HP-67 HP-97

Users' Library Solutions Aeronautical Engineering

INTRODUCTION

In an effort to provide continued value to it's customers, Hewlett-Packard is introducing a unique service for the HP fully programmable calculator user. This service is designed to save you time and programming effort. As users are aware, Programmable Calculators are capable of delivering tremendous problem solving potential in terms of power and flexibility, but the real genie in the bottle is program solutions. HP's introduction of the first handheld programmable calculator in 1974 immediately led to a request for program solutions — hence the beginning of the HP-65 Users' Library. In order to save HP calculator customers time, users wrote their own programs and sent them to the Library for the benefit of other program users. In a short period of time over 5,000 programs were accepted and made available. This overwhelming response indicated the value of the program library and a Users' Library was then established for the HP-67/97 users.

To extend the value of the Users' Library, Hewlett-Packard is introducing a unique service—a service designed to save you time and money. The Users' Library has collected the best programs in the most popular categories from the HP-67/97 and HP-65 Libraries. These programs have been packaged into a series of low-cost books, resulting in substantial savings for our valued HP-67/97 users.

We feel this new software service will extend the capabilities of our programmable calculators and provide a great benefit to our HP-67/97 users.

A WORD ABOUT PROGRAM USAGE

Each program contained herein is reproduced on the standard forms used by the Users' Library. Magnetic cards are not included. The Program Description I page gives a basic description of the program. The Program Description II page provides a sample problem and the keystrokes used to solve it. The User Instructions page contains a description of the keystrokes used to solve problems in general and the options which are available to the user. The Program Listing I and Program Listing II pages list the program steps necessary to operate the calculator. The comments, listed next to the steps, describe the reason for a step or group of steps. Other pertinent information about data register contents, uses of labels and flags and the initial calculator status mode is also found on these pages. Following the directions in your HP-67 or HP-97 **Owners' Handbook and Programming Guide**, "Loading a Program" (page 134, HP-67; page 119, HP-97), key in the program from the Program Listing I and Program Listing II pages. A number at the top of the Program Listing indicates on which calculator the program was written (HP-67 or HP-97). If the calculator indicated differs from the calculator you will be using, consult Appendix E of your **Owner's Handbook** for the corresponding keycodes and keystrokes converting HP-67 to HP-97 keycodes and vice versa. No program conversion is necessary. The HP-67 and HP-97 are totally compatible, but some differences do occur in the keycodes used to represent some of the functions.

A program loaded into the HP-67 or HP-97 is not permanent—once the calculator is turned off, the program will not be retained. You can, however, permanently save any program by recording it on a blank magnetic card, several of which were provided in the Standard Pac that was shipped with your calculator. Consult your **Owner's Handbook** for full instructions. A few points to remember:

The Set Status section indicates the status of flags, angular mode, and display setting. After keying in your program, review the status section and set the conditions as indicated before using or permanently recording the program.

REMEMBER! To save the program permanently, **clip** the corners of the magnetic card once you have recorded the program. This simple step will protect the magnetic card and keep the program from being inadvertently erased.

As a part of HP's continuing effort to provide value to our customers, we hope you will enjoy our newest concept.

TABLE OF CONTENTS

PERTIES OF AIR This program computes the following properties of air at low pressures for a given temperature: specific heat ratio, specific heat at constant pressure, specific heat at constant volume, coefficient of viscosity, and absolute Rankine temperature.	•	1
PRESSURE BELOW 35,332 FT. The program computes the theoretical U.S. Standard Atmosphere values for temperature and pressure at any altitude from -16,500 to 35,332 feet or by converting to metric units in the formula, -5,000 to 11,000 meters. Temperature is provided in absolute and thermometer standards. Pressure results are in Hg, psf, psi and mb.	•	Ē
CRAFT FLYOVER ACOUSTIC TONE DOPPLER SHIFT Computes Doppler shift of an aircraft flyover acoustic source frequency observed on the ground. Also determines the 1/3 octave-band filter, and location within the filter, of the observed frequency. Inputs are flight path speed and angle, air temperature, source frequency, and aircraft elevation angle.	•	Ç
NTROPIC FLOW FOR IDEAL GASES. The card replaces isentropic flow tables for a specified specific heat ratio k. Inputs and outputs are interchangeable with the exception of k.	•	13
MAL AND OBLIQUE SHOCK PARAMETERS FOR COMPRESSIBLE FLOW Knowing freestream Mach number, shock angle and ratio of specific heats (Gamma); computes mach number behind shock and the ratios across the shock for: static pressure, total pressure, density and temperature. Assumes adiabatic flow, perfect fluid.		19
QUE SHOCK ANGLE FOR WEDGE Given the upstream Mach number, the flow deflection angle, and the ratio of specific heats the program determines if an oblique shock is possible and finds the shock angle for the weak shock condition if the condition is possible.	•	23
NUMBER AND TRUE AIRSPEED	5	28
COFF RUN VS DENSITY ALTITUDE Computes actual take-off run required given sea level run at 15°C at full gross weight, pressure altitude, actual air temperature, and actual take-off weight.	•	32
AIR TEMPERATURE AND DENSITY ALTITUDE	1	3 6
CRAFT CLIMB This program permits one to determine the desirability of climbing from an altitude of high headwinds to an altitude with lower headwinds. Determine the minimum that must remain at the start of the climb to make the climb to higher altitude worthwhile. Program is good for non-supercharged aircraft only.	•	40

Program Title	Properti	es of A				
Contributor's N	_{ame} Hewlett-					
Address	1000 N.E.	Circle	Blvd.			
City	Corvallis		State _	Oregon	Zip Code	97330

Program Description, Equations, Variables

This program computes properties of air at low pressures for a given temperature * in degrees Fahrenheit or Rankine.

The following properties are computed:

Specific heat ratio

$$k = 1/(1-R/J C_p)$$

where:

- R Universal gas constant
- J Mechanical equivalent of heat
- 2. Specific heat at constant pressure

$$C_p = 0.2478 - 4.2047 \times 10^{-5} T$$
 $+ 5.8 \times 10^{-8} T^2 - 1.49 \times 10^{-11} T^3$,
Btu/lb. - ${}^{\circ}R$

5. Absolute Rankine temperature
$$T = 459.7 + (T, {}^{\circ}F), {}^{\circ}R$$

3. Specific heat at constant volume

$$C_v = C_p/k$$
, Btu/lb. - ${}^{\circ}R$

4. Coefficient of viscosity

$$\mu = 7.4 \times 10^{-7} (T)^{1.5} / (T + 200),$$

lbm./ft. - sec.

1

$$T = 459.7 + (T, {}^{\circ}F), {}^{\circ}R$$

If temperature is in degrees Centigrade or Kelvin, use Temperature Conversion program (STD - 08A) from Standard Pac to convert to degrees Fahrenheit or Rankine.

Operating Limits and Warnings

Properties k, C , C and μ are good for temperature and pressure ranges of 300 - 2000 $^{\rm o}$ R and 0 - 300 psia respectively.

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

Find the specific heat rat	io, specific heat at constant pressure,
	volume, coefficient of viscosity, and
	re for air at a temperature of 300 degrees
Fahrenheit.	
k = 1.3930	
C _p = 0.2428 Btu/lb°R	
C _v = 0.1743 Btu/lb°R	
$\mu = 1.6146 \times 10^{-5} \text{ lbm./ft.}$	-sec.
T = 759.70°R	
Keystrokes:	Outputs:
Keystrokes: 300[E] [A]	> 1.3930
Keystrokes:	•
300[E] [A]	> 1.3930 > 0.2428 > 0.1743
Keystrokes: 300[E] [A] 300[E] [B]	> 1.3930 > 0.2428

Reference(s)

Keenan and Kay, <u>Gas Tables</u>, fifth printing, John Wiley & Sons, Inc., March, 1956. Hall, Newman A., <u>Thermodynamics of Fluid Flow</u>, Prentice-Hall, Inc., 1951.

This program is a translation of the Users' Library program #01078A submitted by Paul. K. Shumpert.

User Instructions

STEP	INSTRUCTIONS	INPUT	KEYS	OUTPUT
1	Enter Program	DATA/UNITS		DATA/UNITS
2	Compute Specific heat ratio	T, °R *		k
_	Compare Specific flear ratio	T, °F	E A	
	or			
2	Compute specific heat at constant pressure	T, °R *	В	C Btu
	The state of the s	T, °F	E B	"P'160R
	or	' '		
2	Compute specific heat at constant volume	T, OR *		Cv. Btu
	Compore specific flear at constant votonie	T, °F	FC	C _v , Btu
	or	'		
2	Compute coefficient of viscosity	T, °R *		M, Ibm.
		T, °F	E D	M, Ibm.
	or			
2	Compute absolute Rankine temperature	T, °F	E	T, °R
3	For a new case, repeat step 2			
	* Temperature can be input as OR or OF as shown.			
	Note: having calculated one of the variables			
	k,C_p,C_p , or u, to calculate a second:			
	P V			
	Recall the temperature	T, OR	RCL 1	T, OR
	Go to step 2			

97 Program Listing I

4			71		8 1 am							
STEP	KEY ENTRY	KEY CODE	-	COM	MENTS	STEP	KEY ENTRY		KEY CODE		COM	MENTS
001	*LBLA	21 11				057			36 02			
002		-11	Com	pute	k	0 58	RTN		24			
003		-63 04	T,	° R		059			21 13	I Com	pute	c l
004		35 Ø1				960			23 11	• • • • •	,	۷
9 0 5						961			36 02			
		-21				862			-41			
006		-35				863			-24			
007		05										
908		-62	1			064			24	1		
869	ε	08				<i>86</i> 5			21 14	Com	pute	μ
010	EEX	-23				966			35 01			
011		-22				967			Ø1			
012		0 8				968	•		-62			
813	×	-35				069	5		0 5			
014		-62				979			31			
						871			36 01			
815		0 2				072			02			
816	4	04				073			00			
017	7	0 7										
018		08				874			<i>00</i>	1		
019		-55	1			975			-55			
020		36 01				07 <i>6</i>			-24			ľ
821		02	1			077			0 7	1		ľ
022		03				978	•		-62			
023	7	0 7				079	4		04			
023 024	,	0 8	1			686			-23			
			ŀ			081			-22			
Ø25		<i>03</i>	ļ			082			<i>07</i>			
<i>026</i>		-24	l						-35			
027		-45				983						
028		0 1]			884			-12			
829		Ø4	l			085			24			
030		0 9	i			98 <i>6</i>			21 15			
031		-23	1			887	ENT†		-21	Com	pute	T, °R
032		-22				988	4		04		F	·' ' ''
033		01	l			089			0 5			
			l			090			09			
034		03 76 94	1			891	-		-62			
035		36 01	l			892	7		0Z 07			
936		03	i									
937		31	1			893			-55			
038	X	<i>-35</i>				894			-11			
039	-	~45				095	RTN		24			1
949	STO2	<i>35 02</i>	Cp					Г]		
841	1	01	p							1		
042	ENT†	-21	ł					1		1		
943	1	Ø1				<u> </u>		T		1		
043 044	ENT T	-21	ł			100		╁		1		
	CNIF		1			- 		╁		1		ĺ
845 845	•	-62	1					╀		4		
846		00						_		1		
847	6	<i>06</i>						$oldsymbol{\perp}$		Į.		
048	8	0 8						ـــــ		1		
049	5	0 5						L^{T}				
050	RCL2	36 02	1							SET S	STATUS	
051	÷	-24	l					T	FLAGS	71	RIG	DISP
052	<u>-</u>	-45	•					1	ON OFF	, ''	114	4610
05Z	÷	-24				 		\vdash	0 🗆 🛚 🗷	DE	G ⊠	FIX 🗵
053 054		-24 24				110		t^-	1 🗆 🕱		AD □	SCI 🗆
	RTN					+		1	2 🗆 🛛	RA		ENG 🗆
05 5	*LBLB	21 12	Com	pute	C	 	***	t	3 🗆 🛭	l ""		n_4
E 856	GSBA	23 11		, ====		TERC						
<u></u>		12	12			TERS	6		7	8		19
0	Use		3		4	5	ľ		l'	ľ		
50			S3		S4	S5	S6		S7	S8		S9
S0	S1	S2	اعق		34	33	30		1 "	130		
<u> </u>				<u> </u>	I	D			<u> </u>		lt I	<u> </u>
Α	['	В		С		U		E			1	
l				I							L .	

Program Title	Standard Atmospher	e Below 35,322 Feet	
Contributor's Name	Hewlett-Packard		
Address	1000 N.E. Circle		
City	Corvallis	State Oregon	Zip Code 97330

Program Description, Equations, Variables This program computes the theoretical U.S. Standard Atmosphere temperature and pressure in English and Metric units at altitudes below 35,332 feet and 11,000 meters. Additionally, the actual mean sea level values, at a specific time, can be placed in the program for prediction of altitude temperature and pressure based on the following formulas:

$$P = \frac{P_{o}}{\left(\frac{T_{o}}{T_{o} - aZ}\right)^{n}} \qquad T = T_{o} - aZ \qquad t = T - T \text{ abs reference}$$

P = Pressure at altitude above/below mean sea level.

P = Standard air pressure at mean sea level.

 T_{O} = Standard absolute temperature at mean sea level in Rankine/Kelvin.

a = Temperature lapse rate per foot of altitude in OF/per meter OC.

Z = Altitude above/below mean sea level in feet/meters.

n = Constant G/aR = 5.2561

T = Temperature absolute at altitude in Rankine/Kelvin.

T abs ref. = 459.688 $^{\circ}$ R/ 273.16 $^{\circ}$ K.

t = Temperature at altitude in Fahrenheit/Centigrade

Operating Limits and Warnings 1. The program will accurately reproduce the theoretical U.S. Standard Atmosphere tables of temperature and pressure within the limits of -16,500 to 35,332 feet or -5,000 to 11,000 meters.

2. The correct temperature and pressure cannot be predicted under actual conditions when the temperature gradient is not linear, i.e. the lapse rate is not linear per foot of altitude.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

Sample Problem(s) ... What is the theoretical U.S. Standard Atmosphere pressure in inches of mercury, pounds per square foot, pounds per square inch, temperature in degrees Fahrenheit and degrees Rankine at an altitude of 30,000 feet? 2. What is the theoretical U.S. Standard Atmosphere pressure in millibars temperature in degrees centigrade and degrees Kelvin at an altitude of 11,000 meters? 1. Hg = 8.8854132. mb = 226.319813 $1bs/in^2 = 4.364107$ $^{\circ}C = -56.500000$ $^{\circ}F = -47.984800$ $^{\circ}k = 216.660000$ $^{\circ}R = 411.703200$ Solution(s) Keystrokes: Outputs: 1. [RTN] [f] [a] 30000[D] -----> 8.885413 ΓΕΊ ---->-47.984800 [RCL] [6] ----->411.703200 [f] [b] 3000[D] ------ 4.364107 2. 1013.25[A] 288.16[B] .0065[C] 273.16[ST0] [7] [RCL] [6] ----->216.6600

User Instructions

41	STANDARD	ATMOSPHERE	BELOW 35,332	FEET		z
	P ₀	т ₀	LR	ALT	t	

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KI	EYS	OUTPUT DATA/UNITS
1	Enter Program				0.00
2	Initialize		RTN	R/S	0.000000
_3	Automatic input of U.S. Standard Atmosphere		GTО	1	
	mean sea level values of Hg, temperature, lapse		R/S		459.688000
	rate plus reference temperature absolute.	:			
14	Input altitude and compute Hg.	Feet	D		Hg
5	Compute temperature OF at altitude.		Е		°F
6	Recall OR at altitude.		RCL	6	°R
7	To recall input altitude in step 4		RCL	_5	Feet
8	For new case change altitude input in step 4				
9	Convert program to compute LBS/IN ² at altitude.		GTO	2	
			R/S		14.695949
10	Repeat steps 4 thru 8				
11	Convert program to compute LBS/FT ² at altitude.	2116.216	Α		2116.216
12	Repeat steps 4 thru 8				
13	To compute pressure and temperature based upon	Hg	А		Hg
	other than U.S. Standard Atmosphere, input				
	pressure reference at mean sea level.				
14	Input temperature reference at MSL.	°R	В		°R
15	Input temperature lapse rate per foot of	°F/FT.	С		°F/FT.
	altitude in ^O F.				
16	Repeat steps 4 thru 8.				
17	To compute the Standard Atmosphere in metric	1013.25			1013.25
	units, input millibars at MSL.				
18	Input temperature reference at MSL in OK.	288.16	В		288.16
19	Input lapse rate per meter in ^O C.	.0065	С		0.0065
20	Input temperature abs reference in OK	273.16	STO	7	273.16
21		meters	D		mb
22	Compute temperature ^O C at altitude.		E		°c
23	Recall ^O K at altitude.		RCL	6	°K
24	For new case change altitude input in step 21.				

97 Program Listing I

Page

of

U					•	-		
STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS	
801		16 11	Tunnite II C Ct	057		35 0 2	Input MSL ref	
002	2	Ø2 .	Inputs U.S. Stan-	0 58		24	temperature	
003	9	09 .	dards in program	0 59		21 13	'	
004	•	-62 .		960		35 0 3	Input tempera	ture
005	9	09		061	RTN	24	rate.	
00 6	2	02		962	*LBLD	21 14	1 4 6 6 .	
007	i	01		06 3	ST05	<i>35 05</i>	Input altitud	o for
908	2	0 2		064		36 02		
009	6	<i>06</i>		965		-21	desired press	ure
010	STO1	35 01		955		-21	and computes	A. I
011	5	0 5	Temperature at MSL	067		36 03		
012	1	Ø1]	in °R	968		36 Ø5		
013	8	Ø8]		069		-35		
014	·	- <i>62</i>		979		-45		
015	6	02 06		071		35 06		
				871 872				
01 <i>6</i>	8	08 				-24		ŀ
017	8	98 75 ee		073 074		05		
018	STO2	<i>35 02</i> .	Temperature lapse	074		-62	}	ı
019	•	-62	rate in °F per foo	t 075		02		
020	0	00	of H.	010		6 5		
021	e	00	VI II.	077		0 6		- 1
022	3	0 3		0 78		01		
023	5	0 5		079		31		
824	6	06		080	RCL1	<i>36 01</i>		
025	6	96		081	X≓Y	-41		
026	1	01		082	÷	-24		
927	6	<i>06</i>		983		24		
928	ST03	35 03	T	004		21 15		1
029	4	04	Temperature absolu	re 60E		36 0 6	Computes °F o	r°C
0 <u>2</u> 9	5	0 5	at the melting poi	nt 086		36 0 7	at altitude.	
031	9	0 9	of ice under	087 087		-45	at artitude.	1
832	<i>3</i>	-62	29.92126 Hg minus			24	}	1
	•	-62 06	32 degrees.	088	_ RTN	. 24		
033	6		•	090		 	1	1
034	8	0 8		090		<u> </u>	1	1
035	8	08		-			4	1
936	STO7	35 07				<u> </u>		1
037	DSP6	-63 06						
038	RTN	24						1
039	*LBLb 21	16 12				ļ		1
040	1	01	Input lbs/in ² for				1	
941	4	04	MSL reference]	
042	•	-62	pressure			<u> </u>		
843	б	<i>06</i>				L]	
844	9	09		100]	
045	5	0 5					1	
846	و	09]	
047	4	04]	- 1
048	Ė	6 8					1	1
049	ě	<i>0</i> 6					1 .	
050	1	01		<u> </u>			SET STATUS	
051	STO1	35 Ø1						
				1		FLAGS	TRIG DI	SP
952	RTN	24		+		ON OFF	DEG 🖄 FIX	K I
053	*LBLA	21 11	Input MSL ref.	110				
054	STO1	35 01	pressure.	+			RAD KO ENG	, I
055	RTN	24	•	1		$H_3 \square \mathring{\mathbf{x}}$	n_	3 <u> □</u>
056	*LBLB	21 12	L	I ISTERS		1 1 2 2 8		
0	I1	- -	10		le Temp	at 7	B 9	
ľ	¹ P _O Re	f. Tn Ref	. Lapse Rate	15A1t.−H	H °R/°	at 7T abs r	ef. °	
S0	S1	S2	S3 S4	S5	S6	S7	S8 S9	
	Ĭ,			ا				
A	I	3	lc lc	D		E	I	
	1-	-	۱~	1-		I [—]	1	1

Program Title Aircraft Flyover Acoustic Tone Doppler Shift										
Contributor's Nar		ckard Circle Blvd.								
City	Corvallis	State _	Oregon	Zip Code	97330					

Computes doppler shift of an aircraft fly-Program Description, Equations, Variables over acoustic source frequency observed on the ground. Also determines the 1/3 octave-band filter, and location within the filter, of the observed frequency. Inputs are flight path speed and angle, air temperature, source frequency, and aircraft elevation angle. Any input frequency can be located in the A.N.S.I.* 1/3 octave-band filters. Equations: See sketch on next page. Doppler shift $f_0/f_s = 1/(1-M \cos \beta)$ where $\begin{cases} f_0 \text{ is observed freq.} \\ f_s \text{ is source freq.} \\ M \text{ is Mach Number of } \end{cases}$ Source angle $\beta = \theta + \alpha$ β=Source angle to Mach number Mach = $V/(29.04\sqrt{t+459})$ {V=Flt. path speed, kts T=Air temp,°F *Mid-frequency of 1/3 oct-band $f_m = 10^{N/10}$, N any integer *Upper frequency of 1/3 oct-band $f_2 = 1.1225 f_m$ (nominal band edge) *American National Standards Institute Operating Limits and Warnings 1/3 octave band filters start at $f_m = 50H_z$ which corresponds to N=17, ANSI convention. Minimum input frequency of 45 H₂. $f_{m}^{}$'s are exact preferred frequencies, which are within 0.7% of nominal preferred frequencies. The time required for filter band location is a function of the band

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

Sample Problem(s) Air temper			The second secon
Given: Flight pat	th angle $\alpha = -3^{\circ}$		4-1-4-7-W
Source tor	ne frequency f _s =	687 H _z	water the state of
Flight pat	th speed V = 155	kts. (re to	observer)
Calculate the Doppler s	shift, the observ	ed frequency	, the 1/3 oct.
band filter position (1	f_0/f_m), the band	number, and	the filter mid-
frequency for the follo			
θ ₁ = 45 deg	grees	CALLE A MINISTER MANAGEMENT CONTROL CONTROL	anning and dealers and a second a second and
$\theta_2 = 90 \text{ deg}$	grees		
$\theta_3 = 135 de$. , ,	
Aircraft Elev. Angle	$\theta_1 = 45^{\circ}$	θ2 = 90°	θ ₃ = 135°
f ₀ /f _s	1.21	1.01	0.87
f ₀ ,H _z	829	695	595
f ₀ /f _m	1.04	1.10	0.94
Band No. fm,Hz	29 7.9x10 ² (nominal of 800	28 6.3x10 ²	6.3x10 ²
Solutions:	(Homithan or see		
Keystrokes:		Ot	ıtput
77[ENT+] 3[CHS] [A] 687[ENT+] 155[B]		
	S]>829.04[D]	->1.04[R/S] 29[F	R/S] 7.9 x 10 ²
etc.	4.0		

Reference(s)

- 1. Wood, A.B., A Textbook of Sound, pages 370B-372, G. Bell & Sons, London, 1957.
- 2. S1.11-1966, Specification for Octave, Half-Octave, and Third-Octave Band Filter Sets, page 12, American National Standards Institute, New York, 1966.

This program is a translation of the HP-65 Users' Library program #01291A submitted Edgar L. Zwieback.

User Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Enter program			
2.	Input air temperature	t,°F	<u> </u>	
3.	Input flight path angle (refer:Horz,+ is up)	α.Deg.	A	
4.	Input source (aircraft) tone freq.	f _s ,H _z	<u> </u>	
5.	Input flight path speed (refer:observer)	V,kts	В	
6.	Input aircraft elevation angle (looking towards on-coming aircraft) and calculate	0,Deg	C	f ₀ /f _s
	Doppler shift freq. ratio			
7.	Calculate tone frequency received at OBS.		R/S	f ₀ ,H _z
	Calculate 1/3 octave-band position of input freq.(ratio of input freq. to mid-freq. of appropriate band)	f,H _z	D	f/f _m
9.	Display filter band no.		R/S	N
10.			R/S	f _m ,H _z
	(For a set of θ 's for a given flyover, it is			
	only necessary to do steps 6 & 7, and steps 8-10 if desired)			
	(A change in t or α can be made without affecting f_s and V , and vice versa)			
	(The time required for step 8 is a function of			
	of the value of f)			

97 Program Listing I

12			97 • '	vgram					
STEP	KEY ENTRY	KEY CODE	CO	MMENTS	STEP	KEY ENTRY	KEY COBE	COMME	NTS
001	*LBLA	21 11			857	0	00		
882	STO2	35 02	Input t	,a	058	÷	-24		
003	X≢Y	-41			059	10×	16 33		1
004	ST04	35 04			060	STC7	35 0 7		
005	X≢Y	-41			061	1	Ø1		
996	RTN	24			962		-62		
007	*LBLB	21 12			063	1	01		
88 8	\$T03	35 03	Input f	ς, γ	. 964	1 2 2	02		ľ
009	3703 X ≠ Y			•	065	2	02		ŀ
		-41			066	5	0 5		
010	STOE	35 06			067	x	-35		ŀ
011	RTN	24			968	RCL5	<i>36</i> 0 5	Compare f	uith f
012	*LBLC	21 13	Innut	e calc	069	X>Y?	16-34	Compare	"' 'z
013	FIX	-11	Input	& calc.	979	GT01	22 01		
014	DSP2	-63 02	f_0/f_s		071	RCL7	36 07		1
015	ST01	35 01	0'3		072	RCL5	36 0 5		
816	RCL4	36 04			073	X≠Y	-41	Į.	}
017	4	04							ļ.
018	5	0 5			074 975	÷ D/C	-24 51	f/f _m	ļ
019	9	09			875 976	R/S BCLT	51 76 46	1	ļ
020	+	-55			97 <i>6</i>	RCLI	36 46		ļ
021	1X	54			077	CHS	-22	1	ļ
022	2 9	02			078 278	1	01 2-		ļ
023	9	09			079	6	<i>06</i>		ļ
024		-62			989	+	-55	Band no.	ŀ
025	0	00			881	R∕S	51		
826	4	Ø4			082	RCL7	36 07		ĺ
027	x	-35			083	SCI	-12		ľ
828	RCL3	36 03			084	DSP1	-63 01	fm	ľ
829	X≠Y	-41		ı	085	RTN	24	1 ""	ľ
030	÷	-24					Γ	1	
931	RCL1	36 01							ľ
032	RCL2	36 02			h			†	ľ
03Z	+	-55			<u> </u>			†	
033 034	cos	42			090			1	
83 4 835	X	-35						1	
036	CHS							1	į
		-22			-			1	
037	. 1	01 55						1	
038	+	-55						1	
039	1/X	52 .			 			1	
949	R/S	51	fo/fc D	oppler shift	├			1	
841	RCL€	36 <u>06</u> .	10,15		+	· · · · · · · · · · · · · · · · · · ·		-	1
042	×	-35			 			1	1
043	ST05	35 0 5			100		ļ	1	İ
844	RTN	24			100			1	ŧ
845	*LBLD	21 14			 	·		1	ĺ
046	ST05	<i>35 0</i> 5			 			1	ŀ
847	0	00			 			4	ļ
048	STOI	35 4 <i>6</i>						1	j
049	≭LBL 1	21 01	Calc. u	pper freq.	ļ <u>.</u>			SET STATUS	
850		6 25 46					ļ .	SEI SIAIUS	
051	RCLI	36 46	r of l	/3 oct-			FLAGS	TRIG	DISP
852	CHS	-22	ban fil	ters	L		ON OFF		EIV E
853	1	01	ווי וויים	VC1 3	ļ ļ		o □ Ø	DEG 🛛	FIX K
854	6	06			110			GRAD 🗆	SCI 🗆
05 5	+	-55					2 🗆 😡	RAD 🗆	ENG D
05 <i>6</i>	1	01					3 D K		
L		01		REGIS	STERS			1	
0	1 0 4	2	3	4 + 0 =	5 /u	6 • u	u ع ا	8 N 9	'
	θ,deg		V,kts		f ₀ /H _z	f_s, H_z	f _m ,H ₇	N S8 S	69
S0	S1	S2	S3	S4	S5	S6	S7	ا ا	, s
									
IA		В	С		D		E	I	

rrogram ritte	ISENT NOPIC FL	OW FOR IDEAL GAS	ES	
Contributor Address	HEWLETT-PACKARD 1000 N. E. Circle Blvd. Corvallis, Oregon 97339	ate	Zip Code	
Program D				
	This card replaces isentropic flow Inputs and outputs are interchange			
The second secon	The following values are correlate	d:	MARK MARKET, MINISTER, MIN	
CONT. TO THE P. S. POPPLET MICH. SHEET, MICH. MI	M is the Mach number;		ARTINI, ARTINIA ARTINIA ARTINIA	
	T/T_0 is the ratio of flow ten temperature T_0 ;	nperature T to stagnation of	or zero velocity	
	P/P ₀ is the ratio of flow pres	sure P to stagnation pressu	ire P ₀ ;	
	ρ/ρ_0 is the ratio of flow dens	sity $ ho$ to stagnation density	$ ho_0$;	
	A/A* _{sub} and A/A* _{sup} are the	e ratios of flow area A to ging passages. A/A* _{sub} ref	the throat area	
	Equations:		-	
	$T/T_0 = \frac{1}{2}$	$\frac{2}{2+(k-1)\mathrm{M}^2}$		
70.00 A.	$P/P_0 =$	$= (T/T_0)^{k/(k-1)}$		

$$\rho/\rho_0 = (T/T_0)^{1/(k-1)}$$

$$A/A^* = \frac{1}{M} \left[\left(\frac{2}{k+1} \right) \left(1 + \frac{k-1}{2} M^2 \right) \right]^{\frac{k+1}{2(k-1)}}$$

In the last equation M² is determined using Newton's method. The initial guess used is as follows with a positive exponent for supersonic flow:

$$M_0^2 = (\sqrt{Frac (A/A^*)} + A/A^*)^{\pm 3}$$

Remarks:

Operating Limits

After an input of A/A*, the program begins to iterate to find M² for future use. This iteration will normally take less than one minute, but may take longer on occasion. For extreme values of k (1.4 is optimum) the routine may fail to converge at all. An "Error" message will eventually halt the routine if it goes out of control.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

Program Title		
_	•	
ontributor's Name		
Address		
City	State Zip (Code
Program Description,	, Equations, Variables	
	Mof 100	
	A/A* values of 1.00 are illegal inputs. Instead, input an M of 1.00. The calculator uses flag 3 to decide whether to store or calculate a value. If	£
	you use the data input keys (setting flag 3) and then wish to calculate a parameter based on a prior input, clear flag 3 before pressing the appropriate user definable keys.	a
ANADALARO (MARIA AND A VIII)	Registers R_0 , R_5 and $R_{\rm S0}$ – $R_{\rm I}$ are available for user storage.	
		a seem material material services (and the last of the field and the services)
-baj an elipsiskalkalkalkalkalka ostoloonin oo		
THE RESIDENCE OF THE PARTY OF T		
Operating Limits and	Warnings	

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

etch(es)					
	•				
					•
	Example 1:	<i>f</i> 1000			
	A pilot is flying at N Celsius (288 K) on a t	Aach U.93 and re	eads on air tem	perature of 15 degree	es
	is the true temperature	e assuming that	k = 1.38?	rtemperature 1 ₀ . Wil	aı
<u> </u>	T 7 . •				-
	Keystrokes:		Outputs:		
	1.38 1 A ———		1.380		
- American Committee of the Committee of	.93 🛕 ————		0.930		
	B ————————————————————————————————————		0.859	(T/T_0)	
nple Problem(s)	273 -		247.352	(T, K)	
	-		-25.648	(T, °C)	
	If the same pilot reads what is the true air pr	a stagnation pres	ssure P_0 of 700 n	nillimeters of mercury	/,
	(Since the data input		on 200 lear		
	clear it, or input 0.93	nag was set wn	en 288 was key	ed in, we must either	<u></u>
Parity and the second s	.93 A C ———	• /	0.575	(D/D)	
	700 🗷		402.843	(P/P_0) (mm Hg)	
		•	402.043	(iiiiii 11g)	1 (2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
Children	Example 2:				
	A converging, diverging	ng passage has su	personic flow in	the diverging section	.
	A converging, diverging At an area ratio A/A*	of 1.60, what	are the isentropi	c flow ratios for tem	ı
	A converging, diverging At an area ratio A/A* perature, pressure and	of 1.60, what	are the isentropi	c flow ratios for tem	l
	At an area ratio A/A* perature, pressure and	of 1.60, what	are the isentropi is the Mach num	c flow ratios for tem	l
	At an area ratio A/A* perature, pressure and Keystrokes:	of 1.60, what a density? What i	are the isentropi is the Mach num Outputs:	c flow ratios for tem	l
	At an area ratio A/A* perature, pressure and Keystrokes:	of 1.60, what a density? What i	are the isentropis the Mach num Outputs: 1.740	c flow ratios for temper? k = 1.74.	l
	At an area ratio A/A* perature, pressure and Keystrokes: 1.74	of 1.60, what a density? What i	Outputs: 1.740 2.105	c flow ratios for tember? k = 1.74. (M)	l
	At an area ratio A/A* perature, pressure and Keystrokes: 1.74	density? What i	Outputs: 1.740 2.105 0.379	c flow ratios for temper? $k = 1.74$. (M) (T/T_0)	l
	At an area ratio A/A* perature, pressure and Keystrokes: 1.74	density? What i	Outputs: 1.740 2.105 0.379 0.102	c flow ratios for term ther? $k = 1.74$. (M) (T/T ₀) (P/P ₀)	l-
	At an area ratio A/A* perature, pressure and Keystrokes: 1.74	density? What i	Outputs: 1.740 2.105 0.379 0.102 0.269	c flow ratios for temper? $k = 1.74$. (M) (T/T_0)	l
	At an area ratio A/A* perature, pressure and Keystrokes: 1.74	density? What i	Outputs: 1.740 2.105 0.379 0.102 0.269 ut.	c flow ratios for term ther? $k=1.74$. (M) (T/T ₀) (P/P ₀) (ρ/ρ_0)	l-
	At an area ratio A/A* perature, pressure and Keystrokes: 1.74	density? What i	Outputs: 1.740 2.105 0.379 0.102 0.269 ut. 1.740 ***	c flow ratios for term ther? $k = 1.74$. (M) (T/T ₀) (P/P ₀) (ρ/ρ_0)	
	At an area ratio A/A* perature, pressure and Keystrokes: 1.74	density? What i	Outputs: 1.740 2.105 0.379 0.102 0.269 ut. 1.740 ** 2.105 **	c flow ratios for term ther? $k = 1.74$. (M) (T/T ₀) (P/P ₀) (ρ/ρ_0)	
	At an area ratio A/A* perature, pressure and Keystrokes: 1.74	density? What i	Outputs: 1.740 2.105 0.379 0.102 0.269 ut. 1.740 ** 2.105 ** 0.379 **	c flow ratios for term ther? $k = 1.74$. (M) (T/T ₀) (P/P ₀) (ρ/ρ_0) ** (k) ** (M)	l-
	At an area ratio A/A* perature, pressure and Keystrokes: 1.74	density? What i	Outputs: 1.740 2.105 0.379 0.102 0.269 ut. 1.740 ** 2.105 ** 0.379 ** 0.102 **	c flow ratios for term ther? $k = 1.74$. (M) (T/T_0) (P/P_0) (ρ/ρ_0) ** (k) ** (M) ** (T/T_0) ** (P/P_0)	
	At an area ratio A/A* perature, pressure and Keystrokes: 1.74	density? What i	Outputs: 1.740 2.105 0.379 0.102 0.269 ut. 1.740 ** 2.105 ** 0.379 ** 0.102 ** 0.269	c flow ratios for term ther? $k = 1.74$. (M) (T/T_0) (P/P_0) (ρ/ρ_0) ** (k) ** (M) ** (T/T_0) ** (P/P_0) ** (P/P_0)	
	At an area ratio A/A* perature, pressure and Keystrokes: 1.74	density? What i	Outputs: 1.740 2.105 0.379 0.102 0.269 ut. 1.740 ** 2.105 ** 0.379 ** 0.102 ** 0.269	c flow ratios for term ther? $k = 1.74$. (M) (T/T_0) (P/P_0) (ρ/ρ_0) ** (k) ** (M) ** (T/T_0) ** (P/P_0)	
	At an area ratio A/A* perature, pressure and Keystrokes: 1.74	density? What i	Outputs: 1.740 2.105 0.379 0.102 0.269 ut. 1.740 ** 2.105 ** 0.379 ** 0.102 ** 0.269	c flow ratios for term ther? $k = 1.74$. (M) (T/T_0) (P/P_0) (ρ/ρ_0) ** (k) ** (M) ** (T/T_0) ** (P/P_0) ** (P/P_0)	
	At an area ratio A/A* perature, pressure and Keystrokes: 1.74	density? What i	Outputs: 1.740 2.105 0.379 0.102 0.269 ut. 1.740 ** 2.105 ** 0.379 ** 0.102 ** 0.269	c flow ratios for term ther? $k = 1.74$. (M) (T/T_0) (P/P_0) (ρ/ρ_0) ** (k) ** (M) ** (T/T_0) ** (P/P_0) ** (P/P_0)	
ution(s)	At an area ratio A/A* perature, pressure and Keystrokes: 1.74	density? What i	Outputs: 1.740 2.105 0.379 0.102 0.269 ut. 1.740 ** 2.105 ** 0.379 ** 0.102 0.269	c flow ratios for term ther? $k = 1.74$. (M) (T/T_0) (P/P_0) (ρ/ρ_0) ** (k) ** (M) ** (T/T_0) ** (P/P_0) ** (P/P_0)	

Reference (s)	

User Instructions

STEP				·		OUTPUT DATA/UNITS
	STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS	
	- 1	Load side 1 and side 2.				
	2	Input specific heat ratio.	k		k	!
	3	Input one of the following:				
	_	Mach number	M	A	М	
	-	Temperature ratio	T/T _o	В	М	
	-	Pressure ratio	P/P _o	0	М	
		Density ratio	$ ho/ ho_0$	D	М	
	- <u> </u>	Subsonic area ratio	A/A* _{sub}	E	М	
	_	Supersonic area ratio	A/A* _{sup}	08	М	
	4	Calculate one of the following:		<u> </u>		
	_	Mach number		A	М	
	_	Temperature ratio		B	T/T _o	
		Pressure ratio		G	P/P _o	
		Density ratio		0	$ ho/ ho_{0}$	
	-	Area ratio (subsonic or		1		
		supersonic)		G	A/A*	
	4'	Calculate and output all				
		values automatically.	· · · · · · · · · · · · · · · · · · ·	0 B	k,M,T/T _o ,P/P _o	
	_				ρ/ρ_0 , A/A*	
	5	For another calculation based				
		on same input, go to step 4		1		
		(or 4'). For a new input, go to				
	_	step 3. For a new specific heat				
		ratio, go to step 2.				
		I			<u> </u>	
	_					
Ì						
				<u> </u>		
						-

97 Program Listing I

STEP (VEV ENTO	V KEV 0005	9/ - 105 - 41				1
	KEY ENTR'		COMMENTS		EY ENTRY		COMMENTS
001 002		21 16 11 35 0 2	Store k-1,1/(k-1)	6 57	SF3	16 21 0 3	
002		01 01		9 58	GTOB ≭LB LD	22 12	Output ρ/ρ _O .
004		- 4 5		060	F3?	21 14 16 23 0 3	2
805		35 0 3		061	GT00	22 0 0	
886		52		062	GSBB	23 12	
997		35 04		063	RCL4	36 0 4	
988		<i>36 02</i>		964	γx	31	i
009	RTN	24	Output M.	865	RTN	24	
010		21 11		066	*LBL0	21 88	
0 11				067	SF3	16 21 83	Convert ρ/ρ_0 to
012		22 00		068	RCL3	36 0 3	T/T ₀ and GT0 ⁰ B.
013		36 01		069	γ×	31	GTO°B.
014		54		870	GTOB	22 12	
015		24		071	*LBLE	21 15	
9 16		21 00	Store M ² .	972	3	0 3	Set -3 in display
017 018		53 35 01	Store M	073	CHS	-22	for subsonic guess.
0 10		35 0 1 54		074	X≢Y	-41	
828		24		975	F3?	16 23 8 3	
821		21 12		876 877	GT01	22 0 1	
822		16 23 03	Output T/T	977 978	GTO3 ≉LBL1	22 03	
023		22 00	Output T/T ₀ .	879	ENT†	21 01 -21	2
824		82		080	STO6	35 <i>06</i>	Make guess of M ² .
0 25		36 01		081	FRC	16 44	
0 26		36 0 3		082	1X	54	
027		-35		9 83	+	-5 5	
0 28		0 2		884	X#Y	-41	
029		-55		685	γ×	31	
030		-24		086	ST01	35 0 1	
031 033	RTN	24	2	087	*LBL2	21 02	Itamata bu Nautauta
03 2 03 3	*LBL0 2	21 00 02	Convert T/T_0 to M^2 .	988	RCL6	36 06	Iterate by Newton's
0 33	X≠Ÿ	-4i	0	089	esb3	23 03	method to find M ²
<i>03</i> 5	*,* - '	-24		898 891	÷ 1	-24 01	Corresponding to A/A*.
8 36		6 2		892	_ 1	-45	, , , , , , , , , , , , , , , , , , ,
03 7		-45		093	_	-62	
9 38	RCL3	36 0 3		894	5	0 5	1
039	÷	-24		895	RCL8	36 0 8	
840		35 0 1		096	÷	-24	
041	1X	54		0 97		-62	1
842	RTN	24		0 98	5	0 5	
043	*LBLC	21 13		0 99	RCL1	36 01	
944 945	F3?	16 23 03	Output P/P _O .	100	÷	-24	
945 946	GT00 GSBB	22 00 23 12	V	101	-	-45	
946 947	RCL2	23 12 36 0 2		102	÷	-24	
84 8	RCL3	36 0 3		103 104	ST+1 RCL1	35-55 01 36 01	
849	÷	-24		105	KLLI ÷	36 01 -24	
050	γ×	31		105	ABS	16 31	
9 51	RTH	24		107	EEX	-23	[
0 52	*LBL@	21 00		108	CHS	-22	
05 3	RCL3	36 8 3	Convert P/P _O to	109	4	84	[
<i>0</i> 54	RCL2	36 02	T/T and CTO D	110	X≟Y?	16-35	
0 55	÷	-24	T/T_0 and GTO B.	111	GT02	22 02	
0 56	γ×	31	REGIS	112 1112	RCL1	36 01	
0	1 M ²	2	3 4		6 0 / 0 +	7	8 9
S0	S1	k	k-1 1/k-1	C.E	A/A*	S7	Used Used
30	31	32	33 34	S5	S6)°′	20 29
A		В	c	D		<u> </u>	1
		l					

97 Program Listing II

18		7		0750	VEV ENTEN	KEN CODE	COMMENTS	:
STEP K	EY ENTRY		COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS	
113	1X	54		<u></u>				
114	RTN	24		170				1
115	*LBLe	21 16 15	Set +3 in display					
116	3	6 3	for supersonic					
117	X≢Y	-41	guess					
118	F3?	16 23 03						
119	GT01	22 01						
120	*LBL3	21 03						
121	2	0 2	Convert M ² to A/A*					
122	RCL2	36 8 2	0011721 0 11 00 11,71					1
123	1	91						ŀ
		- 5 5		180				
124	+							
125		-24						
126	RCL3	36 03			· · · · · · · · · · · · · · · · · · ·			i i
127		16-63						1
128		-24		 				ļ
129		35 0 7	:					
130	RCL1	<i>36 01</i>		<u> </u>			I	l
131	x	-35		L	ļ		I	
132	+	-55					I	1
133		35 0 8		100				1
134	RCL7	36 0 7		190				1
135		82		<u> </u>				
136		-35						
137		52						· 1
138		31						
139		36 0 1						
140		50 51 54						1
	÷ 4 V	-24						
141								
142		24		ļ				
143		21 16 12	0	200				- 1
144		16-11	Output values					1
145		16 22 03			 			
146		36 02			· · · · · · · · · · · · · · · · · · ·			
147		-14					İ	- 1
148	SPC	16-11			 			1
149	GSBA	23 11			ļ			
150	PRTX	-14						
151		23 12						1
152		-14			ļ		1	
153		23 13					1	
154		-14		210			1	
155		23 14						į
156		-14					1	
157		23 15					1	
157 158		23 13 -14	1				1	ļ
158 159		-14 24					1	
109	KIN	24			L		j	
 			1					
			7					
	•		7					
 			1	220		1	1	
 		- 	1		1		1	ļ
			1]	İ
		1	7				1	1
			7				<u> </u>	
			LABELS	-	FLAGS		SET STATUS	
A M → M	В т/	T → M C p/I	$P_0 \rightarrow M D_0/\rho_0 \rightarrow M EA$	/A* _{sub} →				DISP
			0 , 11 5, 50 , 11 7	<u>'sub</u>		FLAGS ON OFF	INIG	שוטר
a k	^b →k,	M,T/T ₀ °	d e A	/A* _{sup} →	ΜĮ¹	ON OFF	DEG 😡 F	ıx 🖬 İ
	1 1/2	2	2 iter 3 A/A 4	aup	2		GRAD 🖺 S	IX 🖟
usea	M ²	guess ² M				2 🗆 🛛	RAD 🗆 🛙 E	NG □
5	[6	7	8 9		3 Data?	3 □ 😡	n	_3_
			<u></u>					

Program Title Normal and Oblique Shock	Parameter	rs for Compr	essible Flow	
Contributor's Name Hewlett-Packard Address 1000 N.E. Circle Blyd.	-			
City Corvallis	State	0regon	Zip Code	97330

Program Description, Equations, Variables Given the values for: free stream Mach number (M_1) , the ratio of specific heats
(γ) , and the shock angle (θ); the program computes:
$M_2 = \left[\frac{(\gamma+1)^2 M_1^4 \sin^2\theta - 4(M_1 \sin^2\theta - 1)(\gamma M_1 \sin^2\theta + 1)}{[2\gamma M_1^2 \sin^2\theta - (\gamma-1)][(\gamma-1)M_1^2 \sin^2\theta + 2]} \right] \frac{1/2}{\text{Mach No. behind shock}}$
$M_2 = \left[\frac{1}{2\gamma M_1^2 \sin^2 \theta - (\gamma - 1)}\right] \left[\frac{1}{(\gamma - 1)M_1^2 \sin^2 \theta + 2}\right] \text{Mach No. behind shock}$
$\frac{P_2}{P_1} = \frac{2\gamma M_1^2 \sin^2\theta - (\gamma - 1)}{\gamma + 1}$ Static pressure ratio
$\gamma + 1$ Scattle pressure ratio
$\frac{\rho_2}{\rho_1} = \frac{(\gamma+1)M_1^2 \sin^2\theta}{(\gamma-1)M_1^2 \sin^2\theta+2}$ Density ratio
$\frac{1}{\rho} = \frac{(\gamma-1)M_1^2 \sin^2\theta + 2}{(\gamma-1)M_2^2 \sin^2\theta + 2}$ Density ratio
- Γ2νM. ² Sin ² A-/ν-1\7Γ/ν-1\M- ² Sin ² Δ±27
$\frac{T_2}{T} = \frac{\left[2\gamma M_1^2 \sin^2\theta - (\gamma - 1)\right] \left[(\gamma - 1)M_1^2 \sin^2\theta + 2\right]}{(\gamma + 1)^2 M_1^2 \sin^2\theta}$ Temperature ratio
$\frac{P_{T_2}}{P_{T_1}} = \left[\frac{(\gamma+1)M_1^2 \sin^2\theta}{(\gamma-1)M_1^2 \sin^2\theta+2} \right] \frac{\frac{\gamma}{\gamma-1}}{\frac{\gamma}{\gamma-1}} \left[\frac{\gamma+1}{2\gamma M_1^2 \sin^2\theta - (\gamma-1)} \right] \frac{1}{\gamma-1} $ Total pressure ratio
$P_{T} = \frac{1}{(\gamma-1)M_1^2 \sin^2\theta + 2} \int \frac{1}{2\gamma M_1^2 \sin^2\theta - (\gamma-1)} \int \frac{1}{(\gamma-1)M_1^2 \sin^2\theta + 2} \int \frac{1}{(\gamma-1)M_1^2 \sin^$
11
Where the 1 subscript denotes the value upstream of the shock, and the 2
subscript denotes the value downstream of the shock.
Operating Limits and Warnings
Assumes calorically perfect (Cp and Cv are constant) and thermally perfect (P=pRT) gas, and adiabatic flow. Only solutions where
(P= ρ RT) gas, and adiabatic flow. Only solutions where $M_2 < M_1$; $\frac{P_2}{P_1}$, $\frac{\rho_2}{P_1}$, $\frac{T_2}{T_1} > 1$
and $P_{T_2/P_{T_1}}$ < 1 are valid. If any one of these conditions is satisfied, the other four are satisfied.
T ₁ < 1 are valid. If any one of these conditions is satisfied, the other
four are satisfied.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

1.	ample Problem(s) 1. Find the Mach number and static pressure behind an oblique shock where M_1 = 2.5,0=70°, γ =1.4 and P_1 =85 psi. Also find the ratios across the shock for density, temperature and total pressure. (See Fig. 1)						
2.	2. Find the temperature, Mach number and total pressure behind a normal shock						
AT THE REAL PROPERTY OF THE PERSON OF THE PE	$(\theta=90^{\circ})$ where M ₁ =6.23, =1.4, P _{T1} =64 psi	i and T ₁ =624°R (See Fig. 2)	#10 OFF				
1000 A 1000 1010 - 70 1			Commencer				

			COMPANIES OF THE PARENT OF THE				
Soluti	on(s)						
	1.4[+] 70[+] 2.5[f] [a] [A]	- 0.80 (M)					
	[B]	- 6.27 (P ₂ /P ₁) - 533.12 (psi) (P ₂)					
	[c]	$-3.15 (P_2/P_1)^{2/2}$					
	[D]	- 1.99 (T ₂ /T ₁)					
	[E]	- 0.56 (P _{T₂/P_{T1})}					
2.	6.23 [STO] [] 90 [STO] [2] [GTO] [0] [I	[R/S] [D] 8.49 $(\frac{12}{T_1})$					
	624 [X]	- 5296.40 (°R)(T ₂) - 0.40 (M ₂)					
<u> </u>	[E]	$-$.30 (PT_2/PT_1)					
	64 [X]	- 1.62 (psi) (P _{T2})					

Reference(s)_

National Advisory Committee for Aeronautics, Report 1135, Equations, Tables and Charts for Compressible Flow, By Ames Research Staff, pgs. 7,8, U.S. Government Printing Office, 1953.

This program is a translation of the HP-65 Users' Library program #01303A submitted by Glenn D. Rambach.

User Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Enter program			
2.	Initialize		RTN	
3.		Υ	<u> </u>	Υ
	Input shock angle	θ (deg)	<u> </u>	θ
5.	Input freestream Mach No.	M,		M ₁
6.			f A	
7.				
	Mach No. behind shock		A	M ₂
	Static pressure ratio		В	P_2/P_1
	Density ratio		C	ρ ₂ /ρ ₁
	Temperature ratio		D	T ₂ /T ₁
	Total pressure ratio		E	P_{T_2}/P_{T_1}
8.	For calculations using new values for M1	M ₁	STO 1	M ₁
	and/or θ	θ (deg)	STO 2	θ
9.	Reset for preliminaries		GTO 0	
10.	Perform new preliminaries		R/S	
11.				
	The second secon			
	NOTE: To perform calculations for a new value			
	of γ , use steps 2 through 7.			
	, , , , , , , , , , , , , , , , , , , ,			
		1		
		1		
		†		

97 Program Listing I

22			97 PR	gram		ungı		
STEP	KEY ENTRY	KEY CODE	COMM	ENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	∗LBLa 21	16 11	·		0 57		21 12	Compute P ₂ /P ₁
002	ST01	35 01			05 8	RCL3	3 6 0 3] *************************************
003	R↓	-31	Store M ₁ i	.n R ₁	0 59		36 04	
004	STO2	35 0 2	Store θ in		860	×	-35	
005	R4	-31		_	061	2	0 2	1
006	STO3	35 03	Store γ in	ıR ₃	062		-35	
997	1	Ø1		_	<i>063</i>		36 0 7	
908	-	-45		•	064	-	, -45	
009	STO7	35 0 7			865 865		36 0 8	
018	,2	02 55			966 967		-24 24	Display Po/Po
011 012	+ ST08	-55 35 0 8			067 068		21 13	Display P_2/P_1 Compute ρ_2/ρ_1
01Z 013	≉LBL0	21 00			969		36 Ø5	
013 014	RCL2	36 0 2	Initial po		979		36 0 6	
015	SIN	41	repeated c	perations	971	2	02	
016	RCL1	36 01			072 072		-55	
017	X	-35			073		-24	
018	Χz	53			074		24	Display ρ_2/ρ_1
019	STO4	35 04			075		21 14	Compute T /T
020	RCL8	36 08			87 <i>6</i>	GSBB	23 12	Compute T ₂ /T ₁
021	X	-35			077		23 13	
022	ST05	<i>35 0</i> 5			678		-24	
023	RCL7	36 07			079		24	
024	RCL4	36 04			989		21 15	Display T ₂ /T ₁
025	X	-35			081		23 13	Compute P _{T2} /P _{T1}
026	ST0€	<i>35 06</i>			982		23 12	00mpute 112/111
027	R/S	51			083		-24	
828	*LBLA	21 11	Compute M	,	084		36 07	
029	RCL5	36 05	-		085		52	
939	RCL8	<i>36 0</i> 8			986		31 27 17	
031	X	-35 30.04			987		23 13 -35	_
032 033	RCL1 X2	36 Ø1 53			088 089		-3 <i>3</i> 24	Display P_{T_2}/P_{T_1}
034	X X	-35				KIB	<u> </u>	
035	RCL4	-33 36 04			090			↓ i
035 036	RCL3	36 03			ļ			4
037	X	-35						4
038	1	01						4
039	+	-55					ļ	4
949	4	84						-i
041	x	-35						-
042	RCL4	36 04					<u> </u>	1
043	1	01				 -		-
944	-	-45			100		 	1 I
045	Х	-35			<u>† </u>			1
046	_	-45						7
947	GSBC	23 13]
048	X CCDD	-35]
049 050	GSBB -	23 12						
050 051	÷ RCL8	-24 36 0 8			\Box			SET STATUS
052	KCL8 ÷	36 06 -24					FLAGS	TRIG DISP
652 653	RCL5	-24 36 0 5			1		ON OFF	
853 854	RCLJ ÷	-24			ļ.,,			DEG 🛛 FIX 🖫
855 855	1X	54			110			GRAD □ SCI □ RAD □ ENG □
856	RTN	24	Display M.		 		2 🗆 🛭	RAD ENG n_2
 			Display H		STERS		1 1 2 1 2	
0	11	2 ^	3	420.20	5	2 6 /	2 7	81 9
ľ	1 M ₁	2 θ	Υ	$\frac{1}{1}^2 \sin^2 \theta$		1 ² 6 (γ-1)M		ο γ+1
S0	S1	S2	S3	S4	$\sin^2 \theta$	Sin ²	9 S7	S8 S9
				1				<u> </u>
Α	E		С		D		E	I
I			I					1

Program Title Oblique Shock Angle for Wedge

Contributor's Name Hewlett-Packard

Address 1000 N.E. Circle Blvd.

City Corvallis State Oregon Zip Code 97330

Program Description, Equations, Variables

When the upstream Mach number, the deflection angle and the specific heat ratio are given the compressible flow equation will give at most three values for the shock angle. This program calculates the weak oblique shock angle when it is possible.

The equation which must be solved is

$$\sin^6 \sigma + b \sin^4 \sigma + c \sin^2 \sigma + d = 0$$

where

$$b = - \frac{M_1^2 + 2}{M_1^2} - k \sin^2 \delta$$

$$c = \frac{2M_1^2 + 1}{M_1^4} + \left[\frac{(k+1)^2}{4} + \frac{k-1}{M_1^2}\right] \sin^2 \delta$$

$$d = -\frac{\cos^2 \delta}{M_1 4}$$

M₁ = Upstream Mach number > 1.0

 δ = Deflection angle (deg)

k = Specific heat ratio

 σ = Shock angle (D.M.S.)

Operating Limits and Warnings

If no shock condition is possible, i.e., if the shock must detach from the corner, then the first program card stops with a blinking display. If δ approaches δ_{max} for the flow the program takes some time (1 min or so) to converge. I have never had the program fail to converge, although it may be possible. Should convergence not occur, change the calculator to the DEG mode after the iteration is stopped.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

Sample Problem(s) Given	
$M_{\uparrow} = 2.0$	
δ = 10°	
k = 1.4	
$\sigma = 39.3139 \text{ Deg}$	
And the second s	
Solution(s)	
Keystrokes:	Outputs:
2[x ²] [ST0] [1] 10 [ST0] [2] 1	1.4 [STO] [3] [A]> 39.3139
Mark Company of the C	

Reference(s) l. Introductory Gas Dynamics, A.J. Chapman and W.F. Walker, HRW Series in Mech. Engineering.

This program is a translation of the HP-65 Users' Library program #00630A submitted by Harry W. Townes.

User Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Enter program card #1		RTN .	
2.	Enter the Mach number M ₁ , square it and store			
	M ₂ ² in Rl	M ₁ ²	STO 1	
3.	Enter the deflection angle δ in deg, store in			
	R2	δ/deg	ST0 2	
4.	Enter the specific heat ratio P_{C} store in R3	k	STO 3	
5.	Run the program			σ deg
	If program stops with a blinking display showin	g		
	zeros, the shock is detached and no solution			
	is possible for a weak shock angle.			
ļ	NOTE: Some time is usually required for a solu especially as $\delta \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	tion,		
ļ	especially as $\delta \rightarrow \delta$ max. The output will			
	be σ in D.MS in the X stack location.			
	Should the program not converge σ in RAD			
	is in the R8 register for as far as the			
	iteration ran.			
				
	The program stops when the residual is			
·····	< 1 x 10 ⁻⁶			
-	A direct solution of the equation gives			
	only <1% accuracy for σ without any			
	iteration.			

97 Program Listing I

20			7/						
STEP	KEY ENTRY	KEY CODE	-	COM	MENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBLA	21 11				057	ENT†	-21	
002	RCL2	36 0 2				058	×	-35	İ
003	SIN	41				0 59	_	-45	
004	ENT†	-21				868		35 0 7]
005	X	-35				061	RCL4	36 Ø4	1
006	STO7	35 07				061 062			1
007	RCL3	36 03					RCL5	36 <i>0</i> 5	1
008	X	-35				063	×	-35	
009	RCL1	36 Ø1	}			064	3	0 3	
		<i>82</i>				965		-35	1
010	.2					966	RCL6	36 0 6	1
011	+	-55				967		-45	
012	RCL1	36 01				968	2	02	
013	÷	-24				069	÷	-24	
014	+	-55				070	RCL4	36 04	
015	CHS	-22				071	ENT†	-21	
01 <i>E</i>	3	03	ŀ			872	ENT†	-21	
017	÷	-24	1			873	x	-35	l
018	ST04	35 <i>0</i> 4	b/3	R4		074	×	-35	1
019	RCL3	36 0 3				075		- 4 5	1
020	1	01				976	STO8	35 Ø8	1
021	+	-55	}						1
022	ENT†	-21	1			077	RCL7	36 07	
023	X	-35				078	ENTT	-21	1
023 024		04				079	ENT †	-21	
	- 4		ļ			989	X	- <i>3</i> 5	
625 625	÷	-2 4				081	×	- <i>3</i> 5	
<i>026</i>	RCL3	36 03				082	ST06	35 <i>06</i>	
027	1	0 1				083	RCL8	36 0 8	
028	-	-45	I			084	ENT†	-21	
029	RCL1	36 01	ļ.			985	×	-35	
030	÷	-24	ł			88 <i>6</i>	+	-55	1
031	†	-55	ŀ			087	0	99	
032	RCL7	36 0 7	İ			988	X≰Y?	16-35	Test for existance
033	x	-35				089	1/X	52	of weak shock
034	RCL1	36 01				898	RCL2	36 0 2	
03 5	2	02							Blinking display
036	x	-35				091	TAN	43	for no solution
837	1	01				092	STO2	35 0 2	possible
038	+	-55				093	RAD	16-22	1
039	RCL1	36 0 1				094	RCL8	36 08	
			ļ			095	RCL6	36 0 6	
040	ENT1	-21 -25	l			096	CHS	-22	
841	X	-35				097	1X	54	
042	÷	-24				098	÷	-24	
043	+_	-5 <u>5</u>				099	COS⊣	16 42	1
044	3	03	1			100	Pi	16-24	
945	÷	-24	 			101	4	04	1
046	ST05	35 0 5	C/3	R5		102	<i>x</i> .	- 3 5	
047	RCL2	36 02				103	+	-55	
048	cos	42				183	`3	8 3	
049	RCL1	36 01	1			105	÷	-24	1
050	ENT†	-21	1						
Ø51	×	-35	I			106	COS	42 24 92	
052	÷	-2 4	I			107	RCL7	36 07	
05Z	CHS	-22	I			108	CHS	-22	
			d R	6		109	1%	54	
054 855	STO6	35 06 36 05				110	Х	-35	
855 856	RCL5	36 05	I			111	2	0 2	
E 656	RCL4	<i>36 04</i>	L			112	X	-35	
	T	10	- 10		1.	STERS	16	15	
0	1 M ₇ 2	² δand tor	$ \delta ^3$	k	4 Used	⁵ Used	⁶ Used	/ Used	⁸ σ in RAD ⁹

0	1 M ₁ 2	$^2\delta$ and ton δ	3	k	4	⁵ Used	⁶ Used	⁷ Used	⁸ σ in RAD	9
S0	S1	S2	S3		S4	S5	S6	S7	S8	S9
A	В			С		D	Е		I	

97Program Listing II

				7/Program	1/126	ing ii			27
s	TEP	KEY ENTR	Y KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMM	
	113	RCL4	36 04		169	SIN	41		
)	114	KULT	-45		170		-45		
,	115	1X	-43 54		171		-24		ŀ
	116	SIN	16 41		172		-22	ŀ	
	117	STO8	35 0 8		173		36 01		1
				o in RAD from direc	174		-45		1
	118		-62	solution of the	175		24		1
	119	0	0 0	equation. Iteratio	a n 117	, K.,,			ì
	120	1	0 1	improves accuracy.			-	1	
	121	ST06	35 0 6	A R/S in step 30				1	ł
	122	RCL8	36 0 8	would eliminate				1	
	123	+	-55	iteration	180			1	
	124	6SB0	23 00	1001401011				1	
	125	ST07	<i>35 07</i>					1	
	126	RCL8	<i>36 0</i> 8		 			1	
	127	6SB0	23 0 0		-			1	
	128	RCL7	36 0 7					1	
	129	XZY	-41					4	
	130	-	-45					1	
	131	RCLE	36 0 6			<u></u>		1	
	132	÷	-24					1	
	133	ST07	35 0 7]	
	134	*LBL1	21 01		190]	
	135	RCL8	36 08]	
	136	6SB0	23 00			I			
	137	RCL7		ł				1	
			36 07					1	I
	138	÷	-24					1	
	139	ST-8	35-45 08			-		1	
	140	RCL8	<i>36 08</i>					1	
	141	÷	-24	1				1	
	142	ABS	16 31	İ				1	1
	143	EEX	-23	i	200		-	ţ	
	144	сня	-22						ŀ
	145	6	06					1	
	146	X≚Y?	16-35					1	
	147	GT01	22 01		-			1	
	148	RCL8	36 08	σ in deg after	-			1	
	149	R≠D	16 46		 			ł	
	150	RTH	24	convergence				1	
	151	*LBL0	21 00	1	 			1	
	152	ST05	35 0 5	1					
	153	TAN	43		210				ľ
	154	1/X	52						
	155	RCL2	36 0 2		 			ĺ	
	156	+	-55	1		· · · · · · · · · · · · · · · · · · ·		1	
	157	2	0 2					ł	
	158	_ X	-35		 	-			}
	159	RCL5	<i>36 0</i> 5		 				
	160	2	02		 				
	161	X	-35					ł	
	162	ST05	35 <i>0</i> 5		- 1			ł	
	163	cos	42		220			ł	
	164	RCL3	36 0 3					ł	
	165	+	-55					ĺ	
	166	RCL2	36 02					l	
	167	X	-35					1	
L_	168	RCL5	<i>36 0</i> 5	LABELS		FLAGS	T	SET STATUS	
A	σ	В	С	D E		0	FLAGS	TRIG	DISP
а		ь	c	d e	 	1	ON OFF	. 1	
							_ 0 □ □ □	DEG 🗹	FIX 🗹
0		1	2	3 4		2		GRAD □	SCI 🗆
5		6	7	8 9		3	2 🗆 🗹 3 🗆 🗹	RAD □	ENG □
Ц		ı	L						

Program Title	Mach Number	and Tru	ie Airspe	ed		
Contributor's Name	Hewlett	-Packard			The second secon	
Address	1000 N.E.	Circle	Blvd.			A
City	Corvallis	Man Assessment of Assessment of the Control of the	State _	Oregon	Zip Code	97330

Program Description, Equations, Variables, etc.

This program converts calibrated airspeed (CAS) to mach number and true airspeed (TAS). Pressure altitude (PALT) must be known to calculate mach number (M). Aircraft recovery coefficient ($C_{\rm T}$) and indicated air temperature (IT) must also be known to calculate true airspeed. The recovery coefficient varies from 0.6 to 1.0 but is around 0.8 for most aircraft.

Pressure ratio
$$\left(\frac{P}{P_0}\right) = \left[\frac{518.67 - 3.566 \times 10^{-3} \text{ PALT}}{518.67}\right]^{5.2563}$$

$$M^{2} = 5 \left[\left(\frac{P_{0}}{P} \left\{ \left[1 + 0.2 \left(\frac{CAS}{661.5} \right)^{2} \right]^{3.5} + 1 \right\} \right]^{0.286} - 1 \right]$$

TAS = 39M
$$\sqrt{(IT + 273) \left[C_T \left(\frac{1}{(1 + 0.2 \text{ M}^2)} - 1 \right) + 1 \right]}$$

Operating Limits and Warnings

Accuracy degenerates for mach numbers in excess of one.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

ket	ch(e	s)				İ							:	i	1				!				
1						:					:		:		-								
1		*					<u>+</u>		 •		!	•		• •									
									 		!										-		
			<u> </u>	+	1		 -	 		† :		• ·	• !				!		1				
				•	-	†	†	İ	 					•	:		!			!			T
					-	-								•	*	!		 		+			
•	٠				+	 	1	+	 	İ			†		1	·	<u> </u>	•	 	+			

mple Problem(s)	For a pressure altitude of 25,500 feet	a calibrated airspeed of					
	350 knots, a recovery factor of 0.8 temperature of 5 degrees Celsius, w	0.8, and an indicated air					
	number and the true airspeed?						
ution(s)							
	M = 0.84						
omen december on the transfer that the section of t	TAS = 515.76 knots						
	Keystrokes	See Displayed					
	25500 A 350 B	0.84					
	.8 C 5 D	515.76					
	— —						

Reference(s)	
This program is a	translation of the HP-65 Users' Library program
#00531B submitted	by Hewlett-Packard.
and the second s	

User Instructions

41	MACH NUMBER	AND TRUE AIRSPEED	7
PALT →P/P0	CAS →M	C _T T(°C) →TAS ■	

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program*			
2	Input pressure altitude	PALT	A .	P/P ₀
3	Input calibrated airspeed in			
	knots and calculate mach			
	number	CAS	В	M
4	Input recovery coefficient			
	(.8 for most aircraft)	C _T	С	C _T
5	Input indicated air temperature			
	and calculate true airspeed			
-	in knots	IT (°C)	D	TAS
6	For same aircraft at same			
	PALT go to step 3 and skip			-
	step 4. For different PALT go			
	to step 2 and skip step 4. For			
	totally new case go to step 2.			

^{*}For pressure altitudes above 36089 feet, calculate P/P_0 using Standard Atmosphere,

97 Program Listing I

				71		8 - 4-			•		3
_	STEP	KEY ENTRY	KEY CODE		COMM	ENTS	STEP	KEY ENTRY		CON	AMENTS
	001	*LBLA	21 11				057	STO4	35 84		
)	992	3	0 3				058	RTH	24		
	003	5	0 5				059	*LBLC	21 13	Input re	20010011
	604	6	0 6	ļ			960	ST03	35 0 3	coeffici	
	005	6	0 6	i			061	RTN	24	Coeffici	rent
	<i>006</i>	EEX	-23				062	*LBLD	21 14		
	007	CHS	-22				86 3	2	0 2		
	008	6	06	Į.			864	7	97	Calculat	te TAS
	00 9	X	-35	C			965	3	<i>0</i> 3		
	010	CHS	-22			essure	<i>066</i>	+	-55		
	01:	5	0 5		tude t		867	ST05	35 0 5		
	012	1	Ø1	pres	sure r	atio	968	RCL4	36 04		
	013	8	0 8				869	GSBE	23 15		
	014	•	-62	l			070	÷	-24		
	015	6	06]			071	RCL5	<i>36 0</i> 5		
	01 <i>6</i>	7	07	Ì			972	-	-45		
	017	+	-55	ŀ			873	RCL3	36 03		
	018	LSTX	16-63				074	Х	-35		
	019	÷	-24	1			075	RCL5	<i>36 0</i> 5	Ì	
	020	5	0 5	Ì			976	+	-55		
	021	•	-62				077	1%	54	i	
	022		02	1			078	3	03		
	023	2 5	<i>0</i> 5	1			879	ž	09		
	024	6	<i>06</i>				080	x	-35	1	
	025	3	<i>0</i> 3	İ			081	RCL4	36 04	İ	
	826	γ×	31	1			882	X X	-35		
	027	ST06	35 06	1			08 3	RTN	24	1	
	028	RTN	24	· ·			084	*LBLE	21 15	1	
	029	*LBLE	21 12				685	ENTT	-21	ł	
	030	6	86	1			08 <i>6</i>	X	-35	ł	
	631	6	Ø6	1			087		-62	•	
	032	1	<i>0</i> 1	İ			08 8	2	-62 02	ł	
	033		-62	i			08 9	X	-35	1	
	034	5	0 5	C	CA	C 4 l-	090	1	01	1	
	035	÷	-24			S to mach	0 91	+	-55	1	
	036	GSBE	23 15	numb	er		092	RTN	24	ł	
	037	3	03				1 1	KIH	1	4	
	038	Ū	-62				<u> </u>			1	
	039	5	05						+	1	
	040	үх	31					•		1	
	041	i	01						 	†	
	842	-	-45	}			\vdash		+	1	
	04Z	RCL6	36 0 6						 	1	
	844	÷	-24				100		+	1	
	045 045	1	-24 01						+	1	
	84 <i>6</i>	+	-55						 	†	i
	847		-55 -62				 		}	1	
	04£	• 2	92 02					~	 	1	
	045	ε	02 08						 	i	İ
	043 050	6	96						<u> </u>	SET STATUS	
	051	Υ×	31					_			
	051 052	1							FLAGS	TRIG	DISP
	053 053	<u>.</u>	Ø1 −45						ON OFF	DEG 🔀	FIX 🛭
	ღეა 054	- 5					110		1 6 3	GRAD	SCI 🗆
	055 055	X	Ø5 . 75				-			RAD 🗆	ENG,
			-35 .						 3 □ X		n_2
Г		IX	54			REGIS	TEPS				
0		1	2	3 (4	5	6	7	8	19
Ĺ					T	М	T	⁶ P/P ₀			
So		S1	S2	S3		S4	S5	S6	S7	S8	S9
-				Д,			<u></u>			1	
^		ľ	В		С		D		E	I	j
\vdash						1			L		

Program Title	TAKE-OFF RUN VS. DE	NSITY ALTITUDE	
Contributor's Name	Hewlett-Packard,	Corvallis Division	
Address	1000 N. E. Circle	Blvd.	
City	Corvallis	State OR	Zip Code 97330

$A_{D} = 14536$ $\rho/\rho o = (28)$ where $A_{\rho} = (28)$	n, Equations, Variables $6 \left[1-\left(\frac{\rho}{\rho o}\right)^{0.235}\right] \text{Density altitude}$ $8/T_{\circ_K}) \left(1-6.87 \times 10^{-6} \text{ Ap}\right)^{5.256}$ Pressure altitude (Ft) $18 \times 10^{-5} \text{ A}_D + 2.032 \times 10^{-8} \text{ A}_D^2$
where $A_{\rho} = F = 1 + 2$.	Pressure altitude (Ft) $18 \times 10^{-5} A_{D} + 2.032 \times 10^{-8} A_{D}^{2}$
where $A_{\rho} = F = 1 + 2$.	Pressure altitude (Ft) $18 \times 10^{-5} A_{D} + 2.032 \times 10^{-8} A_{D}^{2}$
F = 1 + 2.	$18 \times 10^{-5} A_{D} + 2.032 \times 10^{-8} A_{D}^{2}$
$D_A = (D_{STD})$	/U. A. H. A. F.
	/ wg · · wA · · ·
where	
$D_A = Actua$	1 take-off run (Ft)
D _{STD} = Sea	level take-off run at 15°C and full gross weight
W _G = Gross	weight
$W_A = Actua$	1 take-off weight
Operating Limits an	d Warnings Computed value of DA is an approximation to be tempered
by caution	and good sense. It depends on runway surface condition, aircraft
condition,	pilot skill; assumes zero wind. No provision for obstructions.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

ke	tch(es)			1	1			ŀ													
			+	 		• · · · · · • · · · · · · · · · · · · ·				•			:			:					-
		1		 	:				•	•			:				•				:
		:		 		†	• .	•	*	•		+		•		:	•		i		+
	•	•	• · · · · · · · · · · · · · · · · · · ·	 		**************************************				•								!			
		1			1			•	:	-	***************************************			:							<u> </u>
•		:	:	 *						•			1	:	•		•				
*	• · · · · ·				-		•	;			• • ••••	***			•		•				

Sample Problem(s) Land performance of a popular twin engine of 965 feet (sea level) at 15°C at full gross weight of	
How much runway will it require at Laramie, Wyoming (ele-	v, 7300 ft.) on a summer
day when outside air temperature is 35°C (95°F) and plane	e is loaded to 5750 lbs?
Solution(s) 965/6000 = .1608 - Aircraft parameter to be inse	erted in program at LBL 1.
A _D (density altitude) = 11094 ft	
D_A (actual take-off distance) = 3461 ft	Outpoints
Keystrokes: 965[ENT +] 6000[+][STD][0] 35[ENT +] 7300	D[ENT ↑] 5750[A] → 11094
	[B] → 3461
	77.79 11.97/88.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.

Reference (s)	HP-65 Users' Library Program #532A								
	2) "AOPA Handbook for Pilots - 1974", page 15 (F VS Ap)								
	3) "Aerodynamics of the airplane", Millikan, John Wiley & Sons, 1941,								
	page 132.								

User Instructions

4 1	TAKE-OFF RUN/DENSITY ALT	3 aduti
DENS. ALT. T OFF	RUN	

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Load program			
2.	Adjust aircraft constant as required	G.R.Height	<u> </u>	Height
		F.G.Weight	÷	
			STO p	
3.	Input TA	°C	<u> </u>	
	· A			
4.	Input A	Ft.	↑	
	P			
5.	Input W _A	lbs.	_ A	
	Display A _D			Ft.
	Д			
6.	Compute and Display D		В	Ft.
	A			
			一一一	1
		·		
				}

97 Program Listing I

			y /	vgi am		ungı			35
STEP	KEY ENTRY	KEY CODE	_	MMENTS	STEP	KEY ENTRY	KEY CODE	COM	JO IMENTS
001	*LBLA	21 11			057	ENTT	-21		
002	DSPØ	-63 00			0 58		0 2	1	
003	ST01	35 01	A (Take	off Wt.)	059		-62]	
004	R4	-31	A_ (Pres	ssure Alt.)	868		8 1	1	
005	STO2	<i>35 02</i>	-P \	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	961		88	1	
00 6	R↓	-31			062 062		-23	1	
007	2	0 2			963		-23 -22	1	
800	2 7	<u>0</u> 7						1	
009	3	0 3	1		064 065		<i>0</i> 5	1	
018	STO3	35 <i>0</i> 3			065		-35	1	
011	+	- 5 5			966		<u>01</u>	1	
012	ST04	35 Ø4	Temp. °k	•	<i>067</i>		-55	ł	
013	5104		l comb.	•	868		-41	ł	
813 814		0 6	İ		069		-21	, 2	
	•	-62			070		-35	l ^A D	
015	8	<i>08</i>			871		0 2		
016	7	0 7			072		-62		
017	6	0 6	İ		073	. 0	<i>00</i>		
018	EEX	-23			074	3	0 3		
019	CHS	-22	j		075		02	ŀ	Ţ
020	6	9 6			076		-23		
021	RCL2	36 02			877		-22		
022	Х	-35			0 78		0 8		
023	CHS	-22			0 79		-35		
824	1	0 1			080		-55		
925	+	-55			081		36 00		
8 26	5	0 5			882		-35		
027		-62			083			1	
028	Ž	02					36 01 35	D. (Actu	al Take-
029	2 5	0 5			084		-35	1	
030	ē	9 6			085		24	Off Dist	ance, Ft.)
031	у×	31			88 <i>6</i>	R∕S	51	ı	
032	RCL3	36 0 3			 	····	 	-{	
03Z	1				 		 	┪	
03 4	5	01 05			090		-	4	
		0 5			090		-	4	
935 936	+	-55			<u> </u>		 	4	ļ
<i>036</i>	X	-35						4	į.
037	RCL4	36 04						1	:
03 8	÷	-24						4	
0 39	•	-62						1	
040	2	02						1	
041	3	03						1	J
842	5	9 5						1	i
843	γ×	31					L]	İ
044	CHS	-22			100				i
045	1	01							
<i>046</i>	+	-55							
847	1	Ø1						1	į
04 8	4	Ū 4					1	1	ļ
849	5	0 5						1	
85∂	3	03						SET STATUS	3
05 1	6	Ø6					FLAGS	TRIG	DISP
05 2	6	8 6	.				ON OFF	Iniu	UISP
053	x	-35	${f A}_{ m D}$		 			DEG 🔀	FIX 🔀
054	RTN	-33 24			110			GRAD 🗍	sci 🖺
055 055	*LBLB	21 12						RAD 🗆	ENG □
ขออ 05 <i>6</i>	*LBLB EN <u>T1</u>						3 🗆 🛭		n_0_
836 1	EN <u>! </u>	<u>-21</u>	<u> </u>	REGI	STERS		L		
0	Ţī	² A _P	3	14	5	6	7	8	9
ľ	W _A	ⁿ P	273	T°k	I .		1_		
S0	S1	S2	Š3	S4	S5	S6	S7	S8	S9
1	l	L	L		L				
A	Ī	В	С		D		E	I	
1									

Program Description I

Program Title TRUE	AIR TEMPERATURE AI	ND DENSITY ALTITUDE	
Contributor's Name	Hewlett-Packard,	Corvallis Division	
Address	1000 N. E. Circle	e Blvd.	
City	Corvallis	State OR	Zip Code 97330

Program Description, Equations, Variables effects of high speed flight. Given the mach number (M) and the aircraft
recovery coefficient ($C_{ m T}$ = 0.8 for most aircraft), indicated air temperature (IT)
is converted to true air temperature (T). True air temperature and pressure
altitude are then converted to density altitude. For low flight mach numbers,
compressibility effects are small. In such cases only temperature and pressure
altitude (PALT) are needed to calculate density altitude (DALT).
$T(K) = C_T \left(\frac{IT(K)}{0.205 \text{ M}^2 + 1} - IT \right) + IT(K)$
DALT = 145366 $[1-(\frac{\rho}{\rho o})^{0.235}]$
where
$\frac{\rho}{\rho o} = \frac{288.15}{T(K)} [1 - 6.879 \times 10^{-6} PALT]^{-5.256}$
Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sample Problem(s)			
, ,	1.	M = 0.87	
		$C_{T} = 0.80$	
THE CONTROL OF THE CO		IT = 8°C	
AND AND AND AND AND AND AND AND AND AND		PALT = 10,000 ft	
MR. 21 (2.1) 12 (2.1) (2.1) (2.1) (2.1) (2.1) (2.1) (2.1) (2.1) (2.1) (2.1) (2.1) (2.1) (2.1) (2.1) (2.1) (2.1)	2.	For a low speed aircraft	
AND THE RESERVE AND THE PROPERTY OF THE PROPER		T = 12°C	
	***************************************	PALT = 9,000 ft	
			- · · · · · · · · · · · · · · · · · · ·

TARREST MARKET OF THE STATE OF			
THE RESIDENCE OF SECURE AND A SECURE AND A SECURE AND A SECURE ASSESSMENT AS A SECURE ASSESSMENT AS A SECURE ASSESSMENT AS A SECURE ASSESSMENT AS A SECURE ASSESSMENT AS A SECURE ASSESSMENT AS A SECURE ASSESSMENT AS A SECURE ASSESSMENT AS A SECURE ASSESSMENT AS A SECURE ASSESSMENT AS A SECURE ASSESSMENT AS A SECURE AS			
Solution(s)	1.	T =-22.21°C	
		DALT = 7852.96 ft	
	2.	DALT = 10,703.11 ft	
The state of the s			
	Key	strokes [f][a]	See Displayed
	1.	.87[A]8[C]	-22.21
as 18% William William and Market		10000[E]	7852.96
	2.	12[D]9000[E]	10703.11
		The second secon	

Reference (s)	This program is a	translation of t	he HP-65 Users' Library Program	
#00532A	Submitted by User's	Library.		_
	- · · · · · · · · · · · · · · · · · · ·			
				_

User Instructions

		TRUE AIR TEMPERATURE &		_
4 1		DENSITY ALTITUDE IT	DALT	7
	M	_ ^C T _ →T _	→DALT	_ /

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program		A a	
2	Initialize			0.80
3	If you know the true air temperature, go to			
	step 7			
4	Input the following:			
	mach number	М	A	М
	recovery coefficient (if different from			
	0.8)	$C_{\mathbf{T}}$	В	$C_{\mathbf{T}}$
5	Input indicated air temperature and calculate			
	true air temperature	IT(°C)	C	T(°C)
6	Go to step 8	, , , , , , , , , , , , , , , , , , , ,		
7	Input true air temperature	T(°C)	D	T (K)
8	Input pressure altitude and calculate density			
	altitude	PALT	E	DALT (ft)
9	For new case go to step 3			
				. I.

97 Program Listing I

				71	~ —		·						39
_	STEP	KEY ENTRY	KEY CODE	COM	MENTS	STEP	KEY ENTRY		KEY CODE		COM	MENTS	
	601	*LBLa 2	1 16 11			957	1		01	T	-		
	002	•	-62			858			-55				
	993	8	0 8	Initializ	e.	055			0 5	İ			
	004	ST03	35 Ø3			868			-62				
	005	RTN	24			861							
	886	*LBLA	21 11			862			0 2				
	907	ST04	35 04						0 5				
	998	RTN	24	Input mad	n number	063			9 6				
	009	*LBLB	21 12	ł		864			31				
	010	ST03	35 Ø3			965			<i>36 06</i>				
	011	RTN		Input red	0370717	966			01				
			24	factor	overy	967			<i>0</i> 5				
	012	*LBLC	21 13	lactor		968			-55	ł			i
	013	GSBD	23 14			869			- <i>3</i> 5				
	014	RCL4	36 04			979	RCL5		36 05				
	015	ENT1	-21	i		071	=		-24	l			
	016	X	-35			072			-62				
	017		-62	Calculate	true	873			02				
	018	2	0 2	temperatu	ıre	874	3		8 3			e density	
	019	e	0 0	_		875			<i>0</i> 5	alt	itude		ļ
	020	5	<i>0</i> 5			07 <i>ε</i>			31	1			
	821	X	-35			077			-22				
	022	1	Øi			077 078				1			j
	023	+	-55			978 979			01 -55				
	024	÷	-24						- 5 5				
	825	RCL5	36 05			080			<i>0</i> 1				
	026	_	-45			981	4		94				i
	027	RCL3	36 03			082			0 5				
	628	X	-35			983			8 3				ı
	829	RCL5	36 0 5			084	6		0 6				
	030	+	-55			085			0 6				
	030 031	sT05				986	x		- <i>3</i> 5				
			35 05 36 06			087	RTN		24				
	032 033	RCL6	36 0 6			L		┺					
	033	- 570	- 4 5					L					
	934	RTH	24			090		_					
	<i>03</i> 5	*LBLD	21 14										
	<i>036</i>	2	0 2										
	937	7	0 7	Convert T				Ī					ı
	038	3	<i>03</i>	T(K) and	store it.			Ī		i			
	039	•	-62					Ī		1			ļ
	040	1	01							1			ı
	041	5	0 5							1			- 1
	842	ST06	<i>35 06</i>	İ				T		1			J
	043	+	-55					T		1			١
	044	ST05	35 05			100		Т		1			١
	045	RTH	24					T	-	1			
	046	*LBLE	21 15			-		 -		İ			-
	047	6	06			 		H		Í			
	048		-62			 		H		1			١
	049	8	98			 		t		1			- [
	050	7	0 7			┝──┼		\vdash		SET S	STATUS	i	ᅥ
	0 51	9	0 9			\vdash		\vdash	5 1 2 5 5				ᅥ
	051 052	EEX	-23					╁	FLAGS		RIG	DISP	4
	053	CHS	-23 -22		_	 		+-	ON OFF 0 □ ≴ ①		G 😾	FIX 😡	
	854	6	96	Calculate	density	110		\vdash	1 🗆 🙀	GE	AD 🗆	SCI 🗆	
	055	ъ Х	-35	ratio		 		\vdash	2 🗆 🛣	RA		ENG 2	
	056	CHS				 		H	3 🗆 😥	"	_	n	- [
. 1	ಶವರ	ยศอ	-22		BEGIG	STERS		Ц.					ᅥ
0		11	2	I3 0	4	_	6	_	7	8		9	┪
" "		ľ	1	3 $^{\mathrm{C}}_{\mathrm{T}}$	⁴ M	⁵ T(K)	⁶ 273.15]	آ		Ĺ	[
S	0	S1	S2	S3	S4	S5	S6		S7	S8		S9	٦
L				<u> </u>	1			_	L	1	1.		4
A			В	C		D		E			I		_]

Program Description I

Program Tit	le Aircraft Climb		
Contributor'	s Name Carroll F. Lam		
Address	4411 Random Ct.		
City	Annadale	State VA	Zip Code 22003

Program	Descri	ntion	Foua	tions	Variables
Fiogram	D C 3 C I I	Puvii,	Lyua	110113,	Vallable 3

Given current and new higher altitudes, A_1 and A_z , and associated headwinds at these altitudes, W_1 and W_z , this program will compute the following:

1.
$$D_{min} = [(V_{cr} - V_{cl}) + (\frac{W_1 - W_2}{2})] (\frac{V_{cr} - W_1}{W_1 - W_2})$$
 TC

where: V_{cr} = cruise air speed

 V_{cc} = climb air speed T_{c} = time to climb, A_{1} to

2.
$$T_{\text{climb}} = \frac{A_{\text{m}}}{ROC_{\text{max}}} \ln \left(\frac{A_{\text{m}} - A_{1}}{A_{\text{m}} - A_{2}}\right)$$

where: $A_m = aircraft celing$

ROC_{max} = sea level rateof-climb

3.
$$T_{act} = \frac{D_{act} - [V_{c1} - (\frac{W_1 + W_2}{2})] T_c}{V_{cr} - W_2} + T_c$$

4.
$$T_{\text{save}} = \frac{D_{\text{act}}}{V_{\text{cr}} - W_{\text{I}}} - T_{\text{act}}$$

Operating Limits and Warnings

$$W_1, W_2 \ge 0$$

 $D_{act} > D_{min}$ if steps 9,10,11 are to be used.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description I

Program Title	Aircraft Climb		
Contributor's N	Jame Carroll F. Lam 4411 Random Ct.		
City	Annandale	State VA	Zip Code2003

Program Description, Equations, Variables (COn't)
The equation for $D_{ extbf{min}}$ is derived by setting up an equation for the two time
possibilites for traveling between points A and B ₁ and solving for the D that
assures that the travel time based on climbing to a higher altitude with a smaller
headwind component is less than the travel time that would result from remaining at
altitude A ₁ .
Although the program doesn't incorporate it, there would in general be an additional
benefit in climbing to a higher altitude, namely a higher true airspeed will
generally result.
Operating Limits and Warnings
See previous page.
occ previous page.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description 11

Sample Problem(s)		
Assumed aircraft parameters: V _{cr} = 150 mph		
$V_{c1} = 85 \text{ mph}$		
$ROC_{max} = 850 ft/min$	- National Control of the Control of	
$A_{\text{max}} = 18.5 \text{ kft}$		The state of the s
Given: Current Altitude (A ₁) = 3.5 kft Current Headwind Component (W ₁) = 38 mph Potential Altitude (A ₂) = 11.5 kft Headwind Component at ^Z A ₂ (W ₂) = 10 mph Distance Remaining (D _{act}) = 185 miles		
Find: 1. Distance required for climb to breakeven 2. Time to fly distance remaining if climb is made 3. Time saved by climbing to higher altitude 4. Time to climb to new altitude		
Solution(s) 150[ST0] [1] 85[ST0] [2] [850] [ST0] [3] 18.5 [ST0] [4]	l	
11.5 [ENTER] Store A _z	11.50	
10 [ENTER] Store W _z	10.50	
3.5 [ENTER] Store A ₁	3.50	and the second s
38 [A] Store W ₁	11.50	
1. [B] Compute D _{min}	87.54	
2. 185 [C] Compute T _{act} for 185 miles	1.28	(1 hr, 28 mins)
3. [R/S] Compute T		(10 mins)
4. [D] Compute T _{climb}	0.16	(16 mins)

Reference(s) Equations (1),(2), and (4) are submitter's own derivations based on the geometry of the problem.

Equation (3) is based on an assumption that ROC varies lineary with altitude $\frac{[ROC(A) = A_{max}(1-A_{max})]}{A_{max}}$ and straight forward integration. See any good aeronautical engineering text.

This program is a translation of the HP-65 Users Library program # 01815A submitted

User Instructions

4 1	AIRCRA	FT CLIMB	1	2
DATA DATA		_	 	_/

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Enter program card 1			
2.	Input specific aircraft parameters			
		V _{cr}	STO 1	Ver
	Cruise airspeed V (miles/hr) Climb airspeed V _{cl} (miles/hr)	V _{c1}	STO 2	V _C 1
	Sea-level rate of climb (ft/min)	R _O C	STO 3	R _o C
	Ceiling (kft)	Amax	STO 4	A _{max}
3.	Enter program card 2			
4.	Input higher altitude	A _Z (kft)	ENTER	
5.	Input wind at higher altitude	W_	ENTER	
6.	Input lower altitude	$A_1(kft)$	ENTER	-
7.	Input wind at lower altitude	W ₁		
8.	Compute minimum remaining distance			D _{min}
		ļ		
	If actual distance remaining is greater than	ļ		
	D _{min} k go to step 9; otherwise stop, or go to	 		
	12.			
		 		
9.	Key in actual stage length	Dact		T /11 MAN
10.	Compute actual remaining time with climb	_		Tact (H.MM)
11.	Compute time saved by climbing		R/S	T _{save} (H.MM)
12.	Compute climb time			T _{climb} (H.MM)
	Repeat steps 4-7 to enter new data.			
		 		
		 		
		ļ		
		<u> </u>		
		 		
		1		
	•			
		 		
		 		
		ļ		

97 Program Listing I

44			7/ * 1 % 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4				
STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001		21 11		057	+	-55	Compute Actual
002		<i>35 05</i>	1	0 58	2	0 2	Stage Time
003		-31	Store Data	0 59	÷	-24	· · · · · · · · · · · · · · · · · · ·
004		35 0 6		969	CHS	-22	
005		-31		061	RCL2	<i>36 02</i>	
906	STO7	35 0 7	1	862	+	-55	
997	*	-31	1	063	RCL9	36 09	
998	STO8	35 0 8	1	064	×	-35	
009	RTN	24	†	965	-	-45	
010		21 14	1	966	RCL1	36 0 1	
011		36 04		967	RCL7	36 07	
012		36 0 8	İ	068	KCL1	- 4 5	
913		-45	t	869	÷	-43 -24	
014		36 04	•	878			
915		36 06	i		RCL9	3 6 0 9	
015 016		-45	ł.	071 070	+	-55	
010		-43 -24	ļ	872	→HMS	16 35	
		-24 32	Compute Climb Time	073	R/S	51	
018			Compace Crimp rime	674	X#Y	-41	Compute Time
019		36 0 3		075	RCL1	36 01	Savings
929		-24	l	876	RCL5	<i>36 0</i> 5	
021		36 04		877	_	-45	
022		-35		0 78	÷	-24	i
023		-22		879	÷нМS	16 35	
824		01		080	CHS	-22	
025		0 6	Ī	081	HMS+	16-55	
Ø2 <i>6</i>		-62	1	982	CHS	-22	
027	7	0 7	1	683	RTN	24	
028	ł x	-35	1	1		[
829	ST09	35 0 9	1				†
030	+HMS	16 35	1				1
031		24	1				1
932		21 12	1	 			†
<i>033</i>		36 01	1	<u> </u>			1
034		36 05	Compute Minimum	090			-
935		- 4 5	1	030			4
9 36		<i>36 0</i> 5	State Length	 			-
037 037		36 0 7	1	\vdash			4
838		-45		—			4
							4
039		-24		ļ			4
040		16-63				ļ	4
041		<i>02</i>					4
042		-24 35 24					4
043		36 01					1
044		36 0 2		100			1
045		-45	l]
946		-55	l				1
947		-35					J
048		23 14					1
049		16 36					<u> </u>
05 0		-35					SET STATUS
051	RTH	24				FLAGS	TRIG DISP
05 2		21 13				ON OFF	1 1
0 53		-21					DEG 🛛 FIX 🛣
054		-21		110		1 0 😡	GRAD □ SCI □
055		36 05			<u>-</u>	2 🗆 🕱	RAD ENG
056		36 0 7	1		·····	3 □ 🔯	n <u>_2</u>
F676	ROLI	30 0 7	REGI	STERS			
ō	11/	21/	³ R.O.C _{max} ⁴ A _{max}	15	6 A	7	8 , 9
ľ	Vcruise	e ² V climb	³ R.O.C _{max} ⁴ A _{max}	5 W ₁	o A ₁	′ W ₂	8 Az Tclimb
S0	S1	S2	S3 S4	S5	S6	S7	S8 S9
1		1	1 1			- [1
A	TE	3	Ic	D	1	_ E	I

Hewlett-Packard Software

In terms of power and flexibility, the problem-solving potential of the Hewlett-Packard line of fully programmable calculators is nearly limitless. And in order to see the practical side of this potential, we have several different types of software to help save you time and programming effort. Every one of our software solutions has been carefully selected to effectively increase your problem-solving potential. Chances are, we already have the solutions you're looking for.

Application Pacs

To increase the versatility of your fully programmable Hewlett-Packard calculator, HP has an extensive library of "Application Pacs". These programs transform your HP-67 and HP-97 into specialized calculators in seconds. Each program in a pac is fully documented with commented program listing, allowing the adoption of programming techniques useful to each application area. The pacs contain 20 or more programs in the form of prerecorded cards, a detailed manual, and a program card holder. Every Application Pac has been designed to extend the capabilities of our fully programmable models to increase your problem-solving potential.

You can choose from:

Statistics Mathematics Electrical Engineering **Business Decisions** Clinical Lab and Nuclear Medicine Mechanical Engineering Surveying Civil Engineering **Navigation**

Users' Library

The main objective of our Users' Library is dedicated to making selected program solutions contributed by our HP-67 and HP-97 users available to you. By subscribing to our Users' Library, you'll have at your fingertips, literally hundreds of different programs. No longer will you have to: research the application; program the solution; debug the program; or complete the documentation. Simply key your program to obtain your solution. In addition, programs from the library may be used as a source of programming techniques in your application area.

A one-year subscription to the Library costs \$9.00. You receive: a catalog of contributed programs; catalog updates; and coupons for three programs of your choice (a \$9.00 value).

Users' Library Solutions Books

Hewlett-Packard recently added a unique problem-solving contribution to its existing software line. The new series of software solutions are a collection of programs provided by our programmable calculator users. Hewlett-Packard has currently accepted over 6,000 programs for our Users' Libraries. The best of these programs have been compiled into 40 Library Solutions Books covering 39 application areas (including two game books).

Each of the Books, containing up to 15 programs without cards, is priced at \$10.00, a savings of up to \$35.00 over single copy cost.

The Users' Library Solutions Books will compliment our other applications of software and provide you with a valuable new tool for program solutions.

Options/Technical Stock Analysis Portfolio Management/Bonds & Notes Real Estate Investment Taxes

Home Construction Estimating Marketing/Sales **Home Management** Small Business

Antennas

Butterworth and Chebyshev Filters Thermal and Transport Sciences

EE (Lab)

Industrial Engineering Aeronautical Engineering **Control Systems Beams and Columns** High-Level Math Test Statistics Geometry Reliability/QA

Medical Practitioner

Anesthesia

Cardiac

Pulmonary

Chemistry

Optics

Physics

Earth Sciences

Energy Conservation

Space Science

Biology

Games

Games of Chance

Aircraft Operation

Avigation

Calendars

Photo Dark Room

COGO-Surveving

Astrology

Forestry

AERONAUTICAL ENGINEERING

Includes programs in several areas for Aeronautical Engineering, such as calculations for properties of air and atmosphere, behavior of gas flows, calibration of temperature and speed, and also some aircraft maneuvering.

PROPERTIES OF AIR

THEORETICAL U.S. STANDARD ATMOSPHERE TEMPERATURE AND PRESSURE BELOW 35,332 FT.

AIRCRAFT FLYOVER ACOUSTIC TONE DOPPLER SHIFT

ISENTROPIC FLOW FOR IDEAL GASES

NORMAL AND OBLIQUE SHOCK PARAMETERS FOR COMPRESSIBLE FLOW

OBLIQUE SHOCK ANGLE FOR WEDGE

MACH NUMBER AND TRUE AIRSPEED

TAKE-OFF RUN VS DENSITY ALTITUDE

TRUE AIR TEMPERATURE AND DENSITY ALTITUDE

AIRCRAFT CLIMB