program, we have included a *blank* magnetic card with an unclipped corner. To run the example, the user must record the program included in the Program Listings section. For *example* purposes we have chosen a small business operating in the state of California.

The basic concept around which the program is built is that there is one main program, with a separate data card for each employee. After the net pay for each individual is calculated (based on the data card information), the data card is re-entered to record the new data onto the card.

The data card may contain information on the employee's Social Security number, the number of exemptions, marital status, hourly wage, overtime wage, gross pay to date, Federal, State, Federal Insurance Contributions Act (FICA) and California State Disability Insurance (SDI) withholdings to date, and deductions such as savings deposits, contributions, health insurance, life insurance, stock plans, etc.

The program reflects the 1976 Federal Tax Laws. During 1976, the Social Security (FICA) tax base was increased to \$15,300, with the rate remaining at 5.85%. The California State Disability Insurance (SDI) taxable wage base is \$9000, with a rate of 1%.

The number of regular hours worked (#hrs), and the number of hours of overtime (#hrs OT), are input by pressing B and C respectively. Federal (FEDL) and state (STATE) taxes are input by pressing D and E. The net pay key (FA) calculates the weekly FICA and SDI, deducts three constants, asks for a data card to record new data, and displays the net pay. All results are rounded to two decimal places.

An option is available (B) to display the gross pay and the Federal, State, FICA, and SDI deductions to date.

Note:

The user must provide the applicable Federal and State tax tables.

To use this program, the following registers need to be recorded on a data card:

To record data onto a data card, the following procedure may be used:

- 1. Set the PRGM-RUN switch to RUN.
- 2. Key the data into the appropriate storage registers.
- 3. Press W/DATA on the HP-67, or press WRITE DATA on the HP-97. The display will show Crd .
- 4. Insert an unclipped blank card. If the secondary storage registers contain non-zero data, insert the second side of the card. The data in the storage registers is now recorded on the data card.
- 5. To change data already on an unclipped card, enter the card, key in the appropriate new data, repeat step 3, and re-enter the data card. The card now contains the revised data.

The following example illustrates the use of this program.

Example 1:

Having just purchased an HP-97 (or HP-67), Mr. Cooper is anxious to set up a payroll system for his hourly employees. The Cooper Company is located in Cupertino, California. A typical employee summary is:

	Gross	Total Federal Tax	Totai State Tax	Total FICA	Total SDI	Health Insurance	Stock Plan(%)	United Fund
Joyce Waters SS No: 553-86-7778 Marital Status: Single Exemptions: 1 Hourly Wage: \$4.00 Overtime Wage: \$6.00	\$2064.00	\$335.64	\$44.20	\$120.74	\$20.64	\$2.50	5%	\$1.00

Table 1

Mr. Cooper checks Ms. Waters' time card and finds that she worked 37½ hours this week. What is her take-home pay, gross pay, and Federal, State, FICA and SDI deductions to date?

To make a data card for Ms. Waters:

Insert an unclipped blank magnetic card.

To determine net pay, record the Payroll program on the printed card and initialize.

Keystrokes:	Outputs:	
A	→ 0.00	(blinking)
Insert data card	→ 553867778.0	(Ms. Waters' Social
		Security Number)
R/S	→ 0.10	(Ms. Waters is single)
R/S	→ 1.00	(one exemption)
37.5 B	150.00	(weekly wage)

From a federal tax table for single persons paid weekly, the withholding for a wage of \$150.00 and one exemption is \$20.50. The corresponding amount of California State Tax to be withheld is \$2.90.

1

Keystrokes.

are you ones.	Outputs.
20.50 🖸 ———	20.50 (Federal tax)
2.90 ■	2.90 (California tax)
To find the net pay:	
f A	8.78 (FICA)
R/S -	1.50 (SDI)
R/S	2.50 (Health insurance)
R/S	7.50 (Stock fund)
R/S ———	1.00 (United Fund)
R/S	Crd

Insert data card to record new data. Program will then continue and display the net pay.

105.32 (Net pay)

 Keystrokes:
 Outputs:

 ↑
 2214.00 (Gross pay to date)

 ₹/S
 → 356.14 (Federal withholdings to date)

 ₹/S
 → 47.10 (State withholdings to date)

 ₹/S
 → 129.52 (FICA to date)

 ₹/S
 → 22.14 (SDI to date)

For subsequent weeks, it will not be necessary to make a new data card for Ms. Waters. Simply input the Payroll program, initialize (A), input her data card, execute the program, and re-record on the same data card. Using this procedure, the payroll information is constantly updated.

Suppose that in 1977 the FICA is increased to 6.15% of the base pay, with a taxable wage base of \$16,000. To change the program to meet new requirements, the following procedure should be followed:

- 1. Press GTO .051 2. Switch to PRGM mode — 051 03 3. Delete the last two steps DEL DEL _____ 01 049 4. Insert the two digits of the wage base which were changed 60 00 5. Press **GTO** .062 — **→** 062 05 6. Delete the last four steps DEL DEL DEL \rightarrow 058 _ _ 03 (this code will
- 7. Insert the new percentage
 6.15 → 062 05
- 8. Switch to RUN mode.

A similar procedure may be used to change or delete the SDI subroutine (LBL 2). Simply press (2), switch to PRGM mode, and make the appropriate changes.

vary between the

The user may also wish to expand or decrease the number of deductions to be taken. Eleven additional registers are available for constant storage (S0-S9, I). Subroutine 5 (LBL 5) may be accessed by pressing [5] [5] (in RUN mode) and then switching to PRGM mode. Changes in the routine may then be made. Be sure to delete inappropriate routines already recorded.

Remember that if the secondary storage registers are used (S0-S9), both sides of the data card will need to be recorded.

We recommend that the user does not clip the corner of the magnetic card provided. If you wish a permanent program card, you should use another blank card to record the program.

INVENTORY

This section gives an illustration of how an inventory program might be written. Every business will probably have a different inventory method, so we have included a *blank* magnetic card with an unclipped corner. To run the example, the user must record the program included in the Program Listings section.

The first step in developing any program is to define what will be calculated, and which labels will be used to do the calculations. The card art shown above, could be programmed to do the following:

START — initializes the program by asking for a data card; then displays a part number (10 digit maximum)

PRICE - stores price of parts received

RECD — subtracts the number of units received from amount ordered; adds the number of units received to total on hand; calculates new unit price by weighted average method; calculates slack (quantity on hand plus quantity on order less quantity required)

ISSUED — subtracts number of units issued from those on hand; calculates slack

ORDER — adds number of units ordered to those already on order; calculates slack

MIN — stores minimum quantity

LT-SLK- when the lead time (in days) is input, the slack is calculated

LIST — recalls and displays inventory information

UPDATE — asks for data card to record new inventory information

P? — sets and unsets the print/pause flag; successive use of displays 1.00 and 0.00 indicating that the print/pause mode is on or off respectively

The main program contains the instructions to perform the above calculcations. A separate data card holds the current inventory information for each part number. The data card may be updated after the transactions have been completed.

To use this program, the following registers should be recorded on a data card:

 R_0 \longrightarrow Part number (10 digit maximum) R_1 \longrightarrow Unit price

R_2	→ Quantity on hand
R_3	→ Quantity on order
R_4	→ Minimum quantity
R_5	Lead time (days)
R_6	→ Slack (Optional—as it may be
-	calculated)

The program uses three additional registers for calculations, so 16 registers are still available.

The following report illustrates how this program might be used.

Inventory Report February 15, 1976

Part #	Unit Price	Quantity on Hand	Quantity on Order	Minimum Quantity	Lead Time
2417126 3668871	9.91 4.96	275 250	319 100	370 225	56 46
			. 1	•	
•				-	, .
•	-			-	

Data cards for each part number could be made in this manner:

1. In RUN mode, store data in the appropriate registers.

CL REG

2417126 STO 0

9.91 STO 1

275 STO 2

319 STO 3

370 STO 4

56 STO 5

- 2. Press W/DATA and insert a blank, unclipped card.
- 3. Repeat the procedure for each part number.

Suppose that in the next week, the following part was received:

Part #	Unit Price	Amount Received
2417126	10.25	150

To update the data card to reflect this transaction, use the following procedure:

- 1. Record the inventory program.
- 2. Press A. The display will blink zeros until a data card is input. When the data card is entered, the display will show the part number

- 3. Key in the price of each unit received and press **B**. 10.25 **B**
- 4. Key in the number of units received and press .

The number displayed is the quantity on hand.

5. To review the status of the part number, press:

If the print/pause flag was on (1.00), these values would have been displayed automatically.

6. To record the new data press 1 and insert the data card. The new data is recorded, and the display shows 0.00.

Likewise, if parts had been sold or ordered, the appropriate amounts would be keyed in, the user would press **D** or **E** respectively, and then update the data card.

If the minimum quantity requirements change, key in the new minimum and press **f** A. And if the user wishes to calculate the slack, key in the lead time and press **f** B.

We recommend that the use does not clip the corner of the magnetic card provided. If you wish a permanent program card, you should use another blank card to record the program.

PROGRAM LISTINGS

The following listings are included for your reference. A table of keycodes and keystrokes corresponding to the symbols used in the listings can be found in Appendix E of your Owners Handbook.

Pro	ogram	Page
1.	Internal Rate of Return	L01-01
	Internal Rate of Return—Groups of Cash Flows	
	Discounted Cash Flow Analysis-Net Present Value	
	Direct Reduction Loans—Sinking Fund	
	Accumulated Interest/Remaining Balance	
	Wrap-Around Mortgage	
	Constant Payment to Principal Loan	
	Add-On Rate Installment Loan/Rule of 78's	
9.	Savings Plan—Leases	L09-01
	Advance Payments	
	Savings—Compounding Periods Different from Payment Periods	
	Simple Interest/Interest Conversions	
	Depreciation Schedules	
14.	Days Between Dates	L14-01
	Bond Price and Yield	
16.	Interest at Maturity/Discounted Securities	L16-01
17.	Linear Regression—Exponential Curve Fit	L17-01
	Multiple Linear Regression	
	Break-Even Analysis	
	Invoicing	
	Payroll	
	Inventory	

INTERNAL RATE OF RETURN

			I o				T
881	*LBLA	21 11	Clear registers	957	RCL I	36 46	LBL fa sets up I for count
882	CLRG	16-53	1	658	1	61	down and keeps track of
963	P#S	16-51	I MIV - D	859	8	98	original # of cash flows by
884	CLRG	16-53	INV→R _E	968	1	01	storing N.N.
885	STOE	35 15	1	061	×	~35	1
886	CFØ	16 22 00	Clear flags	862	STOI	35 46	1
887	CF1	16 22 01		863	RTH	24	1
899	RTN	24		064	*LBLe	21 16 15	1
009	*LBLB	21 12		865	F8?	1€ 23 00	1
010	2	02	Input largest cash flow if	866	6108	22 00	Unpacks double-stored
011	x _	-35	#CFs > 22.	867	INT	16 34	cash flows.
012	STOR	35 88					1
				668	EEX	-23	1
813	RCLE	36 15	1	969	5	9 5	l .
014	XZY	-41	INIV/2 CMAY > B	676	÷ .	-24	
015	÷	-24	INV/2 CMAX→R _E	071	RTN	24	
816	STOE	35 15		872	*LBL0	21 00	
017	LSTX	16- 63	l .	873	FRC	16 44	
018	3F0	16 21 00	Flag 0 indicates > 22 cash	074	RTN	24	1
019	2	8 2	flows.	875	*LBLD	21 14	1
828	÷	-24		876	GSB _a	23 16 11	Set-up I
021	RTN	24		877	RCLI	36 46	NN
822	*LBLC	21 13		078	EEX	-23	1
823	ISZI	16 26 46	If FO, pack data in registers.	879	2	82	
			o, pass data in registros		÷		
024	F@?	16 23 00		689		-24	N.N→1
025	6SBc	23 16 13		189	STOI	35 4 <i>6</i>	14:14-51
826	ST+I	35-55 45		082	1	91	1
027	X‡Y	-41		083		-62	
828	RCLI	36 4 6	Display # of cash flows (add	084	8	96	
029	F1?	16 23 01	if > 22 CF).	885	1	01	1 + i ₀ → R _D
030	+	-55		686	STOD	35 14	1
631	RTN	24		087	*LBL4	21 84	i
032	*LBLc	21 16 13		668	CFO	16 22 88	
033	2	82	į	089		86	1
834	3	93	1	090	STOO	35 88	
035	RCLI	3€ 46	1	891	#LBL5	21 85	1
036	x≠Y?	16-32	23 rd cash flow?	892	RCLI	36 46	1
837	GT00	22 00	23 Cash flowr	893	INT	16 34	1
838	6100	91	l				Get i
	CTOI		Reset I	894	F1?	16 23 01	Get
039	STOI	35 46	1	895	65Ba	23 16 14	
040	+	-55	Drop stack and clear x.	896	RCLi	36 45	i
841	CLX	-51		897	F1?	16 23 01	
042	EEX	-23	i	098	6SBe	23 16 15	Unpack CF _j
843	5	9 5	2 CMAX/10 ^s → R ₀	699	ST+8	35~55 00	ı
844	ST÷0	35-24 00	1	100	×	-35	
845	SF1	16 21 01		101	+	-55	f(i) in R _o
046	*LBL0	21 00		182	RCLD	36 14	
847	R₽	-31		103	ST÷0	35-24 88	
848	1	01		184	+	-24	1
849	_	-45		105	DSZI	16 25 46	1
858	XZY	-41	1.	186	6105	22 85	1
851	RCLO	36 00	Scale cash flow	187		16 23 81	1
852	KULB ÷	-24			F1?		
653	F1?		If CF _j , j > 22, drop frac-	188	CTOB	22 00	
		16 23 01	tional part of CF _i .	189	#LBL6	21 96	
854	INT	16 34	1 ' '	118	RCLØ	36 99	
65 5	RTN	24		111	RCLE	36 15	
856	#LBLa	21 16 11	1	112	-	-45	
			REGI	STERS			·
0	1	2	2 4	-	6	7	8 9
Used	Usec	Used	Used Used	Used	Used	Used	Used Used
S0 Used	S1 Us	S2	S3 Used S4 Used	S5 Used	S6 ,	sed S7 Used	S8 Used S9 Used
Usea] Us	ed Se Used	Used Used	l Used	1	seu Used	Usea Usea
A Used	•	B Used	C Used	D 1.		E Used	Used
l Osea		Osea	Usea	1+	10	Used	Usea

_								 			
	113	XZY	-	41							
1	114	÷		24	l f		- 1				
1	115	RCLD	36		$\frac{f}{f'}$ (1	l + i)					
	116	×		35	1.						
1	117	RCLD	36								
1	118	X≇Y		41	1					1	
1	119	+	-:	55	(1 + i)	next				1	
1	128	ST00	35	14							
1	121	LSTX	16-	53			- 1				
1	122	ABS	16	31			- 1				
1	123	EEX		23	f(i)/f' (i)	ĺ				
1	124	CHS		?2							
1	125	5		35						1	
1	126	X>Y?	16-								
1	127	6T07	22		←DON	E!					
1	128	esb.	23 16		1		- 1				
1	129	GT04	22		1		- [
	130	*LBL0	21		1						
	131	F0?	16 23 (1	
	132	6106	22 (ì	
	133	SFØ	16 21 (1						
	134	6SBP	23 16		1		- 1			1	
	135	6105	22 (Ι		- 1			İ	
	136	*LBLb	21 16			ack for	İ			i	
	137	2		32	lower	22 CFs				Ī	
	138	2		32	1						
	139	RCLI +	36		١, ,,						
	140		35	55	Heset I	to lower 22 CF	s.			1	
	141 142	STOI					- 1				
	143	CLX	-				1				
	144	RTN		55							
	145	*LBLd	21 16	24	1						
	146	2		92	Add 22	if flag O clear.					
1	147	2		12						1	
1	148	F8?	16 23								
1	149	CLX	10 25 6							ŀ	
1	150	†			1		- 1			Į.	
1	151	RŤN		24	1						
ŀ	152	#LBL7	21 8		Reset	R _I for another	- 1			I	
ł	153	RCLD	36			g of D	- 1				
1	154	1		11	1	سا -	- 1			ľ	
1	155	-	-4		1		- 1			1	
1	156	STOD	35 1	4	R. m	st contain intege	_			1	
	157	EEX	-2		here.	st contain intege	'			l	
ı	158	2		12	,,,,,,					l	
1	159	×	-3								
1	160	RCLI	36 4							1	
1	161	LSTX	16-6							1	
1	162	_ X	3				-				
1	163	STOI	35 4		1					l	
1	164	XZY	-4							ļ	
1	165	RTN		4	1						
1	166	R/S	5	1	1						
1					1						
L					<u> </u>						l
L						BELS		 FLAGS		SET STATUS	
Į^	INV	^B CF	MAX	СС	F	D →IRR	E	0 > 22 CFs	FLAGS	TRIG	DISP
a	Used	^b Use		c LI	lsed	^d Used	e Usec	¹ Used	ON OFF	inia	DISF
1	2360	1 036	~		racu	Osea	Usec	USEC			

_			LAI	JELJ		FLAGS	SEI SIAIUS			
Ĺ	INV	B CF MAX	C CF	D →IRR	F	0 > 22 CFs	FLAGS	TRIG	DISP	
a	Used	^b Used	○ Used	^d Used	e Used	1 Used	ON OFF	DEG 🗷	FIX 😨	
0	Used	1	2	3	4 Used	2	1 🗆 🗷	GRAD 🗆	SCI □	
5	Used	⁶ Used	7 Used	8	9	3	2 🗆 🕱 3 🗀 🕱	RAD 🗆	ENG n 2	

INTERNAL RATE OF RETURN—GROUPS OF CASH FLOWS

881	*LBLA		21 11			657	STDi		5 45	OF	-,
882	CLRG		16-53			858	RCLI	3	6 46	CF _j · n _j → R(17
803	STOE		35 15	INV→RE		859	CF8	16 2	2 88		
084	1		01			868	RTN		24		
005	STOD		35 14			861	#LBLd	21 1	6 14	Routine to s	um cash
806	X₽Y		-41			962	GSB3		3 03	flows and re-	call number
667	ŔŤĦ		24			863	8	-	99	of groups be	fore going
				If LRG CF exis				-		to iteration i	
	#LBLB		21 12	II LNG CF ext	313	864	STOC		5 13		
889	ABS		16 31			965	GT07		2 87		
010	EEX		-23			966	≉LBLD		1 14		
011	7		07			967	RCLI	3	6 46		
012	÷		-24			868	ESB3	2	3 83		
013	L06		16 32	Γ		869	#LBL7		1 07		
014	INT		16 34	INT In LRG	i CF	979	1	_	01		
815	X<8?		16-45	INT log LRG	7	971	•		-62		
				L "	, J		ė		88	1 + Initial gu	iess
016	CLX		-51			672	_				
017	10×		16 33			073	1		61		j
018	STOD		35 14			874	€SB¢		6 13		
619	RCLE		36 15			075	6708	2	2 88		1
020	XZY		-41	INV/10k→RF		876	*LBL1	2	1 01		
621	÷		-24			877	RCLB		6 88		
022	STOE		35 15	k = 1 or 2		078	6SBe	23 1			
623	RTH		24	K - 1012		073	STOC		5 13		
	*LBLC		21 13			888	*LBL0		1 00		
											ethod is used
625	ISZI		26 46	Scaling routine		031	RCLB		6 12	to evaluate f	i).
826	RCLC		36 13			982	RCL0		6 88		
027	XZY		-41			883	STOB	3	5 12		
e28	+		-55			684	-		-45		
029	STOC		35 13			685	RCLD	3	6 14		
030	CLX		-51			886	RCLC	3	6 13		
031	LSTX		16-63			987	STOD		5 14		
832	X		-35			688	3.00	•	-45		
		75 /				689	+		-24		
033	57+0		55 00	Σn _j CF _j							
634	LSTX		16-63			098	x		-35		
035	÷		-24			091	ST-0	35-4			j
036	LSTX		16-63			892	RCLE	3	6 00		
837	EEX		-23			693	•		-24		
938	2		82			894	RND	1	6 24		
633	+		-24			895	X≠8?	1	6-42		
949	XZY		-41			096	GT01		2 01		1
841	RCLD		36 14			897	RCLO		5 00		
642	÷	•				698		31			
			-24				1		01		
643	INT		6 34			899	-		-45		
844	X<0?		6-45			100	EEX		-23		
845	SF0		21 80			101	2		02		
846	ABS	1	6 31			162	×		-35		
847	+		-55			103	RTN		24		
048	FO?	16 2	23 00			104	*LBL3	2	1 03		
049	CHS		-22			105	1	-	01	1.01 (# group	os)
050	LSTX	1	6-63			106	•		-62	(,, g. out	
851	X=0?					107	ė		99		
			6-43				_				
052	6585	2	23 05			108	. 1		01	→R ₁	
053	ENTT		-21			109	×		-35	. 11	
854	abs		6 31			:10	5701	3	5 46		
05 5	÷		-24			111	RTN		24		,
056	x		-35			112	*LBLc	21 1			
											
<u> </u>				16	REGIS	TERS	-			1-	
0 1 + i	CF1.1	n,	CF ₂ ·n ₂	3 CF ₃ ·n ₃	4 CF4 · n4	5 CF _s ·n _s	6 CF6.	n ₆	CF ₇ ·n ₇	8 CF ₈ ·n ₈	⁹ CF ₉ •,n ₉
	104	_		100	7 7	,			,,	L	
SOCF10 * N10	S1CF	տ	S2 CF ₁₂ ·n ₁	2 S3 CF ₁₃ ·n ₁₃	S4CF14 · n14	S5CF ₁₅ ·n ₁	s S6 CF	امرمني	67 CF ₁₇ ·n ₁₇	S8 CF ₁₈ ·n ₁₈	S9CF ₁₉ ·n ₁₉
					1	_	<u>ı </u>				
A CF20 · n20		В	Used	C f(ik	(,	D f(ik-1)		E Im	estment/	l Use	d
		1		1				1		Ī	

113	EEX	-23		169	÷	-24	
114	CHS	-22	1	178		36 15	1
115	2	. 82	ļ	171		-45	
116	×	55	.01	172	RTN	24	
117	STOC	35 13	i	173	. ≠LBL5	21 05	1
118	+	-55		174		-55	1
							1
119	STOR	35 88		175		-21	1
120	STOB	35 12		176		24	
121	65Be	23 16 15	l	177	R/S	51	1
122	STOD	35 14		1			
				1			
123	RCL 0	36 00		1			
124	RCLC	36 13		1			1
125	-	-45		ļ			1
126	STOO	35 00		1			ľ
127							
	6SBe	23 16 15					
128	STOC	35 13		ŀ			i
129	RTN	24					
130	*LBLE	21 15					1
131	EEX	-23		1			
			1	ì			1
132	2	02	1	I			l
133	÷	-24					f
134	1	91	Į.	ŀ			
135	÷	-5 5	1 + i → R ₀	ł			
136	STOO		1 + 1 -> 100	1			
		35 00		1			
137	*LELe	21 16 15		1			
138	Ð	99		1			i
139	*LBL4	21 84	1	1			
140	RCLB	36 00	Continued fractions are	1			
				ŀ			
141	RCL:	36 45	used to find the PV of	l			1
142	FRC	16 44	the cash flows.	l			1
143	AB5	16 31		l			1
144	EEX	-23		1			1
				l .			1
145	2	92	1	Ī			I I
146	×	- 35					
147	CHS	-22	ł.				į.
148	γ×	31	Į.				
149	x	-35					
			į.				1
150	1	ē1]			l
151	LSTX	16-63	1	I			1
152	-	-45	i	l			[
153	RCL i	36 45	I	l			I I
			I	l			j l
154	INT	16 34	I	l			l i
155	X	-35	I	I			ı
156	+	- 5 5	I	l			ı l
157	DSZI	16 25 46	I	1			
158	GT04	22 04	I	l			1 1
			i	I			i i
159	RCLI	3 6 46	I				ı I
160	1	01	I	l			, !
161	e	00		l			l
162	1	01		I		j	l l
				I			l J
163	X	-35		1			l
164	STOI	35 46		Ì			
165	XZY	-41	DCF	l			
166	RCL0	36 00	-INV = NPV	l			1
			'				l i
167	1	01					
168	-	-45					
			LABELS	L	FLACC		057.0715
A INV	Blan	on CE C CE	# D IDD E		FLAGS 0		SET STATUS
			. # 10 ioo E i				

			ADELS		FLAGS	1	SEI SIAIUS	
A INV	B Large CF	C CF↑#	D IRR	E Used	0	FLAGS	TRIG	DISP
a	b	^c Used	d IRR	e Used	1	ON OFF	DEG 🐼	FIX 🐹
⁰ Used	¹ Used	2	3 Used	4 Used	2	1 🗆 🗵	GRAD 🗆	SCI 🗆
⁵ Used	6	7 Used	8	9	3	2 🗆 🕱	RAD 🗆	ENG □ n <u>4</u>

DISCOUNTED CASH FLOW ANALYSIS NET PRESENT VALUE

981	#LBLA	21 11		957 A	tLBLe 21	16 15	
882	CHS	-22	-NPV→R _A	858		23 88	Print option
983	STOR	35 11	0→R ₉	859		22 81	
804	0	99	1→R _C				
985	ST09	35 09	1	868		21 00	
886	1	61		961	1	91	
	STOC			862	RTN	24	
887		35 13			¢LBL1	21 01	
988	RCLA	36 11		864	8	99	
009	CHS	-22		665	CFØ 16	22 00	
010	GSB9	23 09		866	RTN	24	
011	RTN	24				21 89	
812	#LBLB	21 12	i/100→R _B	868		23 00	
013	EEX	-23	_	869		22 82	
814	2	92		676		51	
015	÷ .	-24	İ		R/S		
016	STOR	35 12		871	RTN	24	i
			1			21 02	
017	LSTX	16-63	1	073		-14	
018	×	-35	1	874	R/S	51	i i
819	RTN	24					!
929	*LBLC	21 13	#→R _C	l			
021	STOC	35 13	1				
022	RTN	24		l			
923	*T8TD	21 14	I	l		j	
924	STOD	35 14	I	l			
025	1	01	!	l		į	
826	RCLB	36 12	į.				
027	+	-55					
	RCLC		Calculate present value of	l			
928		36 13	series.	i			
829	ST+9	35-55 89					
838	YX	31		l			
631	STOE	35 15		l			
032	RCLA	36 11	1	l			
033	×	-35		ŀ			
834	RCLE	36 15					
835	1	61	1				
036	_*	-45		l			
837	RCLB		l.				
038	KULD			l			
1 035	_	36 12		ŀ			
	÷	-24					
839	RCLD	-24 36 14					
039 040	RCLD X	-24 36 14 -35					
839 848 841	RCLD X +	-24 36 14 -35 -55					
839 648 841 842	RCLD X	-24 36 14 -35 -55 35 11					
839 848 841	RCLD X +	-24 36 14 -35 -55 35 11 01					
839 648 841 842	RCLD X + STOA	-24 36 14 -35 -55 35 11 01					
039 640 641 642 843	RCLD X + STOA 1	-24 36 14 -35 -55 35 11					
839 848 841 842 843 844 845	RCLD X + STOA 1 RCLB +	-24 36 14 -35 -55 35 11 01 36 12 -55					
039 040 041 042 043 044 045	RCLD X + STOA 1 RCLB + RCL9	-24 36 14 -35 -55 35 11 01 36 12 -55 36 09					
839 840 841 842 843 844 845 846	RCLD X + STOA 1 RCLB + RCL9 Y×	-24 36 14 -35 -55 35 11 -01 36 12 -55 36 09 31					
839 848 841 842 843 844 845 846 847	RCLD X + STOA 1 RCLB + RCL9 YX ÷	-24 36 14 -35 -55 35 11 01 36 12 -55 36 09 31 -24					
839 848 841 842 843 844 845 846 847 848	RCLD X + STOA 1 RCLB + RCL9 YX ÷	-24 36 14 -35 -55 35 11 01 36 12 -55 36 09 31 -24 01					
839 640 841 842 843 844 845 846 847 849	RCLD X + STOA 1 RCLB + RCL9 YX ÷ 1 STOC	-24 36 14 -35 -55 35 11 36 12 -55 36 09 31 -24 01 35 13					
839 640 641 642 843 844 845 846 849 859	RCLD X + STOA 1 RCLB + RCL9 YX ÷ 1 STOC R4	-24 36 14 -35 -55 35 11 36 12 -55 36 09 31 -24 01 35 13 -31	Reset n to 1.				
839 640 641 642 643 844 845 846 847 848 851 851	RCLD X + STOR I RCLB + RCL9 YX ÷ I STOC R4 ESB9	-24 36 14 -35 -55 35 11 01 36 12 -55 36 09 31 -24 01 35 13 -31 23 09	Reset n to 1.				
839 848 841 941 943 844 845 846 849 858 851 853	RCLD X + + SIGA 1 RCLB + + RCL9 YX ÷ 1 SIGC RAY GSB9 RTN	-24 36 14 -35 -55 35 11 01 36 12 -55 36 09 31 -24 01 35 13 -31 23 09 24	Reset n to 1.				
839 640 641 642 643 844 845 846 847 848 851 851	RCLD X + STOR I RCLB + RCL9 YX ÷ I STOC R4 ESB9	-24 36 14 -35 -55 35 11 36 12 -55 36 69 31 -24 91 35 13 -23 89 24 21 15	Reset n to 1.				
839 848 841 941 943 844 845 846 849 858 851 853	RCLD X + + SIGA 1 RCLB + + RCL9 YX ÷ 1 SIGC RAY GSB9 RTN	-24 36 14 -35 -55 35 11 01 36 12 -55 36 09 31 -24 01 35 13 -31 23 09 24					
839 848 841 942 943 844 945 846 947 948 951 952 953 954 955	RCLD X + + + STOM I RCLB + + RCL9 Y X ÷ 1 STOC R4 CSB9 RTN #LBLE RCL9	-24 36 14 -35 -55 35 11 81 36 12 -55 36 89 13 -24 91 35 13 -31 23 89 24 21 15 36 89	Reset n to 1. Recall Σn				
839 848 941 943 944 845 846 847 949 958 851 953 954	RCLD X + + STOA 1 RCLB + + RCL9 Y = 1 STOC R4 & SS99 RTM *LBLE	-24 36 14 -35 -55 35 11 36 12 -55 36 69 31 -24 91 35 13 -23 89 24 21 15	Recall Σn				
839 840 941 942 943 844 845 846 847 858 851 853 854 855	RCLD X + + + STOM I RCLB + + RCL9 Y X ÷ 1 STOC R4 CSB9 RTN #LBLE RCL9	-24 36 14 -35 -55 35 11 01 36 12 -55 36 09 31 -24 01 35 13 -31 23 89 24 21 15 36 09 24	Recall Σn	STERS		1	T6
839 848 841 942 943 844 945 846 947 948 951 952 953 954 955	RCLD X + + + STOM I RCLB + + RCL9 Y X ÷ 1 STOC R4 CSB9 RTN #LBLE RCL9	-24 36 14 -35 -55 35 11 81 36 12 -55 36 89 13 -24 91 35 13 -31 23 89 24 21 15 36 89	Recall Σn	STERS 5	6	17	å 9 Ση
839 848 841 842 843 844 845 846 847 848 849 851 852 854 856	RCLD X + SIDA 1 RCLB + RCL9 Y× ÷ 1 STOC RIN RELE RCL9 RTN	24 36 14 -35 -55 35 11 91 36 12 -55 36 99 31 -24 91 35 13 -31 23 99 24 21 15 36 99 24	Recall Σn REGI:	5			2n
839 840 941 942 943 844 845 846 847 858 851 853 854 855	RCLD X + + + STOM I RCLB + + RCL9 Y X ÷ 1 STOC R4 CSB9 RTN #LBLE RCL9	-24 36 14 -35 -55 35 11 01 36 12 -55 36 09 31 -24 01 35 13 -31 23 89 24 21 15 36 09 24	Recall Σn		6 S6	7 57	8 9 Σn 58 59
839 848 841 842 843 844 845 846 849 958 851 852 853 854	RCLD X + SIDA 1 RCLB + RCL9 Y× ÷ 1 STOC RIN RELE RCL9 RTN	24 24 25 24 25 25 25 25 25 25 25 25 25 25 25 25 25	Recall Σn REGI 3 4 S3 S4	5 S5	S6	S7	S8 S9
839 848 841 842 843 844 845 846 847 848 849 851 852 854 856	RCLD X + SIGA I I RCLB + RCL9 Y + I SIGC R4 GSB9 RTM *LBLE RCL9 RTM	24 36 14 -35 -55 35 11 91 36 12 -55 36 99 31 -24 91 35 13 -31 23 99 24 21 15 36 99 24	Recall Σn REGI:	5			2n

A INV B i(%) C	LABELS # D	NPV E Σn	FLAGS O Print?	SET STATUS	
a b c c c c c c c c c c c c c c c c c c	d d	e Print? 4 9 Used	2 1	DEG	FIX E SCI C ENG C 1 2

]

3

3

DIRECT REDUCTION LOANS SINKING FUND

_			_											
	199	#LBLA		21	11	1 _		857	SF1	16 2	21 01	1		
1 4	002	STOA		35	11	n→R _A		058	1		01	1		
	003	F3?		23	83	Digit entere	ed?	859	RCLB	3	6 12	i/1	00→R,)
	884	RTM			24			868	z	•	55			
	005	6SB8		27	99	1		861	ST09	,	15 89	1		ĺ
	886	RCLE			15	Solve for n	and store in RA.			3		1 /4		
						00.10.10.11	und store in ma.	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	+	_	-55	1 "	+ i) → R	7
	987	LSTX			-63			663	ST07		15 07	1		
	800	-			-45			964	RCLA	3	86 11			į
(009	RCLD		36	14			865	CHS		-22	(1	+ i) ⁻ⁿ →	·R ₈
-1 (010	LSTX		16-	-63	1		966	γ×		31			
1 /	011	_		-	-45	1		967	\$108	7	5 ès	1		
1 6	812	÷		_	-24	1		868	RCLE		36 15	i		
	013	ĹN			32			069	X		-35	1 1.	(1 + i)	-np .
	814			~	97 97			878	Î,				11 + 17	⊸n4
		RCL?	•							_	91			
	915	LN			32			071	RCL8	3	36 68	1		
	816	÷			-24	I		072	-		-45		culate	
	817	STOA		35	11	1		873	5704	3	I5 04		±(PMT)	
6	816	RTN			24	1		874	RCLC	3	6 13	and	store i	n :
1 6	919	*LBLC	- :	21	13	PMT→R _C		075	RCL9	3	6 09	ı	R ₃	ı
	920	STOC			13	Digit entere	d?	876	-		-24	i i		
	921	F3?	16			1 *		877	F12	1€ 2		1		
	122	RTN			24	1		078	CHS		-22	1		_
	323	7/1				C	v 1 for PMT.					1 .	мт Г	1 7 1
			_		01	J Store dumin	IN I TOF PIVIT.	879	\$103	3	5 03	±-		1 '- (1 + i) ⁻ⁿ
	324	STOC		35				080	_ X		-35		' L	J
	325	GSB0	2	?3				681	RTN		24			
	92€	1/X			52	Solve for PN	AT and store in	082	*LBLa	21 1	6 11	Sta	rt by cl	earing PMT,
0	327	RCLD	3	36	14	R _C .		683	ELX		-51			AL) registers.
0	328	R†	1	6-	31	1 -		084	STOC	3	5 13			,
0	29	_		-	45	1		085	STOD	3	5 14			i
l a	38	x		_	35			886	STOE		5 15	1		
	31	STOC	- 7	5				887	RTN		24	1		
	32	RTN			24			888	*LBLB	•	1 12			
												i→i	₹R	
	33	*LBLD		1		PV→RD		089	STOB		5 12	Dia	it enter	ed?
	34	STOD		5		Digit entere	d?	090	F3?	16 2		1 *		
	35	F3?	16 2			j		091	RTN		24	1		į.
8	36	RTN			24	ì		892	8		88	Cla	D 4	
0	37	6SB0	2	3 1	88	Solve for PV	and store in	093	STOB	′ 3	5 12			or sum of i
1 0	38	+		-5	55	RD.	and store in	094	2		82	terr		
l a	39	STOD	.3	5		''b.		095	1		81	Sto	re addre	ess of R _B in
	40	RTN	-		24			096	STOI	7	5 46	R _I	for indi	rect access.
	41	*LBLE	2	1 3				769	RCLE		6 15			1
						FV(BAL)→I						ſ		I
	42	STOE		5 :		Digit entered	17	698	RCLA		6 11	1		I
	43	F3?	16 2			1		099	RCLC	3	6 13	Star	t guess	of it
	44	RTN			24	1		100	×		-35			FV(BAL)
	45	6SB0		3 6		1		101	+		-55	Ι '		, V (DAL)
9	46	RCLD	3	6 3	14	Solve for FV	(RAL) and	102	RCLD	3	6 14	1		
8	47	XZY		-4	11	store in R _F .	(Orth) and	103	X=8?	1	6-43			TO FV(BAL)
	48			-4	45	Store III NE.		184	ET03		2 03	gue		
	49	RCLB		6 6				105	-	-	-45		guess fo	
	50	÷	•		24			106	RCLA	7.	6 11	n P	MT + F	V(BAL) – PV
	5 <i>1</i>	STOE	,	5 j				107	KLLH ÷	31	-24			<u> </u>
			3			I	i		•	_		1		.:. 1
	52	RTN	_		24			108	RCLD		6 14	and	recall i	-v.
	53	*LBL0		1 6		Clear FV (BA	L) flag.	109	GTO4		2 84	1		l
	54	CF1	16 2			If PV = 0 set	FV(BAL)	110	*LBL3	5	1 03	FV4	BAL) a	uess for i
	55	RCLD		6 1		flag.		111	RCLE	3(6 15		erator:	
0:	56	X=0?	1	6-4	13] ~		112	LSTX		6-63	1		į
				_		•	REGIS	TERS						
0		11		2		13			16	1-		-To		
ľ		ſ				3 ±(PMT/i)	4 [1-(1+i)-n]	J	6 n(1+i)	-n-1 ⁷	(1 + i)	⁸ (1 -	⊦ i) ⁻ⁿ	9 i/100
SO		S1		S2		S3		S5	S6				•	
آ		ľ'		Je		Γ~	J-1	33	100	s	/	S8		59
<u></u>		—	В											<u> </u>
I^	n		l _p		i	c	PMT	P	J.	E -	V(BAL)		1	21
ـــــ									·	1 1	V(BAL)		l	21
			_											

168	RCLB	36 12					
167	€SB5	23 05	t ·				
166	CHS	-22	1				
165	÷	-24	f(i)/f'(i)				
164	-	-45					
163	X	-35					
162	RCLE	36 15					
161	RCL6	36 0 6					1
159 160	RCL9 ÷	36 09 -24	1				
158	X	-35	1				
157	RCLC	36 13	1				
156	-	-45					
155	÷	-24					
154	RCL9	36 0 9					
153	RCL4	36 04					
152	LSTX	16-63					
151	F1?	16 23 01		!			
150	ŔĮ	-31					
149	F1?	16 23 01					
148	CLX STO€	-51 35 <i>86</i>	1				
146	F1?	16 23 01					
145	X	-35					
144	÷	-24					
143	RCL7	36 07	Carculate 1 (I)				
142	RCLA	36 11	Calculate f'(i)	l			
141	RCL8	3 6 08	1	1			İ
149	-	-45		l			1
139	RCLD	36 14		l			1
138	CHS	-22		l			1
137	F1?	16 23 81	Calculate f(i)	Ì			1
136	+356	23 00 -55		I			
134 135	*LBL6 GSB0	21 06		l			1
133	RTN	24	İ	ĺ			1
132	X=0?	16-43	If guess = 0 stop	l			1
131	6SP5	23 05					
130	XIY	-41					}
129	x∠Y?	16-35					1
128	CHS	-22					1
127	9	89	- "	l			1
126		-62	for guess	1,	V-2	31	
125	÷	-24	IF guess < ~0.9; use -0.9	181	R/S	24 51	
124	#LBL4	21 84	Guess for i	180	RTN	24	
123	+	-55		179	X ST+;	-35 35-55 45	
122	RCLE	36 15	1	177 179	,2	02 -75	to content of R _B .
121	KLLL	36 13 -35		176	EEX	-23	Convert i to % and add
119	RCLC	53 36 13		175	*LBL5	21 05	
118	-	-45 57	1	174	RTN	24	
117	1	6 1	(n - 1)2 PMT + FV(BAL)	173	RCLB	36 12	Stop and display
116	RCLA	36 11	and denominator	172	GT06	22 0 6	
115	+	-55		171	x≠8?	16-42	
114	ENTT	-21		178	RND	16 24	If value ≠ 0, loop again.
113	-	~45	2(FV(BAL) - n PMT)	169	÷	-24	1

]

3

3

\vdash				ABELS	FLAGS	1	SET STATUS		
Ĺ	n	B i	С РМТ	D PV	E FV(BAL)	0	FLAGS	TRIG	DISP
a	START	b	С	d	е	1 PV = 0	ON OFF	DEG 🗷	FIX K
0	Calc.	1	2	³ FV guess	4 guess	2	1 🗆 🛭	GRAD □	SCI 🗆
5	i→%	6 loop	7	8	9	³ Digit?	3 🗆 😡	HAU []	n_2_

ACCUMULATED INTEREST/REMAINING BALANCE

								
1	001	*LBLA	21 11		857	#LBLa	21 16 11	
1	002	RCLØ	36 00	Line	658	RCL7	36 07	1
1	003	ST07	35 97	J→R ₇	059	FØ?	16 23 00	
	004	XZY	-41	K→R ₀	868	SPC	16-11	
1	005	ST08	35 00	1	861	£SB9	23 09	J
1	006	RTN	24	į	062	1	81	
1	887	*LBLB	21 12		863	RCL1	36 01	
1	808	EEX	-23		964	+	-55	
1	009	2	82	i/100→R ₁	065	ST08	35 08	
1	010	÷	-24	!	966	RCL7	36 87	1
1	119	STOI	35 01	1	967	ESB1	23 81	
1	812	LSTX	16-63	}	868	ST04	35 04	
1	013	×	-35	1	869	RCLB	36 08	
1	014	RTN	24		878	RCL7	36 07	
1	015	*LBLC	21 13	l	871	1	01	
	016	ST02	35 02	PMT→R ₂	072		-45	
	017	RTN	24	1	073	ESB1	23 81	
1	018	*LBLD	21 14	1	074	RCL4	36 84	
1	019	ST03	35 83	I	875	-	-45	
1	020	RTN	24	PV→R ₃	676	ST06	35 Ø6	1
1	821	*LBLE	21 15		077	RCL2	36 82	1
1	822	RCLO	36 00		078	XZY	-41	1 1
1	023	RCL7	36 07	l .	079	- ·	-45	INT
1	024	XY?	16-35	ľ	080	6SB9	23 09	1 """
1	825	CT00	22 00	į.	189	RCL6	36 06	1
1	026	STOP	35 00	l	082	ESB9	23 0 9	PRINC
1	827	R↓	-31	l	083	RCL4	23 09 36 04	' ITING
1	028	ST07	35 07		884	GSB9	23 89	0041
1	029	*LBL0	21 88		085	RCL7	36 97	RBALJ
1	030	*LBL0	21 88	l	886	RCL2	36 82	
1	031	RCL1	36 01	I	087	KLL2		
1	032	+	-55	(1 + i/100) → R ₈	688	RCL3	-35 36 83	ł I
1	03Z	STO8	35 0 8	11 - 17 1007 - 718	989	RCL 3	36 03 36 04	ł
1	033 034	RCLO	35 08 36 00	l	898	KLL4	36 84 -45	1
1	035	GSB1	36 66 23 81	مر بم	891	-	-45 -45	1
1	036	ST04	35 04	BAL _K →R ₄	892	GSB9		
1	837	RCL8	36 08		893	6589	23 89	TOT INT
1	838	RCL7	36 <i>0</i> 7	l	894	ST+7	01 35-55 07	Į l
	039	1	90 87		095	RCLO	36 88	Į
	040	_,	-45	l	896	RCL7	36 87	ļ l
1	841	ESB1	23 81	1	897	XEY?	16-35	Į
1	842	CHS	-22	-BAL _{J-1}	898	GT0a	22 16 11	J ≤ K?
1	843	RCL4	36 Ø4	i	699	RTH		1
1	844	+	-55	l	100	*LBL1	24 21 01	
1	045	ST06	35 Ø6	BALK - BALJ-1 → R6	101	CHS	-22 -22	1
1	846	RCLB	36 00		102	yx Yx	31	1
i	847	RCL7	36 07		102	ST05	35 Ø5	
1	648		- 4 5		103	3103	35 85 81	1
1	849	1	81		105	_1	-45	1
	658	,	-55		106	RCL1	-45 36 01.	1
1	05 1	RCL2	36 02		107	KCTI	36 81. -24	
1	05 2	X	-35		106	RCL2	36 02]
1	853	÷	-55		100	KLL2	-35	Į l
1	854	RTN	24	l	110	RCL3	36 03	
	055	RCL4	36 84	INT _{J-K}	111	*CL3	-55	1
	056	R/S	51	BALK	112	RCL5	36 8 5	
-						KLLJ	30 93	
0 .		Iı -	la la	REGIS	TERS	Te -	Ta	10
۱ ۱	K	i/100	² PMT	3 PV Used	5 Used	6 Used	7 J	8 1+i/100 ⁹
S0		S1	52		S5	S6	S7	S8 S9
1		Γ'	 	~~ **		اعو	٥′	20 29
<u> </u>			<u> </u>	T _C	D		TE .	
ľ		ľ	-	ا			ļ ^e	<u>'</u>
							1	

	115 *L 116 117 6 118 119 120 121 *L 122 123 124 125 *L 126 127 6 129 130 *L 131 P	RTM Section RTM RT	24	may be inserted	here.					
A	132 133	RTM R/S S	LAI C PMT	BELS D PV	€INT		FLAGS ⁰ Print?	FLAGS	SET STATUS TRIG	DISP
a	SKD	b	С	d	e Prir	it?	1	ON OFF		
0	Used	1 Used	² Used	3 Used	4		2	0 🗆 🗷 1 🗆 🗷	DEG ⊠ GRAD □	FIX ⊠ SCI □
\perp	-300	0360	Useu	Useu	L		1	2 1 2	BAD 0	ENG [

9 Used

3

WRAP-AROUND MORTGAGE

_				т				· · · · · · · · · · · · · · · · · · ·
1	98 1	#LBLA	21 11	l	857	×	-35	1
1	882	CLRC	16-53	-n ₁ →R ₁	858	+	-55	
1	803	CHS	-22	PMT ₁ → R ₃	859	RCL5	36 05	
	884	ST01	35 01	-PV ₁ → R ₅	969	RCL6	36 0 6	i
1	885	R₽	-31		861	X	-35	
	886	ST03	35 83	1	062	-	-45	f(x)
	887	R↓	-31	ł	863	STOI	35 46	
	988	CHS	-22	i	964	RCL8	36 88	
1	889	ST05	35 05	1	065	RCL1	36 01	1
1	818	RCL1	36 01		066	х	-35	1
	811	CHS	-22		867	RCL3	36 83	1
	012	RTN	24	 	868	×	-35	i
	013	*LBLC	21 13		069	RCL9	36 89	1
	014	CHS	-22	-n ₂ → R ₂	878	RCL2	36 82	1
	815	ST02	35 82	PMT ₂ → R ₄	871	X	-35	1
	016	R↓	-31	PV ₂ - PV ₁ → R ₅	872	RCL4	36 04	1
	817	STO4	35 Ø4	1	873	×	-35	1
	018	R.	-31		074	_	-45	i l
	019	ST+5	35-55 05	1	075	RCL7	36 97	1 1
1	828	RCL2	36 82	1	876	÷	-24	1
i	821	CHS	-22		077	RCLE	36 15	1
1		RTN	- <i>22</i> 24	1	678	RCL6	36 0 6	1
1	Ø22		21 14	BAL→R ₀	879	÷	-24	1
1	823	#LBLD		BAC 7 No	888	-	-45	i l
	024	STOO	35 00			RCLØ	36 00	1
1	825	RTN	24		881			1 1
	02 6	*LBLE	21 15		982 983	RCL2	36 02	1
1	827	EEX	-23	Initial guess	034		-35	1
1	928	CHS	-22	i→R ₆		RCL6	36 0 6	1
	029	3	83		885		-35	1
1	038	ST06	35 06		88€	RCL9	36 09	
1	031	*LBL0	21 00		087	X	-35	1
1	032	1	81	Newton's method is used to	638	RCL7	36 87	i I
1	033	RCL &	36 06	find i.	889	÷	-24	ì
	034	1	01		698	+	-55	f(x)/f'(x)
	03 5	+	-55	ļ	691	÷ .	-24	
1	03 6	ST07	35 07		092	ST-6	35-45 06	1
1	937	RCL2	36 82		093	AB\$	16 31	i i
ı	038	Y×	31		894	EEX	-23	Is this within desired
1	039	ST09	35 8 9		095	CHS	-22	range? If not, go to 0.
1	848	-	-45		836	6	06	Otherwise multiply by
	841	RCL4	36 84		097	X≟Y?	16-35	100 and display periodic
1	842	×	-35		898	ST08	22 00	yield.
1	843	1	0 1		899	RCL6	36 86	1
1	844	RCL7	3€ 07		100	EEX	-23	
1	845	RCL1	36 01		101	. 2	82	
1	846	Y×	31		102	×	-35	
1	847	ST08	35 <i>08</i>		183	RTN	24	l
1	648		-45		104	#LBLa	21 16 11	
1	049	RÇL3	36 63		105	STOR	35 11	n→R _A
1	050	×	-35		106	RTN	24	1 " "
1	051	-	-45		107	*LBLb	21 16 12	1 1
1	052	STOE	35 15		108	EEX	-23	i/100→R _B
1	653	RCL9	3€ 09		109	2	92	, , , oo , mg
1	054	RCL0	36 0 0		110	÷	-24	1
1	855	×	-35		111	STOB	35 12	Į l
L	856	RCL6	36 06		112	LSTX	16-63	1
				REGIS	TERS			
0	BAL	1 -01	2 -n ₂	3 PMT ₁ 4 PMT ₂	⁵ PV ₂ - PV	6 .	7	8 (1 + i)-n1 9 (1 + i)-n2
\perp	3/1						′ 1+i	
SO		S1	S2	S3 S4	S5	\$6	S7	S8 S9
L				<u> </u>			1	
A			В ;	C	D		Ε	- I
\Box	n		i	PMT	PV		Used	Used

1133	PV→R _D Calculate PMT and store in R _C .				
An, PMT, PV	LABELS IT ₂ ,PV ₂ D BAL E →	FLAGS i 0		ET STATUS	
a n b i c→PM		1	FLAGS ON OFF 0 □ ☑	TRIG	DISP
0 1 2 5 6 7	3 4 8 9	3	0	DEG ₪ GRAD □ RAD □	FIX IX SCI DENG D

CONSTANT PAYMENT TO PRINCIPAL LOAN AMORTIZATION SCHEDULE

861	*LBLA	21 11		857	RCLB	36 12	
002	CF1	16 22 01	!	858	X	-35	1
883	STOO	35 00	K→R _o	859	RCLD	36 14	1
		23 89	i	969	X	-35	
084	ESB9		1	861	F1?	16 23 81	
005	RTN	24	ł				
886	*LBLB	21 12	://aa . B	062	RTN	24	TOT 11.T
997	EEX	-23	i/100→R _B	063	esb9	23 09	TOT INT
888	2	92		864	RCLD	36 14	
889	÷	-24		065	RCLC	36 13	
618	STOB	35 12		866	÷	-24	Is loan paid off?
011	LSTX	16-63		967	RCLO	36 00	
612	LJIA	-35		868	X>Y?	16-34	
		-33 24		069	RTN	24	l
813	RTN			678	SPC	16-11	i
014	*LBLC	21 13					1
015	STOC	35 13	CPMT→R _C	071	6889	23 89	1
016	RTN	24		872	ETOE	22 15	1
017	*LBLD	21 14	ł.	073	*LBLa	21 16 11	
018	STOD	35 14	PV→R _D	674	5F1	16 21 01	K→R ₀
819	RTN	24		075	STOB	35 66	J→R ₈
628	*LBLE	21 15	1	876	X≢Y	-41	· ··•
	RCLD	36 14	1	077	ST08	35 88	
821			1	078	1	91	
022	RCLC	36 13	1				1
023	RCLØ	36 90	1	079	ST+0	35-55 00	I
624	×	-35	1	089	esb0	23 00	TOT INT _{K+1}
025	-	-45	1	881	STOI	35 46	1
826	STOE	35 15	RBAL→R _E	082	RCL8	36 08	1
827	RCLC	36 13		883	ST00	35 00	1
628	#	-55		984	6SB0	23 88	TOT INT.
				e85	RCLI	36 46	101 11113
829	RCLB	36 12	1	886	XZY	-41	
838	×	-35	1		A+1		1
831	ST09	35 09	PMT _i →R ₉	087	-	-45	
032	1	01	Increment for next period.	688	68B9	23 @9	TOT INTK+1- TOT INTJ
e3 3	ST+Ø	35-55 00		889	RTN	24	
834	RCL9	36 09	1	098	*LBLe	21 16 15	1
035	ESB9	23 09	INT	691	F0?	16 23 00	Print/pause flag
036	RCLC	36 13	["""	892	GT01	22 81	1/pause nay
637	KCEC	-55	1	893	SFØ	16 21 00	1
			ŀ	094	3, 0	01	1
938	£SB9	23 89	TOT PMT			24	1
633	RCLE	36 15	I	095	RTN		1
848	68 B 9	23 09	RBAL	096	*LBL1	21 01	1
841	*LBL0	21 00		697	ø	99	1
842	2	02	l	898	CF0	16 22 00	1
843	RCLO	36 80	(2 - K) CPMT	899	RTN	24	i
844	-	-45		100	≠LBL9	21 09	i
	RCLC	36 13	PV	101	F8?	16 23 00	1 50.7
845			2	182	6102	22 82	Print/pause routine.
846	×	-35	11	102	R/S		1
947	RCLD	36 14	L			51	1
948	÷	-24	1	104	RTN	24	1
849	2	62	1	105	*LBL2	21 02	I
050	+	-55	1	106	PRTX	-14	1
051	2	02	1	107	RTN	24	1
052	÷	-24	1	108	R/S	51	1
	RCLB		1	1	•		1
053		36 00		1			1
854	1	91	1	1			1
Ø 55	-	-45	1	1			Į.
856	×	-35	1	l			
			REGI	STERS		•	****
0 ,	Ti .	2	3 4	15	6	7	18 , 19 5447
[□] K	ľ	ľ	T I	ľ	ľ	ľ	B J B PMT!
S0	S1	S2	S3 S4	Š5	S6	S7	S8 S9
اعا	31	102	²⁴	1 3	30	l"	100
ļ	Ь			<u> </u>			
!^		B i/100	С СРМТ	D PV		E RBAL	Used
L							

LABELS	-											
a the b I c d e b a l ON OFF										•		
a the b I c d e b a l ON OFF												
a the b I c d e b a l ON OFF	1											
a the b I c d e b a l ON OFF]				
a the b I c d e b a l ON OFF	1							1				
a the b I c d e b a l ON OFF												
a the b I c d e b a l ON OFF	1											
a the b I c d e b a l ON OFF											İ	
a the b I c d e b a l ON OFF												
a the b I c d e b a l ON OFF												
a the b I c d e b a l ON OFF												
a the b I c d e b a l ON OFF											1	
a the b I c d e b a l ON OFF												
a the b I c d e b a l ON OFF								1				ļ
a the b I c d e b a l ON OFF				l								
a the b I c d e b a l ON OFF												
a the b I c d e b a l ON OFF												
a the b I c d e b a l ON OFF												
a the b I c d e b a l ON OFF				,								
a the b I c d e b a l ON OFF				ĺ								
a the b I c d e b a l ON OFF												ļ
a the b I c d e b a l ON OFF				-								İ
a the b I c d e b a l ON OFF	1											i
a the b I c d e b a l ON OFF											ì	
a the b I c d e b a l ON OFF	1											
a the b I c d e b a l ON OFF				İ								
a the b I c d e b a 1 ON OFF				ł								
a the b I c d e b a 1 ON OFF												
a the b I c d e b a 1 ON OFF				ļ							1	
a the b I c d e b a 1 ON OFF]	
a the b I c d e b a 1 ON OFF												1
a the b I c d e b a 1 ON OFF				1]	
a the b I c d e b a 1 ON OFF												ļ
a the b I c d e b a 1 ON OFF	L											
a the b I c d e b a 1 ON OFF	A	К	В	C CPM	LAE	D PV	E cu	ED				
0 Used 1 Used 2 Used 3 4 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	a		<u> </u>						1 Print?	ON OFF		
5 6 7 8 9 Used 3 3 RAD C ENG C	0			² Used		3	1		2	1 🗆 🗵	DEG โ⊠ GRAD □	FIX kū SCI □
	5					8	9 Us	ed	3	2 🗆 🗷 3 🗎 🗷	RAD 🗆	ENG □

ADD-ON RATE INSTALLMENT LOAN/INTEREST REBATE—RULE OF 78's

831	*LBLA	21 11		657	1	01	
882	\$100	35 00	ODD x 12 = h	658	+	-55	l
003	1	91	365	85 9	ST06	35 <i>6</i> 6	Calculate f(i)
884	2	02		860	RCL2	36 82	i I
005	×	-35	1	961	CHS	-22	1
886	3	63		962	Y*	31	l
887	6	96		963	ST07	35 07	1 1
008	5	65		864	-	-45	l i
009	÷	-24		865	RCLO	36 00	1
819	STOI	35 01		866	÷	-24	
011	X₽Y	-41		967	RCL5	36 05	1 1
012	ST02	35 02		968	×	-35	
013	RCLO	36 00		069	RCL6	36 86	1
e14	RTN	24		078	RCL1	36 01	
815	*LBLB	21 12		871	γ×	31	
016	STO3	35 93	AIR→R ₃	872	RCL4	36 84	ļ
017	RTN	24		873	×	-35	
018	*LBLC	21 13		974		-45	
019	ST04	35 84	AMT→R ₄	875	RCL7	36 97	
828	RTN	24		076	RCL6	36 96	Calculate f'(i)
021	*LBLD	21 14		677	ect a	-24 36 02	į
022	RCL2	36 02		878 879	RCL2	36 92 91	1
023	RCL1	36 01			, 1 +	-55	
024	+.	-55		080 081	×	-35 -35	j !
025	1	Ø1		882	RCLO	36 00	!
026	2	02	г э	083	X	-35	1
027	÷	-24	/N+h\	083 084	^ ₁	-33 01	1
928	RCL3	36 03 -35	III AMT	085	RCL7	36 0 7	1
029	X	-35 -23	$\left[\left(\frac{N+h}{12}\right)AIR\right]AMT$	086	-	-45	l
630	EEX	-23 02	L J	087	RCLE	36 00	1 1
831	.2 ÷	-24		088	+	-55	1
032 033	RCL4	36 04	_	889	-	-45	1
	KCL4 X	-35	FC→R ₀	698	RCLE	36 00	
634 635	STOO	35 00		891	Χz	53	1 1
836	RCL4	3€ 94		892	÷	-24	1
837	+	-55		093	RCL5	36 05	
638	RCL2	36 82	FC + AMT N → R ₅	894	×	-35	
839	÷	-24	N S	095	RCL6	36 06	
848	ST05	35 85		896	RCL1	36 81	1
841	RTN	24		897	Y×	31	1
842	RCLØ	36 00	ŀ	098	RCL6	36 86	1
043	R/S	51		099	÷	-24	1
044	*LPLE	21 15		100	RCL1	36 81	
845	RCL3	36 83	Calculate APR	101	XZY	-41	Į l
846	1	0 1	Galculate AFN	102	X	-35	
047	2	82		103	LSTX	16-63	
848	EEX	-23	Guess = AIR/1200	104		-45	1
849	2	82		105	RCL4	36 04	
958	÷	-24	If AIR = 0 then	186	×	-35	
051	X=0?	16-43	APR = 0	107	-	-45	1
952	RTH	24		108	÷	-24	1
053	STOR	35 08		189	RCLØ	36 00	, _ , f(i)
054	*LBL1	21 01		110	X₽Y	-41 -45	$i_{\mathbf{k}} = i_{\mathbf{k}-1} - \frac{f(i)}{f'(i)}$
055	1	Ø1		111		-45 25 99	! ****
856	RCLB	36 00		112	ST00	35 00	1
				STERS	10		To To
⁰ Used	¹ Used	² Used	3 Used 4 AMT	⁵ PMT	6 1+i/100	7 (1+i/100)	-n ⁸ 9
S0	S1	S2	S3 S4	S5	S6	S7	S8 S9
<u></u>	ــــــــــــــــــــــــــــــــــــــ			ļ	1		
 ^		В	С	D		E	
L			1			L	

113 114	LSTX ABS	16-63 16 31	ls an	swer close enoug	gh?					
115 116	EEX 6	-23 <i>06</i>	i		- 1					
117	CHS	-22	[
118	X≤Y?	16-35	No→	go to LBL 1						
119	ETO1 RCL8	22 81								
121	1	36 00 01							i	
122	2	02	Displ	ay answer	1					1
123	8	96							1	
124 125	ø x	98 -35	ŀ		- 1				ļ	
126	RTN	24							ľ	
127		16 11	1		ı				ļ	
128	\$100	35 00	N→F	0						
129	RTN *LBLb 21	24 16 12							-	
131	S701	35 01	K→R	1	[1	
132	RTN	24	1							
133 134	*LBLc 21 ST02	16 13 35 02	PMT-	. D					1	
135	RTN	33 62	L WIT	7 H₂						
136	*LBLd 21	16 14			- 1				1	
137	ST03	35 03	FC→	R ₃					1	
138 139	RTN *LBLe 21	24 16 15			- }				ł	
140	RCLB	36 00								1
141	RCL 1	36 81	ĺ						1	
142 143	-1	-45			Ī					
144	, 1	<i>01</i> -55	=0	(N – K + 1)						i
145	RCL3	36 Ø3		V(N + 1)	i					I
146	×	-35		•(1• / 1)					i	i
147 148	RCL0 X2	36 00 53	ŀ		- 1					
149	LSTX	16-63			İ					ł
150	+	-55	1		- 1					
151	eci o	-24			- 1					
152 153	RCL0 RCL1	36 00 36 01		7					l	
154	-	-45	(N-K	FC(N - K + 1)	<u>''</u>				1	1
155	*	-35		L M(M+1)	J				1	ļ
156 157	STO4 RTN	35 Ø4 24	(Reba	te)	i				1	i
158	RCL2	36 02	l							İ
1 59	RCL 0	36 00	PMT(N	I – K) – Rebate						ļ
169 161	RCL 1	36 81							1	1
162	×	-45 -35	l					•		İ
163	RCL 4	36 04							1	ľ
164	-	-45								
165	R/S	51							1	
									1	1
A NTODD	В мгс	IC A		BELS In -	le .	\dashv	FLAGS		SET STATUS	
	B AIR		ИТ	D PMT, FC	E APR		0	FLAGS	TRIG	DISP
a N		C PA	/T	d FC	e REB,	BAL	1	ON OFF	DEG 🛭	FIX 🛣
0	1 Used	2		3	4	1	2	1 🗆 🛣	GRAD □	SCI 🗆
5	6	7		8	9		3	2 🗆 🕱	RAD 🗆	ENG □ n_2
								3 □ 1x0		··-

SAVINGS PLAN—LEASES

			r	 			т
661	*LBLA	21 11	n→R _A	857	SF1	16 21 01	1
882	STOA	35 11	Digit entered?	858	1	01	i/100→R₀
863	F3?	16 23 83	Digit entered?	859	RCLB	36 12	1/100→ N ₉
884	RTN	24		869		55	
885	6SB0	23 00		861	ST09	35 89	L 41.3.10
886	RCLE	36 15	Solve for n and store in RA.	962	+	-55	(1 + i) → R ₇
987	LSTX	16-63	Solve for it and store in hg.	863	ST07	35 87	i I
668		-45		964	RCLA	36 11	1 44 - 3-0 - 0
889	RCLD	36 14		965	CHS	-22	(1 + i) ⁻ⁿ →R ₈
010	LSTX	16-63	İ	966	γ×	31	
811	-	-45	1	967	ST08	35 08	ł
012		-24	1	968	RCLE	36 15	i I
813		32	1	869	х.	-35	, I
014		36 07	1	070	1	01	
815	LN	32		871	RCL8	36 08	$1 - (1 + i)^{-n} \rightarrow R_4$
016	÷	-24		972		-45	1
817	STOA	35 11	l	073	STO4	35 64	Calculate ± (PMT/i)
018	RTN	24	1	074	RCLC	36 13	and store in R ₃ .
819	*LBLC	21 13		975	RCL 9	36 69	1 !
828		35 13	PMT→R _C	676	÷	-24	1
821	F3?	16 23 03	Digit entered?	077	F1?	16 23 01	1
822	RTN	24	l .	678	CHS	-22	
823		01	Store dummy 1 for PMT.	079	ST03	35 03	PMT
824	STOC	35 13	l	989	RCL7	36 07	± PMT [1-(1+i)-n] R ₇
825		23 00		981	x	-35	i ' I
826	1/X	52		082	×	-35	
827	RCLD	36 14	Solve for PMT and store in	683	RTN	24	1
028	RŤ	16-31	R _C .	884	*LBL.	21 16 11	
829	-	-45		085	CLX	-51	Start by clearing PMT,
636	×	-35		086	STOC	35 13	PV, FV(BAL) registers.
031	STOC	35 13]	887	STOD	35 14	1
632	RTN	24	1	688	STOE	35 15	1
833	*LBLD	21 14	PV→R _D	889	RTN	24]
034	STOD	35 14	ì	090	*LBLB	21 12	i→R _B
835	F3?	16 23 03	Digit entered?	091	STOB	35 12	
036	RTN	24		892	F3?	16 23 83	Digit entered?
637	6SB0	23 00	Solve for PV and store in	693	RTN	24	
638	+	-55	R _D .	094	0	00	Clear R _B for sum of i
639	STOD	35 14	l	895	STOB	35 12	terms.
040	RTN	24	l	096 097	2	92	
041	*LBLE	21 15			1	91	Store address of R _B in
642	STOE	35 15	FV(BAL)→R _E	898	STOL	35 46	R _I for indirect access.
043		16 23 03	Digit entered?	899	RCLE	36 15	
844		24	•	100	RCLA	36 11	Recall FV(BAL), n, PMT
845		23 00	1	101	RCLC X=0?	36 13	1
846	RCLD	36 14	Solve for FV(BAL) and	102	6T08	16-43	If PMT = 0 GTO n, i, PV,
047 048	X≢Y	-41 -45	store in R _E .	103	E108	22 08 -35	FV solution.
849	RCL8	36 00	1		^	-35 -55	1 1
	KLLO	-24		105	PCI 7		Start guess of i: n PMT
959		-24 35 15		186	RCLD	36 14	+ FV(BAL)
851	STOE		I		X=8?	16-43	If PV = 0 GTO FV guess
852	RTN	24		108	6103	22 03	PV guess for i:
953 954	*LBL0	21 00	Clear FV(BAL) flag.	189	DC/ 4	-45 20 11	
	CF1	16 22 01	If PV = 0, set $FV(BAL)$ flag.	110	RCLA	36 11	n PMT + BAL - PV
955 956	RCLD X=8?	36 14 16-43	1	111	RCLD	-24	n
636	N=0?	10-43	l	112	KLLU	36 14	and recall PV
<u> </u>				STERS	-		10
0	1'	2	3 ± (PMT/i) 4 Used	5	6 Use	d ⁷ (1 + i)	⁸ (1 + i) ⁻ⁿ 9 i/100
SO	S1	S2	S3 S4	S5	S6	S7	S8 S9
130	J2,	اعد	55 54	33	36)°′	20 24
A		TB		D		TE .	
ľ	n	P i	С РМТ	PV		FV(BAL)	ľ 21
			L	L			

115 116	RCLE LSTX	36 16-		1	rator:		170 171 172	×	36 15 -35 -45	f(i)/f'(i)	
117 118	ENT†		-45 -21		L – n PMT) and ninator	ı	173	÷	-24		
119	+		-55)2 PMT + BAL		174		- <i>22</i> 23 0 5		
120	RCLA	36	11				176		36 12		
121 122	_1	_	61 45	1			177	+	-24	14	
123	Χz		5 3				178 179		16 24 16-42	If value ≠	0, loop again
124	RCLC	36					180		22 06	ļ	
125 126	PCLE		35	1			181	RCLE	36 12	Stop and	display.
127	RCLE +	36_	15 55				182		24	Compute	i for n, i, PV,
128	*LBL4	21		Guess			183 184		21 08 36 15	FV proble	
129	÷		24	If gues	ss < -0.9, use –	-0.9	185		36 14		
130 131	و و		62 89	for gu	ess		196		-24		
132	CHS		22				187		36 11 52		
133	X≼Y?	16-		1			189	YX	31	1	
134 135	XZY 6SB5	23	4] 05				198		91	1	
136	X=0?	16-		If ques	ss = 0 stop.		191	- DI E	-45		
137	RTN		24				192		21 05 -23	Convert i	to % and add
138	*LBL6	21					194		82	to content	
139 140	€SBØ +	23	ยย 55	Calcul	ate f(i)		195		-35	1	
141	F1?	16 23		Calcul	ate (t)		196 197		35-55 45 24		
142	CHS		22				198		51		
143 144	RCLD	36	14 45	l			ĺ				
145	RCL8	36		i							
146	RCLA	36		Calcula	ate f'(i)		1				
147 148	RCL7	36									
149	×		24 35							İ	
150	F1?	16 23		ı							
151	CLX		51							1	
1 5 2 153	ST06 F1?	35 t		İ						1	
154	R↓		31	1			ľ				
155	F1?	16 23 (
156 157	LSTX RCL4	16-6 36 (1	
158	RCL9	36 6		l							
159	÷	-2	24								
168 161	RCL7	36 (45 97				1				
162	X X		37 35							1	
163	RCL4	36 €	34								
164 165	RCL C	36	55								
166	KLLL	36 I		ĺ							
167	RCL9	36 €	9								
168	+	-2	24	<u> </u>						<u></u>	
n	B	i	C p		D PV	IE ev	(PAL) 0	FLAGS		SET STATUS	
• • • • • • • • • • • • • • • • • • • •			c PI	νт	D PV	FV	(BAL)		FLAGS	TRIG	DISP
CTAST			ı~		ľ	le	ין	PV = 0	ON OFF	DEG ᡚ	1
START			_			+-	~				Î FIX 5⊠
START Calc.	1 6		2		³ FV guess	4 gue	ss 2		1 0 8	GRAD	FIX ₩ SC! □ ENG

ADVANCE PAYMENTS

_														
		*LBLA		21 11	۸ ۵			957	RCLB		36 88			
	002	ST01		35 01	A→R			828	RCL1		36 01			
	883	X≢Y		-41 -22	-n→R	(₀		859	+		~55			
1 1	004	CHS						969	γ×		31			
	005	STOO		35 00				861	1		81			
l i	986	CHS		-22				962	XZY		-41			
1 .	887	XZY		-41				963	-		-45			
	899	X>Y?		16-34	A>n	?		864	RCL2		36 02			
	009	GT02		22 02	Ì			865	÷		-24			
	010	RTN		24	1			966	RCL1		36 01			
		*LBLD		21 14	1			867	+		-55			
	012	STO4		35 84	PV→f	3,		968	RCL3		36 03			
	013	RTN		24		-		869	. x		-35			
		*LBLE		21 15	1			979	RCL7		36 97			
						n . n		071	RCLO		36 00			
	015	ST05		35 05 24	RESIL	D→R₅		072	Yx		31			
	616	RTN	~.		ŀ			973	RCL5		36 85			
				16 13				874	X		-35			
	018	EEX		-23	i/100-	→R ₂			* +		-35 -55			
	019	2		82	l			875 876						
	628	÷		-24	l			976	RCL4		36 64			
	021	ST02		35 02	l			077	-		-45			
	822	1		81	l			078	ST06		35 96			
1	823	+		-55	(1 + i)	(100) → R	17	079	RCL7		36 07	Cald	culate f'(i)
	824	ST07		35 07	l '			080	RCLE		36 00			
	025	RCLO		36 00				081	RCL1		36 91			
	026	YX		31	l			082	+		-55			
	027	RCL5		36 05				083	1		01			
	828	×		-35				084	-		-45			
	629	RCL4		36 04	۱			025	yx		31			
	030	X₽Y		-41	Calcul	ate PMT		986	RCLO		36 00			
	631	A+1		- 4 5				887	CHS		-22			
				36 87				688	RCL1		36 01			
	032	RCL7						989	- KCLI		-45			
	033	RCLE		36 00				698	×		-35			
	034	RCL1		36 01	1				RCL2		36 82			
	035	+		-55				091						
	036	γ×		31				092	X		-35			
	637	1		81	1			093	RCL7		36 97			
	038	XZY		-41				894	RCL0		3€ 00			
i	839	-		-45				095	RCL1		36 01			
	048	RCL2		36 02	1			996	+		-55			
1	041	÷		-24	ĺ			897	γ×		31			
1	942	RCL1		36 81	ŀ			098	1		91			
1	843	+		-55	ĺ			099	K≓Y		-41			
1	844	÷		-24	ĺ			100	-		-45			
	845	RTN		24	ĺ			101	-		-45			
1	846		21	16 12	I			102	RCL2		36 02			
1	847	ST03		35 03	l	_		103	Χz		53			
1	848	EEX		-23	PMT-	≻R ₃		104			-24			
1	040 049	CHŞ		-22	ĺ			105	RCL3		36 83			
1					I			106	X		-35			
1	050	3		03 75 00	l			187	RCL7		36 07			
i	051	STO2		35 02	ĺ			108	RCL9		36 00			
1	852	*LBL0		21 00	ĺ									
1	053	1		01	Calcul	ate f(i)		109	1		01			
1	854	RCL2		36 92	l			118	-		-45			
1	0 55	+		~55	ĺ			111	yx		31			
i	85€	ST07		35 07	1			112	RCL5		36 05			
\vdash							REGIS	STERS						
0		1 .		² i/100	3	DIAT	4 PV	c	6		7/400	18		9
	-n	΄ Α				PMT		RESID	f(i)		i+i/100	1		
S0		S1		S2	S3		S4	S5	S6		S7	S8		S9
<u></u>			1-	L			L		<u> </u>	ــا		١		L
Α			В			С		D		Ε			ľ	
			1			ı		ı		1			1	

LABELS FLAGS SET STATUS	
	A A B IC
a b c d d c c c d	I B.A I⁻ I°
a b →	11, 13
0 Used 1 2 Used 3 4 2 1 □ 8 GRAD □ SCI □ 5 6 7 8 9 3 3 □ 8 □ RAD □ RNG □ 2 □ 8 □ RAD □ RNG □ RN	15, 73

SAVINGS-COMPOUNDING PERIODS DIFFERENT FROM PAYMENT PERIODS

861	*LBLA	21 11	T,	057	x	-35	
992	#LBLH	21 11 -24	If P/C > 1, set flag 0.	958	RCLD	36 14	
003	STOD	-24 35 14		859	+	-55	
804	3,00	35 14 01		860	RCLC	36 13	
865	x≢Ŷ	-41		861	×	-35	
886	X>Y?	16-34	1	962	÷	-24	
887	F8?	16 23 80	I	963	1	01	i
888	RTN	24	1	964	+	-55	
889	*LBLB	21 12		965	LN	32	
818	EEX	-23	l	966	RCLB	36 12	
811	2	82	i/100→R _B	867	1	81	l
812	÷	-24		968	+	-55	
013	STOB	35 12		069	LN	32	1
814	LSTX	16-63		878	÷	-24	l l
015	×	-35		071	RCLD	36 14	1
816	RCLB	36 12		872	X	-35	1
017	1	01		673	RTN	24	
818	+	-55	į	074	*LBLc	21 16 13	If digit entered, store in
819	RCLD	36 14	l	975	STOC	35 13	R _C .
020	1/X	52	C/P -	076	F3?	16 23 03	
821	Y	31	(1 + i) ^{C/P} →R ₉	077	RTN	24	
022	ST09	35 <i>09</i>		978	F@?	16 23 00	
023	XZY	-41		079	GT01	22 01	1
824	RTN	24		080	RCL9	36 89	
825	#LBLa	21 16 11	If digit entered, store in	081	1	01	ļ
826	STOA	35 11	R _A .	982		-45	If P/C ≤ 1, solve for pay-
027	F3?	16 23 83		083	RCL9	36 09	ment amount.
028	RTN	24		084	RCLA	36 11	
829	FØ?	16 23 00	[985	YX	31	ļ
838	6T08	22 00	L	886	1	01	1
031	RCL9	36 89	P/C ≤ 1, solve for number	087	-	-45	1
832	1	01	of payments.	083	÷	-24	1
933		-45		089	RCLE	36 15	
634	RCLE	36 15		898	X	-35	l
835	X	-35		091	RCL9	36 09	
836	RCL9	36 09		692 693	÷ RTN	-24	
837	RCLC	36 13				24	
938	×	-35	ł	894 895	*LBL1 RCLD	21 01 36 14	If P/C > 1, solve for pay-
839	÷.	-24				30 14	ment amount.
849 841	1		1			E2	
		0 1		896	1/X	52	
	† ()	-55	1	896 897	1/X RCLA	36 11	
842	ĹN	-55 32		896 897 898	1/X RCLA X	36 11 -35	
842 843	LN RCL9	-55 32 36 89		896 897 898 899	1/X RCLA X RCLB	36 11 -35 36 12	
842 843 844	EN RCL9 LN	-55 32 36 89 32		096 097 098 099 100	1/X RCLA X RCLB	36 11 -35 36 12 01	
842 843 844 845	LN RCL9 LN	-55 32 36 89 32 -24		096 097 098 099 100	1/X RCLA X RCLB 1	36 11 -35 36 12 01 -55	
842 843 844 845 846	LN RCL9 LN + RTN	-55 32 36 89 32 -24 24		896 897 898 899 188 181 182	1/X RCLA X RCLB 1 + X2Y	36 11 -35 36 12 01 -55 -41	
842 843 844 845 846 847	LN RCL9 LN ÷ RTN *LBL0	-55 32 36 89 32 -24 24 21 88	P/C > 1, solve for number of navments	896 897 898 899 188 181 182 183	RCLA * RCLB 1 + X2Y Y*	36 11 -35 36 12 91 -55 -41 31	
842 843 844 845 846 847 848	LN RCL9 LN + RTN *LBL0 RCLE	-55 32 36 89 32 -24 24 21 88 36 15	P/C > 1, solve for number of payments.	896 897 898 899 188 181 182 183 184	1/X RCLA X RCLB 1 + X2Y	36 11 -35 36 12 01 -55 -41 31 01	
842 843 844 845 846 847 848 849	LN RCL9 LN ÷ RTN *LBL0 RCLE RCLB	-55 32 36 89 32 -24 21 88 36 15 36 12	P/C > 1, solve for number of payments.	096 897 098 099 100 101 102 183 104 105	1/X RCLA X RCLB 1 + X2Y YX 1	36 11 -35 36 12 01 -55 -41 31 01 -45	
842 843 844 845 846 847 848 849	RCL9 LM + RTN *LBL0 RCLE RCLE RCLB	-55 32 36 89 32 -24 24 21 88 36 15 36 12 -35	P/C > 1, solve for number of payments.	096 097 098 099 100 101 102 103 104 105 106	1/X RCLA X RCLB 1 + X2Y Y* 1 RCLB	36 11 -35 36 12 91 -55 -41 31 91 -45 36 12	
842 843 844 845 846 847 848 849	LN RCL9 LN ÷ RTN *LBL0 RCLE RCLB	-55 32 36 89 32 -24 24 21 88 36 15 36 12 -35 36 14	P/C > 1, solve for number of payments.	096 897 098 099 100 101 102 183 104 105	1/X RCLA X RCLB 1 + X2Y YX 1	36 11 -35 36 12 91 -55 -41 31 91 -45 36 12 -41	
842 844 844 845 846 847 848 849 851 851	RCL9 LN RTN *LBL0 RCLE RCLE RCLB X RCLD	-55 32 36 89 32 -24 21 88 36 15 36 12 -35 36 14 81	P/C > 1, solve for number of payments.	996 897 898 109 101 102 103 104 105 106 107	1/X RCLA X RCLB 1 + X2Y YX 1 RCLB X2Y	36 11 -35 36 12 91 -55 -41 31 91 -45 36 12 -41 -24	
842 844 844 845 846 847 848 849 850 851 852 853	RCL9 LN RTN *LBL0 RCLE RCLE RCLB X RCLD	-55 32 36 99 32 -24 21 00 36 15 36 12 -35 36 14 -55	P/C > 1, solve for number of payments.	996 997 998 999 100 101 102 103 104 105 106 107 108	1/X RCLA X RCLB 1 + X2Y YX 1 RCLB X2Y	36 11 -35 36 12 01 -55 -41 31 01 -45 36 12 -41 -24 36 14	
842 844 844 845 846 847 848 849 851 851	LN RCL9 LN RTN **LBL0 RCLE RCLB X RCLD 1 +	-55 32 36 89 32 -24 21 88 36 15 36 12 -35 36 14 81	P/C > 1, solve for number of payments.	896 897 998 899 180 181 182 183 184 185 186 187	ACLA RCLA X RCLB 1 + X2Y Y* 1 RCLB X2Y RCLB	36 11 -35 36 12 91 -55 -41 31 91 -45 36 12 -41 -24	
842 843 844 845 846 847 849 850 851 852 853	RCL9 LM RTN *LBL0 RCLE RCLE RCLD 1 + RCLB	-55 32 36 89 32 -24 21 88 36 15 36 12 -35 36 14 61 -55 36 12	P/C > 1, solve for number of payments.	896 897 898 699 100 101 102 103 104 105 106 107 108 109 110	RCLB 1 XZY YX 1 RCLB 2 RCLB 1 CRCLB 1 RCLB 1 RCLB 1 RCLB 1	36 11 -35 36 12 91 -55 -41 91 -45 36 12 -41 -24 36 14	
942 943 944 945 946 847 949 959 951 952 853 854	RCL9 LM RTM RTM *LBL0 RCLE RCLB X RCLD 1 + RCLB 2	-55 32 36 89 32 -24 21 88 36 15 36 15 36 12 -35 36 14 61 -55 36 12	of payments.	896 897 998 189 180 181 182 183 194 185 186 187 188 118 111	RCLA X RCLA Y RCLB 1 + X2Y Y 1 RCLB X2Y RCLB X2Y +	36 11 -35 36 12 -95 -41 -31 -45 36 12 -41 -24 36 14 -55	
942 943 944 945 946 847 949 959 951 952 853 854	RCL9 LM RTM RTM *LBL0 RCLE RCLB X RCLD 1 + RCLB 2	-55 32 36 89 32 -24 21 88 36 15 36 12 -35 36 14 61 -55 36 12	of payments.	896 897 698 699 100 101 102 103 104 105 106 107 108 109 110	RCLA X RCLA Y RCLB 1 + X2Y Y 1 RCLB X2Y RCLB X2Y +	36 11 -35 36 12 -95 -41 -31 -45 36 12 -41 -24 36 14 -55	8 9>C/P
842 843 844 945 946 849 859 851 852 853 854	RCL9 LM RTN *LBL0 RCLE RCLE RCLD X RCLD 1 +CLB 2 +	-55 32 36 89 32 -24 21 80 36 15 36 12 -35 36 14 81 -55 36 12 82 -24	of payments.	896 897 699 189 180 182 183 184 185 187 188 189 118 111 111 111 111 111 111	RCLB + XZY FCLB 1 + XZY 1 RCLB RCLB A RCLB	36 11 -35 36 12 91 -55 -41 31 -45 36 12 -41 -24 36 14 -55 36 12	(1 + 1)0/P
842 843 844 845 846 847 848 851 851 852 853 854 853	RCL9 LM RTM RTM *LBL0 RCLE RCLB X RCLD 1 + RCLB 2	-55 32 36 89 32 -24 21 88 36 15 36 15 -35 36 14 81 -55 36 12 82 -24	of payments.	896 897 898 899 180 181 183 184 187 186 187 189 118 111 111	1/X RCLA X RCLB 1 + X2Y Y 1 - RCLB X2P RCLD 1 + RCLB	36 11 -35 36 12 91 -55 -41 31 -45 36 12 -41 -24 36 14 -61 -55 36 12	8 9 (1 + 1)C/P S8 S9
842 843 844 845 845 849 851 852 853 854 855 856	RCL9 LM RCL9 LM RTN *LBL0 RCLB RCLB CX RCLD L RCLB 2 +	-55 32 36 89 32 -24 21 88 36 15 36 12 -35 36 14 81 -55 36 12 82 -24	of payments.	896 897 699 109 101 102 103 104 105 106 107 108 109 110 111 112 112 112 115 128 138 148 149 159 150 150 150 150 150 150 150 150 150 150	RCLB + XZY FCLB 1 + XZY 1 RCLB RCLB A RCLB	36 11 -35 36 12 91 -55 -41 31 -45 36 12 -41 -24 36 14 91 -55 36 12	(1 + 1)0/P
842 843 844 945 946 849 859 851 852 853 854	RCL9 LM RCL9 LM RTN *LBL0 RCLB RCLB CX RCLD L RCLB 2 +	-55 32 36 89 32 -24 21 80 36 15 36 12 -35 36 14 81 -55 36 12 82 -24	of payments.	896 897 699 189 180 182 183 184 185 187 188 189 118 111 111 111 111 111 111	RCLB + XZY FCLB 1 + XZY 1 RCLB RCLB A RCLB	36 11 -35 36 12 91 -55 -41 31 -45 36 12 -41 -24 36 14 -55 36 12	(1 + 1)0/P

113	2	92	l				
114	÷	-24		1			
115	×	-35				ŀ	
116	RCLD	36 14				ı	
	+		1			l l	
117		-55				i	
118	÷	-24				1	
119	RCLE	36 15				l	
120	x	-35		1		ı	
121	RTN	24				i	
122	*LBLe	21 16 15	If digit entered, store in				
123	STOE	35 15	R _E .	ľ			
124	F3?	16 23 83					
125	RTN	24	1				
126	F0?	16 23 88	l			i	
			l				
127	GT02	22 02		l			
128	RCL9	36 09	If P/C≤1, solve for future				
129	RCLA	36 11	value.	ľ			
138	γ×	31	Ī				
131	1	01	1				
132	-	-45	1				
133	RCL9	36 8 9	1			ĺ	
134	×	-35	1			1	
135	RCLC	36 13	1				
136	X	-35					
137	RCL9	36 09	i			į.	
136	1	01					
	_*		ŀ			1	
139		-45				1	
140	÷	-24				ŀ	
141	RTN	24					
142	*LBL2	21 82					
143	RCLD	36 14	If P/C > 1, solve for future				
144	1	0 1	value.				
145	+	-55					
146	RCLB	36 12	l i				
147	2	92					
148	÷	-24					
149	×	-35	1			- 1	Ĭ
150	RCLD	36 14				į	
151	+	-55					
152	RCLB	36 12					
153	1	30 12 01				j j	1
154	, t	-55				1	
155	RCLA	36 11				i	
			i				
156	RCLD	36 14				I	
157	1/X	52]			1	
158	X	-35					
159	γ×	31					
168	1	91				1	
161	-	-45				1	ļ
162	×	-35				l	
163	RCLC	36 13				l l	
164	×	-35					
165	RCLB	36 12					
166	+	-24				1	
167	RTM	24				I	
169	R/S	51				i	J
			LABELC		FLACE	000 000	
A D/O	fo		LABELS		FLAGS	SET STA	TUS

LABELS			FLAGS	SET STATUS				
A P/C	B i/100	С	0	Ε	0 P/C > t	FLAGS	TRIG	DISP
a #PAY	b	^C PMT	d	e FV	1	ON OFF	DEG 18	FIX 🐼
O Used	1 Used	² Used	3	4	2	1 🗆 🛭	GRAD 🗆	SCI 🗆
5	16	7	8	9	3 Digit?	2 D 80	ם מאח	n2_

SIMPLE INTEREST/INTEREST CONVERSIONS

				,			
801	3	93	1	957	ET03	22 03	1
992	6	96	Initialize	658	*LBLC	21 13	BEG AMT→R _C
863			360→R ₈				Digit entered?
	Ø	98		859	STOC	<i>3</i> 5 13	Digit entered?
884	ST08	35 08	365→R ₉	868	F3?	16 23 03	
005	5	95		961	RTN	24	
906		-55		962	F2?	16 23 02	360 or 365?
807	ST09	35 89		963	6T04	22 84	
968	е	00		864	RCLD	36 14	1
	-						
009	₽∕S	51		965	RCL8	36 0 8	
819	*LBLA	21 11	Days→R _A	966	*LBL5	21 05	
011	STOA	35 11	Digit entered?	867	X	-35	Calculate BEG AMT and
			Digit entered?				
012	F3?	16 23 03		068	RCLA	36 11	store in R _C .
013	RTN	24		869	-	-24	
814	F2?	16 23 02	T		DCI D		
			Test for 360 or 365 day	878	RCLB	36 12	
915	GT00	22 00	basis	671	÷	-24	
016	RCLD	36 14		872	STOC	35 13	
			ŀ				i
017	RCLS	36 98		873	RTN	24	i
018	*LBL1	21 81		674	*L9L4	21 84	l
819	X	-35	Colontan de	075	RCLE	36 15	age down has
			Calculate days and store in				365 day basis
626	RCLC	36 13	R _A .	076	RCL9	36 09	1
821	÷	-24	1	877	GT05	22 05	1
822	RCLB	36 12	1				1
			1	078	*LBLD	21 14	INT ₃₆₀ → R _D
823	÷	-24	i	079	STOD	35 14	1
024	STOA	35 11	1	989	F3?	16 23 03	1
			1				1 _
925	RTN	24	I	08:	RTN	24	Digit entered?
026	*LBL0	21 00	I	082	RCLC	36 13	1
027	RCLE	36 15	005	083	RCLA	36 11	1 .
			365 day basis				Calculate INT ₃₆₀ and
628	RCL9	36 0 9	1	084	RCL8	3€ 08	store in R _D .
623	GT01	22 01		085	6SB6	23 06	J
839		21 12		086	STOD	35 14	
	*LBLB		RATE/100→R _B				
831	EEX	-23	_	687	RTN	24	
032	2	82		688	*LBLE	21 15	1
							Set flag 2 for 365 day
833	-	-24		089	STOE	35 15	basis.
634	STOB	35 12	1	090	SF2	16 21 02	1
635	LSTX	16-63	1	691	F3?	16 23 03	1
							Digit entered?
83€	×	-35		892	RTN	24	1 -
937	F3?	16 23 03	Digit entered?	693	RCLC	36 13	1
038	RTN	24	Digit enterea?	894	RCLA	36 11	1
							Calculate INT ₃₆₅ and
039	F2?	1€ 23 02	Test for 360 or 365 day	095	RCL9	36 09	store in R _F .
848	GT02	22 82	basis.	096	€SB6	23 06	Store in NE.
841	RCLS	36 08	uasis.	897			1
			1		STOE	35 15	1
042	RCLD	36 14	1	898	RTN	24	1 1
643	*LBL3	21 03	1	899	*LBL6	21 06	1
844	X	-35	4				1
			1	100	÷	-24	1
845	RCLA	36 11	Calculate RATE and store	101	RCLC	36 13	1
846	÷	-24		102	X	-35	1
			in R _B				1
847	RCLC	36 13	1	103	RÇLB	36 12	1
046	÷	-24	1	184	X	-35	1
		-23	i	105	RTN	24	
849	++×		1				C/YR→R _A
049	EEX			106	*LBLa		1 ^
050	2	62		100	*LOLa	21 16 11	
959 951	2 x	02 -35		187	STOR	35 11	
959 951 952	2 × STOE	02 -35 35 12		187 186	STOA RTN	35 11 24	
050 051 052 053	2 × STOE RTH	02 -35 35 12 24		187	STOA RTN *LBL6	35 11 24 21 16 12	NOM→Rn
959 951 952	2 × STOE	02 -35 35 12	365 day basis	187 186	STOA RTN	35 11 24	NOM→R _B
050 051 052 053 054	2 × STOE RTH *LBL2	02 -35 35 12 24 21 02	365 day basis	107 106 109 110	STOA RTN *LBLb STOB	35 11 24 21 16 12 35 12	NOM→R _B Digit entered?
050 051 052 053 054 055	2 × STOE RTH *LBL2 RCL9	02 -35 35 12 24 21 02 36 09	365 day basis	107 106 109 110 111	STOA RTN *LBLb STOB F3?	35 11 24 21 16 12 35 12 16 23 93	
050 051 052 053 054	2 × STOE RTH *LBL2	02 -35 35 12 24 21 02	365 day basis	107 106 109 110	STOA RTN *LBLb STOB	35 11 24 21 16 12 35 12	
050 051 052 053 054 055	2 × STOE RTH *LBL2 RCL9	02 -35 35 12 24 21 02 36 09		107 106 109 110 111 112	STOA RTN *LBLb STOB F3?	35 11 24 21 16 12 35 12 16 23 93	
959 951 952 953 954 955 956	2 X STOE RTH *LBL2 RCL9 RCLE	02 -35 35 12 24 21 02 36 09 36 15	REGIS	107 106 109 110 111 112	STOA RTN *LBLb STOB F3? RTN	35 11 24 21 16 12 35 12 16 23 93 24	Digit entered?
050 051 052 053 054 055	2 × STOE RTH *LBL2 RCL9	02 -35 35 12 24 21 02 36 09		107 106 109 110 111 112	STOA RTN *LBLb STOB F3?	35 11 24 21 16 12 35 12 16 23 93	Digit entered?
959 951 952 953 954 955 956	2 X STOE RTH *LBL2 RCL9 RCLE	02 -35 35 12 24 21 02 36 09 36 15	REGIS	107 106 109 110 111 112	STOA RTN *LBLb STOB F3? RTN	35 11 24 21 16 12 35 12 16 23 93 24	Digit entered?
959 951 952 953 954 955 956	2 X STOE RTH *LBL2 RCL9 RCLE	02 -35 35 12 24 21 02 36 09 36 15	REGIS	107 106 109 110 111 112	STOA RTN *LBLb STOB F3? RTN	35 11 24 21 16 12 35 12 16 23 83 24	Digit entered?
959 951 952 953 954 955 956	2 X STOE RTH *LBL2 RCL9 RCLE	92 -35 35 12 24 21 92 36 99 36 15	REGIS	107 106 109 110 111 112 STERS	STOA RTN *LBL6 STOB F3? RTN	35 11 24 21 16 12 35 12 16 23 03 24	Digit entered?
959 951 952 953 954 955 956	2 X STOE RTH *LBL2 RCL9 RCLE	92 -35 35 12 24 21 82 36 89 36 15	REGIS 3 4 53 54	107 106 109 110 111 112 STERS	STOA RTN *LBL6 STOB F3? RTN	35 11 24 21 16 12 35 12 16 23 03 24	Digit entered?
959 951 952 953 954 955 956	2 X STOE RTH *LBL2 RCL9 RCLE	92 -35 35 12 24 21 92 36 99 36 15	REGIS 3 4 S3 54	107 106 109 110 111 112 STERS 5	STOA RTN *LBLb STOB F3? RTN	35 11 24 21 16 12 35 12 16 23 03 24	Digit entered?
959 951 952 953 954 955 956	2 X STOE RTH *LBL2 RCL9 RCLE	92 -35 35 12 24 21 82 36 89 36 15	REGIS 3 4 53 54	107 106 109 110 111 112 STERS	STOA RTN *LBLb STOB F3? RTN	35 11 24 21 16 12 35 12 16 23 03 24	Digit entered?

113	RCLC		36	13	T			169	STOE		35 15	1	
114	EEX			23	Calcul	ate NOM and sto	оге	178		16	23 83		EFF and store
115	2			82	in R _B .			171			24	in R _E .	
116	÷		-	24	ł			172	RCLD		36 14		
117	1			01	1			173			21 97	1	
118	+		-	55	ì			174	EEX		-23		
119	RCLA		36	11				175	2		82		
128	1/X			52				176			-24	1	
121	γ×			31	1			177			33	i	
122	1			01	1			178			81		
123				45	1			179			-45		
124	RCLA		36		1			188			-23		
125	X			35	1			181			92		
126	EEX			23	1			182			-35	1	
127	2			02	1			183			35 15	i	
128	x			35	1			184			24	F	
129	STOB		35		1			185			21 08		uous 365/360
130	RTN			24	====			186			36 89	day basis.	
131	*LBLc	21	16		EFF→			187			-35	1	
		21			Digit e	ntered?		188			36 08	1	
132	STOC F3?		35 23		I			189				1	
		10			1						-24	1	
134	RTN			24	1			196			22 87	1	
135	RCLB		36			ite EFF and stor	e	191	R/S		51		
136	RCLA		36		in R _C .								
137	EEX			23									
138	2			02				ļ					
139	×			35	1			ł				ł	
140	÷			24	1							l	
141	1			Ø1	ĺ								
142	+		-	55									
143	RCLA		36	11									
144	γ×			31									
145	1			81								1	
146	_		_	45									
147	EEX		-	23]				i	
148	2			02								l	
149	x -			35									
158	STOC		35					l				l	l
151	RTN			24									
152	*LBLa	25	16										
153	STOD		35		Contin	uous						1	
154	F39		33 23 I		l							I	
155	RTN	10		es 24	i							1	
	RCLE		36		I								ļ
156					I								1
157	EEX			23 02	Calcula	te NOM and sto	re	!				1	- 1
156	.2				in R _D .			l				l	1
159	÷			24								ŀ	1
160	1			01	l							I	ļ
161	<i>+</i>			55	l							I	[
162	LN			32	f								i
163	EEX			23	l							ľ	l
164	2			92	l							Ī	ļ
165	×			35	l		- 1					l	l
166	STOD		3 5	14	l		- 1					l	l
167	RTN			24								l	i
168	*LBLe	21	16		ł	_						l	l
					LAE	BELS			FLAGS	<u> </u>		SET STATUS	
A DAYS	B R	ATE		C BEG		DINT 360	E IN	IT 365	0				
					. 71A1 1		<u>'''\</u>		1		FLAGS	TRIG	DISP
a C/YR	lo Me	MC		CEFF		dNOM(cont)	e Er	F(cont)	1	- 1	ON OFF		1 1

		LA	BELS		FLAGS		SET STATUS	
A DAYS	B RATE	C BEG AMT	DINT 360	E INT 365	0	FLAGS	TRIG	DISP
a C/YR	p NOM	CEFF	dNOM(cont)	e EFF(cont)	1	ON OFF	DEG 😿	FIX K
O Used	1 Used	² Used	³ Used	⁴ Used	² 365 basis	1 🗆 🗴	GRAD	SCI
⁵ Used	⁶ Used	⁷ Used	⁸ Used	9	³ Digit?	3 🗆 🕱	HAD	ENG ₂

DEPRECIATION SCHEDULES

_												т—		
	801	#LBLa		16 11	Carrie	ht line		857	-		-45			
1	882	F8?	16	23 88	Straig	ınt line		628	X<8?		16-45			
- 1	003	SPC		16-11	۱			859	CT03		22 03	1		
- 1	004	RCLD		36 14	к			868	es82		23 82	1		
-	885	€SB9		23 89	l .			061	RCL7		36 07	1		
- 1	006	RCLA		36 11	l se	V - SAL		862	÷		-24	1		
- 1	887	RCLB		36 12	-	V – SAL	–→R _I	063	ST04		35 84	1		
- 1	668	-		~45	ı			864	RCLB		36 00	!		
1	009	RCLC		36 13	l .			865	x		-35			
	010	÷		-24				866	≠LBL3		21 63			
1	01 1	STOI		35 46	DEP			967	ST06		35 06			
1	012	GSB9		23 09	l .			968	€SB9		23 09	RE	Vκ	
1	013	RCLC		36 13	l .			969	RCLB		36 12	ł		
	014	RCLD		36 14	l .			070	+		-55			
	815	-		-45	(LIFE	- YR)	DEP = RDV _K	971	esb9		23 89	RB	V _K ≃R	DV _K + SAL
	016	RCLI		36 46	l .			072	1		61	1		
	817	x		-35	l .			073	RCL 4		36 84	i		
	018	GSB9		23 89	l .			874	-		-45	1		
	619	RCLB		36 12	l			875	RCL8		36 08	1		
	628	+		-55	l			876	×		-35	I		
1	821	GSB9		23 89	R₿Vı			877	esb9		23 09	то	T DEP	•
	022	RCLI		36 46	/ c=	V - SAI	YR = TOT DEP	878	1		01	1	,	•
- 1	023	RCLD		36 14	(🛎	I I E E	YR = TOT	879	6SBD		23 14	1		
	824	×		-35	\	LIFE	/ DEP	989	RCLC		36 13	1		
	025	esb9		23 09	ĺ			189	RCLD		36 14] K <	€ LIFE?	•
	826	1		01				992	X≟Y?		16-35	1		
	027	GSBD		23 14				983	GTOL	22	16 12	1		
	628	RCLC		3 6 13				984	RTN		24	1		
ŀ	829	RCLD		36 14				0 9 5	#LBL2		21 02	1		
- 1	030	X£Y?		16-35	κ≼ι	IFE?		886	ENT+		-21	1		
1	831	ETC.	22	16 11	l			087	FRC		16 44	1	(1 ± M)	(2F + W)
-1	032	RTH		24				888	ENTT		-21	-		2
1	633	*LBL6		16 12	SOY)		689	+		-55	1		2
1	034	F0?	16	23 00				698	X≢Y		-41	1		
1	e3 5	SPC		16-11				891	INT		16 34	1 .	= SOYD)
1	836	RCLD		36 14	1			092	+		-5 5	1		
1	037	esb9		23 09	ĸ			893	LSTX		16-63	1		
	036	RCLA		36 11				094	1		81	1		
ı	039	RCLB		36 12	l			095	+		~55	1		
ı	949	-		-45				096	×		-35			
	041	STOB		35 08				897	2		92	l		
1	842	RCLC		36 13				898	÷		-24	l		
	043	€SB2		23 82	١, ا			899	RTN		24			
	844	ST07		35 07	V_{LIEF}	+1-K	(SBV-SAL)		*LBLc	21	16 13	n-	clining E	
	845	RCLC		36 13	\ 	ND	(SBV-SAL)	181	F8?	16	23 00	l per	anning E	atarice
	846	1			11 30	,,, ,		102	SPC		16-11	l		
	047	+		-55				163	RCLD		36 14	1		
1	048	RCLD		36 14				184	GSB9		23 09	ĸ		
1	649	-		-45	1			105	GSB4		23 04	† "`		
	0 50	RCL7		36 07				106	RCLD		36 14	1		
	051	÷		-24				107	1		91	1		
	852	RCL8		36 86				108	-		-45	ł		
	053	×		-35				109	γ×		31	ł		
	854	GSB9		23 09	DEPK			110	RCLA		36 11			
1	055	RCLC		36 13				111	×		-35	1		
1	656	RCLD		36 14				112	RCL 8		36 88	1		
\vdash							REGI	STERS						
6		1		2	3		4	5	6		7	В		9
				Ĺ			Used	Used	RDV		Used	1	Jsed	TOT DEP
S0		S1		S2	S3		S4	S5	S6		S7	S8		S9
L.							L		l		l			
Α	SBV		В	SAL		С	LIFE	D YR		E	FACTOR		SRV	-SAL/LIFE
	354		L	UAL				!		1	· ACION		I SPA.	JAL/LIFE

113	×		-35	J			169	R/S	51	T	
114	8 70 1		46	DEPK			178	RTN	24	1	
115	6889	23	89	1 "	•		171	*LBL1	21 01		
116	1		91	1			172	PRTX	-14		
117	RCL7	36	87	ĺ		- 1	173	RTH	24		
118	RCLD		14				174	#LBLd	21 16 14	Crossover	point
119	yx		31				175	8	88		
120			-45	1		1	176	STOD	35 14		
121	RCLA		ii	(SBV	-SAL) -TOT D	FP.	177	GSB4	23 84	l	
122	×		-35	,	u, 101 b	^	178	*LBL8	21 88	1	
123	ST09		89	1		- 1	179	RCL7	36 97	i	
124	RCLA		11	1		ı	180	1	91	1	
125	RCLB		12	1		- 1	181	ESBD	23 14	1	
126			-45	1		- 1	182	1	23 14	1	
127	RCL9		09	1			183		-45		
128	NeL)		- 4 5			- 1	184	yx.			
129	€SB9		89						31	!	
130	RCLB			RDV _k		1	185	RCLA	36 11	i	
			12				186	X	-35	1 .	
131	+		-55	1			187	RCLB	36 98	1	
132	ESB9		89	RBVK			188	×	-35	1	
133	RCL9		99			- 1	189	R€L7	36 87	i	
134	esb9	23	<i>0</i> 9	TOT	DEPK	1	190	RCLD	36 14		
135	1		01	1			191	1	61		
136	esad		14	1		- 1	192	-	-45	ì	
137	RCLC	36	13	1		- 1	193	γ×	31		
136	RCLD	36	14	K≼L	IEE2	- 1	194	RCLA	36 11		
139	X≰Y?	16-	-35	" ~ "		ı	195	×	-35	1	
148	GT0c	22 16	13	1			196	RCLB	36 12		
141	RTN		24	1		- 1	197	-	-45	j	
142	*LBLD	21		1			198	ST09	35 09	1	
143	RCLD	36		10 add	to register D.	- 1	199	RCLC	36 13		
144	+		-55				200	1	90 13 e1		
145	STOD	35				- 1	201	, ,		1	
146	RTN	33	24	1		- 1			-55		
147	*LBL4	21		1		l i	202	RCLD	36 14	i	
148		21					203	-	-45		
	1		01	FACT	/LIFE→R ₈	1	204	÷	-24		
149	RCLE	36		i		- 1	285	X‡Y	-41		
150	RCLC	36					206	X>Y?	16-34	1	
151	÷		24	1		ı	207	eto8	22 08		
152	ST08	35		1 - FA	CT/LIFE→R ₇		208	RCLD	36 14	1	
153			-45	l		1	209	1	01	1	
154	ST07	35		l			210	-	-45	I	
155	RTN		24	l		I	211	esb9	23 89	1	I
156	*LBLe	21 16		Print/p			212	RCLC	36 13	Last year	ŀ
157	F0?	16 23	00	I	euse e	- 1	213	XZY	-41	I	i
158	€T00	22	86	l		- 1	214	-	-45	1	I
159	SF0	16 21	88	l		- 1	215	GSB9	23 89		
160	1		01	l		- 1	216	RCL9	36 89	Remaining	life [
161	RTN		24	l		- 1	217	RCLB	36 12	i	
162	*LBL0	21		ŀ			218	t t	-55		l
163	8		99	l			219	6109		1	- 1
164	cre	16 22		l		1	228		22 99	RBV	ı
165	RTN		24	l			250	R/S	51	1	J
				Ī		ŀ				I	ſ
166	*LBL9	21								ì	l
167	F@?	16 23				1				I	l
168	6701	22	Ø]			L				1	1
					BELS			FLAGS		SET STATUS	
Α	В		C		D Used	E	0		FLAGS		
a St. line	5 SC	VD	c DEC	041		6 0011	+		ON OFF	TRIG	DISP
		YD	c DEC		0.1000	e SCHED	? '		0 D K	DEG 🖼	FIX 🖸
O Used	1 Lle	ad	2 cov		3 11	4 11	2		- I : E :	1 2545 5	11/4

<u> </u>		LA	MBELS		FLAGS		SET STATUS	
^	В	C	D Used	E	O Print?	FLAGS	TRIG	DISP
a St. line	b SOYD	C DEC BAL	d CROSS	e SCHED?	1	ON OFF	DEG 53	FIX &
O Used	¹ Used	² SOYD	³ Used	4 Used	2	1 🗆 🛍	GRAD	SCI 🗆
5	6	7	8 Used	⁹ Used	3	2 Ki	RAD 🗆	ENG □

DAYS BETWEEN DATES

							· · · · · · · · · · · · · · · · · · ·
186	*LBLA	21 11	DT ₁ →R ₇	057		-51	
882	ST07	35 97	D11 7 N7	858		36 Ø5	Compute days since 0 AD
803	RTN	24	1	859		-55	neglecting 400s and 100s.
884	*LBLB	21 12	DT	866		36 03	
895	STOI	3 5 Ø1	DT ₂ →R ₁	961		0 1	i
006	RTN	24		862		-45	
897	*LBLC	21 13		863	3	93	1
998	RCL7	36 07		864	1	01	1
089	ESBE	23 15		965		-35	i
810	8102	35 02		066		-55	1
011	LSTX	16-63	Control and storage	967		36 86	
012	STOO	35 66		868		84	1
813	RCL1	36 01		869		-24	1
014	GSBE	23 15		076		16 34	
	LSTX	16-63	l .			-41	
815			i .	97			
916	ST-0	35-45 88	i.	072		-55	
817	CLX	-51	Į.	073		24	
818	RCL2	36 02	.	074		21 14	1
019	-	-45	1	073		83]
028	RCL 4	36 04	1	076		6 8]
821	2	02	1	977	° STD2	35 02	Control and storage
022	+	-24	i	876		36 07	1
023	ST=0	35-24 00	1	875		23 16 15	1
024	XZY	-41	1	986		35 66	1
025	RTN	24	1	88		36 01	1
	*LBLE	21 15	ŀ	962		23 16 15	1
026							1
827	6SB4	23 64	1	993		36 00	
828	ST06	35 06	i	084		-45	1
829	3	83	1	98		35 <i>00</i>	1
939	6	96		986		36 84	1
031	5	9 5		98	7 CHS	-22	1
032	ST04	35 04		998	9 2	92	t I
833	×	-35		68	9 ÷	-24	1
834	2	02	z = y - 1	09		35-24 00	1
835	RCL3	36 03	[* '-'	89		-31	1
836	X>Y?	16-34		89		24	1
		22 00	ŀ	09		21 16 15	1
037	GT00	-35	1	89		23 04	1
938	×		1				Sum years and months.
039	CLX	-51		89		93	1
848	RCL 6	36 0 6	į.	09		96	
841	1	01		89		90	i
842	-	-45	ſ	89		<i>3</i> 5 <i>0</i> 4	
043	ST06	35 Ø6	Į.	89:		-35	
844	GTQ1	22 01		100	RCL3	36 03	į.
045	#LBL0	21 00	ł	10.	1 3	93	1
846		-62	ł	10		89	l
847	4	94	ł	18		-35	
048	x ·	-35	İ	10		-55	
949	•	-62	l	18		36 85	1
858	3	93	x = INT (.4M + 2.3)	10		30 93 93	
		-55	l				Are days equal to 31?
051	•		ł	10		81	
052	+	-55	1	100		16-33	
053	INT	16 34	1	18		22 62	
054		-45	į.	111		-31	No, add and return.
955	RCL6	36 06	l	11.		35 <i>82</i>	
856	*LBL1	21 01	1	117	? +	-55	
				STERS			
O -PER	¹ DT,	2 Used	3 M 4365/360	5 D	6	7 07	8 9
	1 -			_	γ, z	DT ₁	
S0	S1	S2	S3 S4	S 5	S6	S7	S8 S9
	i					I	
Α .		В	С	D		E	1
L				L		Щ.	

Γ	113	RTN		24		Ι.			1	
	114 115	*LBL2	21	92	ister 2 equal to 3	30?				
1	116	R1		31	•				ŀ	
	117	RCL2	36	02						
H	118	3		93					1	
	119	9		98					ŀ	
1	128	X=Y? G103			d and return.	1				
1	121 122	G103		31	do ano return.	ŀ				
İ	123	CLX	_	5!						
	124	RCL5								
Т	125	STD2	35	02						
1	126	+		55		- 1				
1	127	RTN		24					1	
	128 129	#LBL3			0 - 4 4					i
	130	STO2			0 add and return	'			1	
1	131	3142		55		İ				
	132	RTN		24						
1	133	*LBL4	21	84					1	
1	134	ENT1		21						
1	135	INT			up year.	- 1			i	
1	136 137	ST03		45					1	
1	138	EEX		23						
1	139	2		92					1	
1	140	x	-	35						
1	141	ENT		21						
1	142	INT							l	i
П	143 144	ST05		45		1				
П	145	EEX		23						
П	146	4		04						
1	147	×		35					i	
	148	RTN		24		1				
	149	R/5		51		l				
						ĺ			i	
ı									1	1
1						j			•	ļ
1				1		- 1				ļ
1				ļ						
1				İ						i
1						1				l l
1						i			Ī	ł
				1						ŀ
				Ī		[-				- 1
1						1				ŀ
1						1				
1				ļ				i		
1				ŀ						
1						1				1
L				l		L				
A	DT	B	0.7		BELS	Te	FLAGS		SET STATUS	
a	ĐT	ь	DT ₂	C Days Actual	D Days 360	E Used e Used	1	FLAGS ON OFF	TRIG	DISP
1		I T		1-	1"	l™ Used	1.	UNIOFF	550 5	

		LAI	BELS		FLAGS		SET STATUS	
A DT,	B DT₂	^C Days Actual	^D Days 360	E Used	0	FLAGS	TRIG	DISP
а	b	c	d	e Used	1	ON OFF	DEG 😿	FIX 📆
O Used	¹ Used	² Used	³ Used	4 Used	2	1 🗆 🗷	GRAD 🗆	SCI 🗀
5	6	7	8	9	3	2 🗆 🛣	RAD 🗀	ENG ∷ n2

BOND PRICE AND YIELD

89	1 *LBLA	21 11		057	÷	-24]
80		16 22 83		958	-	-45	1
00		-22		859	ST-6	35-45 06	i I
88		35 00	-PER→R ₀	969	ABS	16 31	Has limit been reached?
			. =	961	EEX	-23	1
99		-22		862	CHS	-22	<u> </u>
00		24					1 1
90		21 12		863	6	96	1
00	O EEX	-23		864	X≚Y?	16-35	1
1 80	9 2	82		065	GTD1	22 01	l 1
81	8 ST03	35 03	100→R ₃	966	F2?	16 23 82	1
ia l		-31	i	967	GT02	22 82	1
91		35 01	CR→R,	868	RCL6	36 06	l I
			l cu · ut	069	GT03	22 83	1
81		24		878	*LBL2	21 82	i :
01		21 14					1
81		16 22 83	RV→R ₃	971	RCL5	36 9 5	1
81	6 ST03	35 03		072	1	61	Modify price for next
81	7 RTN	24		873	RCL0	36 00	set of iterations.
81	8 *LBLC	21 13		074	FRC	1€ 44	1
81		16 23 03	YLD→R ₂	975	+	-55	1
02		22 85	1.22	876	LSTX	16-63	1
			i	877	X	~35	1
92		36 00		878	^ 4		1
92		16 31				84	1
82	3 1	01		879	÷	-24	1 1
02	4 X>Y?	16-34	1 > PER?	686	RCL1	36 01	1
82	5 GT08	22 00		981	x	-35	1
02	6 SF2	16 21 82		982	RCL6	36 86	
82		36 01	Calculate initial guess	683	×	-35	
92		36 61 92	Calculate Initial galass	984	_	-45	
				885	ST05	35 95	
62		-24		986	ET01	22 01	1
93		36 04					
03		35 05		087	*LBL0	21 00	1
03	12 ÷	-24		688	RCL3	36 03	Calculate yield if less than
03	3 ST06	35 86	1	989	RCL1	36 01	1 coupon period remaining
93	4 *LBL1	21 81	ł	898	2	02	1 ' ' 1
93		01	Calculate f(y)	891	÷	-24	
							1
	C DC17			892	+	-55	1 3
	6 RCL3	36 93	,	892	•	-55 16-67	
03	7 RCL5	36 03 36 0 5	,	093	LSTX	16-63	
03	87 RCL5	36 03 36 05 -24	,	893 894	LSTX RCL0	16-63 36 00	
93	87 RCL5 18. ÷ 19 1	36 03 36 0 5		893 894 895	LSTX RCLB 1	16-63 36 00 01	
03	87 RCL5 18. ÷ 19 1	36 03 36 05 -24		093 894 895 896	LSTX RCL0 1	16-63 36 00 01 -55	
93	87 RCL5 88. ÷ 19 1 10 RCL6	36 03 36 05 -24 81	,	093 894 895 896 897	LSTX RCL0 1	16-63 36 00 91 -55 -35	
93 93 94	R7 RCL5 18. ± 19 1 10 RCL6	36 03 36 05 -24 01 36 06 -55		093 894 895 896	LSTX RCL0 1	16-63 36 00 01 -55	
93 93 94 94	R7 RCL5 18. ± 19 1 10 RCL6 11 + 12 RCL0	36 03 36 05 -24 01 36 06 -55 36 00		093 894 895 896 897	LSTX RCL0 1	16-63 36 00 91 -55 -35	
93 93 94 94 94	87 RCL5 18 ÷ 19 1 10 RCL6 11 + 12 RCL0 13 Y×	36 03 36 05 -24 81 36 06 -55 36 00 31		093 894 895 896 897 898 899	LSTX RCL0 1 + x RCL4	16-63 36 00 01 -55 -35 36 84 -55	
93 93 94 94 94 94	87 RCL5 88 ± 19 1 10 RCL6 11 + 12 RCL0 13 Y* 14 ST08	36 03 36 05 -24 01 36 06 -55 36 00 31 35 08		093 894 895 896 897 098 899	LSTX RCL0 1 + x RCL4 +	16-63 36 00 91 -55 -35 36 84 -55 -24	
93 93 94 94 94 94	77 RCL5 78 ÷ 79 1 70 RCL6 71 + 72 RCL0 73 Y [×] 74 ST08 75 ×	36 03 36 05 -24 01 36 06 -55 36 00 31 35 08 -35		893 894 895 896 897 898 899 188	LSTX RCLB 1 + X RCL4 +	16-63 36 00 01 -55 -35 36 84 -55 -24	
93 94 94 94 94 94 84	87 RCL5 88 ÷ 19 1 10 RCL6 11 + 12 RCL0 13 Y* 14 STO8 15 ×	36 03 36 05 -24 01 36 06 -55 36 00 31 35 08 -35 -45		093 894 695 696 697 698 699 100 181	LSTX RCL0 1 + x RCL4 + ÷	16-63 36 08 01 -55 -35 36 84 -55 -24 01	
93 94 94 94 94 94 84 84	77 RCL5 188 ± 199 1 180 RCL6 11 + 122 RCL0 13 Y ² 14 STO8 15 X 16 - 17 RCL6	36 93 36 95 -24 91 36 96 -55 36 99 31 35 98 -35 -45 36 96		093 894 895 896 897 899 108 101 102 183	LSTX RCL8 1 + * * * * * * * 1 - 1 - 1 - 1 - 1 - 1 - 1	16-63 36 08 01 -55 -35 36 84 -55 -24 01 -45	
93 93 94 94 94 94 94 84	87 RCL5 88 ± 19 1 10 RCL6 11 + 12 RCL8 13 Y [×] 4 STO8 5 × 16 - 17 RCL6 8 ×	36 03 36 05 -24 01 36 06 -55 36 00 31 35 08 -35 -45		093 894 895 896 897 698 899 188 181 182	LSTX RCL0 1 + x RCL4 + ÷	16-63 36 00 01 -55 -35 36 84 -55 -24 01 -45 36 00 -22	
93 94 94 94 94 94 84 84	87 RCL5 88 ± 19 1 10 RCL6 11 + 12 RCL8 13 Y [×] 4 STO8 5 × 16 - 17 RCL6 8 ×	36 93 36 95 -24 91 36 96 -55 36 99 31 35 98 -35 -45 36 96		093 894 895 896 897 899 108 181 182 183 104	LSTX RCLB 1 + X RCL4 + ÷ 1 RCLB CHS	16-63 36 00 91 -55 -35 36 04 -55 -24 -45 36 00 -22 -24	
93 93 94 94 94 94 94 84	87 RCL5 88 ± 19 1 100 RCL6 11 + 122 RCL8 13 Y× 14 STO8 5 × 16 - 17 RCL6 8 × 9 1	36 93 36 95 -24 91 36 96 -55 36 99 31 35 98 -45 -45 36 96 -35		093 894 895 896 897 698 899 188 181 182	LSTX RCL8 1 + * * * * * * * 1 - 1 - 1 - 1 - 1 - 1 - 1	16-63 36 00 01 -55 -35 36 84 -55 -24 01 -45 36 00 -22	Display consist if second
93 93 94 94 94 94 84 84 94	87 RCL5 88 ± 199 ± 198 RCL8 11 + 122 RCL8 33 Y* 44 STO8 55 × 166 - 177 RCL6 9 ± 198 RCL8	36		093 894 895 896 897 899 108 181 182 183 104	LSTX RCLB 1 + X RCL4 + ÷ 1 RCLB CHS	16-63 36 00 91 -55 -35 36 04 -55 -24 -45 36 00 -22 -24	Display answer if second
93 94 94 94 94 94 84 84 84 95	87 RCL5 88. ± 199 1 190 RCL6 11 + 22 RCL0 33 Y* 44 ST08 55 × 66 - 77 RCL6 89 × 99 1 80 RCL8	36 93 36 95 -24 91 36 96 -55 36 90 31 35 98 -45 36 96 -35 91 36 98 -45		893 894 895 896 897 899 108 181 182 183 104 105	LSTX RCL0 1 + * RCL4 + 1 - RCL0 CHS + *	16-63 36 98 91 -55 -35 36 84 -55 -24 91 -45 36 98 -22 -24 21 83	Display answer if second time through.
93 93 94 94 94 94 84 84 84 95 95	87 RCL5 88. ± 199 ± 198 RCL6 11 + 12 RCL8 13 Y× 14 STOB 15 × 16 - 17 RCL6 88 × 99 ± 188 RCL8 11 - 12 ÷	36		894 894 895 896 897 898 899 108 181 182 183 184 185 186	LSTX RCL0 1 + * ** ** ** ** *LBL3 2	16-63 36 99 91 -55 -35 36 84 -55 -24 91 -45 36 99 -22 -24 21 93	
93 94 94 94 94 94 84 84 84 84 95 95	77 RCL5 8. ± 19 1 10 RCL6 11 + 12 RCL8 33 Y* 44 STO8 5 - 77 RCL6 8 × 9 1 88 RCL8 1 - 22 ± 33 RCL1	36 93 36 95 -24 81 36 96 -55 36 89 -35 -45 81 36 98 -45 -24 36 81		893 894 895 896 897 899 108 181 182 183 104 185 186 187	LSTX RCL0 1 + * RCL4 + † 1 RCL0 CHS * **LBL3	16-63 36 99 91 -55 -35 36 84 -55 -24 91 -45 36 99 -22 -24 21 93 92 98	
93 94 94 94 94 94 94 94 95 95 95	R7 RCL5 R8. ± 19 1 100 RCL6 11 + CL8 13 XYX 4 STOR 4 STOR 6 - CYX 7 RCL6 8 X 9 1 8 RCL9 10 RCL1 11 + CL9 11 + C	36 93 36 95 -24 91 36 96 -55 36 99 -35 -45 36 96 -35 91 36 98 -45 -45 -45 -45 -45 -45 -86 -87 -87 -88 -88 -88 -88 -88 -88		893 894 895 896 897 899 100 101 102 103 104 105 107 108 108	LSTX RCL8 1 + x RCL4 + 1 1 RCL8 CHS 2 **LBL3	16-63 36 00 91 -55 -35 36 04 -55 -24 81 -45 36 00 -22 -24 21 03 02 00 00 -35	
93 94 94 94 94 94 84 84 84 85 95 95	77 RCL5 19: 19: 19: 19: 19: 19: 19: 19:	36 83 36 85 -24 81 36 86 -55 36 88 -35 -45 36 86 -35 -45 36 88 -45 -45 36 88 -45 -45 -45 -45 -45 -45 -46 -57 -48 -48 -48 -48 -48 -48 -48 -48		893 894 895 896 897 899 100 181 102 103 104 105 106 107 107 107 107 108 109 118	LSTX RCL0 1 + * RCL4 + - 1 RCL0 CHS - * * * * * * * * * * * * * * * * * *	16-63 36 00 91 -55 36 04 -55 -24 81 -45 36 00 -22 -24 21 03 02 00 00 00 -35 35 00 00 00 00 00 00 00 00 00 00 00 00 00	
93 94 94 94 94 94 94 94 95 95 95	77 RCL5 19: 19: 19: 19: 19: 19: 19: 19:	36 93 36 95 -24 91 36 96 -55 36 99 -35 -45 36 96 -35 91 36 98 -45 -45 -45 -45 -45 -45 -86 -87 -87 -88 -88 -88 -88 -88 -88		893 894 895 896 897 100 101 102 103 104 105 107 108 108 108 118 111	LSTX RCL8 1 + x RCL4 + 1 1 RCL8 CHS 2 **LBL3	16-63 36 00 91 -55 -35 36 04 -55 -24 81 -45 36 00 -22 -24 21 03 02 00 00 -35	
93 93 94 94 94 94 94 95 95 95 95	77 RCL5 19: 19: 19: 19: 19: 19: 19: 19:	36 93 36 95 -24 91 36 96 -55 36 99 -35 -45 36 96 -35 91 36 98 -24 36 91 36 91 36 93 -24 36 91 36 92 -24 36 93	REG	893 894 895 896 897 899 100 181 102 103 104 105 106 107 107 107 107 108 109 118	LSTX RCL8 1 + * * 1 RCL8 CHS CHS 2 9 ** *LBL3 2 9 * ** *TOZ	16-63 36 00 91 -55 36 04 -55 -24 81 -45 36 00 -22 -24 21 03 02 00 00 00 -35 35 00 00 00 00 00 00 00 00 00 00 00 00 00	time through.
93 93 94 94 94 94 84 84 95 95 95	77 RCL5 19 1 10 RCL6 12 RCL8 13 Y* 14 STOR 15 X 16 - 7 17 RCL6 18 X 19 1 10 RCL9 11 - 10 RCL9 11 - 10 RCL9 11 - 10 RCL9 11 - 10 RCL9 11 RCL9 11 RCL9 11 RCL9	36 93 36 95 -24 81 36 96 -55 36 90 -35 -45 36 96 -35 91 36 98 -45 -24 36 81 82 -24 36 95	REG	893 894 895 896 897 100 101 102 103 104 105 106 107 108 108 118 111 112	LSTX RCL8 1 + * * * * * * *L8L3 2 0 8 * * * * * * * * * * * * * * * * * * *	16-63 36 99 91 -55 -35 36 84 -55 -24 91 -45 36 89 -22 -24 21 93 92 98 99 -35 35 92 24	time through.
93 83 94 94 94 94 84 84 95 95 95 95	77 RCL5 199 1 100 RCL6 111 1 + 122 RCL8 13 Y2 14 STO8 15 X 16 X 17 RCL6 17 RCL6 18 RCL5 18 RCL5 18 RCL5	36 93 36 95 -24 91 36 96 -55 36 99 -35 -45 36 98 -35 -35 -41 36 98 -24 36 91 92 -24 36 95	REG 3 RV 4 PRICE	893 894 895 896 897 698 899 100 101 102 103 104 105 106 107 118 111 112 111 112 111 112 111 112	LSTX RCL8 1 1 2 RCL4 1 1 RCL8 CHS 2 8 *LBL3 2 8 8 *ST02 RTM	16-63 36 99 91 -55 -35 36 94 -55 -24 81 -45 36 89 -22 -24 21 83 92 98 99 90 -35 35 92 24	time through.
93 93 94 94 94 94 84 84 95 95 95	77 RCL5 19 1 10 RCL6 12 RCL8 13 Y* 14 STOR 15 X 16 - 7 17 RCL6 18 X 19 1 10 RCL9 11 - 10 RCL9 11 - 10 RCL9 11 - 10 RCL9 11 - 10 RCL9 11 RCL9 11 RCL9 11 RCL9	36 93 36 95 -24 81 36 96 -55 36 90 -35 -45 36 96 -35 91 36 98 -45 -24 36 81 82 -24 36 95	REG	893 894 895 896 897 100 101 102 103 104 105 106 107 108 108 118 111 112	LSTX RCL8 1 + * * * * * * *L8L3 2 0 8 * * * * * * * * * * * * * * * * * * *	16-63 36 99 91 -55 -35 36 84 -55 -24 91 -45 36 89 -22 -24 21 93 92 98 99 -35 35 92 24	time through.
93 93 94 94 94 94 94 95 95 95 95 95	77 RCL5 199 1 100 RCL6 111 1 + 122 RCL8 13 Y2 14 STO8 15 X 16 X 17 RCL6 17 RCL6 18 RCL5 18 RCL5 18 RCL5	36 93 36 95 -24 91 36 96 -55 36 90 -35 -45 36 93 -45 -35 91 36 98 -45 -24 36 91 92 -24 36 95	REG PRICE S3 S4	893 894 895 896 897 899 100 101 102 103 104 105 107 108 109 111 112 112 112 112 112 112 112 113 114 115 115 116 117 118 118 111 118 118 118 118 118 118	LSTX RCL8 1 1 2 RCL4 1 1 RCL8 CHS 2 8 *LBL3 2 8 8 *ST02 RTM	16-63 36 90 91 -55 -35 36 84 -55 -24 91 -45 36 89 -22 -24 21 93 92 90 90 -35 35 92 24	time through.
93 83 94 94 94 94 84 84 95 95 95 95	77 RCL5 199 1 100 RCL6 111 1 + 122 RCL8 13 Y2 14 STO8 15 X 16 X 17 RCL6 17 RCL6 18 RCL5 18 RCL5 18 RCL5	36 93 36 95 -24 91 36 96 -55 36 99 -35 -45 36 98 -35 -35 -45 -36 98 -45 -24 36 91 92 -24 36 95	REG 3 RV 4 PRICE	893 894 895 896 897 698 899 100 101 102 103 104 105 106 107 118 111 112 111 112 111 112 111 112	LSTX RCL8 1 1 2 RCL4 1 1 RCL8 CHS 2 8 *LBL3 2 8 8 *ST02 RTM	16-63 36 99 91 -55 -35 36 94 -55 -24 81 -45 36 89 -22 -24 21 83 92 98 99 90 -35 35 92 24	time through.

113												
114 ST02 35 82 178 RCL5 36 85 181 STN 24 116		*LBL5	21	0 5	1			169	+	-55		
1115 RYN 24 116 **LBLE 21 15 117 F37 16 23 93 118 0706 22 96 119 RCL2 36 92 122 9 6 90 123 ÷ -24 121 0 0 0 0 0 177 + -55 122 0 0 0 177 + -55 123 ÷ -24 124									RCL5		1	
116	115	RTN		24	1						1	
1117 F37 16 23 93 119 87L2 36 92 119 87L2 36 92 121 0 00 122 0 02 121 0 00 122 0 00 123 ÷ -24 124 1 01 125 + -55 126 \$705 35 95 127 1 01 128 \$RCL0 36 00 129 FRC 16 44 130 + -55 131 \$706 22 04 133 CH5 -22 131 \$106 20 132 \$RCL0 36 00 133 CH5 -22 134 1 01 135 \$XY? 16-34 136 00 137 \$RCL5 36 00 137 \$RCL5 36 00 137 \$RCL5 36 00 137 \$RCL5 36 00 138 \$RCL6 36 00 139 \$Y* 31 140 \$RCL5 36 00 139 \$Y* 31 140 \$RCL5 36 00 131 \$RCL6 36 00 131 \$RCL6 36 00 132 \$RCL0 36 00 133 \$Y* 31 140 \$RCL5 36 05 141 \$RCL0 36 00 131 \$RCL6 36 00 132 \$RCL0 36 00 133 \$Y* 31 140 \$RCL5 36 05 141 \$RCL5 36 05 141 \$RCL5 36 05 141 \$RCL5 36 05 141 \$RCL5 36 05 141 \$RCL5 36 00 131 \$RCL6 36 00 132 \$RCL0 36 00 133 \$Y* 31 143 \$RCL5 36 05 14445 145 \$RCL1 36 01 146 \$X -35 157 \$RCL1 36 01 156 \$X -35 157 \$RCL1 36 01 156 \$X -35 157 \$RCL1 36 01 156 \$X -35 157 \$RCL1 36 01 156 \$X -35 157 \$RCL3 36 03 161 \$X -35 157 \$RCL3 36 03 161 \$X -35 157 \$RCL3 36 03 161 \$X -35 157 \$RCL3 36 03 161 \$X -35 157 \$RCL3 36 03 161 \$X -35 157 \$RCL3 36 03 161 \$X -35 157 \$RCL3 36 05 162 \$X -35 157 \$RCL3 36 05 163 \$RTN \$24 165 \$RCL3 36 03 166 \$X -35 157 \$RCL3 36 05 167 \$X -24 155 \$RCL3 36 05 168 \$RCL3 36 03 169 \$RCL3 36 03 161 \$X -35 157 \$RCL3 36 05 160 \$RCL3 36 03 161 \$X -35 157 \$RCL3 36 05 160 \$RCL3 36 03 161 \$X -35 162 \$X -35 157 \$RCL3 36 03 161 \$X -35 162 \$X -35 157 \$RCL3 36 05 162 \$X -35 157 \$RCL3 36 05 163 \$RTN \$24 165 \$RCL3 36 03 166 \$RCL3 36 03 167 \$X -24 168 \$RCL3 36 03 169 \$RCL3 36 03 160 \$X -35 150 \$X -24 160 \$RCL3 36 03 161 \$X -35 162 \$X -35 157 \$RCL3 36 05 162 \$X -35 157 \$RCL3 36 05 163 \$RTN \$24 165 \$RCL3 36 03 166 \$X -35 167 \$X -24 168 \$RCL3 36 03 169 \$RCL3 36 03 160 \$RCL3 36 03 160 \$RCL3 36 03 160 \$X -35 160 \$RCL3 36 03 160 \$X -35 160 \$X -35 160 \$RCL3 36 03 160 \$X -35 160	116	*LBLE	21	15					_*			
118 6706 22 86 174 x -35 119 8716 2 86 175 618 -22 128 2 82 175 176 1 81 122 8 80 176 1 81 123 5 -24 124 1 91 188 2 82 125 4 -555 181 5 -24 126 57105 35 85 182 861 127 1 81 183 x -35 128 RCL	117	F3?	16 23	<i>03</i>	Price-	+R ₄ , R ₅			PCI A		1	
119	118	GT06	22	96							1	
128	119	RCL2			1							
121												
122					Calcul	ate .l						
123					1						1	
124					1							
125					1						i	
126 ST05 35 85					1						1	
127		•			İ							
128 RCL0 36 69 184 STOS 35 68 129 FRC 16 44 187 187 1816 21 66 183 STOS 35 68 183 STOS 35 68 187 1816 21 66 188 STOS 35 65 186 RTN 24 187 1816 21 66 188 STOS 35 65 186 RTN 24 187 1816 21 66 188 STOS 35 65 185 RCLS 36 65 187 RCLS 36 66 137 RCLS 36 66 137 RCLS 36 66 141 RCLS 36 66 141 RCLS 36 66 141 RCLS 36 66 141 RCLS 36 66 141 RCLS 36 62 144 45 145 RCLI 36 61 146 X -35 147 RCLI 36 62 148 \$\frac{1}{2}					1						ľ	
129					Į.						1	
138					l							
131 ST06 35 96 187 41816 21 96 188 ST04 35 94 137 87 87 87 87 87 87 87					ľ						1	
132					1						1	
133											1	
134					1						1	
135 X/Y? 16-34 191 R/S 51 131 R/S 51 132 RCL6 36 65 138 RCL6 36 65 138 RCL6 36 66 139 Y* 31 140 RCL5 36 85 85 144 45 144 45 145 RCL1 36 81 146 X -35 147 RCL2 36 82 148 ÷ -24 149 EEX -23 158 2 82 151 X -35 152 RCL6 36 86 153 2 82 151 X -35 157 RCL1 36 81 156 X -35 157 RCL1 36 81 156 X -35 157 RCL1 36 85 168 RCL3 36 83 161 X -35 162 + -55 163 RTN 24 164 4484 41 42 44 164 4484 41 42 44 164 4484 41 44 41 45 44 164 4484 41 41 41 41 41 41					l			189	STD5	35 85	1	
135 X2 X2 X2 X2 X3 X3 X3 X3					Is PER	1 < 1?		190	RTN	24	I	
136					1						1	
138					1			1			1	
139 Y* 31 140 RCL5 36 05 141 RCL0 36 06 142 Y* 31 143 ST05 35 05 144 45 145 RCL1 36 01 146			36	0 5	1						i	
148			36	96	l						1	
141 RCLB 36 8B 142 YK 31 143 ST05 35 85 144 -	139	γ×	,	31				1			l .	
141 RCLB 36 88	140	RCL5	36	95	Calcula	ate price for lo	DA.	l .				
142	141	RCLO	36 (99			''y	į.			1	
144	142	γ×		31							Į.	
144	147	CTOE										
145 RCL1 36 81 146	1 173		35 8	85				ł				
146												
147 RCL2 36 62 148 ÷ -24 149 EEX -23 150 2 02 151 x -35 152 RCL6 36 06 153 2 92 154 ÷ -24 155 RCL1 36 01 156 x -35 157 ST00 35 00 15845 159 RCL5 36 05 160 RCL3 36 03 161 x -35 162 x -35 163 RTM 24 164 \$\frac{4}{4}\text{LBL4} 21 \text{ 94} 165 RCL1 36 01 166 2 02 167 ÷ -24 168 RCL3 35 03 161 x -35 162 x -55 163 RTM 24 164 \$\frac{4}{4}\text{LBL4} 21 \text{ 94} 165 RCL1 36 01 166 2 02 167 ÷ -24 168 RCL3 35 03 A PER B CR VLD D RV F PRICE D SET STATUS A PER B CR VLD D RV F PRICE D ON OFF B D D D D D D D D D D D D D D D D D D	144	-	-4	45								
148	144 145	- RCL1	36 E	45 91								
149 EEX	144 145 146	RCL1 ×	36 E	45 91 35								
158	144 145 146 147	RCL1 × RCL2	36 6 -3 36 6	45 91 35 32								
151	144 145 146 147 148	RCL1 × RCL2	36 (-3 36 (45 91 35 32 24								
152	144 145 146 147 148 149	RCL1 X RCL2 EEX	36 (36 (-2 -2	45 91 35 32 24								
153 2 62 154 ÷ -24 155 RCL1 36 81 156 x -35 157 ST08 35 88 15845 159 RCL5 36 85 168 RCL3 36 83 161 x -35 162 + -35 163 RTM 24 164 \$LBL4 21 84 165 RCL1 36 81 166 2 92 167 ÷ -24 168 RCL3 35 83 Calculate price for short term bonds. Calculate price for short term bonds. FLAGS SET STATUS A PER B CR C YLD D RV F PRICE 0 FLAGS TRIG DISP B C	144 145 146 147 148 149 158	RCL1 X RCL2 EEX 2	36 6 -3 36 6 -2 -4	45 91 35 32 24 23								
154	144 145 146 147 148 149 158	RCL1 X RCL2 EEX 2 X	36 6 36 6 -2 -2 -2 -3	45 91 35 32 24 23 32 35								
155	144 145 146 147 148 149 158 151	RCL1 X RCL2 EEX 2 X RCL6	36 (36 (-2 -2 -2 -3 -3 -3 -3	45 91 35 32 24 23 35 36								
156	144 145 146 147 148 149 158 151 152 153	RCL1 x RCL2 EEX 2 x RCL6 2	36 6 -2 -2 -2 -3 -3 -3 -3	45 91 35 32 24 23 32 35 36								
157 S109 35 86 158 - -45 159 RCL3 36 85 160 RCL3 36 93 161 x -35 162 + -55 163 RTN 24 164 \$\$\text{\$\tex{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$	144 145 146 147 148 149 158 151 152 153	RCL1 X RCL2 EEX 2 X RCL6 2	36 6 36 6 -2 -2 -3 -3 -3 -3 -3	45 31 35 32 24 32 32 35 36 32								
158	144 145 146 147 148 149 150 151 152 153 154 155	RCL1 RCL2 EEX RCL6 2 RCL1	36 6 36 6 36 6 36 6	45 91 35 32 24 23 35 36 36 32 24 31								
159 RCL5	144 145 146 147 148 149 150 151 152 153 154 155 155	RCL1 X RCL2 EEX 2 RCL6 2 RCL1 X	36 6 36 6 36 6 36 6	45 91 35 32 24 23 35 36 36 31 31 33								
168	144 145 146 147 148 149 150 151 152 153 154 155 155 156	RCL1 X RCL2 EEX 2 RCL6 2 RCL1 X	36 6 -2 -2 -36 6 -36 6 -36 6 -37 6	45 91 35 32 24 32 35 36 36 31 31 31 31								
161	144 145 146 147 148 149 159 151 152 153 154 155 155 157	RCL1 x RCL2 EEX 2 x RCL6 2 EX RCL1 x ST08	36 6 36 6 -2 36 6 -3 36 6 36 6	45 91 35 32 24 23 35 36 36 31 35 36 31 35 36								
162	144 145 146 147 148 149 150 151 152 153 154 155 155 156 157	RCL1 x RCL2 EEX 2 x RCL6 2 FRCL1 x STOR	36 6 36 6 36 6 36 6 36 6 36 6 37 6 38 6	45 91 35 32 24 23 35 36 36 37 38 38 38 38 38 38 38 38 38 38 38 38 38								
163	144 145 146 147 148 149 151 152 153 154 155 155 156 157 158	RCL1 x RCL2 EEX 2 xCL6 2 RCL1 x ST00 RCL5 RCL3	36 6 36 6 36 6 36 6 36 6 37 6 38 6 38 6 38 6	45 91 35 32 24 23 35 36 36 37 38 38 38 38 38 38 38 38 38 38 38 38 38								
164 et Bt 4 21 84 165 RCL1 36 81 Calculate price for short term bonds.	144 145 146 147 148 158 151 152 153 154 155 155 156 158 159 160	RCL1 x RCL2 EEX 2 x RCL6 2 RCL1 x ST000	36 6 36 6 36 6 36 6 36 6 36 6 36 6	45 91 35 22 35 36 32 33 36 31 33 36 36 37 37 38 38 38 38 38 38 38 38 38 38 38 38 38								
165	144 145 146 147 148 159 151 155 155 155 155 155 156 157 156 159 168	RCL1 x RCL2 EEX x RCL6 2 RCL1 x ST00 RCL5 RCL3 x	36 6 6 36 6 36 6 6 36 6 6 6 6 6 6 6 6 6	45 91 35 24 23 35 36 36 37 38 38 38 38 38 38 38 38 38 38 38 38 38								
166	144 145 146 147 148 159 151 152 153 154 155 155 156 161 161 162	RCL1 RCL2 EEX RCL6 2 RCL1 x STOB RCL5 RCL3 X RTM	36 6 6 36 6 36 6 36 6 6 36 6 6 36 6 6 36 6 6 36 6 6 36 6 6 36 6 6 36 6 6 6 36 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	45 91 91 93 93 93 93 94 93 94 95 95 95 95 95 95 95 95 95 95 95 95 95								
167	144 145 146 147 148 159 151 152 153 154 155 155 157 158 168 161 162	RCL2 EEX RCL2 EX RCL6 2 RCL6 2 RCL1 ST08 RCL5 RCL3 + RTN *LBL4	36 6 -2 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3	45 91 33 33 33 33 33 33 33 33 33 33 33 33 33								
166	144 145 146 147 148 159 159 151 152 153 154 155 157 159 169 161 162 163 164	RCL2 RCL2 EEX 2 RCL6 2 RCL1 X STOB RCL5 RCL3 X + RCL5 RCL4 RCL4 RCL5	36 6 -2 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3	45 91 93 93 93 93 93 93 93 93 93 93 93 93 93			ort					
A PER B CR C YLD D RV E PRICE 0 FLAGS TRIG DISP	144 145 146 147 148 149 159 151 152 153 154 155 156 157 158 160 161 162 163 164 165	RCL2 EEX 2 RCL6 2 EX 8 RCL6 2 EX 8 RCL6 8 RCL5 RCL3 X RTM *LBL4 RCL1 2	36 6 -2 -2 -3 -3 -3 -3 -4 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3	45 91 93 93 93 93 93 93 93 93 93 93 93 93 93			ort					
A PER	144 145 146 147 148 149 159 155 155 155 155 157 158 168 161 162 163 164 165	RCL1 2 RCL6 2 RCL1 X ST09 RCL5 RCL1 X RCL5 RCL1 X RCL5 RCL1 X RCL1 X RCL1 X PTM RCL1 2 FTM RCL1 2	36 6 -2 -2 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3	45 81 81 82 83 83 83 83 83 83 84 84 84 84 84 84 84 84 84 84			ort					
A PER B CR C YLD D RV E PRICE 0 FLAGS TRIG DISP a b c d e 1 ON OFF 0 Used 1 Used 2 Used 3 Used 4 Used 2 Used 1 DEG SI FIX SI 0 FLAGS TRIG DISP THOUGH THE PRICE D FLAGS TRIG DISP ON OFF 1 SIZE D FLAGS TRIG DISP ON OFF 1 SIZE D FLAGS TRIG DISP	144 145 146 147 148 149 159 155 155 155 155 157 158 168 161 162 163 164 165	RCL1 2 RCL6 2 RCL1 X ST09 RCL5 RCL1 X RCL5 RCL1 X RCL5 RCL1 X RCL1 X RCL1 X PTM RCL1 2 FTM RCL1 2	36 6 -2 -2 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3	45 81 81 82 83 83 83 83 83 83 84 84 84 84 84 84 84 84 84 84	term be	onds.	ort					
a b c d e 1 ON OFF O DEG ⊠ FIX ⊠ 0 Used 1 Used 2 Used 3 Used 4 Used 2 Used 1 □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	144 145 146 147 148 159 159 159 155 154 155 157 158 169 161 162 163 164 165 166 167	RCL1 X RCL2 EEX 2 RCL6 2 RCL1 X ST08 RCL3 + RTN *LBL4 RCL1 2 RCL3 - RCL3	36 6 36 6 36 6 36 6 35 6 36 8 36 8 36 8 36 8 36 8 36 8	45 191 191 191 191 191 191 191 191 191 19	term be	onds. BELS					SET STATUS	
0 Used 1 Used 2 Used 3 Used 4 Used 1	144 145 146 147 148 159 159 159 155 154 155 157 158 169 161 162 163 164 165 166 167	RCL1 X RCL2 EEX 2 RCL6 2 RCL1 X ST08 RCL3 + RTN *LBL4 RCL1 2 RCL3 - RCL3	36 6 36 6 36 6 36 6 35 6 36 8 36 8 36 8 36 8 36 8 36 8	45 191 191 191 191 191 191 191 191 191 19	term be	onds. BELS		RICE 0		SLAGS		
0 Used 1 Used 2 Used 3 Used 4 Used 2 Used 1 □ 1 GRAD □ SCI □ 5 Used 5 Used 7 8 9 3 0 ··· 2 □ 1 B RAD □ ENG □	144 145 146 147 148 149 159 151 152 153 154 155 156 167 168 169 167 168	RCL1 RCL2 EEX 2 RCL6 2 RCL6 2 FL RCL5 RCL5 RCL5 RCL3 + RCL5 RCL1 RCL1 RCL1 RCL1 RCL1 B CCL3	36 6 -2 36 6 -2 36 6 -2 36 6 -2 36 6 -2 36 6 -2 36 6 -2 36 6	45 191 192 193 193 193 193 193 193 193 193 193 193	term be	BELS D RV	E p					DISP
5 Head 6 Head 7 8 9 3 0 2 2 0 80 RAD 0 ENG_0	144 145 146 147 148 149 159 151 152 153 154 155 156 167 168 A PER a	RCL1 RCL2 EEX 2 RCL6 2 RCL6 4 ST08 RCL5 RCL5 RCL1 RCL1 ATHREA RCL1 B C b	36 6 -2 36 6 -2 36 6 -2 36 6 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3	45 191 191 191 191 191 191 191 191 191 19	term be	BELS D RV	E p	1102		ON OFF	TRIG	
1 1 1 1 1 1 1 1 1 1	144 145 146 147 148 149 159 151 152 153 154 155 156 167 168 A PER a	RCL1 RCL2 EEX 2 RCL6 2 RCL6 4 ST08 RCL5 RCL5 RCL1 RCL1 ATHREA RCL1 B C b	36 6 -2 36 6 -2 36 6 -2 36 6 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3	45 191 191 191 191 191 191 191 191 191 19	term be	BELS D RV	E p	1102		ON OFF 0 🗀 🔀	TRIG DEG ☑ GRAD □	FIX ⊠ SCI □
	144 145 146 147 148 149 159 151 152 153 154 155 155 156 166 167 168 A PER a O Used	RCL1 RCL2 EEX 2 RCL6 2 RCL1 X ST08 RCL5 RCL3 X TH *LBL4 RCL3 B CCL3 B CCL3	36 6 6 6 36 6 6 36 6 6 36 6 6 36 6 6 36 6 6 36 6 6 36 6 6 36 6 6 36 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	45 191 191 191 191 191 191 191 191 191 19	term be	BELS D RV d	E p	ind 2	Used	ON OFF 0 🗀 🐼 1 🗆 🐼 2 🗆 🔯	TRIG DEG ☑ GRAD □	FIX ⊠ SCI □

INTEREST AT MATURITY/DISCOUNTED SECURITIES

Г	801	*LBLA		21 1						857	RCL8		36 08				
l	882	STOA		35 £		DSM-			1	658	÷,		-24	1			
1	663	XZY		4		DłM⊸	·R,			659	1		81	1			
	884	ST09		35 6					l	868	RCLA		-55 36 11	1			
1	025	XZY		-4						861			36 12				
	886	RTN			24	— — — Dania				062	RCLB ÷		-24				
	087	*LBLB		21 1		Basis-	rn _B		•	063 064	RCLD		36 14				
	998	STOP		35 1			_		ŀ	965	X		-35	1			
1	889	EEX		-2		100→	H ₈			966	RCL8		36 0 8	1			
ı	818	2 5108		35 8	22					967			-24	1			
ı	011	-X 2 Y		35 E					i	968	1		91	1			
ı	012 013	RTN			4				l	869	<i>,</i>		-55	1			
ı	014	*LBLC		21 1		ÇR→ſ			1	878	÷		-24				
ı	014 015	STOC		35 1		ÇIL 71	'C		ļ	071	RCL9		36 09				
ı	816	RTN			4]	072	RCLA		36 11				
ı	017	*LBLD		21 1					1	673			-45	1			
ı	018	STOD		35 1		YLD-	. D.		1	874	RCLE		36 12	1			
ı	819	F3?	16	23 8		LD	- ND		1	875	+		-24	1			
1	020	RTN	16		24				I	676	ROLO		36 13	1			
1	020 021	RCL9		36 6		Calc. `	Yield		I	677	х		-35	1			
1	022	RCLB		36 1		Jail.	, iciu		I	678	RCL8		3€ 08	1			
1	02Z	KCLD ÷		-2					I	679	÷		-24	1			
	024	RCLC		36 1					I	688	-		-45	1			
	025	X		-3					I	081	EEX		-23	1			
	026	RCLS		36 6					l	982	2		02	Sto	re price i	in Re	
ı	827	+		-5					l	683	×		-35	1 010	e price i	не	
ı	028	RCL9		36 €					l	€84	STOE		35 15	1			
	629	RCLA		36					l	085	RTN		24	l			
l	030	-		-4					l	886	*LBLa	21	16 11	DSA	/I→R _Δ		
	031	RCLB		36					l	987	STOR		35 11	1 23,	" 'IIA		
	632	+		-2					i	688	CF1	16	22 81	1			
i .	633	RCLC		36 1					l	089	RTN		24	1			
ı	834	X		-3					l	898	*LBLL	21	16 12				
ı	035	RCLE		36					l	091	SF1	1€	21 01	1			
1	636	+		-5					l	892	STOI		35 4 <i>6</i>	Calc	nrice o	iven DR	
1	837	÷		-2					l	893	RCLA		36 11	0	price g	iven Di	
	638	1			11				1	894	ж З		-35				
1	039	_		-4	15				1	695	3		03	1			
1	040	RCLB		36 1	2				1	896	ε		<i>06</i>	1			
	841	x		-3	35					097	8		80	1			
	042	RCLA		36 1						€98	÷		-24	1			
	843	÷		-2	24				ŀ	899	EEX		-23	1			
1	044	RCL8		36 €					l	100	2		02	1			
1	845	×		-3		Store	yield in I	R _D		101	XZY		-41				
1	846	STOD		35 £	4	_10.0	,		ı	102			-45	1			
i i	047	RTN			24					103	ST07		35 87				
1	648	*LBLE		21 1	15			. –		104	€SB¢	23	16 13	1			
1	049	STOE		35 1		Price-	+R _⊏		ļ.	105	RCLI		36 46	1			
i i	050	F3?	16	23 €	13				1	106	RTN		24	1			
]	851	RTN			24				1	107	*LBLc	21	16 13	Calc	c. yield o	jiven prio	е
1	852	RCL9		36 €					I	108	EEX		-23	1	:		
1	053	RCLB		36		Calc.	price		l	109	2		02	1			
1	854	÷			24					110	XZY		-41	1			
1	855	RCLC		36					1	111			-45	1			
	05 6	×		-3	35				l	112	LSTX		16-63				
								REGI	STEF	15							
0		1		2		3		4	5		6		7 Used	8	100	9 DII	и
SO		Sı		S2		53		S4	S5		S6		S7	S8		S9	
SU		31		32		33]"	33		36		"	30		39	
<u></u>			В				C C		D			E	PD16-		1		
ľ	DSM		[3	60/36	ib		l CF	R(%)		YLD		ľ	PRICE		DISC	RATE	

113	÷		-24							1	
114	RCLA		11							1	
115	÷		-24				1				
116	3		03	1			İ			1	
117			-62	1						1	
118	6		96	1						ı	
119	EEX		- 23	ł							
128	4		84								
121	×		-35				1				
122	STOD		14	ł			İ			1	
123	RTN		24	1							
124	*LBLd	21 16		i							
125	F1?	16 23	01								
126	GT02	22	02 ·				1			1	
127	STOD		14				1			1	
128	F3?	16 23	93							1	
129	RTN		24	1						1	
138	RCLE	36	15							1	
131	GSBc	23 16		1						1	
132	RTN		24				1			1	
	*LBLe	21 16	15							Ī	
134	STOE	35	15								
135	F1?	16 23	01	1						1	
136	6701	22		l						1	
137	F3?	16 23		Calc. p	rice given yield		ļ				
136	RTH		24							1	
139	1		Ø1				i			1	
148	RCLD	36									
141	EEX	-	-23								
142	2		<i>0</i> 2	İ			ł			1	
143	÷		24	1						i.	
144	RCLA	36		1							
145	×	-	-35	l							
146	3		Ø3	i			Ī				
147	6		96	1			ļ				
148	8		00	1						1	
149	÷		-24	Į.						1	
150	+		-55	i						ł	
151	EEX	-	-23	1					•		
152	2		02							1	
153	X‡Y		41				ĺ			ļ	
154 155	STOE	75	24	1			l				
156	RTN	35	24				l				
	KIN KLBL1	21		1			l			I	
158	RCL7	36		1							
159	STOE	35		1			l				
160	RTN	33	24	1			1			1	
	LBL2	21		1			1				
162	RCLD	36		1			1				
163	RTN	36	24								
164	R/S		51							İ	
1	K, 2		91	1						1	
1				1						1	
1				I						1	
				1						i	
				LAE	BELS		٠.	FLAGS		SET STATUS	
A DIM/DSM	B Bas	sis	c c		D YLD	E PR	ICE	0	FLAGS		DIED
a DSM	b DR		c 11	sed	d YLD	e PR		3 00	ON OFF	TRIG	DISP
DOW	J. DR		<u></u>	sea	Y LU	PH	ILE) DR	0 🗆 🗷	DEG 🛣	FIX KG

ļ	1-	<u> </u>	ABELS		FLAGS		SET STATUS	
A DIM/DSM	B Basis	C CR	D YLD	E PRICE	0	FLAGS	TRIG	DISP
a DSM	^b DR	^C Used	d YLD	e PRICE) DR	ON OFF	DEG 🛣	FIX K
0	1	2	3	4	2	1 0 8	GRAD □	sci □
5	6	7	8	19	3 Digit?	3 🗆 🗷	HAD []	ENG □ n2

LINEAR REGRESSION—EXPONENTIAL CURVE FIT

								,
881	*LBLA	21 11		1	857	R↓	~ -31	
882	CF1	16 22 81	Clears flag 1 and s	torage	858	RCLB	36 12	Calculate linear r ²
803	CLRG	16-53	registers.	- 1	859	×	-35	
884	P≓S	16-51	*		969	RCL7	36 87	
885	CLRG	16-53			861	RCL6	36 86	
	CLX	-51			862	XE	53	
986				l l				
887	RTN	24			863	RCL9	36 89	1
808	*LBLB	21 12	y→R ₈		964	÷	-24	1
889	ST08	35 00		l l	865	-	-45	
818	XZY	-41			866	÷	-24	
611	ST09	35 09	x→R ₉		867	STOE	35 15	r ² → R _E
612	XZY	-41		I I	866	RCLA	36 11	_
613	X>8?	16-44	y>0?		869	6SB9	23 89	Display a (lin.)
814	6708	22 00	/· -·	ı	878	RCLB	36 12	Justine Committee
015	SFI	16 21 81	If no, set flag 1.	i i	871	6SB9	23 09	Display b (lin.)
616	*LBL4	21 84	it no, set mag i.		672	RCLE	36 15	Display D' (lin.)
				- 1		P₽S		Display (IIII.)
017	RCLO	36 00	Performs summati	ons	673		16-51	ł
018	RCL9	36 69			874	esb9	23 09	ł
619	Σ+	56		1	075	F1?	16 23 01	If any y ≤ 0, display
028	RTM	24			676	80Ta	22 08	ERROR.
021	*LBL0	21 00		ı	877	RCL2	36 B2	1
822	LH	32		1	878	RCLØ	36 6 0	Calculate b (exponential)
823	ST+8	35-55 80	ΣIny→R ₀	ļ	879	P#S	16-51	1
824	Χz	53	1	1	888	RCL4	36 84	1
625	ST+1	35-55 0 1	$\Sigma (\ln y)^2 \rightarrow R_1$	1	081	×	-35	1
826	RCL8	36 68	201197 - 111	1	682	RCL9	36 09	1
				1	683			1
927	LN	32	i .			÷ -	-24	1
928	RCL9	36 89	l		084		-45	1
629	_ x	-35	I		985	RCL5	36 05	1
838	ST+2	35-55 <i>02</i>	ΣxIny→R ₂	l.	886	RCL 4	36 84	
831	GT04	22 84	1		887	Xs	53	
832	#LBLa	21 16 11	1		888	RCL9	36 89	
833	PZS	16-51	1		889	4	-24	
034	RCL8	36 88	Colombas & Binas	.	898	_	-45	
035	RCL4	36 04	Calculate b (linear	'	891	÷	-24	
036	RCLE	36 86			892	STCC	35 13	
		-35						b→R _C
637	X				893	RCL4	36 84	
838	RCL9	36 89			894	X	-35	Calculate a (exponential)
839	÷	-24			095	CHS	-22	
849	-	-45			Ø96	₽₽S	16-51	
841	RCL5	3€ 05	ľ		097	RCL0	36 00	1
842	RCL4	3€ 04	1		898	+	-55	1
843	X2	53	1	Į	099	₽₽S	16-51	1
844	RCL9	36 89	l .		100	RCL9	36 09	1
845	+	-24			101	÷	-24	1
846	-	-45	1	i	102	ė×	33	1
847	-	-24	1			STOR	35 14	1
					183			a→R _D
946	STOB	35 12	b→R _B	I	104	R↓	-31	1
049	RCL4	36 84	1	i	105	RCLC	36 13	Calculate exponential r ²
050	×	-35			106	×	-35	1
851	CHS	-22	Calculate a (linear) [107	P25	16-51	
652	RCL6	36 06		' l	108	RCL1	36 01	
853	+	-55	ŀ	l	189	RCLO	36 00	
854	RCL9	36 09	1	ı	110	X2	53	
855	÷	-24	1	i	111	PZS	16-51	
				l				
056	STOA	35 11	a→R _A		112	RCL9	36 09	1
				REGISTE	RS			
⁹ Σlny	1 Σ(In	y) ² ² Σxlny	3 4	5		6	7	8 y 9 x
1		1	-			l		1 1
	IS1	S2	S3 S4	Σx _i S5	Σx_i^2	S6 Σy	Σ_{i} $\Sigma_{y_{i}}^{2}$	S8 Exiyi S9 n
S0	Ρ'	1						
S0	<u> </u>			۷x _i	2/1			1 2011 L "
S0 A a (Linear	Ш.,_	B b (Linear)	C b(Expon	, la	a(Expone	ــــــــــــــــــــــــــــــــــــــ	E Used	Used

113	÷	-24	l	169	RCL8	36 88	
114	-	-45		170	RCL9	36 89	
115	÷	-24	1	171	Σ-	16 56	
116	STOE	35 15		172	RTN	24	
117	F8?	16 23 00		173	*LBL1	21 81	1
118	SPC	16-11	Display a (exp.)	174	LN	32	ì
119	RCLD	36 14		175		35-45 00	i
120	ESB9	23 09	Display b (exp.)	176	X5	53	
121	RCLC	36 13					
122	€SB9	23 89	Display r ² (exp.)	177		35-45 01	
123	RCLE	36 15	.,,	178	RCL8	36 00	
124	₽₽S	16-51	1	179	LH	32	
125	6SB9	23 89	i	180	RCL9	36 89	
126	RCLC	36 13	Continuous effective rate	181	×	-35	
127	ex		as a %.	182	ST-2	35-45 02	
	-	33	1	183	6T05	22 85	
128	1	01	1	184	*LBLc	21 16 13	Delete last trend value,
129		-45	ŧ	185		16 25 46	l .
130	EEK	-23	1	186	RCL9	36 09	
131	2	92	1	187	XZY	-41	
132	×	-35		188	CT01	22 81	
133	GSB9	23 99	1	189		21 16 15	
134	F@?	16 23 00	1				Deina/naura #1
135	SPC	16-11	1	190		16 23 00	Print/pause flag.
136	RTN	24		191	6702	22 02	
137	*LBLC	21 13		192		16 21 00	
138	ISZI	16 26 46	ì	193	1	91	
139	RCLI	36 46	Performs summations for	194	P.TH	24	1
140	STOS	35 89	trend line.	195	*LBL2	21 82	
141	XZY			196	ø	99	1
142		-41		197	CF0	16 22 00	
	STOP	35 08		198	RTN	24	
143	X>65	16-44	1	199	*LBL9	21 09	1
144	CT08	22 88	i	200		16 23 00	1
145	SF1	1€ 21 01		201	GT03	22 03	Duine
146	GT04	22 64		202	R/S	51	Print command.
147	*LBLD	21 14		203	RTN	24	1
148	RCLB	36 12					1
149	x	-35	ŷ = a + bx	204	*LBL3	21 03	İ
150	RCLA	36 11	i	205	PRTX	-14	
151	+	-55		206	RTN	24	1
152	GT09	22 09		207	R ∕5	51	1
153	*LBLE	21 15				•	1
154	RCLC	36 13	ا ۱				1
155	X	-35	y = aebx				1
			1				l
156	ex ex	33]				1
157	RCLD	36 14					1
158	X	-35					l
159	GT09	22 0 9	[i				
160	*LBLb	21 16 12					
161	ST08	35 0 0	1=				
162	XZY	-41	For deleting incorrect				i
163	ST09	35 09	inputs.				I
164	XZY	-41	1				1
165	X>0?	16-44					
166	GT01	22 01					1
]				
167	SF1	16 21 01	1				
168	*LBL5	21 05					[
			LABELS		FLAGS	;	SET STATUS
A START	BDa	ta Input C Tren	d Line Diny E F		0 Print?		

į

		LA	BELS		FLAGS	SET STATUS			
A START	^B Data Input	^C Trend Line	D Lin y	Expy	⁰ Print?	FLAGS	TRIG	DISP	
a a; b; r²	^b Del. Data	^c Del. T.L.	d	e Print?	¹ y≯0	ON OFF	DEG 🗷	FIX KG	
0 Used	¹ Used	² Used	³ Used	4 Used	2	1 🗆 🗵	GRAD 🗆	SCI 🗆	
⁵ Used	6	7	8	9	3	2 🗆 🗷 3 🗆 🗷	RAD 🗆	ENG ₂ □	

MULTIPLE LINEAR REGRESSION

					857		-45		
100	*LBLA	21 11				CTAI		i	
802	CLRG	16-53	1		858	STOI	35 46	1	
993	CF1	16 22 01	Initialize		959	₽J	-31	ļ	
884	. 9	88	4		969	Χs	53	1	
					961	6SB2	23 82	1	
885	RTN	24	i i					1	
60€	*LBLB	21 12			062	ST+i	35-55 45		
887	STOC	35 13	1		863	RTN	24		
			1		064	*LBLC	21 13	1	
968	R↓	-31	1.					1	
889	STOB	35 12	Input x _i , y _i , z	i	8€5	RC10	3 6 00	1	
616	R∔	-31	l l		866	RCL4	36 84	Calculate	a, b, c
			I		867	×	~35		
611	STOA	35 11	I		968	RCL7	36 87	1	1
012	F0?	16 23 00	I					1	1
013	esb8	23 06	I		869	Χz	53	1	
014	7	87	I		678	-	-45	1	í
			Compute Σx _i ,	Σv. Σz.	071	STOD	35 14		
815	STOI	35 46						ŀ	
916	R↓	-31	Σ×i	2 , Σy_{i}^{2} , Σz_{i}^{2}	072	RCLO	3€ 00	l l	j
817	6SB1	23 01	Σνο	$y_i, \Sigma y_i z_i, \Sigma z_i x_i$	073	RCL3	36 03		1
	8			,, 2,12, 22,1	874	×	-35		
018	•	- 08	1		875	RCL8	36 08	1	
019	STOI	35 46	1					- 1	
628	RCLB	36 12	1		876	RCL9	36 09	ı	
621	Fe?	16 23 00	1		877	×	-35	1	
			1		878	-	-45	1	
022	GSB€	23 86	1			×	-35	1	
623	6SB1	23 01	1		879			1	İ
824	9	89	1		889	STOC	35 13	1	
025	STOI	35 46	i		198	RCL0	36 BA	1	
					082	RCL1	36 81	1	
026	RCLC	36 13	I					1	
827	FØ?	16 23 00	l l		683	x	-35		
928	€SB6	23 86			084	RCL7	36 87		
					685	RCL8	36 00	1	
029	€SB1	23 01	i		086	x	-35		
939	RCLA	3€ 11	I						
031	RCLB	36 12	I		687	-	-45		
632	×	-35	I		888	STOA	35 11		
633	GSB2	23 02			889	RCLE	36 88		
			I					i	
834	ST+1	35-55 01	I		090	RCL2	36 02		
635	RCLA	36 11 36 13	I		891	ж	-35		
936	RCLC	36 13	I		092	RCL7	36 87		
237	x	-35	I		093	RCL9	36 89	1	
			I					i	
838	€SB2	23 02	I		894	x	-35	1	
039	ST+2	35-55 02	I		895	-	-45	1	
048	RCLB	36 12	I		895	STOB	35 12	1	
			. 1					1	
841	RCLC	36 13 -35			837	X	-35		
842	×		1		098	RCLC	36 1 3	1	
043	6SB2	23 02	1		699	XZY	-41	1	
844	ST+3	35-55 03	1		100		-45	1	
845	1	91	1					ı	
			. i		101	RCLD	36 14	1	
846	6SB2	23 82			102	RCLB	36 00	1	
847	5T+Ø	35-55 00	' 1		103	RCL5	36 95	1	
048	RCLO	36 88	· 1					1	
849	F0?	16 23 00			104	X	-35	1	
					105	RCL8	36 08	Ī	
959	€SB€	23 06			10€	χz	53	1	
951	RTN	24	1		107	-	-45	ı	
852	*LBL1	21 81				-		ı	
			Subroutine fo	rΣx _i ,	108	χ.	- 35	1	
953	GSB2	23 82	· I	Σx_i^2 ,	109	RCLA	36 11	1	
854	ST+I	<i>35-55</i> 45		∠∧; ,	110	χż	53	ı	
055	RCL I	36 46	: 1					1	
656	3	93			111		-45	1	
1 626	3	63	' 1		112	ŧ	-24	ı	
				REGIS	STERS				
0 .	Ti.	2 _	l3	14		6	7	8	9
n n	'Σx _i y _i	Σx _i	$\Sigma_{y_i z_i}$	⁴ Σx _i ²	$^{5}\Sigma y_{i}^{2}$	Σz _i ²	Σx _i	Σyi	Σzi
	S1	S2	S3	S4	S5	S6	S7	S8	S9
So			100	15.	~~	100	I2,	l ₂₀	155
S0	Γ.	1		1		i	I		1
S0		16		1		i .	15		
S0 A Use		B Used	l c u	sed	D Used		E Used	<u> </u>	Jsed
		B Used	C U	sed	D Used		E Used		Jsed

	RCLB 36 RCLA 36				169 178 171	FØ? GSB6 RCLC	16 23 88 23 86 36 13		
116 117 118	κ .	13 -35 - 45			172 173 174	X X≢Y RCLB	-35 -41 36 12		
119 120 121	÷	14 -24 12			175 176 177	X + RCLA	-35 -55 36 11		
122 123	RCL9 36 RCLC 36	89 13 88			178 179	6T09	-55 22 0 9		
125 12€	x -	-35 -45			180 181 182	*LBLa SF1 GSBB	21 16 11 16 21 81 23 12	Correction values.	of input
128 129	RCL7 3€ x	12 07 -35			183 184 185	SF1 RTM #LBLe	16 22 81 24 21 16 15	Print instr	uctions
132	RCL0 36	-24			18€ 187 188	F0? 6705 SF0	16 23 00 22 05 16 21 00		
134 135	STOA 35 6387 23 RCLB 36	87 b		ĺ	1 8 9 190 191	1 RTN *LBL5	01 24 21 05		
137 138	63B9 23 RCLC 36 6T09 22	13 c			192 193 194	G CFB RTN	99 16 22 99 24		
149	LBLD 21 RCLA 36 RCL9 36	13			195 196 197	*LBL7 F0? SPC	21 87 16 23 88 16-11		
	x - RCL5 36 RCL2 36	12	late r²		198 199 200	*LBL9 F8? GT06	21 69 16 23 88 22 86		
145 146 147		-35 -55 13			201 202 203	R∕S RTN *LBL6	51 24 21 06		
148 149 150	FCL3 36				204 205 206	PRTX RTN *LSL2	-14 24 21 02		
151 152	RCL9 36 X2 FCL0 36	09 53			207 208 209	F1? CHS RTN	16 23 01 -22 24	Change sign correction.	
154 155	÷ -	24 45			210 211 212	*LBL8 SPC GT 0 9	21 08 16-11 22 09		
157 158	PCL9 36	09 53			213	R/S	51		
160 161 162	÷ -	24 45 24							
163	GT07 22 LBLE 21	97 15 Calcul	ate z for given x,	 y.					
166 167	F0? 16 23 GSB8 23	8 8							
168	X2Y -	4) LA	BELS			FLAGS		SET STATUS	
A START	Β Σ+	Ca;b;c	D r²	E z		O Print	FLAGS		DISP
a Σ–	b	С	d	e Print		1 Correction	200	FF	FIX 🖸
0	1 Used	² Used	3	4		2	1 🗆 [SI GRAD	sci 🗆 I
5 Used	⁶ Used	⁷ Used	⁸ Used	⁹ Used		3		X HAD D	ENG □ n_2

BREAK-EVEN ANALYSIS

80		21 11		057 RCLB	36 12	1
88.		35 11	F→RA	058 RCLC	36 13	Calculate GP and store
80	3 F3?	16 23 03	Digit entered?	859 -	-45	in R _E .
90	4 RTN	24		969 RCLD	36 14	
88		36 12		861 ×	-35	1
80		36 13		862 RCLA	36 11	1
99		-45	Calculate F and store in	963 -		
80		36 14	R _A .		-45	
			I ''A'	064 STOE	35 15	
90:		-35		865 RTN	24	1
011		36 15		966 ≢LBLa	21 16 11	
81.		-45		867 RCLB	36 12	
81	2 STDA	35 11		868 RCLC	36 13	Calculate OL
81	3 RTN	24		069 -	-45	
61	4 #LBLB	21 12		ere RCLD	36 14	
81	5 STOB	35 12	P→R _B	871 x	-35	
81		16 23 83	1 -	872 STOI	35 46	
13		24	Digit entered?	073 RCLI	36 46	
81		36 11	Digit enterear	074 RCLA		
					36 11	1
81.	9 RCLE	36 15	Lacross	075 -	-45	
02	0 + 1 DCLD	-55	Calculate P and store in	876 ÷	-24	1
82		36 14	R _B .	B77 RTN	24	1
82.		-24	I	878 R/S	5 <i>1</i>	1
82		36 13	I			
92		~55	I	l		1
82	5 STOB	35 1 <i>2</i>	ľ			
82	6 RTN	24	1			1
92	7 #LBLC	21 13				
821		35 13	V-8			1
82		16 23 93	V→R _C			1
83		24	Digit entered?			1
						1
83		36 12				1
832		36 11	Calculate V and store in R _C .			1
933		36 15		i]
834		-55				1
833	5 RCLD	36 14				1
036	6 ÷	-24				1
637	7 -	-45				j
636		35 13				i
039		24				1
848		21 14				į
84:		35 14	U→R _D	I		
842		16 23 03	District	I		1
043		16 23 83 2 4	Digit entered?			1
		36 11	1			1
64			1	l		1
843		36 15	Calculate U and store in	l		1
846		-55	R _D .	l		1
847		36 12	1	I		
848		36 13	1	l		1
843		-45	1	l		1
Ø56		-24	[l		
05:		35 14	1	l		i
952		24	1	l		i l
953		21 15	GP→RE	l		i l
854		35 15	Or THE	l		i l
05		16 23 03	Digit entered?	l		1
85		24		l		i l
838	5 K/N			TEDE		i
0	14	2		STERS 5 6	17	[8 [9
ľ	ľ	ľ	ľ ľ	ľ ľ	ľ	v s
50	S1 -	S2	S3 S4	S5 S6	S7	S8 S9
[·	Ĭ.	"	I	I I I	Ĭ,	
A		В _	C	D	E CD	1-1
l F		Р	° v	Ŭ	GP	P(U – V)

							T	
							1	
				ľ				
		ĺ						
		-						
				1				
							1	
		- 1		ľ				ľ
							[
							ŀ	
								ļ
1								
İ								
		1						
1		İ						
İ		į.						1
}		- 1		I				
1								
Ī								
A _	8 _B C	LAE	BELS To	E	FLAGS		SET STATUS	
A F	B	LAE	D U	E GP	FLAGS	SIAGE	TRIG	DISP
	b c	LAE	d	e 01	0	SIAGE	TRIG	
a	b c	LAE V			0			DISP FIX ® SCI □ ENG_□ n □

3

3

]

]

]

INVOICING

801	*LBLA	21 11	I		857	#LBLc	21 16 13	Т	
002	CLRG	16-53	Clear regis		058	2	92		ecall and display line
003	₽₽S	16-51	initialize F	R _I	059	STOI	35 46	to	tal as % of Grand Total
804	CLRG	16-53			060	*LBL1	21 01		
895	2	02	Į.		961	RCL i	36 45	1	
886	STOI	35 46	j		062	X=8?	16-43		
007	8	88	1		863	CT04	22 04		
008	RTN	24			864	RCL1	36 01	l a	neck to recall only those
009	*LBLB	21 12	DISC→RE		965	*CE1	-24		gisters containing line
010	STOE	35 15	_		966	EĒX	-23		tals.
011	RTN	24			967	2	02 02	1	
812	*LBLC	21 13	1		968	χ	-35		
013	STOD	35 14	UNITS→F	ln.	869	€SB2	23 02		
014	RTN	24			878	ISZI	16 26 46	1	
915	*LBLB	21 14	1		871	1321	15 25 46	1	
816	STOC	35 13	PRICE→R	c	072	1		1	
017	RTN	24			073	RCLI	01 36 46	1	
818	*LBLE	21 15						1	
919	6SB5	23 05	Net line to	tal - D.	874	X∠Y?	16-35	1	
828	STO:	35 45	I were time to	uai - ni	075	GT01	22 61	Ι.	
021	ST+0	35-55 00			976	*LBL4	21 04		st output is 100 - you
822	ST+1	35-55 R1			977	1	91	are	done!
023	ISZI	16 26 46	Chack to s	ee if number of	978	0	80	1	
824	2	02		22. If not, show	979	0	99	1	
025	2		ERROR.	22. 11 110t, 3110W	980	GSB2	23 02		
826	RCLI	02			189	RTH	24		
		36 46	f		882	*LBL2	21 82	Te	st print/pause flag.
027	X>Y?	16-34	i		083	F0?	16 23 80	ļ	
028	6109	22 09			084	eto3	22 03		
029	R↓	-31	ŀ		895	R/5	51	1	
030	₽↓	-31	I		986	RTN	24		
831	RTM	24			987	*LBL3	21 03	Pri	nt/pause
032	≉LBL5	21 05	i		888	PRTX	-14		
033	RCLC	36 13	Net line to	tal calculated.	989	RTN	24		
834	ENTT	-21			098	*LBLe	21 16 15		
635	ENT†	-21	l		891	F8?	16 23 00	1 Pri	nt/pause flag set and
036	RCLE	36 15	l		892	GTO8	22 00		set.
837	EEX	-23	i		093	SF8	16 21 80	1	
938	2	02			894	1	01	1	
939	÷	-24			895	RTN	24	1	
848	X	-35			096	*LBL0	21 90	1	
841	-	-45			897	CFB	16 22 00	1	
842	RCLD	36 14			898	. 0	68	1	
043	×	-35			899	RTN	24	1	
944	RTH	24			188	*LBLd	21 16 14	n-	utine to delete
845	#LBLa	21 16 11	Display sub	total and clear	101	OSZI	16 25 46		orrect line totals.
846	RCLB	36 00	register.	rtotal allu cicar	102	0	80	III.	orrect line totals.
847	ENTT	-21	""		103	STOI	35 45	1	
848	CLX	-51	l		184	6SB5	23 85	1	
849	ST00	35 00	l		185	ST-0	35-45 88		
959	X≭Y	-41	l		186	ST-1	35-45 81	1	
851	GSB2	23 02			197	RCLB	36 89		
952	RTN	24	l		188	R/S	51	ł	
853	*LBL6	21 16 12	Recall Gran	d Total		W. P	٠.	1	
854	RCL1	36 01	ecan Gran	na i Otal	l			1	
955	CSB2	23 82			!			1	
856	RTN	24						1	
				BECH	STERS			Ь.	
0 Cuttons	1	2	3	4	6	16	7	Ta .	
Subtotal	Grand		Used	Used	Used	Used	Used	Ŭ.	sed Sused
S0 Used	S1 Usec	S2 Used	S3 Used	S4 Used	S5 Used	S6	S7	S8	S9
	<u> </u>	le l		Usea		Used		'	Used Used
^ Used		Used	c	Price	D Uni	ts	E Disc.		Control
		L					L		1

A START	^B Disc.	C Units		ENet Line Tot.	FLAGS O Print?	FLAGS	SET STATUS TRIG	DISP
a Subtotal	^b Grand Total	^C % Total	d DEL	e Print?	1	ON OFF 0 □ ☑		
O Used Used	Used 6	² Used 7	3 Used 8	⁴ Used 9	3	ON OFF 0	DEG ⊠ GRAD □ RAD □	FIX III SCI ENG

PAYROLL

90:	41 (7 1 4		-	1				1 05-				т—		
801	*LBLA 8	•	21	99			d. If data card	957 958	RCL1 *LBL3		36 01 21 03	(Wa	ge) 5.85	%
803	PSE		16			go to c. (t sequent	Otherwise	059	*LBL3	-	95	'''	5 , 2.50	
004	F3?	16			repea	. sequeni	æ.	868			-62			
885	GT0c	22						861	8		98	1		
886	GTOA		22	11				062	5		05	i		
887	*LELc	21 .	16	13	Displa	y SS No		₹63	2		55	1		
989	RCLI	,	36	46				864	RND	1	6 24			
809	6SB9		23		Displa	y marita	I status.	865	ST+5		5 05	ΣF	ICA	
610	RCLE		36					866	ST-9		15 09	Net	pay-FI	CA
011	esb9	_	23					967	6SB9		23 09			
812	RCLB		36			y numb	er of	968	*LBL2	2	21 02	Cali	fornia Si	DI tax base
813 814	GSB9 RTN	4	23		exem	otions.		869	9		0 9			
815	*LBLB		21	24				979	EEX		-23 03			
618	RCLE		6		#hee >	k hrly wa	100	871 872	RCL0		86 00			
017	X			35	Till a	tilly we	ige	873	X>Y?		16-34		ss > 900	0.3
018	RND	1	6					074	GT06		22 06	Gro	ss > 900	Ur
819	STO1		55					875	RCL1		36 01			
020	\$709		5					876	*LBL4		21 04	l (wa	ge) 1%	
621	ST+0	35-5						877	1		01	''''	gc, 170	
822	GSB9		3 .					878	2		55	1		
623	RTN			24				879	RND	1	6 24	1		
024	*LBLC		1		#hrs >	OT wag	je	888	ST+6	35-5	55 <i>06</i>	ΣS	DI	
025	RCLD	3	6					081	ST-9	35-4	15 09	1		
026	×			35				€82	GSB9		23 09	Net	pay -SE	DI
827	RND		6					983	*LBL5		21 05	i		
828	ST+0	35-5						884	RCL7	_	36 07	Net	pay - Co	nst. 1
929	ST+1	35-5						085	ST-9		15 09	ľ		
939 931	ST+9 RCL9	35-5						98€	6SB9		23 09	j		
632	GSB9		3 1					987	RCL1		36 01 36 00	Net	Pay - Wa	age x Const. 2
033	RTN	-		24				939 939	RCL B	•	36 08 55	1		
834	*LBL0	2	1					690	RND		16 24	ł		
835	5702		5	44	Fed'l.			691	ST-9		15 89	ł		
936		35-5		22		ed'l. tax		892	65B9		23 89	None	0-	2
837		35-4			Net pa	ay — Fed'	I. tax	893	RCLA		36 11	INET	pay – Co	inst. 3
638	RCL2		6		Dienla	y Fed'l.	tav	894	ST-9		15 09	1		
839	6889	2	3 6	9	Dispid	y 1 ca 1.	Lax	695	GSB9		23 09	Net	nav	
040	RTN		ä	24				89 <i>6</i>	RCL9		36 09		e new da	ata
84:	*I.BLE		1 :					897	NDTA		16-61	1	ut	
842	ST02		5 (State 1	tax		₽98	CF3		22 03	1		
843		35-5			Tot. S	tate tax		899	G\$89		23 09	l		
844		35-4			Net pa	y-State	tax	100	RTN		24	DOI	NE!	
845 846	RCL2		6 (101	*LBL@		21 00			
847	GSB9 RTN	2	3 (Displa	y State t	ax	182	XZY		-41	Gro	ss — 15 3 0	0
848		21 1		24				103	DCL 1		-45			
849	*LBLa	21 I						184	RCL1		36 01	Wag	e > Gros	s – 15300?
858	5			35	FICA	tax base		105 106	X>Y? GTC1		1 6-34 22 01		_	
051	3			33				107	8	•	99			CA to with-
052	9			ie l				107	ESB9		23 09	holo	l; contine	16.
853	ē			96				103	6353 6T02		22 02			
854	RCLB	.3	6 6		Gross > 15300?		110	*LEL1		21 01	Δ		pply to FICA	
855	X)Y?	_	6-3		Gross > 153007		111	XZY	•	-41	tax		ppry to FICA	
85 <i>6</i>	6TOB			112	-		-45			s – 15300)				
				TERS					00					
O Gross	1 Wage		2 _E ^	d'I/State	3	tal Fed'l	4 Total State	⁵ Σ FICA	⁶ Σ SD	, 1	7 Carea 1	8	2/0/1	9 Net Pay
				u i/otate		tai rea l					Const. 1		inst.2(%)	
S0	S1		S2		S3		S4	S5	S6		S7	S8		S9
Α -		To I	_		_		1	D		<u></u> _	<u> </u>			L
Const.	3	#	Exe	emptions		Hrly \	Vage	OT Wag	je	E	Used		SSN	umber

113	CT03	22		_							
114	*LBL6	21		l_						1	
115	XZY		41	Gross-	-9000					1	
116	-		45	ł.,			1			1	
117	RCL1	36		Wage >	> Gross — 90007	?				1	
118	X> Y?	16-		l						1	
119	GT07	22			re SDI to with	nold;	1				
120	0		66 60	contin	ue.		1			1	
121	CSB9	23		1						!	
122	GTO5 *LBL7	22 21		Ame			1			1	
124	*LBL/		97 41		nt to apply to : Nage — (Gross —					1	
125	-		45	"" "	101035	3000)				1	
126	GT04	22		1]			1	
127		1 16		I			1			i	
128		6 23		Set and	d unset print/pa		1			I	
129	CT01	22		flag.	p pc		1			1	
130		€ 21		ľ			1			1	i
131	1		01				1			1	
132	RTN		24				1			j	
133	*LBL1	21	31				1			I	
134	CFB 1	6 22	<i>9</i> 8				i			I	
135	Ø		98	Print o	ommand		1			!	
13€	RTN		24	1							
137	*LBL3	21		l						l	
138		6 23		l						1	
139	GT08	22		l						I	
140	R/S		51								
141	RTN		24	l			1			1	
142	*LBL8	15					ľ			i	
143	PRTX		14	l							
144	RTN *LBLb 2	1 16	24							1	
146	RCL0	36		Gross							
147	GSB9	23		ı			1			I	
148	RCL3	36					1				
149	6SB9	23		Total F	ea 1.						
150	RCL4	36		Total S	****					1	
151	GSB9	23		l otal S	tate						
152	RCL5	36		Total F	ICA.						- 1
153	6\$B9	23		, otal r	TOPA					l	l
154	RCLE	36		Total S	:DI		ŀ			ſ	j
155	6SB9	23	09	"" "			1			1	l
15€	RTN		24							l	- 1
157	R/S		51							l	I
1							l			l	ŀ
1							Ī			I	i
I				!			l			l	ľ
							l			İ	
											1
											1
1]	j
											i
											l
L							L				İ
	ТВ		<u> </u>		BELS	1-		FLAGS		SET STATUS	
^A START	B #hrs		C #hrs	ОТ	D Fed'l tax	E St	ate tax	O Print?	FLAGS	TRIG	DISP
a Net Pay	b Total	\$	^C Used		d	e Pi	int?	1	ON OFF	DEG 🐼	FIX 🖸
⁰ Used	¹ Used		² Used		³ Used	4 U	sed	2	1 □ 🛭	GRAD □	SCI 🗆
⁵ Used	6 Used		7 Used		⁸ Used	9 1	sed	3 Data?	2 🗆 🗵	RAD · □	ENG □
	1 2300				3203			Locar	3 □ 🖬		"

INVENTORY

891	*LBLA	21 11		857	RTH	2	4
802	8	88	Read data card.	958	*LBLc	21 16 13	3
993	PSE	16 51	If data card read, go to 1.	859	1	8:	1 Initialize
884	F3?	16 23 83	Otherwise repeat sequence.	868	STOI	35 46	6
885	GT01	22 01		961	*LBL2	21 02	
996	GTOA	22 11		862	RCL i	36 45	5
897	*LBL1	21 01		863	GSB9	23 89	
998	CF3	16 22 83		864	ISZI	16 26 46	
889	RCLB	36 00		965	RCLI	36 46	
918	GSB9	23 89		966	7	97	
011	RTN	24		867	X>Y?	16-34	
812	*LBLB	21 12	Store new price.	968	GT02	22 02	
013	STOE	35 15		869	RCLO	36 96	
814	RTN	24		878	6SB9		
015	*LBLC	21 13		871	F8?	23 09 16 23 06	
016	STOD	35 14	Store amount rec'd.	872	SPC		
817	RCL1	36 81		873	RTN	16-11	
918	RCL2	36 02				24	
819	X	-35	Unit price by weighted	874	#LBLd	21 16 14	, I
929	RCLE		average method.	875	MOTA	16-61	
		36 15	average memou.	076	CF3	16 22 03	
821	RCLD	36 14		977	CLX	-51	
822	×	-35		878	RTN	24	
023	*	-55		879	*LBLe	21 16 15	
824	RCL2	36 02		989	FØ?	16 23 00	
825	RCLD	36 14		081	CTOO	22 00	
926	+	-55		982	SFØ	16 21 00	
827	÷.	-24		963	1	61	
828	\$701	35 91	T	984	RTN	24	
829	RCLD	36 14	Adjusts on hand and on		*LBL0	21 00	
939	ST+2	35-55 82	order quantities by amount	986	CF0	16 22 80)
031	ST-3	35-45 03	received.	987	8	90	1]
832	esb3	23 03	Calc. slack.	888	RTN	24	; <u>]</u>
633	RCL2	36 02		889	≠LBL9	21 09	Print command
034	RTN	24		898	FB?	16 23 80)]
835	*LBLD	21 14	Subtract # issued from	891	6108	22 88) j
936	ST-2	35-45 82	those on hand.	892	R/5	51	: 1
937	esb3	23 03	Calc. slack.	093	RTN	24	: 1
638	RCL2	36 92		094	*LBL8	21 88	: 1
839	RTN	24		895	PRTX	-14	. 1
940	*LBLE	21 15		896	RTN	24	· 1
841	ST+3	35-55 03	Add # ordered to those on	897	R/S	51	1
842	esb3	23 03	order.	I			1
843	RCL3	36 83	Calc. slack.	!			1
844	RTN	24		Í			1
945	#LBLa	21 16 11		1			1
946	ST04	35 84	Store minimum quantity,	l			
847	RTN	24					1
948	#LBLb	21 16 12					1
849	ST05	35 85	Store lead time.	I			
658	*LBL3	21 03					1
851	RCL2	36 82	Routine to calculate slack,	I			
652	RCL3	36 03		1			1
623	+	-55					1
854	RCL4	36 84					
855	-	-45					I
856	ST06	35 86					1
			REGIS	TERS			
O Part #	1 Unit p	orice ² On hand		⁵ Lead Time	⁶ Slack	7	8 9
						i	
So So	S1	S2	S3 S4	\$5	S6	S7	58 59
	1		<u> </u>		<u> </u>		
Α		В	c	D Amount R	an'd	E Now or	ion 1100
		1	1	Amount K	ec a.	New pri	ice Used

				1				
							ŀ	
				-				
İ				ļ				
				ļ				
ľ								
		-						
ŀ								
							:	
		ļ						
								ļ
								j
								Ĭ
			BELS		FLAGS	اا		
A START	^B Price	C Received	D Issued	E Ordered	⁰ Print?		SET STATUS	
a Min. Quant.	^b LT→SLK	^C List	d Update	e Print?	1	FLAGS ON OFF 0 □ 🗵	TRIG	DISP
⁰ Used 5	1 Used	² Used	3 Used	4	2	1 □ 124	DEG SØ GRAD □ RAD □	FIX SI SCI CI ENG CI n_2
ř		<u>'</u>	⁸ Used	⁹ Used	3 Data?	2 🗆 🛭 3 🗆 🕦	10AU U	n_2

]

3

3

3

Į

Appendix A

MAGNETIC CARD SYMBOLS AND CONVENTIONS				
SYMBOL OR CONVENTION	INDICATED MEANING			
White mnemonic:	White mnemonics are associated with th			
x	definable key they are above when the			
	the second to also reduced as the description of a first			

CONVENTION	INDICATED MEANING
White mnemonic: x A	White mnemonics are associated with the user definable key they are above when the card is inserted in the calculator's window slot. In this case the value of x could be input by keying it in and pressing A.
Gold mnemonic: y x	Gold mnemonics are similar to white mnemonics except that the gold f key must be pressed before the user definable key. In this case y could be input by pressing f.
x ∳ y △	♦ is the symbol for ENTER. In this case ENTER. is used to separate the input variables x and y. To input both x and y you would key in x, press ENTER., key in y and press A.
X A	The box around the variable x indicates input by pressing STO A.
(x)	Parentheses indicate an option. In this case, x is not a required input but could be input in special cases.
→ X	→ is the symbol for calculate. This indicates that you may calculate x by pressing key <a>A .
→ x, y, z	This indicates that x, y, and z are calculated by pressing A once. The values would be printed in x, y, z order.
→x; y; z	The semi-colons indicate that after x has been calculated using A, y and z may be calculated by pressing R.S.
→''x,'' y A	The quote marks indicate that the x value will be "paused" or held in the display for one second. The pause will be followed by the display of y.
⇔ X	The two-way arrow \Leftrightarrow indicates that x may be either output or input when the associated user definable key is pressed. If numeric keys have been pressed between user-definable keys, x is stored. If numeric keys have not been pressed, the program will calculate x.

SYMBOL OR CONVENTION	INDICATED MEANING		
P?	The question mark indicates that this is a mode setting, while the mnemonic indicates the type of mode being set. In this case a print mode is controlled. Mode settings typically have a 1.00 or 0.00 indicator displayed after they are executed. If 1.00 is displayed, the mode is on. If 0.00 is displayed, it is off.		
START A	The word START is an example of a command. The start function should be performed to begin or start a program. It is included when initialization is necessary.		
DEL A	This special command indicates that the last value or set of values input may be deleted by pressing A.		

Appendix B PRINCIPAL EQUATIONS

Unless otherwise stated, all interest rates (i, APR, IRR, NOM, EFF, CR, YLD, etc.) are expressed in decimal form in the equations which follow. Only symbols not defined in the program descriptions are defined here.

Program Number

1. Internal Rate of Return

Solve for IRR in:

$$INV = \sum_{j=1}^{n} \frac{CF_{j}}{(1 + IRR)^{j}}$$

where:

$$n = number of cash flows$$

 $CF_i = j^{th} cash flow$

2. Internal Rate of Return—Groups

INV =
$$\sum_{j=1}^{k} CF_{j} \left[\frac{1 - (1+i)^{-n_{j}}}{i} \right] \left[(1+i)^{-\sum_{\ell < j} n_{\ell}} \right]$$

$$n_{0} = 0$$

where:

$$CF_j = j^{th}$$
 cash flow
 $n = number$ of cash flows

3. Discounted Cash Flow Analysis-Net Present Value

$$NPV_k = -INV + \sum_{k=1}^{n} \frac{CF_k}{(1+i)^k}$$

where:

Ì

$$n = number of cash flows$$
 $CF_k = k^{th} cash flow$
 $NPV_k = net present value after k^{th} cash flow$

4. Direct Reduction Loans—Sinking Fund

$$PV = \pm \frac{PMT}{i} [1 - (1+i)^{-n}] + BAL (1+i)^{-n}$$

5. Accumulated Interest/Remaining Balance

$$BAL_{K} = \frac{1}{(1+i)^{-K}} \left[PMT \frac{(1+i)^{-K} - 1}{i} + PV \right]$$
$$Int_{J-K} = BAL_{K} - BAL_{J-1} + (K - J + 1) \cdot PMT$$

where:

$$k^{th}$$
 payment to principal = $BAL_{K-1} - BAL_{K}$
 k^{th} payment to interest = $PMT - (BAL_{K-1} - BAL_{K})$
Total payment to interest = $(K) \times (PMT) - (PV - BAL_{K})$

6. Wrap-Around Mortgage

$$PV_{2}-PV_{1} = \frac{PMT_{2}\left[1-(1+i)^{-n_{2}}\right]}{i} - \frac{PMT_{1}\left[1-(1+i)^{-n_{1}}\right]}{i} + BAL(1+i)^{-n_{2}}$$

7. Constant Payment to Principal Loan Amortization Schedule

where:

$$BAL_K = PV - (K \times CPMT)$$

 K^{th} payment to interest = (i) $(BAL_{K-1}) = (PMT_i)_K$
 K^{th} total payment = $CPMT + (PMT_i)_K$
Total interest to payment $K = CPMT + (PMT_i)_K$

$$\frac{\frac{(2-K) \text{ CPMT}}{\text{PV}} + 2}{2} \left[(K-1) (i/100) (\text{PV}) \right]$$

8. Add-on Rate Installment Loan/Interest Rebate—Rule of 78's

$$FC = AMT \cdot \left(\frac{N+h}{12}\right) \cdot AIR$$

$$PMT = \frac{AMT + FC}{N} = AMT (1+i)^{h} \left[\frac{i}{1 - (1+i)^{-N}} \right]$$

$$APR = 12i$$

where:

$$\begin{aligned} & h = ODD \cdot 12/365 \\ & REB_K = (N-K) \cdot \left[\frac{FC \ (N-K+1)}{N \times (N+1)} \right] \\ & BAL_K = (N-K) \cdot PMT - REBATE_K \end{aligned}$$

9. Savings Plan—Leases

$$PV = \pm \frac{PMT}{i} (1+i) [1-(1+i)^{-n}] + (BAL \text{ or } FV) (1+i)^{-n}$$

10. Advance Payments

$$PMT = \frac{PV - BAL (1 + i)^{-n}}{\left[\frac{1 - (1 + i)^{-(n - A)}}{i} + A\right]}$$

11. Savings—Compounding Periods Different from Payment Periods

$$PMT = \frac{FV}{Z} \left[\frac{Q}{(1+Q)^n - 1} \right]$$

when P/C
$$\leq 1$$

$$Q = (1 + i)^{C/P} - 1$$

$$Z = (1 + Q)$$

$$n = \#PAY$$

when
$$P/C > 1$$

Q = i
n = (#PAY) × (C/P)
Z = (P/C + 1) ×
$$\left(\frac{Q}{2}\right)$$
 + (P/C)

12. Simple Interest/Interest Conversions

INT
$$360 = \frac{\text{DAYS}}{360} \cdot \text{BEGAMT} \cdot \text{RATE}$$

INT 365 =
$$\frac{\text{DAYS}}{365}$$
 · BEG AMT · RATE

finite compounding

$$EFF = \left(1 + \frac{NOM}{C}\right)^{C} - 1$$

continuous compounding

$$EFF = (e^{NOM} - 1)$$

13. Depreciation Schedules

where:

K = value for YR

 $TOTDEP_K = total depreciation for years 1 through K.$

W = integer portion of LIFE

F = decimal portion of LIFE

(i.e., for a LIFE of 12.25 years W = 12 and F = .25)

Straight Line Schedule

$$DEP_{K} = \frac{SBV - SAL}{LIFE}$$

$$DEP_{K} (last year) = \left(\frac{SBV - SAL}{LIFE}\right) \cdot F$$

$$TOTDEP_{K} = (K) \cdot \left(\frac{SBV - SAL}{LIFE} \right)$$

$$RDV_K = (LIFE - K) \cdot \left(\frac{SBV - SAL}{LIFE}\right)$$

$$RBV_K = RDV_K + SAL$$

Sum-of-the-Years'-Digits Schedule

$$SOYD = \frac{(W+1)(W+2F)}{2}$$

$$DEP_K = \left(\frac{LIFE + 1 - K}{SOYD}\right) \cdot (SBV - SAL)$$

$$TOTDEP_{K} = \left[1 - \frac{(W - K + 1) \times (W - K + 2F)}{2 \times (SOYD)}\right] \cdot (SBV - SAL)$$

$$RDV_{K} = \left[\frac{(W - K + 1) \times (W - K + 2F)}{2 \times (SOYD)}\right] \cdot (SBV - SAL)$$

$$RBV_K = RDV_K + SAL$$

Variable Rate Declining Balance Schedule

$$DEP_K = SBV \cdot \left(1 - \frac{FACT}{LIFE}\right)^{K-1} \cdot \left(\frac{FACT}{LIFE}\right)$$

$$TOTDEP_{K} = SBV \cdot \left[1 - \left(1 - \frac{FACT}{LIFE} \right)^{K} \right]$$

$$RDV_K = (SBV - SAL) - TOTDEP_K$$

 $RBV_K = RDV_K + SAL$

Crossover Point—Declining Balance to Straight Line

SBV
$$\left(1 - \frac{\text{FACT}}{\text{LIFE}}\right)^{K-1} \cdot \left(\frac{\text{FACT}}{\text{LIFE}}\right) > \frac{(\text{SBV} - \text{SAL}) - \text{TOT DEP}_{K-1}}{L + 1 - K}$$

where $TOTDEP_{K-1}$ is determined as shown above.

The largest integer value for K which maintains the above relationship is the "last year" to use the Declining Balance depreciation method.

14. Days Between Dates

Actual

$$DAYS = f(DT2) - f(DT1)$$

where

$$f(DT) = 365 (yyyy) + 31 (mm - 1) + dd + Int (z/4) - x$$

and

for mm ≤ 2

$$x = 0$$

$$z = (yyyy) - 1$$

for mm > 2

30/360 Basis

DAYS =
$$f(DT2) - f(DT1)$$

 $f(DT) = 360 (yyyy) + 30 mm + z$

for f(DT1)

if
$$dd_1 = 31$$
 then $z = 30$
if $dd_1 \neq 31$ then $z = dd_1$

for f (DT2)

if
$$dd_2 = 31$$
 and $dd_1 = 30$ or 31 then $z = 30$
if $dd_2 = 31$ and $dd_1 < 30$ then $z = dd_2$
if $dd_2 < 31$ then $z = dd_2$

15. Bond Price and Yield for PER > 1

PRICE = RV
$$\left(1 + \frac{\text{YLD}}{2}\right)^{\text{PER}} + 100 \cdot \frac{\text{CR}}{\text{YLD}} \left[\left(1 + \frac{\text{YLD}}{2}\right)^{\text{J}}\right]$$

$$- \left(1 + \frac{\text{YLD}}{2}\right)^{-\text{PER}} - 100 \left(\frac{\text{CR}}{2}\right) \text{J}$$

where

J = 1 - FRAC (PER)

FRAC (PER) = fractional portion of the number of remaining coupon periods

i.e., if PER = 12.6, FRAC (PER) = .6, and J = 1 - .6 = .4 for PER < 1

$$PRICE = \frac{RV + \frac{CR}{2}}{1 + \frac{YLD}{2} \cdot PER} - \left(\frac{CR}{2}\right) J$$

16. Interest at Maturity/Discounted Securities

Price (given yield) =

$$\frac{\left(\frac{\text{DIM}}{\text{B}} \times \frac{\text{CR}}{100} + 1\right)}{\left(\frac{\text{DSM}}{\text{B}} \times \frac{\text{YLD}}{100} + 1\right)} - \left(\frac{\text{DIM-DSM}}{\text{B}} \times \frac{\text{CR}}{100}\right)$$

Yield (given price) =

$$\frac{\left(\frac{\text{DIM}}{B} \times \text{CR} + 100\right)}{\frac{\text{DIM} - \text{DSM}}{B} \times \text{CR} + \text{PRICE}} - 1 \left(\frac{B}{\text{DSM}}\right) (100)$$

Price (given yield) =
$$\frac{100}{1 + \frac{\text{YLD}}{100} \times \frac{\text{DSM}}{360}}$$

YLD (given price) =
$$\left(\frac{100 - PRICE}{PRICE} \times \frac{360}{DSM}\right) \times 100$$

Price (given discount rate) =
$$100 - \left(\frac{DR \times DSM}{360}\right)$$

17. Linear Regression

for

$$y = a + bx$$

$$b = \frac{\sum x_i y_i - \frac{\sum x_i \sum y_i}{n}}{\sum x_i^2 - \frac{(\sum x_i)^2}{n}}$$

$$a = \overline{y} - b\overline{x}$$

where:

$$\overline{x} = \frac{\sum x_i}{n}$$
 $\overline{y} = \frac{\sum y_i}{n}$

$$r^2 = \frac{\left[\Sigma_{X_i y_i} - \frac{\Sigma_{X_i} \Sigma_{y_i}}{n}\right]^2}{\left[\Sigma_{X_i}^2 - \frac{(\Sigma_{X_i})^2}{n}\right]\left[\Sigma_{y_i}^2 - \frac{(\Sigma_{y_i})^2}{n}\right]}$$

n = number of data pairs

Exponential Curve Fit

$$y = ae^{bx} (a > 0)$$

$$b = \frac{\sum x_i \ln y_i - \frac{1}{n} (\sum x_i) (\sum \ln y_i)}{\sum x_i^2 - \frac{1}{n} (\sum x_i)^2}$$

$$a = \exp\left[\frac{\sum \ln y_i}{n} - b \frac{\sum x_i}{n}\right]$$

$$r^2 = \frac{\left[\sum x_i \ln y_i - \frac{1}{n} \sum x_i \sum \ln y_i\right]^2}{\left[\sum x_i^2 - \frac{(\sum x_i)^2}{n}\right] \left[\sum (\ln y_i)^2 - \frac{(\sum \ln y_i)^2}{n}\right]}$$

n = number of data pairs

Annual growth rate = $(e^b - 1) 100$

18. Multiple Linear Regression

$$\begin{split} z &= a + bx + cy \\ \Sigma z_i &= an + b\Sigma x_i + c\Sigma y_i & i = 1, 2, ..., n \\ \Sigma x_i z_i &= a\Sigma x_i + b\Sigma x_i^2 + c\Sigma x_i y_i \\ \Sigma y_i z_i &= a\Sigma y_i + b\Sigma x_i y_i + c\Sigma y_i^2 \\ c &= \frac{A - B}{\left[n\Sigma x_i^2 - (\Sigma x_i)^2\right] \left[n\Sigma y_i^2 - (\Sigma y_i)^2\right] - \left[n\Sigma x_i y_i - (\Sigma x_i)(\Sigma y_i)\right]^2} \end{split}$$

where:

$$\begin{split} A &= \left[n\Sigma x_i^2 - (\Sigma x_i)^2\right] \left[n\Sigma y_i z_i - (\Sigma y_i) \left(\Sigma z_i\right)\right] \\ B &= \left[n\Sigma x_i y_i - (\Sigma x_i) \left(\Sigma y_i\right)\right] \left[n\Sigma x_i z_i - (\Sigma x_i) \left(\Sigma z_i\right)\right] \\ b &= \frac{\left[n\Sigma x_i z_i - (\Sigma x_i) \left(\Sigma z_i\right)\right] - c \left[n\Sigma x_i y_i - (\Sigma x_i) \left(\Sigma y_i\right)\right]}{n\Sigma x_i^2 - (\Sigma x_i)^2} \\ a &= \frac{1}{n} \left(\Sigma z_i - c \sum y_i - b \sum x_i\right) \\ R^2 &= \frac{a \sum z_i + b \sum x_i z_i + c \sum y_i z_i - \frac{1}{n} \left(\Sigma z_i\right)^2}{\left(\Sigma z_i^2\right) - \frac{\left(\Sigma z_i\right)^2}{n}} \end{split}$$

19. Break Even Analysis

$$GP = U(P - V) - F$$

$$OL = \frac{U(P - V)}{U(P - V) - F}$$

20. Invoicing

Net line total =
$$\left(\text{Price} - \text{Price} \times \frac{\text{DISC}}{100} \right) \cdot (\#)$$

1000 N.E. Circle Bivd., Corvallis, OR 97330

Rev. 6/77 00097-90084

ABCOE