HEWLETT (1) PACKARD

CHEMICAL ENGR. PAC 1

THERMAL AND TRANSPORT SCIENCE)

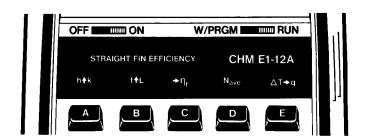
The program material contained herein is supplied without representation or warranty of any kind. Hewlett-Packard Company therefore assumes no responsibility and shall have no liability, consequential or otherwise, of any kind arising from the use of this program material or any part thereof.

Contents

1

TABLE OF CONTENTS

Using Chemical Engineering Page I	Page
Using Chemical Engineering Pac I	
1 Ideal Cas Equation of State	0
1. Ideal Gas Equation of State	
2. Redlich-Kwong Equation of State	
3. Reversible Polytropic Process for an Ideal Gas	
4. Isentropic Flow for Ideal Gases	
5. One Dimensional Normal Shocks for Ideal Gases	20
6. Fluid Transport Numbers	24
7. Fanning Friction Factor and Conduit Flow	
8. Conservation of Energy	
9. von Karman Analogy for Heat and Mass Transfer	
10. Heat Exchanger Analysis	
11. Heat Transfer Through Composite Cylinders and Walls	
12. Straight Fin Efficiency	
13. Natural Convection	62
14. Black Body Thermal Radiation	68
15. Temperature or Concentration Profile for a	
Semi-infinite Solid	74
16. Hydrocarbon Combustion	
17. Curve Fitting	82
18. Unit Conversions	88
Register Allocation	
Program Listings	95


USING CHEMICAL ENGINEERING PAC 1

Chemical Engineering Pac I is a collection of programs designed to aid the engineer in thermodynamic and transport process calculations. Each program includes a general description, formulas used in the program solution, general user instructions, example problems with keystroke solutions, and a program listing.

By using the keyboard functions of the HP-65 in combination with *Chemical Engineering Pac I*, complex problems can be solved in an easy, consistent manner. Very rarely will intermediate answers need to be written down for later use. Where possible, inputs are stored in consistent registers and remain unaltered from program card to program card. This allows similar programs to be linked with little or no reinput of data.

PRERECORDED MAGNETIC CARDS

The prerecorded magnetic cards supplied with Chemical Engineering Pac I incorporate a shorthand set of operating instructions. This should make it possible to run the programs without referencing the manual. A typical card inserted in the window slot of an HP-65 is shown below:

 down to a variable ▼. This indicates that the key may be used for both calculation and input. If a zero is displayed when the user definable key is pressed, the calculator calculates the value. Any other displayed value will be stored.

As you probably noticed in the example, execution was from left to right. Left to right input is always safe. However, input order is generally immaterial to the program.

FORMAT OF USER INSTRUCTIONS

The completed User Instruction Form, which accompanies each program, is your guide to operating the programs in this pac. On page 4 is a sample user instruction form for *Straight Fin Efficiency*, CHM E1-12A.

The form is composed of five labeled columns. Reading from left to right, the first column, labeled STEP, gives the instruction step number.

The INSTRUCTIONS column gives instructions and comments concerning the operations to be performed.

The INPUT-DATA/UNITS column specifies the input data, and the units of data if applicable. Data input keys consist of ① to ② and decimal point (the numeric keys), EEX (enter exponent), and CHS (change sign).

The KEYS column specifies the keys to be pressed after keying in the corresponding input data. Where the **ENTER+** key is used, it is indicated by **\(\District{A}\)**. All other key designations are identical to those appearing on the HP-65. Ignore any blank spaces in the KEYS columns.

The INPUT-DATA/UNITS column shows abbreviations for the input variables. The OUTPUT-DATA/UNITS column shows what should be in the display after the operation shown in the KEYS column is performed. In many cases it is possible to run programs by referring only to the INPUT-DATA/UNITS column and the KEYS column. However, important information in the INSTRUCTIONS column may be overlooked in this manner.

The OUTPUT-DATA/UNITS column specifies intermediate and final outputs and their units where applicable.

4 Format of User Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program			
2	Input			
	Convective coefficient	h	1	h
	then conductive coefficient	k	_ A _	h
	and			
	Fin thickness	t		t
	then fin length	L	В	t/2
3	Calculate fin efficiency		_ C	η_{f}
4	Input the average number of			
	fins per unit surface length	N _{ave}	D	N _{ave} *
5	Input temperature difference			
	and compute heat transfer per			
	unit surface area	ΔΤ	E	q
6	For new ∆T go to step 5. For			
	new N _{ave} go to step 4. For new			
	fin parameters go to step 2.			

^{*}Flashing zeros indicate that more fins than possible have been added.

STEP 1: Step 1 of the example user instruction form is "Enter program". This calls for the entry of the prerecorded magnetic card into the HP-65 (See *Entering a Program*, on page 6).

STEP 2: This step specifies the input of the convective coefficient h, the conductive coefficient k, the fin thickness t, and the fin length L. The inputs are broken into two groups by the word "and". One group is the convective and conductive coefficients. The other indicates the thickness and length. Either group can be input first since there is no order implied by the word "and". However, note that within the groups order is important. The convective coefficient must be keyed in and entered before the conductive coefficient. The same is true of the thickness and length. The word "then" is used in both cases to specify the order.

STEP 3: This step triggers calculation of fin efficiency. Note that since nothing is specified in the INPUT-DATA/UNITS column, the condition of the operational stack is immaterial. This means that any number of intermediate calculations could have been done between STEP 2 and STEP 3 with no effect upon the calculation of $\eta_{\rm f}$. Data storage registers must not be disturbed, however. A register usage table is included on page 92 to give you information concerning spare registers and data position.

STEP 4: This step specifies the input of the number of fins per unit surface length. First, key in N_{ave} and then press D. N_{ave} should still be displayed when execution stops. As noted by the asterisk, flashing zeros indicate an error in the value of the input.

STEP 5: This step specifies the input of ΔT and the calculation of q.

STEP 6: This step specifies the procedure for modifying the problem or starting a new case.

USER SUPPLEMENTAL PROGRAMMING

In forty programs we could not hope to solve every problem in chemical engineering. Hopefully, we have addressed some of the more important topics and built a basis from which you can build an HP-65 program library for your specific needs. The register usage chart in Appendix A should be helpful in integrating your programs with those of *Chemical Engineering Pac I*.

ACKNOWLEDGMENT

Chemical Engineering Pac I has been enhanced considerably by the helpful comments, suggestions, and useful examples from many practicing engineers. We especially wish to thank Mr. Dean Lampman for his expertise and assistance in reviewing this text.

A PARTY OF THE PROPERTY OF THE PARTY OF THE

ENTERING A PROGRAM

Select a program card from the card case supplied with this application pac.

Set W/PRGM-RUN switch to RUN.

Turn the calculator ON. You should see 0.00.

Gently insert the card (printed side up) in the right, lower slot as shown. When the card is part way in, the motor engages it and passes it out the left side of the calculator. Sometimes the motor engages but does not pull the card in. If this happens, push the card a little farther into the machine. Do not impede or force the card; let it move freely. (The display will flash if the card reads improperly. In this case, press [CLX] and reinsert the card.)

When the motor stops, remove the card from the left side of the calculator and insert it in the upper "window slot" on the right side of the calculator.

The program is now stored in the calculator. It remains stored until another program is entered or the calculator is turned off.

IDEAL GAS EQUATION OF STATE

	IDEAL G	AS EQUATION	ON OF STATE	CHM	E1-01A	₫
	♥ P	V	▼ n	¥	T	∑I
[🖪	•	•	••	n	•	٠,

This program provides an interchangeable solution between the five variables of the ideal gas law.

Table I
Values of the Universal Gas Constant

Value of R	Units of R	Units of P	Units of V	Units of T
8.314	N - m/g mole - K	N/m²	m³/g mole	K
83.14	cm ³ - bar/g mole - K	bar	cm³/g mole	K
82.05	cm3 - atm/g mole - K	atm	cm ³ /g mole	K
0.7302	atm - ft ³ /lb mole - °R	atm	ft ³ /lb mole	°R
10.73	psi - ft ³ /lb mole - °R	psi	ft ³ /lb mole	°R
1545	psf - ft ³ /lb mole - °R	psf	ft ³ /lb mole	°R

Equations:

PV = nRT

where

P is the absolute pressure;

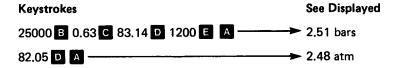
V is the volume;

n is the number of moles present;

R is the universal gas constant;

T is the absolute temperature.

Remarks:

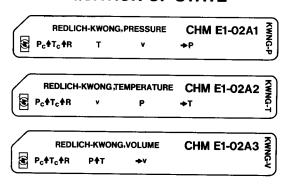

At low temperatures or high pressures the ideal gas law does not represent the behavior of real gases.

P, V, and T must have units compatible with R.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program			
2	Input four of the following:			
	Absolute pressure	Р	_ A	0.00
	Volume	V	В	0.00
	Number of moles	n	С	0.00
	Universal gas constant	R	D	0.00
	Absolute temperature	Т	E	0.00
3	Calculate one of the following:			
	Absolute pressure	0.00		Р
	Volume	0.00	В	V
	Number of moles	0.00	_ c	n
	Universal gas constant	0.00		R
	Absolute temperature	0.00	E	т
4	For a new case go to step 2 and			
	change appropriate inputs.			

Example 1:

0.63 g-moles of air are enclosed in a 25,000 cm³ space at 1200 K. What is the pressure in bars? In atmospheres?


Example 2:

What is the specific volume (ft³/lb) of a gas at atmospheric pressure and at a temperature of 513 °R? The molecular weight is 29 lb/lb-mole.

Keystrokes	See Displayed
513 E 29 9 1/x C 0.7302 D 1 A B	- 12.92 ft ³ /lb
What is the density?	
9 1/x DSP • 3	0.077 lb/ft ³
What is the density at 1.32 atmospheres and 555 °R2	?

1,32 A 555 E B 9 1/x → 0.094 lb/ft³

REDLICH-KWONG EQUATION OF STATE

The Redlich-Kwong equation is a two constant equation of state which takes some of the adverse properties of real gases into account. It is generally a better approximation of the behavior of real gases than either the ideal gas law or van der Waals' equation.

The first card of the Redlich-Kwong set solves for pressure P. The inputs are critical pressure P_c , critical temperature T_c , the universal gas constant R, temperature T and volume v. The second and third cards are similar, but solve for temperature and volume instead of pressure.

Table I
Critical Temperatures and Pressures*

Substance	T _c , K	T _c , °R	P _c , ATM
Ammonia	405.6	730.1	112.5
Argon	151	272	48.0
Carbon dioxide	304.2	547.6	72.9
Carbon monoxide	133	239	34.5
Chlorine	417	751	76.1
Helium	5.3	9.5	2.26
Hydrogen	33.3	59.9	12.8
Nitrogen	126.2	227.2	33.5
Oxygen	154.8	278.6	50.1
Water	647.3	1165.1	218.2
Dichlorodifluoromethane	384.7	692.5	39.6
Dichlorofluoromethane	451.7	813.1	51.0
Ethane	305.5	549.9	48.2
Ethanol	516.3	929.3	63
Methanol	513.2	923.8	78,5
n-Butane	425.2	765.4	37.5
n-Hexane	507.9	914.2	29.9
n-Pentane	469.5	845.1	33.3
n-Octane	568.6	1023.5	24.6
Trichlorofluoromethane	471.2	848.1	43.2

^{*}Values of the universal gas constant may be found in Table 1 of *Ideal Gas Equation of State*, CHM E1-1A, page 8.

Equations:

$$P = \frac{RT}{v - b} - \frac{a}{T^{\frac{1}{2}} v (v + b)}$$
$$a = 4.934 b RT_c^{1.5}$$
$$b = 0.0867 \frac{RT_c}{P_c}$$

Remarks:

No equation of state is valid for all substances nor over an infinite range of conditions. The Redlich-Kwong equation gives moderate to good accuracy for a variety of substances over a wide range of conditions. Results should be used with caution and tempered by experience.

Solutions for both v and T require an iterative technique-Newton's method is employed using the ideal gas law to generate the initial guess. Iteration time is generally a function of the amount of deviation from ideal gas behavior. For extreme cases, the routine may fail to converge entirely resulting in flashing zeros.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	To calculate pressure go to step			
	2. To calculate temperature go			
	to step 9. To calculate volume			
	qo to step 16.			
2	Enter CHM E1-02A1			
3	Input critical pressure	P _c	<u> </u>	P _c
4	Input critical temperature	T _c	1	T _c
5	Input universal gas constant	R	A	R
6	Input both of the following:			
	Absolute temperature	Т	В	т
	Specific volume	٧	_ C	v
7	Calculate pressure		D	Р
8	For a new pressure calculation			
	using the same critical values, go			
	to step 6 and change either			
	temperature or volume. For a			
	new case go to step 1.			

12 Chm E1-02A

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
9	Enter CHM E1-02A2			
10	Input critical pressure	Pc		P _c
11	Input critical temperature	T _c	<u> </u>	Tc
12	Input universal gas constant	R	A	R
13	Input both of the following:			
	Specific volume	٧	В	v
	Absolute pressure	Р	С	Р
14	Calculate absolute temperature		D	Т
15	For a new temperature calcula-			
	tion using the same critical	*		
	values, go to step 13 and change			
	either specific volume or ab-			
	solute pressure. For a new case	· · ·		
	go to step 1.			
16	Enter CHM E1-02A3			
17	Input critical pressure	P _c		P _c
18	Input critical temperature	T _c	1	T _c
19	Input universal gas constant	R	A	R
20	Input absolute pressure	Р		Р
21	Input absolute temperature	Т	В	P
22	Calculate specific volume		C	v
23	For a new volume calculation			
	using the same critical values,			•
	go to step 20. For a new case			
	go to step 1.			

Example 1:

The specific volume of a gas in a container must be 800 cm³/g mole, the temperature is to be 400 K. What will the pressure be?

$$P_c = 48.2 \text{ atm}$$

$$T_c = 305.5 \text{ K}$$

$$R = 82.05 \text{ cm}^3 - \text{atm/g mole-K}$$

Kevstrokes

See Displayed

Using card CHM E1-02A1

Example 2:

Carbon dioxide gas is held at a pressure of 50 atmospheres, and at a temperature of 500 K. What is the volume in cm³/g mole?

$$T_c = 304.2 \text{ K}$$

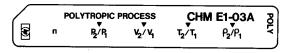
$$P_c = 72.9 \text{ atm}$$

From Table I CHM E1-1A $R = 82.05 \text{ cm}^3 - \text{atm/g mole-K}$

Keystrokes

See Displayed

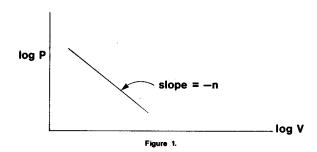
Using card CHM E1-02A3


To obtain a specific volume of 600 cm³/g mole what would the temperature have to be if all other variables are unchanged?

Keystrokes

See Displayed

Using card CHM E1-02A2


REVERSIBLE POLYTROPIC PROCESS FOR AN IDEAL GAS

This program may be used to solve interchangeably between pressure ratio, volume ratio, temperature ratio, and density ratio for polytropic processes involving ideal gases. Polytropic processes are defined by the relation

$$PV^n = C$$

which is shown graphically in Figure 1.

Isentropic processes are special cases of polytropic processes. For isentropic processes, k, the specific heat ratio, is equal to n.

Equations:

$$\frac{P_2}{P_1} = \left(\frac{V_2}{V_1}\right)^{-n} = \left(\frac{T_2}{T_1}\right)^{\frac{n}{n-1}} = \left(\frac{\rho_2}{\rho_1}\right)^n$$

where

 P_2/P_1 is the final pressure divided by the inital pressure;

 V_2/V_1 is the final volume divided by the initial volume;

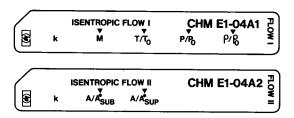
T₂/T₁ is the final temperature divided by the initial temperature;

 ρ_2/ρ_1 is the final density divided by the initial density.

Remarks:

Zero is an invalid input since the calculator interprets zero as a signal to calculate.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program			
2	Input polytropic constant*	n	_ A	n .
3	Input one of the following:			
_	Pressure ratio	P ₂ /P ₁	В	0.00
	Volume ratio	V ₂ /V ₁	С	0.00
	Temperature ratio	T ₂ /T ₁	D	0.00
	Density ratio	ρ_2/ρ_1	E	0.00
4	Calculate one fo the following:			
	Pressure ratio	0.00	В	P ₂ /P ₁
	Volume ratio	0.00	C	V ₂ /V ₁
	Temperature ratio	0.00	D	T ₂ /T ₁
	Density ratio	0.00	E	ρ_2/ρ_1
5	For another calculation based			
	on the same input press and			
	go to step 4. For a new input go			
	to step 3, for a new polytropic			
	constant go to step 2.			


^{*} If a value for k was previously input using an isentropic flow card, n need not be reinput.

Example

A compressor has a compression ratio of 8.5 (V_1/V_2) . The polytropic constant is 1.43. If inlet air is at 300 K, what is outlet temperature? What is the pressure in atmospheres if the inlet pressure is one atmosphere?

Keystrokes	See Displayed
1.43 A 8.5 9 1/x C D	→ 2.51 (T ₂ /T ₁)
300🗷	→ 752.96K
0 B	→ 21.33 (P ₂ /P ₁)
1🕱	→ 21.33 atm

ISENTROPIC FLOW FOR IDEAL GASES

These two cards replace isentropic flow tables for a specified specific heat ratio k. Inputs and outputs are interchangeable with the exception of k.

The following values are correlated:

M the mach number;

 T/T_0 the ratio of flow temperature T to static or zero velocity temperature T_0 ;

P/P₀ the ratio of flow pressure P to static pressure P₀;

 ρ/ρ_0 the ratio of flow density ρ to static density ρ_0 ;

A/A*_{sub}, and A/A*_{sup} are the ratios of flow area A to the throat area A* in converging—diverging passages. A/A*_{sub} refers to subsonic flow while A/A*_{sup} refers to supersonic flow.

Equations:

$$T/T_0 = \frac{2}{2 + (k - 1) M^2}$$

$$P/P_0 = (T/T_0)^{k/(k-1)}$$

$$\rho/\rho_0 = (T/T_0)^{1/(k-1)}$$

$$A/A^* = \frac{1}{M} \left[\left(\frac{2}{k+1} \right) \left(1 + \frac{k-1}{2} M^2 \right) \right]^{\frac{k+1}{2(k-1)}}$$

In the last equation M² is determined using Newton's method. The initial guess used is as follows with a positive exponent for supersonic flow:

$$M_0^2 = \left(\sqrt{\operatorname{Frac}(A/A^*)} + A/A^*\right)^{\pm 3}$$

Remarks:

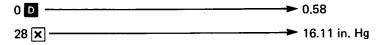
After an input of A/A^* the program begins to iterate to find M^2 for future use. This iteration will normally take less than one minute, but may take longer on occasion and for extreme values of k (1.4 is optimum) may fail to converge at all. Flashing zeros will eventually halt the routine if it goes out of control.

A/A* values of 1.00 are illegal inputs. Instead input an M of 1.00.

Zero is always an invalid input since the calculator interprets zero as a signal to calculate.

18 Chm E1-04A

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter Isentropic Flow I,			
	CHM E1-4A1 or Isentropic			
	Flow II, CHM E1-4A2			
2	Input specific heat ratio of gas*	k		k
3	Input one of the following:			
	Mach number	М	В	0.00
	Temperature ratio	T/T ₀	С	0.00
	Pressure ratio	P/P ₀	D	0.00
	Density ratio	ρ/ρ_0	E	0.00
	or if Isentropic Flow II,			
	CHM E1-4A2 was entered in			
	step 1 input one of the			
	following:	*		
	Subsonic area ratio	A/A _{sub} *	В	0.00
	Supersonic area ratio	A/A _{sup} *	С	0.00
4	Calculate one of the following			
	with CHM E1-4A1 in program			
	memory			
	Mach number	0.00	В	М
	Temperature ratio	0.00	С	T/T _o
	Pressure ratio	0.00	D	P/P ₀
	Density ratio	0.00	E	ρ/ρ_0
	or with CHM E1-4A2 in			
	program memory calculate one			
	of the following:			
	Subsonic area ratio	0.00	В	A/A _{sub} *
	Supersonic area ratio	0.00	_ C	A/A _{sup} *
5	For another calculation based			
	on the same input value press			
	zero and go to step 4. For a new			
	input with same specific heat			
	ratio go to step 3. For a new			
	specific heat ratio go to step 2.			

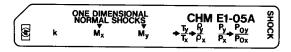

^{*} If k was previously input on another gas dynamics card, it need not be input again.

Example 1:

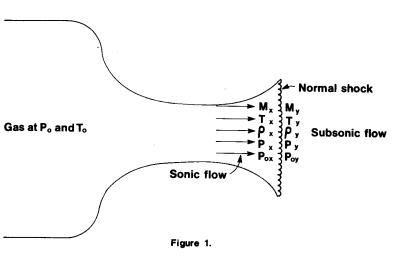
A pilot is flying at mach 0.93 and reads an air temperature of 15 degrees Celsius (288 K) on a thermometer that reads stagnation temperature T_0 . What is the true temperature assuming that k = 1.38?

See Displayed **Kevstrokes** Using card CHM E1-04A1 1.38 A .93 B C → 0.86 273 - - -25.65 °C

If the same pilot reads a stagnation pressure Po of 28 inches of mercury, what is the true air pressure?



Example 2:


A converging, diverging passage has supersonic flow in the diverging section. At an area ratio A/A* of 1.60, what are the isentropic flow ratios for temperature, pressure and density? What is the mach number? k = 1.74.

Keystrokes	See Displayed
Using card CHM E1-04A2	
1.74 A 1.60 C	→ 0.00
Using card CHM E1-04A1	
0 6	→ 0.38 (T/T _o)
0 🗖	→ 0.10 (P/P _o)
0 E	
0 B	——— 2.11 (M)

ONE DIMENSIONAL NORMAL SHOCKS FOR IDEAL GASES

This card replaces one dimensional normal shock tables for a specified specific heat ratio k.

The following values are correlated in the program.

M_x is the mach number immediately before the shock.

My is the mach number immediately after the shock.

 T_y/T_x is the temperature ratio across the shock.

 ρ_y/ρ_x is the density ratio across the shock.

 P_y/P_x is the pressure ratio across the shock.

 P_{oy}/P_{ox} is the stagnation pressure ratio across the shock.

 $M_{\rm x}$ and $M_{\rm y}$ may be either inputs or outputs. All other values are output only.

Equations:

$$M_{y}^{2} = \frac{M_{x}^{2} + \frac{2}{k-1}}{\frac{2k}{k-1} M_{x}^{2} - 1}$$

$$\frac{T_{y}}{T_{x}} = \frac{1 + \frac{k-1}{2} M_{x}^{2}}{1 + \frac{k-1}{2} M_{y}^{2}}$$

$$\frac{P_{y}}{P_{x}} = \sqrt{\frac{M_{x}^{2} T_{y}}{M_{y}^{2} T_{x}}}$$

$$\frac{\rho_{y}}{\rho_{x}} = \frac{P_{y} T_{x}}{P_{x} T_{y}}$$

$$\frac{P_{\text{oy}}}{P_{\text{ox}}} = \frac{P_{\text{y}}}{P_{\text{x}}} \left(\frac{T_{\text{y}}}{T_{\text{x}}} \right)^{\frac{k}{1-k}}$$

It should be remembered that T_{oy}/T_{ox} , the stagnation temperature ratio, is equal to 1.00 across a normal shock.

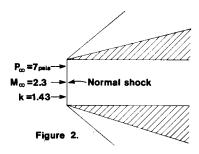
Remarks:

Zero is an invalid input.

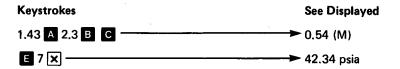
22 Chm E1-05A

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program			
2	Input specific heat ratio of gas*	k	A .] k
3	Input one of the following:			3
	Mach number before shock	M _x	В	0.00
	Mach number after shock	My	С	0.00
4	Calculate any or all of the]
	following:			
	Mach number before shock	0.00	В] M _×
	Mach number after shock	0.00] M _v
	Temperature ratio across]
	shock		D] T _y /T _x
	then density ratio across shock		D	$\rho_{\rm V}/\rho_{\rm X}$
	Pressure ratio across shock		E	P _y /P _x
	then stagnation pressure ratio	1400]
	across shock		E	P _{oy} /P _{ox}
5	For new mach number go to]
	step 3. For new specific heat]
	ratio go to step 2.			1

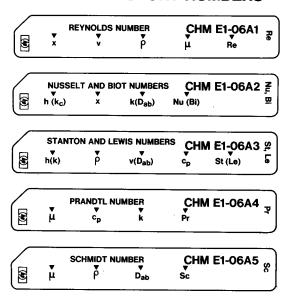
^{*} If k was previously input on another gas dynamics card, it need not be input again.


Example 1:

The converging, diverging nozzle of Figure 1 (page 20) has a normal shock at its exit. The mach number immediately after the shock is 0.73. The gas has a specific heat ratio of 1.47. What are the property ratios across the shock?


Keystrokes	See Displayed
1.47 A .73 C B ————	→ 1.43 (M _x)
D	→ 1.32 (T _y /T _x)
D	→ 1.71 (ρ _y /ρ _x)
E	2.25 (P _y /P _x)
	→ 0.95 (P _{OV} /P _{OV})

Example 2:


A normal shock occurs at the entrance of the supersonic diffuser in Figure 2.

What pressure and mach number exist behind the shock?

FLUID TRANSPORT NUMBERS

It is common practice in the fields of heat, mass, and momentum transfer to lump the many variables involved into dimensionless groups. These dimensionless groups, or fluid transport numbers, greatly simplify correlating experimental data and handling calculations once correlations have been obtained. Programming using dimensionless groups is greatly simplified since no unit conversion considerations are necessary. Also, programs using dimensionless inputs and outputs are of general applicability no matter what system of units is in favor. The disadvantage of dimensionless groups is that you, the user, must bear the responsibility of dimensional consistency. It is imperative that you do not try to add apples and oranges to get pears. More specifically, calculating the Nusselt number Nu by inputting h in Btu/°F-hr-ft², x in centimeters and k in Joules/°C-sec-m will not yield the correct result.

Before you start to solve a problem, pick a unit system. For instance, make the units of length feet, the units of temperature degrees Fahrenheit, the units of time hours and the units of energy British thermal units. Once you have a unit system in mind, convert all of your variables to that system before storing them for program use by the HP-65. To calculate Nusselt number using the system just outlined, the inputs would have to be in the following units:

The dimensionless groups used throughout this pac are Reynolds number Re, Nusselt number Nu, Nusselt number for mass transfer Nu_{ab}, Lewis number Le, Schmidt number Sc, Stanton number St and Prandtl number Pr. All of these numbers are correlated using interchangeable solutions. This allows computation and automatic storage of the dimensionless groups for use by correlations in the pac. Where possible it also allows calculation of the desired property with no reentry of data after a correlation has been run.

Table of Equations

Number	Symbol	Formula	Use
Reynolds	Re	$\rho \times \nu/\mu \text{ or } \frac{\times v}{\nu}$	Momentum, mass and heat transfer where velocity and viscosity must be considered.
Nuesselt-heat	Nu	h x/k	Convective heat transfer.
Biot	Bi	h x/k	Combinations of convective and conductive transport systems.
Nusselt-mass	Nu _{ab}	k _c x/D _{ab}	Convective mass transfer.
Stanton	St	h/ρνc _p	Convective heat transfer.
Lewis	Le	$k_c/\rho \ c_p \ D_{ab}$	Convective mass transfer.
Schmidt	S _c	$\mu/ ho~{ m D_{ab}}$	Convective mass transfer.
Prandtl	Pr	μc _p /k	Convective heat transfer.

26 Chm E1-06A

In the Table of Equations on page 25

 ρ is fluid density;

 μ is fluid viscosity;

v is the average fluid velocity;

x is the critical dimension (diameter for pipes and spheres and distance over which flow has occurred for flat plates);

h is the convective heat transfer coefficient;

k is the conductive heat transfer coefficient of the fluid or in the case of the Biot number, the object;

Dab is the mass diffusivity;

k_c is the mass transfer coefficient;

 ν is kinematic viscosity μ/ρ ;

cp is heat capacity.

REYNOLDS NUMBER

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter Reynolds Number,			
	CHM E1-06A1			
2	Input four of the following:			
	Significant dimension	×	_ A _	0.00
	Fluid velocity	v	В	0.00
	Fluid density	ρ	_ C	0.00
	Fluid viscosity	μ	D	0.00
	Reynolds number	Re	E	0.00
3	Calculate the remaining value			
	Significant dimension	0.00	A .	x
	Fluid velocity	0.00	В	v
	Fluid density	0.00	С	ρ
	Fluid viscosity	0.00	D	μ
	Reynolds number	0.00	E	Re
4	For new case go to step 2 and			
	change appropriate inputs.			

NUSSELT AND BIOT NUMBERS

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter Nusselt and Biot Numbers,			
	CHM E1-06A2			
2	Input three of the following:			
	Convective heat (or mass)			
	transfer coefficient	h (k _c)	_ A	0.00
	Significant dimension	x	В	0.00
	Conductive heat transfer			
	coefficient (or mass diffu-			
	sivity)	k (D _{ab})		0.00
	Nusselt (or Biot number)	Nu (Bi)		0.00
3	Calculate the remaining value			
	Convective heat (or mass)			
	transfer coefficient	0.00		h (k _c)
	Significant dimension	0.00	В	x
	Conductive heat transfer			
	coefficient (or mass diffusi-			
	vity)	0.00		h(D _{ab})
	Nusselt (or Biot number)	0.00	D	Nu (Bi)
4	For new case go to step 2 and			
	change appropriate inputs			

28 Chm E1-06A

STANTON AND LEWIS NUMBERS

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter Stanton And Lewis			
	Numbers, CHM E1-06A3			
2	Input four of the following:			
	Convective (or conductive)			
	transfer coefficient	h (k)	_ A	0.00
	Fluid density	ρ	В	0.00
	Fluid velocity (or mass			
	diffusivity)	v (D _{ab})	С	0.00
	Fluid heat capacity	с _р		0.00
	Stanton (or Lewis) number	St (Le)	E	0.00
3	Calculate the remaining value			
	Convective (or conductive)	,		
	transfer coefficient	0.00		h (k)
	Fluid density	0.00	В	ρ
	Fluid velocity (or mass			
	diffusivity)	0.00	C	v (D _{ab})
	Fluid heat capacity	0.00	D	Сp
	Stanton (or Lewis) number	0.00	_ E	St (Le)
4	For new case go to step 2 and			
	change appropriate inputs.			

PRANDTL NUMBER

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter Prandtl Number,			
	CHM E1-06A4			
2	Input three of the following:			
	Fluid viscosity	μ	_ A	0.00
	Fluid heat capacity	с _р	В	0.00
	Fluid heat conductivity	k	_ C	0.00
	Prandtl number	Pr		0.00
3	Calculate the remaining value			
	Fluid viscosity	0.00	_A	μ
	Fluid heat capacity	0.00	В	с _р
	Fluid heat conductivity	0.00	С	k
	Prandtl number	0.00		Pr
4	For a new case go to step 2 and			
	change appropriate inputs.			

SCHMIDT NUMBER

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter Schmidt Number,			
	CHM E1-06A5			
2	Input three of the following:			
	Fluid viscosity	μ	_ A	0.00
	Fluid density	ρ	В	0.00
	Mass diffusivity	D _{ab}	С	0.00
	Schmidt number	Sc		0.00
3	Calculate the remaining value			
	Fluid viscosity	0.00	_ A	μ
	Fluid density	0.00	В	ρ
	Mass diffusivity	0.00	С	D _{ab}
	Schmidt number	0.00	D	Sc
4	For a new case go to step 2 and			
	change appropriate inputs.			

Example 1:

At 60°F the properties of water are:

$$\rho = 62.3 \text{ lb/ft}^3$$
 $c_p = 1.00 \text{ Btu/lb }^\circ\text{F}$
 $\mu = 0.760 \times 10^{-3} \text{ lb/ft sec}$
 $\nu = 1.22 \times 10^{-5} \text{ ft}^2/\text{sec}$
 $k = 0.340 \text{ Btu/hr-ft-}^\circ\text{F}$

Assume that fluid velocity is 37 feet per second and that the critical dimension is 6 inches. Calculate the Reynolds number using viscosity μ and desnity ρ . Then calculate Reynolds number using kinematic viscosity ν . (Input ν inplace of μ but replace ρ with the value 1.00.) Calculate the Prandtl number.

Keystrokes

See Displayed

Using card CHM E1-06A1

6 ♠ 12 ♣ A 37 B 62.3 C .76 EEX CHS 3 D

E DSP 3 \rightarrow 1.517 x 10⁶ 6 12 \rightarrow A 37 B 1 C 1.22 EEX CHS 5 D E \rightarrow 1.516 x 10⁶

Using card CHM E1-06A4

.760 EEX CHS 3 A 1.00 B .340 ↑ 3600 ← C D →8.047

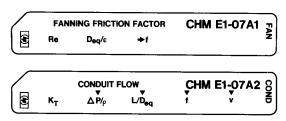
Note that the value of k had to be divided by 3600 seconds per hour to hold dimensional consistency.

Example 2:

A Nusselt number of 6.47 was calculated using the Prandtl number and Reynolds number just calculated. What is h?

Keystrokes

See Displayed


Using card CHM E1-06A2

By looking at the register allocation table on page 92, you can tell that R8, where x was stored during the Reynolds number calculation and R6, where k was stored during the Prandtl number calculation are unchanged. Therefore, it is only necessary to input Nu to get the answer.

6.47 D A → 1.222 x 10⁻³

Btu/sec-ft²-°F

FANNING FRICTION FACTOR AND CONDUIT FLOW

These cards may be used to solve a variety of problems involving viscous conduit flow. To utilize the cards to full potential, the Reynolds number should be calculated using Reynolds Number, CHM E1–06A1. The Reynolds Number card automatically stores Reynolds number Re, equivalent diameter $D_{\rm eq}$, and average fluid velocity v for later use.

In cases where the fluid velocity is unknown, make an educated guess in the Reynolds number calculation and proceed through the calculation of velocity. If your guess was different from the calculated value, the Reynolds number will be updated automatically and you may go directly to Fanning Friction Factor CHM E1-07A1 for a new friction factor value. The process of alternately computing velocities and friction factors is continued until successive approximations are within desired tolerances. The second sample problem should make this procedure clear.

Equations in Fanning Friction Factor, CHM E1-07A1: For laminar flow (Re ≤ 2300)

$$f = 16/Re$$

For turbulent flow (Re > 2300)

$$\frac{1}{\sqrt{f}} = 1.737 \ln \frac{D_{eq}}{\epsilon} + 2.28 - 1.737 \ln \left(4.67 \frac{D_{eq}}{\epsilon \operatorname{Re} \sqrt{f}} + 1 \right)$$

is solved by Newton's method.

$$\frac{1}{\sqrt{f_0}} = 1.737 \ln \frac{D_{eq}}{\epsilon} + 2.28$$

is used as an initial guess in the iteration.

Equations in Conduit Flow, CHM E1-07A2:

$$v^2 = \frac{\Delta P/\rho}{2\left(f\frac{L}{D} + \frac{K_T}{4}\right)}$$

$$K_T = K_1 + K_2 + K_3 \dots K_n$$

where

Re is Reynolds number as defined in *Fluid Transport* Numbers, CHM E1-06A1.

Dea is the equivalent conduit diameter.

$$D_{eq} = 4 \frac{\text{cross sectional area}}{\text{wetted perimeter}}$$

 ϵ is the dimension of irregularities in the conduit surface (See table 2);

f is the Fanning friction factor for closed conduit flow;

 ΔP is the pressure drop along the conduit;

 ρ is the density of the fluid (The units of $\Delta P/\rho$ must be length squared over time squared);

L is the conduit length;

v is the average fluid velocity;

K_T is the total of the applicable fitting coefficients in Table 1.

Reference:

Welty, Wicks, Wilson; Fundamentals of Momentum, Heat and Mass Transfer, John Wiley and Sons, Inc., 1969.

Table I Fitting Coefficients

Fitting	K
Glove valve, wide open	7.5–10
Angle valve, wide open	3.8
Gate valve, wide open	0.15-0.19
Gate valve, 3/4 open	0.85
Gate valve, 1/2 open	4.4
Gate valve, 1/4 open	20
90° elbow	0.4-0.9
Standard 45° elbow	0.35-0.42
Tee, through side outlet	1.5
Tee, straight through	.4
180° bend	1.6
Entrance to circular pipe	0.25-0.50
Sudden expansion	$(1 - A_{up}/A_{dn})^{2*}$
Acceleration from $v = 0$ to $v = v_{entrance}$	1.0

 $^{{}^{*}}A_{up}$ is the upstream area and A_{dn} is the downstream area.

Table 2

Material	ϵ (inches)	ϵ (centimeters)
Drawn or Smooth Tubing	6.0 x 10 ⁻⁵	1.5 x 10 ⁻⁴
Commerical Steel or Wrought Iron	1.8 x 10 ⁻³	4.6 x 10 ⁻³
Asphalted Cast Iron	4.8×10^{-3}	1.2×10^{-2}
Galvanized Iron	6.0×10^{-3}	1.5×10^{-2}
Cast Iron	1.0 x 10 ⁻²	2.5×10^{-2}
Wood Stave	7.2×10^{-3} to 3.6×10^{-2}	1.8×10^{-2} to 9.1×10^{-2}
Concrete	1.2×10^{-2} to 1.2×10^{-1}	3.0×10^{-2} to 3.0×10^{-1}
Riveted Steel	3.6×10^{-2} to 3.6×10^{-1}	9.1×10^{-2} to 9.1×10^{-1}

Remarks:

The correlation gives meaningless results in the region 2300 < Re < 4000.

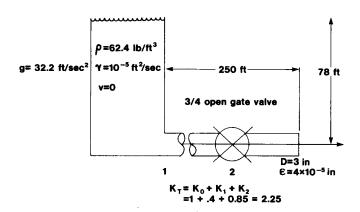
Zero is an invalid input with the exception of K_T.

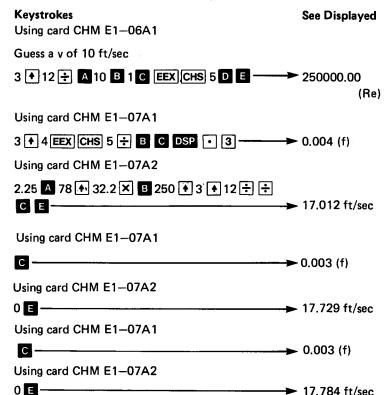
Dimensional consistency must be maintained.

	Cnm E1-U/A				
STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS	
1	If you know the Fanning				
	friction factor go to step 6				
2	Enter CHM E1-06A1 and cal-				
	culate the Reynolds number.				
	(If you don't know the fluid				
	velocity assume a reasonable				
	value.)				
3	Enter CHM E1-07A1				
4	Input the roughness ratio	D _{eq} /€	В	D _{eq} /€	
	(Input Re if it was not cal-				
	culated using CHM E1-06A1 by				
	pressing A)				
5	Calculate the Fanning				
	friction factor		С	f	
6	Enter CHM E1-07A2				
7	Input K _T and three of the				
	following:	Κ _T	A	0.00	
	Pressure-density ratio	$\Delta P/\rho$, L^2/t^2	В	0.00	
	Length-diameter ratio	L/D _{eq}	C	0.00	
	Fanning friction factor				
	(only if step 5 was skipped)	f		0.00	
	Average fluid velocity				
	(only if step 2 was skipped)	٧		0.00	
8	Calculate unknown value	,			
	Pressure density ratio	0.00	В	$\Delta P/\rho$, L^2/t^2	
	Length-diameter ratio	0.00	С	L/D _{eq}	
	Fanning friction factor	0.00	D	f	
	Average fluid velocity	0.00	E	v	
9	If you have reached a final an-				
	swer go to step 1 for a new case.				
	If you are using an iterative solu-				
	tion for v, enter CHM E1-07A1				
	go to step 5. Re was automati-				
	cally updated when v was calcu-				
	lated. All inputs of step 7 are	4			
	still stored.				

36 Chm E1-07A

Example 1:

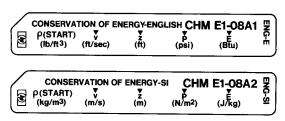

A heat exchanger has twenty, 10 foot tube passes with 180 degree bends connecting each pair of tubes. The fluid is water ($\nu = 10^{-5}$


ft ² /sec, $\rho = 62.4$ lbm/ft ³). The surface roughness inches and the inside pipe diameter is 1.0 inch. If the 10 ft/sec, what is the pressure loss in psi?	
Keystrokes	See Displayed
Using card CHM E1-06A1	
1 12 + A 10 B 1 C EEX CHS 5 D E	- 83333.33 (Re)
Using card CHM E1-07A1	
1♠ EEX CHS 2 ♣ B C DSP • 3	- 0.010 (f)
Using card CHM E1-07A2	
Compute and store length over diameter	
20 10 × 1 1 12 ÷ ÷ C	0.000
1.6 • 10 × A	- 0.000
Since f and v are stored from previous calculations, ca	alculate $\Delta P/ ho$
В ————	- 163.809 (ft ² /sec ²)

144 **→** 0.587 psi

Example 2:

For the system shown, what is the volume flow rate?


Since the last two velocities calculated are reasonably close to each

0.873 ft³/sec

other, we may take the last value obtained as the answer.

1.5 + 12 ÷ + × 9 m××-

CONSERVATION OF ENERGY

These cards convert kinetic energy, potential energy and pressure-volume work to energy. CHM E1-08A1 is for English units while CHM E1-08A2 is for SI or metric units. Energy is stored as a running total. When a zero is displayed, pressing the B, C, D or keys will cause the running total to be converted to an equivalent velocity, height, pressure or energy per unit mass. The cards may be used in a large number of fluid flow problems, where velocity, elevation and pressure change along the path of flow.

Equations:

$$\frac{{v_1}^2}{2} + gz_1 + \frac{P_1}{\rho} + \frac{E_1}{\dot{m}} = \frac{{v_2}^2}{2} + gz_2 + \frac{P_2}{\rho} + \frac{E_2}{\dot{m}}$$

where

v is the fluid velocity;

z is the height above a reference datum;

P is the pressure;

E is an energy term which could represent inputs of work or friction loses (negative value);

g is the acceleration of gravity;

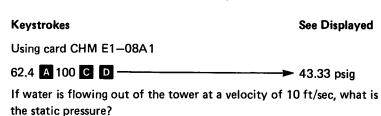
 ρ is the fluid density;

m is the mass flow rate (assumed to be unity);

subscripts 1 and 2 refer to upstream and downstream values respectively.

Remarks:

Downstream values should be input as negatives. However, when an output is called for, the calculator displays the relative value with no regard to upstream or downstream location.


Flashing zeros will result when the total energy sum stored in register 8 is negative and an attempt is made to calculate velocity.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	For English units (pounds, feet,			
	seconds, Btus), enter			
	CHM E1-08A1. For SI units			
	(kilograms, meters, seconds,			
	watts), enter CHM E1-08A2.			
2	Input fluid density	ρ	_A	g
3	Input the following (negative			
	values are downstream values):			
	Fluid velocity	٧	В	0.00
	Height from reference datum	z	C .	0.00
	Pressure	Р	D	0.00
	Energy input	E	E	0.00
4	Repeat step 3 for all input			
	values			
5	Calculate the unknown:			
	Fluid velocity	0.00	В	v
	Height from reference datum	0.00	_ C	Z
	Pressure	0.00	D	Р
	Energy	0.00	E	Е
6	For new case go to step 2, or			
	store 0.00 in register 8 and go			
	to step 3.			

40 Chm E1-08A

Example 1:

A water tower is 100 feet high. What is the zero flow rate pressure at the base? The density of water is 62.4 lb/ft³.

What is the maximum frictionless flow velocity which could be achieved with the 100 foot tower?

If 10000 pounds of water are pumped to the top of the tower every hour, at a velocity of 20 ft/sec, with a frictional pressure drop of 2 psi, how much power is needed at the pump?

Example 2:

An incompressible fluid ($\rho = 735 \text{ kg/m}^3$) flows through the converging passage of Figure 1. At point 1 the velocity is 3 m/s and at point 2 the velocity is 15 m/s. The elevation difference between points 1 and 2 is 3.7 meters. Assuming frictionless flow, what is the static pressure difference between points 1 and 2?

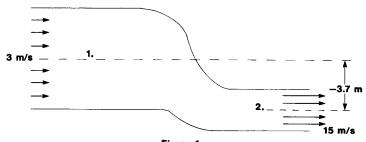


Figure 1.

Keystrokes

See Displayed

Using card CHM E1-08A2

Example 3:

A reservoir's level is 25 meters above the discharge pond. Assuming 85% power generation efficiency, how much power can be generated with a flow rate of 20 m³/s?

$$\rho = 1000 \text{ kg/m}^3$$

Keystrokes	See Displayed
Using card CHM E1-08A2	
1000 A 25 C E	———— 245.17 (joule/kg)
.85 🗙	———— 208.39 (joule/kg)
20 🛊 1000 🕱 —	➤ 20000 (kg/s)
×	→ 4167826.25 (watts)

VON KARMAN ANALOGY FOR HEAT AND MASS TRANSFER

The von Kármán analogy forms a link between momentum, heat, and mass transfer for conduit flow. If any of the transport coefficients, f, h, or k_c, are known, the others can be found using this program and the appropriate fluid transport numbers. For heat transfer, the Prandtl number can be calculated using CHM E1-06A4. For mass transfer, use the Schmidt number calculated with CHM E1-06A5. The values will be automatically stored for access by this program. If Fanning Friction Factor, CHM E1-07A1, or Conduit flow, CHM E1-07A2, are used to calculate the Fanning friction, factor, the value will be stored automatically.

Equations:

Heat transfer

St =
$$\frac{f/2}{1 + 5\sqrt{f/2} (Pr - 1 + \ln [1 + 5/6 (Pr - 1)])}$$

Mass transfer

$$\frac{k_c}{v} = \frac{f/2}{1 + 5\sqrt{f/2} (Sc - 1 + \ln [1 + 5/6 (Sc - 1)])}$$

In both cases, f is solved for using Newton's method with the Colburn analogy as the initial guess f_0 .

$$\frac{f_0}{2}$$
 = St Pr^{2/3} = $\frac{k_c}{v}$ Sc^{2/3}

where

St is the Stanton number.

f is the Fanning friction factor.

Pr is the Prandtl number.

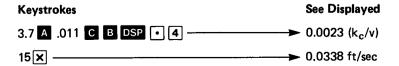
Sc is the Schmidt number.

k_c is the convective mass transfer coefficient.

v is the average fluid velocity.

Reference:

Welty, Wicks, Wilson; Fundamentals of Momentum Heat and Mass Transfer, John Wiley and Sons, Inc., 1969.


Remarks:

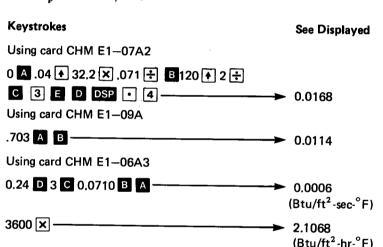
No form drag may be present. Fanning friction factors should be less than 0.02 and greater than 0.0001.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program			
2	If not previously stored, input:			
	Prandtl number (heat trans-			
	fer) or	Pr	A	0.00
	Schmidt number (mass trans-			
	fer)	Sc	A .	0.00
	Input one of the following if			
	not previously stored:			
	Stanton number (heat trans-			
	fer) or	St	В	0.00
	Mass transfer, velocity ratio			
	(mass transfer) or	k _c /v	В	0.00
	Fanning friction factor	f		0.00
3	Calculate the unknown:			
	Stanton number	0.00	В	St
	Mass transfer, velocity ratio	0.00	В	k _c /v
	Fanning friction factor	0.00	_ C	f
4	For a new case go to step 2.			

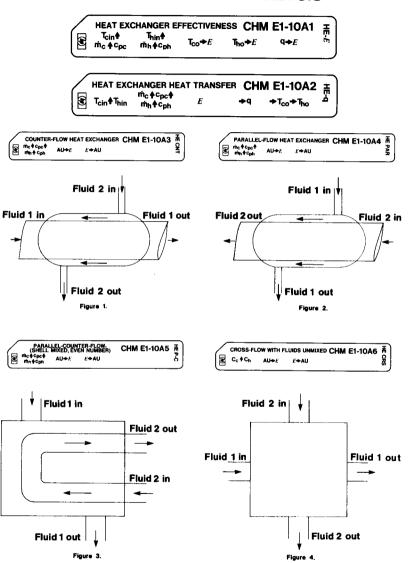
Example 1:

The Schmidt number for a mild acid flowing through a metal pipe has been found to be 3.7. The Fanning friction factor is 0.011. If the fluid velocity is 15 feet per second, what is the convective mass transfer coefficient?

44 Chm E1-09A


Example 2:

Air at 100°F flows through a 2 foot duct, 120 feet long at a velocity of 3 feet per second. The head loss is 0.04 psf. Using Conduit Flow, CHM E1-07A2, find the Fanning friction factor. Then find the Stanton number for heat transfer considerations and convert it to a convective heat transfer coefficient using Stanton and Lewis numbers, CHM E1-06A3.


Air Properties:

Pr = 0.703

$$\rho$$
 = 0.0710 lb/ft³
 C_p = 0.24 Btu/lb °F

HEAT EXCHANGER ANALYSIS

This set of cards allows analysis of heat exchangers. Cards 1 and 2 are of general applicability. They use heat balance techniques to evaluate effectiveness, heat transfer and outlet temperatures. The remaining cards are configuration cards for particular types of heat exchangers.

Equations:

Heat exchanger effectiveness E is the ratio of actual heat transfer to maximum possible heat transfer.

$$E = \frac{q}{C_{\text{min}}(T_{\text{hin}} - T_{\text{cin}})} = \frac{C_{\text{h}}(T_{\text{hin}} - T_{\text{ho}})}{C_{\text{min}}(T_{\text{hin}} - T_{\text{cin}})} = \frac{C_{\text{c}}(T_{\text{co}} - T_{\text{cin}})}{C_{\text{min}}(T_{\text{hin}} - T_{\text{cin}})}$$

where

q is the actual heat transfer;

 T_{hin} and T_{cin} are the inlet temperatures of the hot and cold fluids respectively;

Tho and Tco are the outlet temperatures of the hot and cold fluids respectively;

 C_h and C_c are the heat capacities of the hot and cold fluids respectively, e.g. $C_h = \dot{m}_h \times c_{ph}$ where \dot{m}_h is the flow rate and c_{ph} is the specific heat capacity of the hot fluid;

 C_{min} and C_{max} (which are used later) are the smaller and larger values of C_h and C_c .

Effectiveness can be related to the product of the surface area of an exchanger and the overall transfer coefficient for specific geometries. This product is designated AU. The geometries considered in this pac have the following correlations:

Counter-Flow (See Figure 1)

$$E = \frac{1 - e^{-\frac{AU}{C_{min}}} \left(1 - \frac{C_{min}}{C_{max}}\right)}{1 - \left(C_{min}/C_{max}\right) e^{-\frac{AU}{C_{min}}} \left(1 - \frac{C_{min}}{C_{max}}\right)}$$

For $C_{min}/C_{max} = 1$

$$E = \frac{AU/C_{min}}{1 + AU/C_{min}}$$

Parallel-Flow (See Figure 2)

$$E = \frac{1 - e^{-\frac{AU}{C_{\min}}} \left(1 + C_{\min}/C_{\max}\right)}{1 + C_{\min}/C_{\max}}$$

For $C_{min}/C_{max} = 0$, C_{min} is set to 1.

Parallel-Counter-Flow; Shell Mixed with an Even Number of Tube Passes (See Figure 3)

$$E = \frac{2}{\left(1 + \frac{C_{\min}}{C_{\max}}\right) + \sqrt{1 + \left(\frac{C_{\min}}{C_{\max}}\right)^2 \left[\frac{1 + e^{-x}}{1 - e^{-x}}\right]}}$$

where

$$x = \frac{AU}{C_{min}} \sqrt{1 + \left(\frac{C_{min}}{C_{max}}\right)^2}$$

Cross-Flow; Both Fluids Unmixed (See Figure 4)

No exact expression exists for this case, but the following is a very good approximation. Note that it cannot be stated explicitly in terms of AU and thus requires an iterative solution.

$$E = 1 - e \left[e^{\left(-\frac{AU}{C_{min}} \frac{C_{min}}{C_{max}} \right)} - 1 \right) \left(\frac{C_{max}}{C_{min}} \frac{1}{y} \right) \right]$$

where

$$y = \left[\frac{C_{min}}{AU} \right]^{0.22}$$

References:

W. M. Kays and A. L. London, Compact Heat Exchangers, National Press, 1955.

Eckert and Drake, Heat and Mass Transfer, McGraw-Hill.

Remarks:

With the exception of the parallel configuration card, C_{min} must not be zero.

Solution for AU using CHM E1-10A6 takes considerably longer than other calculations because it is an iterative solution.

Once values for flow rate, temperature, and heat capacity are input, they will remain stored for later access.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Organize your problem-make			
	a list of knowns and unknowns.			
2	If your list contains \dot{m}_{c} , c_{pc} ,			
	m _h , and c _{ph} , go to step 3. If			
	your list does not contain all			
	these values, you may be able			
	to calculate the missing ones			
	from a heat balance or you will			
	have to guess the values and use			
	a repetitive approach to conver-			
	ge to the desired result.			
3	If, in addition to the values			
	mentioned in step 2, you know			
	AU, go to step 4 to calculate E.			
	If you know E go to step 4 to			
	calculate AU. If you know			
	T_{cin} and T_{hin} and either T_{co} ,			
	T _{ho} , or q, go to step 8 to cal-			
	culate E. If you know Tcin,			
	T _{hin} , and <i>E</i> , go to step 13 to			
	calculate q, T_{co} , and T_{ho} .			
4	Select and enter proper ex-			
	changer configuration card.			
5	If you selected Cross-Flow with			
	Fluids Unmixed, CHM E1-10A6			
	input C _c (m˙ _c • c _{pc})	C _c	<u> </u>	C _c
	then C _h (m _h · c _{ph})	C _h	A .	C _{max} /C _{min}
	For other exchanger configu-			
	ration cards			

50 Chm E1-10A

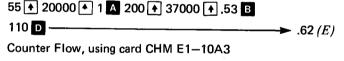
STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS	
	input m _c	ṁc	<u> </u>	т́с	
	then c _{pc}	Срс		c _{pc}	
	<i>then</i> m _h	т'n	1	m _h	
	then c _{ph}	Cph	_ A	C _c	
6	To calculate <i>E</i> from AU	AU	В	E	
	To calculate AU from E	E	C	AU	
7	If your final answer has not				
	been found, add E or AU to			***************************************	
	your "known list" and go to				
	step 3.				
8	Enter Heat Exchanger				
	Effectiveness, CHM E1-10A1				
9	Input T _{cin}	T _{cin}	_ †	T _{cin}	
	then m _c	т́с	<u>†</u>	т́с	
	then cpc	Cpc	_ A _	T _{cin}	
	and Thin	Thin		Thin	
	then mh	-mh		ṁh	
	then c _{ph}	Cph	В	Thin	
10	Input T _{co}	T _{co}	_ c	E	
	or T _{ho}	Tho	_ D _	E	
	or q to calculate E	q	E	E	
11	Optional:				
	Display q		g R↓	q	
	Display T _{co}		gR↓	T _{co}	
	Display T _{ho}	, , , , , , , , , , , , , , , , , , , ,	g R↓	Tho	
12	If your final answer has not				
	been found, add E to your				
	"known list" and go to step 3.				
13	Enter <i>Heat Exchanger Heat</i>				
	Transfer, CHM E1-10A2				

Chm E1-10A 51

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
14	Input T _{cin}	T _{cin}	<u>†</u>] T _{cin}
	then T _{hin}	Thin	A .	Tcin
	and m _c	т̀с	<u>†</u>	m _c
	then c _{pc}	c _{pc}	<u> </u>	c _{pc}
	then ṁ _h	ṁh	_ †]	m _h
	then c _{ph}	Cph	В	C _c
	and E	E	_ c _] E
15	Calculate:			
	q		D] q
	or T _{co}		E	T _{co}
	then Tho		E	T _{ho}
16	If you have not reached a final			
	answer, try a heat balance to]
	add to your "known list" and			
	go to step 3.			

Example 1:

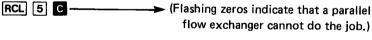
Water $(c_p = 1 \text{ Btu/lb-}^\circ\text{F})$ is used to cool an oil $(c_p = .53 \text{ Btu/lb-}^\circ\text{F})$ from 200°F to 110°F. The water flow rate is 20,000 pounds per hour while the oil flows at 37,000 pounds per hour. If the water inlet temperature is 55°F and U is 25 Btu/ft²-hr-°F for the heat exchangers being considered, what are the area requirements for counter-flow, parallel-flow, parallel-counter-flow and cross-flow?


Knowns:

$$c_{pc} = 1.0 \text{ Btu/lb-}^{\circ}\text{F}$$
 $\dot{m}_{c} = 20,000 \text{ lb/hr}$
 $c_{ph} = 0.53 \text{ Btu/lb-}^{\circ}\text{F}$
 $\dot{m}_{h} = 37,000 \text{ lb/hr}$
 $T_{cin} = 55^{\circ}\text{F}$
 $T_{hin} = 200^{\circ}\text{F}$
 $T_{ho} = 110^{\circ}\text{F}$
 $U = 25 \text{ Btu/ft}^{2}\text{-hr-}^{\circ}\text{F}$

Keystrokes

See Displayed


Using card CHM E1-10A1

C → 31587.76 (AU) 25 ÷ → 1263.51 ft²

Parallel Flow, using card CHM E1-10A4

Note from register allocation that E is stored in register 5.

CLX (Stop flashing zeros)

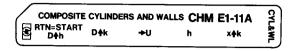
Parallel-Counter Flow, using card CHM E1-10A5

RCL 5 C → (Flashing zeros.)

CLX → (Stop flashing zeros.)

Cross-Flow Exchanger, using card CHM E1-10A6

RCL 5 C 25 ÷ → 1575.35 ft²


(Do not alter storage registers if you intend to continue with example 2.)

Example 2:

If a counter flow exchanger with an area of 1000 ft² and an overall heat transfer coefficient of 27 Btu/ft²-hr-°F is available, how close will the outlet temperature of the oil be to 110°F? What will the total heat transfer and outlet water temperature be? All unspecified values remain the same as example 1.

Keystrokes	See Displayed
Using card CHM E1-10A3	
1000 ♠ 27 🗷 B	0.58 (E)
Using card CHM E1-10A2	
	1656452.69 Btu/hr (q)
E	137.82 °F(H₂O)
E ──────	115.53 °F(Oil)
110 🖃 🔻	5.53 °F

HEAT TRANSFER THROUGH COMPOSITE CYLINDERS AND WALLS

This program can be used to calculate the overall heat transfer coefficient for composite tubes and walls from individual section conductances and surface coefficients.

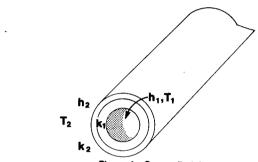


Figure 1.—Composite tube

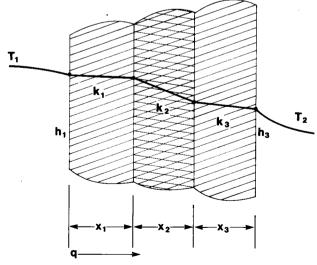


Figure 2. - Composite wall

Equations:

The overall heat transfer coefficient U is defined by:

$$q/L = U \Delta T$$

or

$$q/A = U \Delta T$$

where ΔT is the total temperature difference $(T_2 - T_1)$, q/L is the heat transfer per unit length of pipe, and q/A is the heat transfer per unit area of wall.

For cylinders

$$U = \frac{2\pi}{\frac{2}{h_1 D_1} + \frac{\ln D_2/D_1}{k_1} + \frac{\ln D_3/D_2}{k_2} + \dots + \frac{2}{h_n D_n}}$$

For walls

$$U = \frac{1}{\frac{1}{h_1} + \frac{x_1}{k_1} + \frac{x_2}{k_2} + \dots + \frac{1}{h_n}}$$

where

h is the convective surface coefficient;

D_n is the outside diameter of the annulus;

k is the conductive coefficient;

x is the thickness of a wall section.

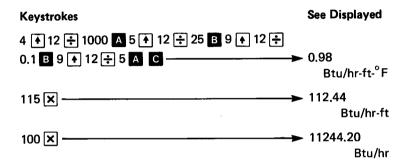
Remarks:

These equations are for steady state heat transfer through materials with constant properties in all directions.

Inputs must start with the inside convective coefficient and work out in the case of composite cylinders.

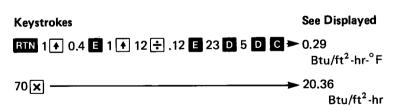
Zero is an invalid input for D, k, and h.

Dimensional consistency must be maintained.


56 Chm E1-11A

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program			
2	For a composite wall go to			
	step 9.			
3	Input the inner diameter	D _{in}		D _{in}
4	Input the inner convective			
	coefficient	, h _{in}	A	2/hD
5	Input next diameter value	D	1	D
	and corresponding coefficient	korh	В	
6	Go to step 5 for next surface			
	or go to step 3 for outside			
	surface*			
7	Calculate overall heat transfer			
	coefficient		C	U
8	To calculate another overall			
	coefficient, go to step 2			
9	Input the coefficients for each			
	section of the wall:			
	Convective coefficient	h	D	1/h
	or length of conductive path	×	<u> </u>	
	and conductive coefficient	k	E	x/k
10	Go to step 9 for next input*			
11	Calculate overall heat transfer			
	coefficient			U
12	To calculate another overall			
	coefficient, go to step 2			

^{*} Press RTN to restart a calculation.


Example 1:

A steel pipe with an inside diameter of 4 inches and a thickness of 0.5 inches has a conductivity of 25 Btu/ft-hr-°F. Two inches of asbestos (k = 0.1 Btu/hr-ft- $^{\circ}$ F) enclose the pipe bringing the total diameter to 9 inches. If the inside convective coefficient is 1000 Btu/hr-ft²-°F and the outside coefficient is 5 Btu/hr-ft²-°F, what is the overall heat transfer coefficient? What is the heat loss for 100 feet of pipe if ΔT is $115^{\circ}F$?

Example 2:

A wall is composed of 1 foot of brick (k = 0.4 Btu/hr-ft-°F), and 1 inch of wood (k = 0.12 Btu/hr-ft-°F). The convective coefficient on one side is 23 Btu/hr-ft2-°F. The convective coefficient of the other side is 5 Btu/hr-ft²-°F. What is the overall coefficient? What is the heat flux if the temperature difference is 70°F?

STRAIGHT FIN EFFICIENCY

STRA	IGHT FIN E	FFICIENCY	CHI	/ E1-12A	<u></u>
h∳k	t∲L	⇒η _f	Nave	ΔT ÷ q	2

This program evaluates fin efficiency. Given the number of fins per unit of surface length and the temperature difference, the total heat transfer can also be found.

Equations:

$$\eta_{f} = \frac{\tanh(x)}{x}$$

$$x = (L + t/2)^{\frac{3}{2}} \sqrt{2h/ktL}$$

$$q = h \left[(1 - N_{ave}t) + \eta_{f} N_{ave} (2L + t) \right] \Delta T$$

$$\Delta T = |T_{o} - T_{\infty}|$$

$$T_{o}$$

 η_f is fin efficiency;

L is fin length;

t is fin thickness;

h is the convective coefficient;

k is the conductive coefficient;

 N_{ave} is the average number of fins per unit length of surface area;

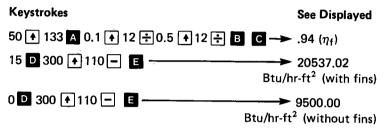
q is the total heat flux per unit area;

To is the temperature of the base of the fin;

 T_{∞} is the fluid temperature.

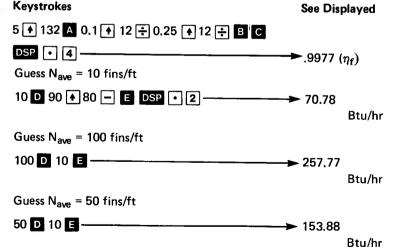
Remarks:

Dimensional consistency must be maintained.

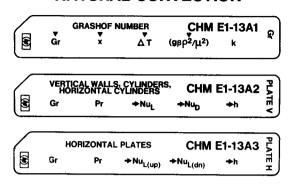

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS	
1	Enter program]	
2	Input]	
	Convective coefficient	h	†] h	
	then conductive coefficient	k	_ A _ [h	
	and				
	Fin thickness	t	<u> </u>] t	
	then fin length	L	В	t/2	
3	Calculate fin efficiency		_ C] η_{f}	
4	Input the average number of	-]	
	fins per unit surface length	N _{ave}	D	N _{ave} *	
5	Input temperature difference]	
	and compute heat transfer per]	
	unit surface area	ΔΤ	E] q	
6	For new ∆T go to step 5. For]	
	new Nave go to step 4. For new]	
	fin parameters go to step 2.]	

^{*} Flashing zeros indicate that more fins than possible have been added.

60 Chm E1-12A


Example 1:

The oil pan of a race car is to be cooled by adding aluminum fins $(k = 133 \text{ Btu/hr-}^\circ\text{F-ft})$. The convective coefficient is about 50 Btu/hr- $^\circ\text{F-ft}^2$. The fins are to be 0.1 inch thick, 0.5 inches long and average 15 per square foot. If T_o is taken to be 300°F and T_∞ is 100°F, what is the total heat transfer? What is the heat transfer without any fins?


Example 2:

The back plate of an electronic device must dissipate 45 watts (153.58 Btu/hr) of power per square foot. The convective coefficient is 5 Btu/hr- $^{\circ}$ F-ft² and the air temperature is 80 $^{\circ}$ F. If the back plate is aluminum (k = 132 Btu/hr- $^{\circ}$ F-ft) and fins will be 0.25 inches long and 0.1 inches wide, how many fins per foot are needed to keep the back plate temperature below 90 $^{\circ}$ F?

This is in close agreement with the desired 153.58 Btu/hr. Therefore, 50 fins per foot is the desired result.

NATURAL CONVECTION

These cards can be used to estimate convective heat transfer coefficients for isothermal vertical walls, vertical cylinders, horizontal cylinders and flat plates.

Equations:

For vertical walls and cylinders

$$\begin{aligned} \text{Nu}_{\text{L}} &= 0.555 (\text{Gr}_{\text{L}} \text{Pr})^{0.25} & \text{Gr}_{\text{L}} \text{Pr} < 3 \times 10^9 \\ \text{Nu}_{\text{L}} &= 0.021 (\text{Gr}_{\text{L}} \text{Pr})^{0.4} & \text{Gr}_{\text{L}} \text{Pr} > 3 \times 10^9 \\ \text{Nu}_{\text{D}} &= 0.53 (\text{Gr}_{\text{D}} \text{Pr})^{0.25} & 10^4 < \text{Gr}_{\text{D}} \text{Pr} < 10^9 \end{aligned}$$

For heated plates facing upward or cooled plates facing downward

$$Nu_{L(up)} = 0.54(Gr_LPr)^{0.25}$$
 $10^5 < Gr_LPr < 2 \times 10^7$
 $Nu_{L(up)} = 0.14(Gr_LPr)^{\frac{1}{3}}$ $2 \times 10^7 < Gr_LPr < 3 \times 10^{10}$

For heated plates facing downward or cooled plates facing upward.

$$Nu_{L(dn)} = 0.27(Gr_L Pr)^{\frac{1}{4}}$$
 3 x 10⁵ < $Gr_L Pr$ < 10¹⁰

where

Nu is the Nusselt number (Nu = hx/k);

Pr is the Prandtl number as defined in *Fluid Transport* Numbers, CHM E1-06A,

Gr is the Grashof number

$$Gr = \frac{g\beta\rho^2 \times {}^3\Delta T}{\mu^2}$$

g is the acceleration of gravity;

 β is the coefficient of thermal expansion;

 ρ is the fluid density;

x is the significant dimension;

 ΔT is the temperature difference between ambient conditions and the surface:

 μ is the fluid viscosity.

n is the convective heat transfer coefficient

All fluid properties should be evaluated at the film temperature Tf

$$T_f = (T_{\infty} + T_{\text{surface}})/2$$

For vertical walls and cylinders, the significant dimension x is equal to the height of the wall or cylinder.

For horizontal cylinders, x is equal to the diameter of the cylinder.

For flat rectangular plates

$$x = (side 1 + side 2)/2$$

For flat rectangular discs

$$x = 0.9$$
 diameter

Remarks:

Flashing zeros result when the equation limits are exceeded.

Natural convection is a complicated phenomenon. Assumptions such as constant surface temperature and constant fluid properties are implicit to these relations. Since these conditions are seldom achieved in nature, surface coefficients obtained by calculation should be viewed as estimates rather than exact values.

Reference:

McAdams, William H., Heat Transmission, McGraw-Hill Inc., 1954.

64 Chm E1-13A

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Evaluate or estimate the film			
	temperature of the surface and			
	obtain the fluid properties k,			
	Pr, ρ , β , and μ			
2	Enter CHM E1-13A1 and input			
	three of the following:			
	Grashof number	Gr	A	0.00
	Significant dimension	×	В	0.00
	Temperature difference	ΔΤ	С	0.00
	Quantity $(g\beta \rho^2/\mu^2)$	$g\beta \rho^2/\mu^2$	D	0.00
3	Calculate the remaining values			
	Grashof number	0.00	_ A	Gr
	Significant dimension	0.00	В	×
	Temperature difference	0.00	C .	ΔΤ
	Quantity $(g\beta \rho^2/\mu^2)$	0.00	D	$g\beta \rho^2/\mu^2$
4	If you have obtained a final			
	solution go to step 2 for a new	. ,		
	case			
5	To compute the Nusselt num-			
	ber only, go to step 6. For a			
	calculation of the convective			
	coefficient, input the conduc-			
	tive coefficient of the fluid	k	E	k
6	Enter the card corresponding to			
	the geometry of interest-			
	CHM E1-13A2 or CHM E1-13A3			:
7	Input the Prandtl number	Pr	В	Pr
8	Calculate the Nusselt number			
	corresponding to the geometry			
	of the problem		С	Nul or Nul(up)

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
			D	Nu _D or Nu _{L(dn)}
9	Calculate the convective coef-			
	ficient		E	h
10	To calculate heat transfer recall			
	ΔT and multiply		RCL 5	
			_ x	q
11	Go to step 1 for new case or to			
	repeat the calculation using			
	improved data. All previous	11 11 11 11 11 11 11		
	inputs will remain stored for			
	iterative procedures.			

Example 1:

A 4 inch horizontal pipe has a surface temperature of 120°F. The surrounding air is at 80°F. What is the heat transfer per square foot of pipe? All fluid properties should be evaluated at the film temperature (100°F).

Pr = 0.703

$$g\beta \rho^2/\mu^2 = 1.76 \times 10^6 \text{ ft}^3/\text{°F}$$

k = 0.0156 Btu/hr-ft-°F

Keystrokes See Displayed Using card CHM E1−13A1 2607407.41 4 • 12• B 40 C 1.76 EEX 6 D A 2607407.41 (Gr) Using card CHM E1−13A2 19.50 (Nu_D) .703 B D 20.91 19.50 (Nu_D) E 30.91 Btu/ft²-hr-°F

Noting that ΔT is stored in register 5.

RCL 5 × → 36.51

Btu/hr-ft²

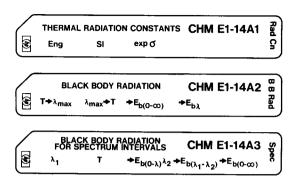
66 Chm E1-13A

Example 2:

The 2 foot circular top of a shielding case for radioactive material must dissipate 300 Btu/hr-ft². The case is immersed in water at 55°F. What is the surface temperature of the case?

Make a first approximation by assuming the surface temperature is 65°F and that the film temperature is 60°F, yielding the following properties for water:

Pr = 8.07


$$g\beta \rho^2/\mu^2 = 17.2 \times 10^6$$

k = 0.34 Btu/hr-ft-°F

$k = 0.34 \text{ Btu/hr-ft-}^{\circ}\text{F}$	
Keystrokes Using card CHM E1-13A1	See Displayed
2 ♠.9 x B 10 C 17.2 EEX 6 D A	
.34 🗉 ———————————————————————————————————	(Gr) → 0.34
Using card CHM E1–13A3	
8.07 B C	
E	(Nu _{L(up)})
E -	→ 53.10 Btu/hr-ft ²
Noting that ΔT is stored in Register 5.	
RCL 5 X	
Using the same film temperature, drop the surfa	Btu/hr-ft ² ce temperature 3°F
to 62°F.	
Using card CHM E1-13A1	~ 7.021720408
7 C A	7.021728 x 10° (Gr)
Using card CHM E1-13A3	(3.,
C	
E —	
Noting that ΔT is stored in Register 5.	Btu/hr-ft ² -°F
	→ 330.02
	Btu/hr-ft ²
Drop the surface temperature 1°F to 61°F. Using card CHM E1–13A1.	
	5 0.0000 · 8
6 C A	\rightarrow 6.018624 x 10 ⁸

 $\therefore 62^{\circ}F > T > 61^{\circ}F$

 $T \approx 61.5^{\circ} F$

BLACK BODY THERMAL RADIATION

Bodies with finite temperatures emit thermal radiation. The higher the absolute temperature, the more thermal radiation emitted. Bodies which emit the maximum possible amount of energy at every wavelength for a specified temperature are said to be black bodies. While black bodies do not actually exist in nature, many surfaces may be assumed to be black for engineering considerations.

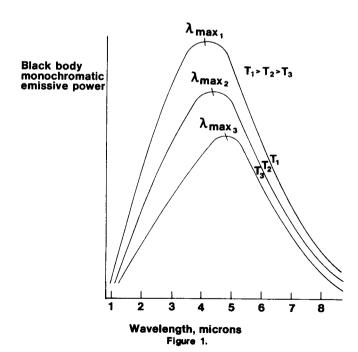


Figure 1 is a representation of black body thermal emission as a function of wavelength. Note that as temperature increases the area under the curves (total emissive power $E_{b(0-\infty)}$) increases. Also note that the wavelength of maximum emissive power λ_{max} shifts to the left as temperature increases.

Card CHM E1-14A2 can be used to calculate the wavelength of maximum emissive power for a given temperature, the temperature corresponding to a particular wavelength of maximum emissive power, the total emissive power for all wavelengths and the emissive power at a particular wavelength. CHM E1-14A3 can be used to calculate the emissive power from zero to an arbitrary wavelength, the emissive power between two wavelengths or the total emissive power. CHM E1-14A1 is used to store constants necessary for the operation of CHM E1-14A2 and CHM E1-14A3. Both English and SI (metric) constants are available. The Stefan-Boltzmann constant may be converted from the theoretical value to the experimental value by pressing C.

Equations:

$$\lambda_{\text{max}} \cdot T = c_3$$

$$E_{b(0-\infty)} = \sigma T^4$$

$$E_{b\lambda} = \frac{2\pi c_1}{\lambda^5 (e^{c_2/\lambda T} - 1)}$$

$$E_{b(0-\lambda)} = \int_0^{\lambda} E_{b\lambda} d\lambda$$

$$= 2\pi c_1 \sum_{k=1}^{\infty} -T/kc_2 e^{-\frac{kc_2}{T\lambda}} \left[\left(\frac{1}{\lambda} \right)^3 + \frac{3T}{\lambda^2 kc_2} + \frac{6}{\lambda} \left(\frac{T}{kc_2} \right)^2 + 6 \left(\frac{T}{kc_2} \right)^3 \right]$$

$$E_{b(\lambda_1 - \lambda_2)} = E_{b(0-\lambda_1)} - E_{b(0-\lambda_1)}$$

where

 $\lambda_{\mbox{\scriptsize max}}$ is the wavelength of maximum emissivity in microns;

T is the absolute temperature in °R or K;

E_{b(0-∞)} is the total emissive power in Btu/hr-ft² or Watts/cm²;

 $E_{b\lambda}$ is the emissive power at λ in Btu/hr-ft²- μ m or Watts/cm²- μ m;

 $E_{b(0-\lambda)}$ is the emissive power for wavelengths less than λ in Btu/hr-ft² or Watts/cm²;

 $E_{b(\lambda_1-\lambda_2)}$ is the emissive power for wavelengths between λ_1 and λ_2 in Btu/hr-ft² or Watts/cm².

$$c_1 = 1.8887982 \times 10^7 \text{ Btu-}\mu\text{m}^4/\text{hr-ft}^2$$

= 5.9544 × 10³ W μ m⁴/cm²

$$c_2 = 2.58984 \times 10^4 \ \mu \text{m}^{\circ} \text{R} = 1.4388 \times 10^4 \ \mu \text{m}^{-} \text{K}$$

$$c_3 = 5.216 \times 10^3 \ \mu\text{m}$$
- $^{\circ}$ R = 2.8978 $\times 10^3 \ \mu\text{m}$ -K

$$\sigma = 1.713 \times 10^{-9} \text{ Btu/hr-ft}^2 \cdot \text{°R}^4 = 5.6693 \times 10^{-12} \text{ W/cm}^2 \cdot \text{K}^4$$

$$\sigma_{\text{exp}} = 1.731 \times 10^{-9} \text{ Btu/hr-ft}^2 \cdot \text{°R}^4 = 5.729 \times 10^{-12} \text{ W/cm}^2 \cdot \text{K}^4$$

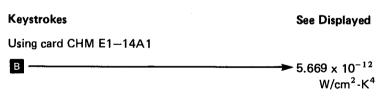
Remarks:

A minute or more may be required to obtain $E_{b(0-\lambda)}$ or $E_{b(\lambda_1-\lambda_2)}$ using CHM E1–14A3 since the integration is numerical.

Sources differ on values for constants. This could yield small discrepancies between published tables and HP-65 outputs.

Reference:

Robert Siegel and John R. Howell, *Thermal Radiation Heat Transfer*, Volume 1, National Aeronautics and Space Administration, 1968.


STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter Thermal Radiation Con-			
	stants CHM E1-14A1			
2	Store constants			
	For English units (Btu, μm,			
	hr, ft, °R)		_ A _	1.713 x 10 ⁻⁹
	For SI units (W, μm, cm, K)		В	5.669 x 10 ^{-1 2}
3	For experimental Stefan-Boltz-			
	mann constant instead of			1.731 x 10 ⁻⁹
,	theoretical constant		С	or
4	If you want black body rad-			5.729 x 10 ⁻¹²
	iation for a particular interval			
	Δλ, go to step 7. If you wish to			
	calculate λ _{max} , T, E _{b(0 − ∞)} or	· · · ·		
	E _{b\(\lambda\)} , enter <i>Black Body Radiat</i> -			
	ion, CHM E1-14A2			
5	Input absolute temperature and]
	calculate the corresponding			
	λ _{max} (If you only want			
	E _{b(0 - ∞)} go to step 6)	Т	A .	λ _{max} (μm)
	Input λ and calculate tem-			
	perature for which λ is max-			
	imum	λ(μm)	В	Т
6	Calculate black body total			
	emissive power		С	E _{b(0 - ∞)}
	Calculate black body emis-]
	sive power at λ		D	E _{bλ}
7	Enter Black Body Radiation]
	For Spectrum Interval, CHM E1-			
***	14A3 Any values input in step 5			
	are still stored and need not be			

72 Chm E1-14A

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
	input again			
8	Input both of the following:			
	Lower value of wavelength	λ ₁ (μm)	A .	λ ₁ (μm)
	Absolute temperature of			
	body	Т	В	Т.
9	Calculate:			
	Emissive power from 0 to λ_1		С	E _{b(0 - \(\lambda_1\)})
	Emissive power from λ_1 to			
	λ ₂	λ_2	D .	$E_{b(\lambda_1 - \lambda_2)}$
	$(\lambda_2 \text{ replaces } \lambda_1 \text{ in storage})$			
	Total emissive power		E	E _(0 - ∞)
10	For new case go to step 4. All			
	variables input will remain	,		
	unchanged except for λ_2			
	replacing λ_1 as noted in step 9.			

Example 1:

What percentage of the radiant output of a lamp is in the visible range (0.4 to 0.7 microns) if the filament of the lamp is assumed to be a black body at 2400 K? What is the percentage at 2500 K?

Using card CHM E1-14A3

.4 A 2400 B .7 D E
$$\div$$
 100 \times DSP \bullet 2 \longrightarrow 2.64%

Example 2:

If the human eye was designed to work most efficiently in sunlight and the visible spectrum runs from about 0.4 to 0.7 microns, what is the sun's temperature in degrees Rankine? Assume that the sun is a black body. Using the temperature calculated, find the fraction of the sun's total emissive power which falls in the visible range. Find the percentage of the sun's radiation which has a wavelength less than 0.4 microns.

Keystrokes See Displayed Using card CHM E1-14A1 → 1.713 x 10⁻⁹ Btu/hr-ft²-°R⁴ Using card CHM E1-14A2 Compute mean of visible range. .4 🛊 .7 🕂 2 🕏 -----> 5.500 x 10⁻¹ μm Compute temperature of sun. ——**→** 9.484 x 10³ °R Using card CHM E1-14A3 Compute percentage of power in visible range. Compute percentage of power under 0.4 μ m. **→** 8.43% .4 A C E ÷100×

TEMPERATURE OR CONCENTRATION PROFILE FOR A SEMI-INFINITE SOLID

Many physical situations in heat and mass transfer may be solved within engineering tolerances by assuming an infinite geometry.

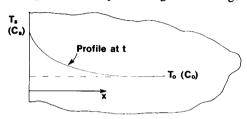


Figure 1.

In Figure 1 an infinitely thick wall initially at temperature T_0 or concentration C_0 is subject to a constant surface potential T_s or C_s . At a later time t, the internal profile will have been altered by the transport of heat or mass. This program computes values of temperature T or concentration C at time t for specified distances x from the outer surface.

Equations:

$$T = (T_0 - T_s) \operatorname{erf} \left(\frac{x}{2\sqrt{\frac{k}{\rho c_p} t}} \right) + T_s$$

where

k is thermal conductivity of the material;

 ρ is the density of the material;

cp is the specific heat of the material;

 $k/\rho c_p$ is also known as the diffusivity of heat α .

Similarly, for mass transfer

$$C = (C_0 - C_s) \text{ erf } \left(\frac{x}{2\sqrt{Dt}}\right) + C_s$$

where

D is the mass diffusivity.

*erf is the error function.

Remarks:

This solution is exact for infinite configurations with constant cross sectional areas, However, finite geometries where the argument of the error function is greater than two will yield little or no error. This means transfer in finite bodies such as plates may be predicted until the effects of the step are felt on the far side. Also, geometries such as cylinders may be studied if the depth of penetration is small compared to the radius.

The routine used by this program will resolve error functions with arguments less than 4.5. For larger arguments, the value of the error function is set to 1.0.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program			
2	To compute the error function			
	of an argument go to step 8.			
3	Input:			
	Conductivity	k	1	k
	then density	ρ	<u> </u>	ρ
	then specific heat	Сp	_ A _	α
	or heat (or mass) diffusivity	α (D)	<u> </u>	α (D)
	then 1.00	1		1.00
	then 1,00	1	_ A	α (D)
4	Input:			
	Surface temperature (con-			
	centration)	T _s (C _s)		T _s (C _s)
	then initial temperature			
	(concentration)	T ₀ (C ₀)	В	T _s (C _s)
5	Input time	t	C	t
6	Input distance from surface			
	and calculate temperature			
	or concentration	×	D	T (C)
7	For new case go to step 2, 3, or			
	4 and change inputs. For new			
	time go to step 5. For new x go			
	to step 6.			
8	Input argument and compute			
	error function	а	E	erf(a)

76 Chm E1-15A

Example 1:

A large steel transmission shaft is case hardened by diffusion of carbon. The initial carbon concentration is 0.10% and the surface concentration is brought to 1.20% almost instantly. What is the carbon concentration at 1.0 mm (1 x 10^{-3} m) after 15 hours (54000 seconds), if the diffusivity of carbon in steel is taken to be 1.6×10^{-11} m²/s?

Keystrokes

See Displayed

Example 2:

A furnace wall is at a constant 55°F. When the furnace is turned on the inside wall temperature is raised to 2000°F. How long will it take to raise the outside wall temperature 1°F?

k = 0.67 Btu/hr-ft-°F
Thickness = 1.5 feet
c = 0.2 Btu/lb °F
$$\rho$$
 = 150 lb/ft³

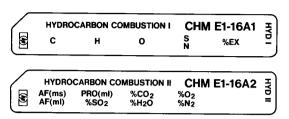
Keystrokes

See Displayed

An iterative solution is required since t is not a program output. Guess 5.0 hours for t

.67
$$\spadesuit$$
 150 \spadesuit .2 A 2000 \spadesuit 55 B 5 C 1.5 D \longrightarrow 57.92°F

Guess 4.0


Noting that x is stored in register 8.

Guess 4.2

Guess 4.18

Noting that t is stored in register 7.

HYDROCARBON COMBUSTION

Given the atomic composition of a hydrocarbon fuel and the desired amount of excess air, the air-fuel ratio on a mass and mole basis is found. The number of moles of products is also calculated along with the volume percents of sulfur dioxide, carbon dioxide, water vapor, oxygen and nitrogen. Complete combustion is assumed.

Equations:

$$Air = 1 + \frac{\% \text{ Excess Air}}{100}$$

$$O_2 = C + S + \frac{H}{4} - \frac{O}{2}$$

$$AF(\text{mole}) = O_2 (4.762) \text{ Air}$$

$$AF(\text{mass}) = \frac{1.8094 \text{ AF(mole)}}{0.7507C + 0.063H + 2.004S + 0.875N + 0}$$

$$M = O_2 [4.762 \text{ Air}] + \frac{H}{4} + \frac{O}{2} + \frac{N}{2}$$

$$Volume \%CO_2 = \frac{100C}{M}$$

$$Volume \%SO_2 = \frac{100S}{M}$$

Volume
$$\%H_2O = \frac{100H}{2M}$$

Volume
$$\%O_2 = \frac{100(Air - 1) O_2}{M}$$

Volume
$$\%N_2 = \frac{(100)\left[(3.762) \text{ Air } O_2 + \frac{N}{2}\right]}{M}$$

where

C, S, N, H and O refer to number of carbon, sulfur, nitrogen, hydrogen and oxygen atoms respectively per hypothetical fuel molecule.

AF stands for air-fuel ratio.

M stands for total moles of product.

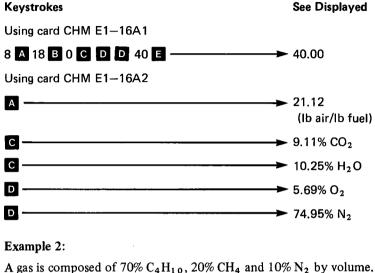
Remarks:

% Excess air ≥ 0 .

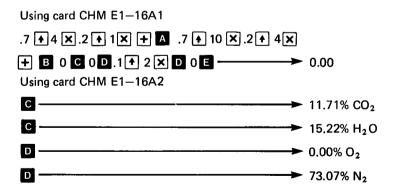
Complete Combustion is assumed.

The volume percent values assume that no water vapor has been condensed out.

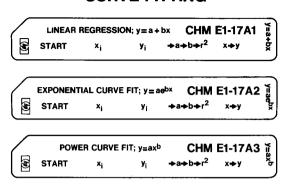
80 Chm E1-16A


STEP	INSTRUCTIONS	INPUT	KEYS	OUTPUT
1	Enter Hydrocarbon Combustion	DATA/UNITS		DATA/UNITS
	/, CHM E1-16A1			
2				
	Input all of the following (even	***		
	if zero):			
	Carbon atoms per molecule	С	_ A	С
	Hydrogen atoms per mole-			
	cule	н	В	Н
	Oxygen atoms per molecule	0	_ C	0
	Sulfur atoms per molecule,	S	D	s
	then, Nitrogen atoms per			
	molecule	N		N
3	Input percent excess air	% excess	E	% excess
4	Enter Hydrocarbon Combust-			
	ion II, CHM E1-16A2			
5	Compute the following:			
	Air fuel ratio on a mass			
	basis, then		A	AF, mass
	Air fuel ratio on a mole basis		_A_	Af, mole
	Total moles of product, then		В	prod, mole
	Percent SO ₂		В	% SO ₂
	Percent CO ₂ , then		С	% CO₂
	Percent H ₂ O		_ C	% H₂ O
	Percent O ₂ , then		D	% O ₂
	Percent N ₂		D	% N ₂
6	For new case go to step 1.			-

See Displayed


Example 1:

Keystrokes


Octane C₈H₁₈ is burned in 40% excess air. What is the air-fuel ratio on a mass basis and what are the volume percents of the products?

A gas is composed of $70\% C_4H_{10}$, $20\% CH_4$ and $10\% N_2$ by volume. If the gas is burned with no excess air, what is the composition of the products of combustion assuming complete combustion?

CURVE FITTING

These cards can be used to fit experimental data to:

straight lines

$$y = a + bx$$

exponential curves

$$y = ae^{bx} \qquad (a > 0)$$

and power curves

$$y = ax^b \qquad (a > 0)$$

A coefficient of determination r^2 ($0 \le r^2 \le 1.0$) is also calculated giving an estimate of goodness of fit. Values of r^2 close to 1.00 indicate a good fit. Values of r^2 close to zero indicate a poor fit.

Equations:

Linear regression

$$b = \frac{\sum x_i y_i - \frac{\sum x_i \sum y_i}{n}}{\sum x_i^2 - \frac{(\sum x_i)^2}{n}}$$
$$a = \left[\frac{\sum y_i}{n} - b \frac{\sum x_i}{n}\right]$$

$$r^{2} = \frac{\left[\sum x_{i}y_{i} - \frac{\sum x_{i}\sum y_{i}}{n}\right]^{2}}{\left[\sum x_{i}^{2} - \frac{(\sum x_{i})^{2}}{n}\right]\left[\sum y_{i}^{2} - \frac{(\sum y_{i})^{2}}{n}\right]}$$

Exponential curve fit

$$b = \frac{\sum x_i \ln y_i - \frac{1}{n} (\sum x_i) (\sum \ln y_i)}{\sum x_i^2 - \frac{1}{n} (\sum x_i)^2}$$

$$a = \exp \left[\frac{\sum \ln y_i}{n} - b \frac{\sum x_i}{n} \right]$$

$$r^2 = \frac{\left[\sum x_i \ln y_i - \frac{1}{n} \sum x_i \sum \ln y_i \right]^2}{\left[\sum x_i^2 - \frac{(\sum x_i)^2}{n} \right] \left[\sum (\ln y_i)^2 - \frac{(\sum \ln y_i)^2}{n} \right]}$$

Power curve fit

$$b = \frac{\sum (\ln x_i) (\ln y_i) - \frac{(\sum \ln x_i) (\sum \ln y_i)}{n}}{\sum (\ln x_i)^2 - \frac{(\sum \ln x_i)^2}{n}}$$

$$a = \exp \left[\frac{\sum \ln y_i}{n} - b \frac{\sum \ln x_i}{n}\right]$$

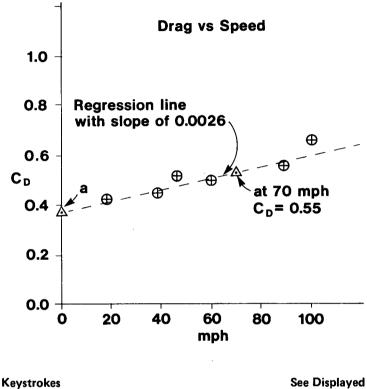
$$r^2 = \frac{\left[\sum (\ln x_i) (\ln y_i) - \frac{(\sum \ln x_i) (\sum \ln y_i)}{n}\right]^2}{\left[\sum (\ln x_i)^2 - \frac{(\sum \ln x_i)^2}{n}\right] \left[\sum (\ln y_i)^2 - \frac{(\sum \ln y_i)^2}{n}\right]}$$

84 Chm E1-17A

Remarks:

Negative and zero x_i values will cause flashing zeros in *Power Curve Fit*, CHM E1-17A3.

Negative and zero y_i values will cause flashing zeros in Exponential Curve Fit, CHM E1-17A2 and Power Curve Fit, CHM E1-17A3.


Values of r² slightly larger than one may be observed due to round off error.

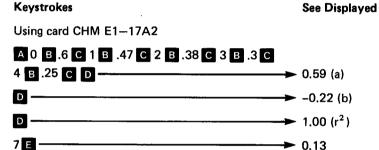
STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter appropriate data fitting			
	card			
2	Initialize		A .]
3	Input x value	xi	В] x _i *
4	Input corresponding y value	Yi	С	y _i
5	Go to step 2 until all data points]
	have been input			
6	Calculate a		D	a
7	Optional: display b		D	b
8	Optional: display r ²		D	r ²
9	Based on the curve fit, project			
	a y value based on x	×	E	y
10	For another projected value go			
	to step 9. For additional data			
	values go to step 3. For a new	-		ļ
	case go to step 2.			<u> </u>

^{*} On power curve fit x_i is not displayed.

Example 1:

A test on an experimental automobile body shape resulted in the following data plot. Run a linear regression on the circled points and find a projected value of C_D at 70 mph.

Keystrokes See Displayed Using card CHM E1−17A1 A 18 B .42 C 38 B .44 C 46 B .52 C 60 B .5 C 90 B .56 C 100 B .66 C D → 0.37 (a) D DSP • 4 → 0.0026 (b) D → 0.8664 (r²) 70 E → 0.5459 (CD)


86 Chm E1-17A

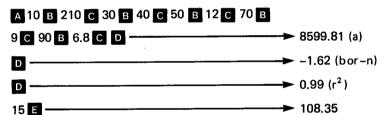
Example 2:

A chemical reaction yields the following concentrations of species A as a function of time.

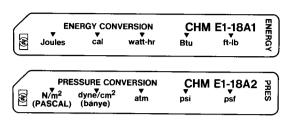
t	A
0	0.60
1	0.47
2	0,38
3	0.30
4	0.25

Run an exponential regression on the data. Determine a, b, and r^2 and find a projected value of A at t = 7.0.

Example 3:


Pressure-volume data for a compression process is shown below. Run a power curve fit to determine the polytropic constant n. What is the pressure when v is 15?

V	P
10	210
30	40
50	12
70	9
90	6.8


Keystrokes

See Displayed

Using card CHM E1-17A3

UNIT CONVERSIONS

These cards convert interchangeably between commonly used units of pressure and energy.

Equations:

Energy conversion

- 1 calorie (thermochemical) = 4.184 joules*
- 1 watt-hour = 3600 joules*
- 1 Btu = 1055 joules
- 1 foot pound = 1.355818 joules

Pressure conversion

- 1 dyne/centimeter² = 1 barye = 0.1 newton/meter² = 0.1 Pascal*
- 1 atmosphere = 101325 newton/meter²*
- $1 \text{ pound/inch}^2 = 6894.7572 \text{ newton/meter}^2$
- 1 pound/foot² = 47.88 newton/meter²

Remarks:

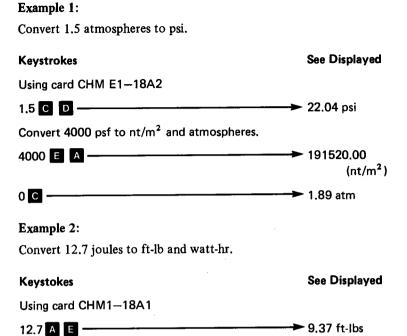
Zero is an invalid input.

Reference:

Mechtly, The International System of Units, Physical Constants and Conversion Factors, Revised, NASA SP-7012, 1969.

^{*}by definition

ENERGY CONVERSION


STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter Energy Conversions,			
	CHM E1-18A1			
2	Input one of the following:			
	Energy in joules	joules	_A	0.00
	Energy in calories	cal	В	0.00
	Energy in watt-hours	watt-hr	_ c	0.00
	Energy in British thermal			
	units	Btu	D	0.00
	Energy in foot-pounds	ft-lb	E	0.00
3	Convert to one of the following:			
	Energy in joules	0.00	A .	joules
	Energy in calories	0.00	В	cal
	Energy in watt-hours	0.00	[c] [watt-hr
	Energy in British thermal			
	units	0.00	D	Btu
	Energy in foot-pounds	0.00	E	ft-lb
4	For another conversion of the			
	same input, key zero and go to			
	step 3.			
5	For a new case go to step 2			

90 Chm E1-18A

PRESSURE CONVERSION

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter Pressure Conversions,			
	CHM E1-18A2			
2	Input one of the following:			
	Pressure in newtons per			
	square meter	N/m²	A	0.00
	Pressure in dynes per square			
	centimeter	dyne/cm²	В	0.00
	Pressure in atmospheres	atm	С	0.00
	Pressure in pounds per			
	square inch	psi	D	0.00
	Pressure in pounds per			
	square foot	psf	E	0.00
3	Convert to one of the following:			
	Pressure in Newtons per			
	square meter	0.00	_ A	N/m²
	Pressure in dynes per square			
	centimeter	0.00	В	dyne/cm ²
	Pressure in atmospheres	0.00		atm
	Pressure in pounds per			
	square inch	0.00	D	psi
	Pressure in pounds per			
	square foot	0.00	E	psf
4	For another conversion of the			
	same input, key zero and go to			
	step 3.	_		-
5	For a new case go to step 2.			

(watt-hr)

0 C DSP 2 3.53 x 10⁻³

#	1	R ₂	R ₃	R.	Rs	R ₆	R,	R ₈	s,
CHM E1-1A	Ь	>	œ	1			c		Osed
CHM E1-2A1	a	>	٥c	F	æ	q	Osed		
CHM E1-2A2	٩	>	æ	1	в	q		RT/(v - b)	Osed
CHM E1-2A3	Ь	>	æ	-	в	q	Osed	RT/(v - b)	Desd
CHM E1-3A		c	n - 1	1/(n – 1)	P ₂ /P ₁				Used
CHM E1-4A1	M²	¥	k - 1	1/(k - 1)					Used
CHM E1-4A2	M²	¥	k - 1	1/(k - 1)		*A/A	(k-1)/(k+1)	Used	Used
CHM E1-5A1	M×2	¥	k - 1	1/(k - 1)	M _v ²	Ty/Tx	Py/Px	2/(k - 1)	Osed
CHM E1-6A1	Re			ď	Ħ		>	×	Osed
CHM E1-6A2		Nu(Bi)			h(k _c)	k(D _{ab})		×	Used
CHM E1-6A3		St(Le)		ď	h(k _c)	æ	v(D _{ab})		Desd
CHM E1-6A4			P.	ક		*	n		Used
CHM E1-6A5			ઝ	ď		Dab	π		Desc
CHM E1-7A1	Re	1.737			1,√€, ₹	D _{eq} /e			Used
CHM E1-7A2	Re	۸	L/D _{eq}	Δ P /ρ	4		>	Ϋ́	Used
CHM E1-8A1				ď	778.16	6	144	ΣE	Csed
CHM E1-8A2				ď		5		ΣE	Used
CHM E1-9A		St(k _c /v)	Pr(Sc)	Used	4-	£/2		Used	Used
CHM E1-10A1	Thin	Tcin	კ	ქ	E	σ			Used
CHM E1-10A2	Thin	T _{cin}	უ	రే	\boldsymbol{B}	ь	Cmin		Used
CHM E1-10A3			კ	ర్	E		C _{min}	AU	Used

	3	ర్	E		G.	ΑU	Osed
)	ပိ	ర	E	$\sqrt{1+\left(\frac{C_{min}}{C_{max}}\right)^2}$	1 + Cmin	ΑU	Used
3	ئ	ტ	E.	Cmin	Cmax/Cmin	ΑU	Used
	1	n		1 or π	Dæd	ΣR	
t/2 k	4	7	ηt	Nave	×		Used
Gr		:	ΔT	×	$g\beta\rho^2/\mu^2$	×	Used
Gr Nu	4		ΔT	¥		×	Used
Gr	4		ΔT	ĸ		×	Osed
c ₁	ပ်	ø					
c ₁	င်ဒ	٥	_	γ			
c ₁	ະ	٥	1	K	mns	kc ₂ /T	Osed
Partial sum 2a ² 2	2n + 1	1 T _o (C _o)	T _s (C _s)	α	t	×	Osed
T O	0	S	air	02	prod	AF(mole)	z
T C	0	S	air	02	prod	AF(mole)	z
g'iA q'ix	ŭ	Σ×2	λζ	Σy^2	Σxγ	Ľ,	
e'i, q'ix	ă	Σx^2	Σ In γ	Σ (In γ) ²	Σx In y	٢	
χ _{i,b} γ _{i,a}	X II X	x Σ (In x) ²	2 ln y	Σ (In γ) ²	Σ(lnx)(lny)	u-	
						joule	Used
						Nt/m²	Osed

Program Listings 95

Program Listings

	r	age
1.	Ideal Gas Equation of State	96
	Redlich-Kwong Equation of State	
3.	Reversible Polytropic Process for an Ideal Gas	00
4.	Isentropic Flow for Ideal Gases 101, 1	02
5.	One Dimensional Normal Shocks for Ideal Gases 1	03
6.	Fluid Transport Numbers 104-1	08
7.	Fanning Friction Factor and Conduit Flow 109, 1	10
8.	Conservation of Energy	12
9.	von Karman Analogy for Heat and Mass Transfer 1	13
10.	Heat Exchanger Analysis	19
11.	Heat Transfer Through Composite Cylinders and Walls 1	20
12.	Straight Fin Efficiency	21
13.	Natural Convection	24
l4.	Black Body Thermal Radiation 125-1	27
15.	Temperature or Concentration Profile for a	
	Semi-infinite Solid	28
16.	Hydrocarbon Combustion 129, 1	
	Curve Fitting	
	Unit Conversions	

IDEAL GAS EQUATION OF STATE

	γ	1		т .
KEYS	CODE		KEYS	CODE
LBL	23		0	00
A	11		g x≠y	35 21
STO 1	33 01		0	00
0	00		RTN	24
g x≠y	35 21		RCL 1	34 01
0	00		RCL 2	34 02
RTN	24		×	71
RCL 7	34 07		RCL 3	34 03
RCL 3	34 03		RCL 4	34 04
RCL 4	34 04		×	71
×	71		÷	81
X	71		STO 7	33 07
RCL 2	34 02		RTN	24
÷	81		LBL	23
STO 1	33 01		D	14
RTN	24		STO 3	33 03
LBL	23		0	00
В	12		g x≠y	35 21
STO 2	33 02		0	00
0	00		RTN	24
g x≠y	35 21		RCL 1	34 01
0	00		RCL 2	34 02
RTN	. 24		X DOL 7	71
RCL 7	34 07		RCL 7	34 07
RCL 3 RCL 4	34 03		RCL 4	34 04
	34 04 71		×	71
X	71		STO 3	81
x RCL 1	1		RTN	33 03 24
HUL I	34 01 81		LBL	
			E	23
STO 2 RTN	33 02 24		STO 4	15
LBL	24		0	33 04 00
C	13		_	
STO 7	33 07		g x≠y 0	35 21
3107	33 07		U	00

KEYS	CODE
RTN	24
RCL 1	34 01
RCL 2	34 02
x	71
RCL 7	34 07
RCL 3	34 03
x	71
÷	81
STO 4	33 04
RTN	24
g NOP	35 01
g NOP g NOP	35 01
g NOP	35 01 35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
aNOP	3001

R ₁	Р	R ₄	T	R ₇	n
R ₂	٧	R ₅		R ₈	
R ₃	R	R ₆		R ₉	Used

REDLICH-KWONG, PRES

KEYS	CODE	
LBL	23	L
A	11	c
STO 3	33 03	S
gx ₹y	35 07	R
STO 5	33 05	L
×	71	D
STO 7	33 07	R
g x 	35 07	R
÷	81	×
•	83	R
0	00	R
8	08	-
6	06	÷
7	07	R
X	71	R
STO 6	33 06	f
4	04	\ \ v
	83	÷
9	09	R
3	03	÷
1	04	g
X RCL 7	71	R
	34 07 71	+ ÷
X RCL 5	34 05	-
f	34 05	S
√x	09	R
×	71	
STO 5	33 05	g
RCL 3	34 03	g
RTN	24	g
LBL	23	g
B	12	g
STO 4	33 04	g
RTN	24	g
	:	اا

KEYS	CODE
LBL	23
С	13
STO 2	33 02
RTN	24
LBL	23
D	14
RCL 3	34 03
RCL 4	34 04
X PCL 2	71 34 02
RCL 2 RCL 6	34 02 34 06
HCL 0	51
÷	81
RCL 5	34 05
RCL 4	34 04
f	31
\sqrt{x}	09
√x ÷	81
RCL 2	34 02
÷	81 35 00 34 06
g LST X	35 00
HOL 0	07 00
+	61
÷	81
- CTO 1	51
STO 1 RTN	33 01 24
g NOP	35 01

SL	SURE			
	KEYS	CODE		
	g NOP	35 01		
	g NOP	35 01		
	g NOP	35 01		
	g NOP	35 01		
	g NOP	35 01		
	g NOP	35 01		
	g NOP	35 01		
	g NOP	35 01		
	g NOP	35 01		
	g NOP	35 01		
	g NOP	35 01		
	g NOP	35 01		
	g NOP	35 01		
	g NOP	35 01		
	g NOP	35 01		
	g NOP	35 01		
	g NOP	35 01		
	g NOP	35 01		
	g NOP	35 01		
	g NOP	35 01		
	g NOP	35 01		
	g NOP	35 01		
	g NOP	35 01		
	g NOP g NOP	35 01 35 01		
	g NOP	35 01		
	g NOP	35 01		
	g NOP	35 01		
	g NOP	35 01		
	g NOP	35 01		
	13.10.			

R ₁	Р	R ₄	T	R ₇ Used
R ₂	V	R ₅	а	R ₈
R ₃	R	R ₆	b	R ₉

REDLICH-KWONG, TEMPERATURE

CODE

33 01

34 01

34 02 71

34 03 81

33 04 23

34'03

34 04 71

34 02

34 01 51

34 05

01

23 13

24

23 14

REDLICH-KWON			
KEYS	CODE	KEYS	
LBL	23	LBL	
Α	11	C	
STO 3	33 03	STO 1	
g x ₹y	35 07	RTN	
STO 5	33 05	LBL	
×	71	D	
STO 7	33 07	RCL 1	
gx⋛y	35 07	RCL 2	
÷	81	×	
	83	RCL 3	
0	00	÷	
8	08	STO 4	
6	06	LBL	
7	07	1	
×	71	RCL 3	
STO 6	33 06	RCL 4	
4	04	×	
•	83	RCL 2	
9	09	RCL 6	
3	03	-	
4	04	÷	
X	71	STO 8	
RCL 7	34 07	RCL 1	
X	71		
RCL 5	34 05	RCL 5	
f	31	RCL 4	
\sqrt{x}	09	f	
X	71	\sqrt{x}	
STO 5	33 05	÷	
RCL 3	34 03	RCL 2	
RTN	24	÷	
LBL	23	g LST X	
В	12	RCL 6	
STO 2	33 02	+	
RTN	24	÷	

KEYS	CODE
_	51
g LST X	35 00
2	02
÷	81
RCL 8	34 08
 +	61
RCL 4	34 04
÷	81
÷	81
STO	33
-	51
4	04
RCL 4 ÷	34 04
	81 35
g ABS	06
EEX	43
CHS	43
4	0.4
g x≤y	35 22
GTO	22
1	35 22 22 01
RCL 4	34 04
RTN	24
g NOP	35 01

R ₁	Р	R ₄ T	R,	•
R_2	٧	R ₅ a	R	RT/(v-b)
R ₃	R	R ₆ b	R	Used

REDLICH-KWONG, VOLUME

	T
KEYS	CODE
STO 3	33 03
g x 	35 07
STO 5	33 05
X	71
STO 7	33 07
g x ≠y	35 07
÷	81
•	83
0	00
8	80
6	06
7	07
x STO 6	71 33 06
4	33 06 04
•	
9	09
3	83 09 03
4	04
x	71
RCL 7	34 07
X	71
RCL 5	34 05
f	31
\sqrt{x}	09
X	71
STO 5	33 05
RCL 3	34 03
RTN	24
LBL	23
E	15
RCL 2	34 02
÷	81
g LST X	35 00
RCL 6	34 06

ICH-KWONG, VOL			
KEYS	CODE		
+	61		
÷	81		
RTN	24		
LBL	23		
В	12		
STO 4	33 04		
g x ≠y	35 07		
STO 1	33 01		
RTN	24		
LBL	23		
С	13		
RCL 3	34 03		
RCL 4	34 04		
X	71		
RCL 1	34 01		
÷	81		
STO 2	33 02		
LBL	23		
1	01		
RCL 3	34 03		
RCL 4	34 04		
X	71		
RCL 2	34 02		
RCL 6	34 06		
STO 7	51		
5107	33 07 81		
STO 8	33 08		
RCL 1	33 08 34 01		
HOL I	51		
RCL 5	34 05		
RCL 4	34 05		
f CL 4	34 04		

KEYS	CODE
Е	15
 -	51
g LST X	35 00
E	15
RCL 2	34 02
1	41
+	61
RCL 6	34 06
+	61
×	71
RCL 8	34 08
RCL 7	34 07
÷	81
-	51
÷	81
STO	33
2	51
RCL 2	02 34 02
+	34 02
	35
g ABS	06
EEX	43
CHS	42
4	04
g x≤y	35 22
GTO	22
1	01
RCL 2	34 02
RTN	24

R ₁	Р	R ₄	Т	R ₇	Used
R ₂	v	R ₅	a	R ₈	RT/(v-b)
R ₃	R	R ₆	b	R ₉	Used

31 09 81

POLYTROPIC PROCESS

145510	
KEYS	CODE
LBL	23
Α	11
STO 2	33 02
1	01
-	51
STO 3	33 03
g 1/4	35
/ *	04
STO 4 RCL 2	33 04 34 02
RTN	34 02
LBL	23
В	12
0	00
g x=y	35 23
RCL 5	34 05
RTN	24
gR↓	35 08
STO 5	33 05
0	00
RTN	24
LBL	23
С	13
0	00
g x=y	35 23
GTO	22
1	01
gR↓	35 08
RCL 2	34 02
CHS	42
g _x	35
у ^х	05
STO 5	33 05
0	00
RTN	24

LYTROP	IC PRO
KEYS	CODE
LBL	23
1	01
RCL 5	34 05
RCL 2	34 02
CHS	42
g ¹/x	35
¹/x	04
g y ^x	35
	05
RTN LBL	24
D	23 14
0	00
g x=y	35 23
GTO	22
2	02
gR↓	35 08
RCL 2	34 02
RCL 4	34 04
x	71
g	35
y ^x	05
8105	33 05
0 DTN	00
RTN LBL	24 23
2	02
RCL 5	34 05
RCL 3	34 03
RCL 2	34 02
÷	81
g	35
y ^x	05
RTN	24
LBL	23

SS	
KEYS	CODE
E	15
0	00
g x=y	35 23
GTO	22
3	03
gR↓	35 08
RCL 2	34 02
g	35
y ^x	05
STO 5	33 05
RTN	00 24
LBL	23
3	03
RCL 5	34 05
RCL 2	34 02
a	35
¹ /x	04
a	35
y×	05
RTN	24
g NOP	35 01
g NOP g NOP	35 01
g NOP	35 01

R ₁	R ₄ 1/(n – 1)	R ₇
R ₂ n	$R_5 P_2/P_1$	R ₈
R ₃ n – 1	R ₆	R ₉ Used

ISENTROPIC FLOW I

KEYS	CODE		KEYS	CODE
STO 2	33 02		g x 	35 07
1	01		÷	81
1 –	51		2	02
STO 3	33 03		_	51
g	35		RCL 3	34 03
¹ /x	04		÷	81
STO 4	33 04		STO 1	33 01
RCL 2	34 02		0	00
RTN	24		RTN	24
LBL	23		LBL	23
В	12		1	01
↑	41		2	02
×	71		RCL 1	34 01
0	00		RCL 3	34 03
g x=y	35 23		×	71
GTO	22		2	02
1	01		+	61
gR↓	35 08		÷	81
STO 1	33 01		RTN	24
0	00		LBL	23
RTN	24		D	14
LBL	23		0	00
1	01		g x=y	35 23
RCL 1	34 01		GTO	22
f	31		1	01
\sqrt{x}	09		CLX	44
RTN	24		RCL 3	34 03
LBL	23		RCL 2	34 02
С	13		÷	81
0	00		g _×	35
g x=y	35 23		y× o=0	05
GTO	22		GTO	22
1	01		C	13
CLX	44		LBL	23
2	02		1	01

KEYS	CODE
С	13
RCL 2	34 02
RCL 3	34 03
÷	81
g	35
y ^x	05
RTN	24
LBL	23
E	15
0	00
g x=y	35 23
GTO 1	22 01
CLX	44
RCL 3	34 03
g	35
y ^x	05
GTO	22
C	13
LBL	23
1	01
С	13
RCL 4	34 04
g	35
g y ^x	05
RTN	24
g NOP	35 01

R ₁	M ²	R ₄	1/(k – 1)	R ₇	
R_2	k	R ₅		R ₈	
R_3	k – 1	R ₆		R ₉	Used

IS 11 W

KEYS	CODE
STO 2	33 02
1	01
_	51
STO 3	33 03
g ¹/x	35
¹/x	04
STO 4	33 04
RCL 2	34 02
RTN	24
LBL B	23 12
3	03
CHS	42
g x ≠y	35 07
0	00
g x=y	35 23
GTO	22
D	14
LBL	23
1	01
g R↓	35 08
†	41
STO 6	33 06
f ⁻¹	32
INT	83
f _	31
√x	09
+	61
g x ≠y	35 07
g	35
y ^x	05
STO 1	33 01
LBL	23
2 RCL 6	02 34 06
NCL 0	34 00

ENTROP	IC FLO
KEYS	CODE
D	14
÷	81
1	01
_	51
•	83
5	05
RCL 8	34 08
÷	81
•	83
5	05
RCL 1	34 01
÷	81
÷	51
	81 33
STO +	61
1	01
RCL 1	34 01
÷	81
g	35
ABS	06
EEX	43
CHS	42
4	04
g x ≤ y	35 22
ĞТО	22
2	02
0	00
RTN	24
LBL	23
С	13
3	03
g x ≓ y	35 07
0	00
g x≠y	35 21

KEYS	CODE
GTO	22
1	01
LBL	23
D	14
2	02
RCL 2	34 02
1	01
+	61
÷	81
RCL 3	34 03
g LST X	35 00
÷	81
STO 7	33 07
RCL 1	34 01
X	71
+	61
STO 8	33 08
RCL 7	34 07
2	02
X	71
g ¹/x	35
	04
g y [×]	35 05
RCL 1	34 01
f	34 01
\sqrt{x}	09
∨ ^ <u>·</u>	81
RTN	24
g NOP	35 01
3 140	30 01

R ₁	M ²	R ₄	1/(k – 1)	R ₇	(k-1)/(k+1)
R ₂	k	R ₅		R ₈	Used
R_3	k – 1	R ₆	A/A*	R ₉	Used

ONE DIME AL SHOCKS

KEYS	CODE
STO 2	33 02
1	01
_	51
STO 3	33 03
g	35
¹ /x	04
STO 4	33 04
RCL 2	34 02
RTN	24
LBL	23
В	12
0	00
g x≠y	35 21
GTO	22
2	02
RCL 1	34 01
f	31
√x DTN	09
RTN LBL	24
2	23 02
∠ g R↓	35 08
y nv ↑	35 06
X	71
STO 1	33 01
2	02
RCL 3	34 03
÷	81
STO 8	33 08
+	61
g LST X	35 00
RCL 2	34 02
x	71
RCL 1	34 01
×	71

Ε	NSIONAL NORM					
	KEYS	CODE				
	1	01				
	_	51				
	÷	81				
	RCL 1	34 01				
	g x>y	35 24 35 07 35 01 33 05				
	g x 	35 07				
	g NOP	35 01				
	STO 5					
		35 07				
	STO 1	33 01				
	IIOL 0	34 08				
	÷	81				
	1 +	81 01 61				
	PCL E	61				
	RCL 5	34 05 34 08				
	RCL 8	34 08				
	ļ +	01 61				
	÷	81				
	STO 6	33 06				
	RCL 1	34 01				
	X	71				
	RCL 5	34 05				
	÷	81				
	f	31				
i	\sqrt{x}	09				
	ŠTO 7	33 07				
	0	00				
	RTN	24				
	LBL	23				
	С	13				
	0	00				
	g x≠y	35 21				
	GTO	22				

KEYS	CODE
2	02
RCL 5	34 05
f	31
√×	09
RTN	24
LBL	23
D	14
RCL 6	34 06
RTN	24
LBL	23
D	14
RCL 7	34 07
RCL 6	34 06
÷	81
RTN	24
LBL	23
E	15
RCL 7	34 07
RTN	24
LBL	23
E	15
RCL 7	34 07
RCL 6	34 06
RCL 2	34 02
RCL 3	34 03
÷	81
g y×	35
y"	05
÷	81
RTN	24

R ₁	M _x ²	R ₄	1/(k – 1)	R ₇	Py/Px
R_2	k	R ₅	M _y ²	R ₈	2/k - 1
R ₃	k – 1	R ₆	Ty/Tx	R ₉	Used

BER

KEYS	CODE
LBL	23
Α	11
STO 8	33 08
0	00
g x≠y	35 21
0	00
RTN	24
RCL 1	34 01
RCL 5	34 05
×	71
RCL 7	34 07
÷	81
RCL 4	34 04
÷	81
STO 8	33 08
RTN	24
LBL	23
В	12
STO 7	33 07
0	00
g x≠y	35 21
0	00
RTN	24
RCL 1	34 01 34 08
RCL 8	
÷	81
RCL 4	34 04
÷	81
RCL 5	34 05
X	71
STO 7	33 07
RTN	24
LBL	23
C	13
STO 4	33 04

R	EYNOLDS NUMB					
	KEYS	CODE				
İ	0	00				
	g x≠y	35 21				
	0	00				
	RTN	24				
	RCL 1	34 01				
	RCL 8	34 08				
	÷	81				
	RCL 7	34 07				
	÷	81				
	RCL 5 x STO 4 RTN	34 05				
	X	71				
	STO 4	33 04				
	RTN	24				
	D CTO 5	14				
	STO 5	33 05				
	0	00 35 21				
	g x≠y O	35 21 00				
	RTN	24				
	RCL 8	34 08				
	RCL 7	34 07				
	X	71				
	RCL 4	34 04				
	x	71				
	RCL 1	34 01				
	÷	81				
	STO 5	33 05				
	RTN	24				
	LBL	23				
	Е	15				
	STO 1	33 01				
ĺ	0	00				
	g x≠y	35 21				
	0	00				

KEYS	CODE
RTN	24
RCL 8	34 08
RCL 7	34 07
x	71
RCL 4	34 04
x	71
RCL 5	34 05
÷	81
STO 1	33 01
	24
g NOP	35 01 35 01 35 01 35 01 35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
3	
g NOP	35 01

R ₁ Re	R ₄ ,		R ₇	v
R ₂	R ₅ µ	ı	R ₈	×
R ₃	R ₆		R ₉	Used

NUSSELT AND BIOT NUMBERS

KEYS	CODE		KEYS	CODE
LBL	23		RCL 5	34 05
Α	11		RCL 8	34 08
STO 5	33 05		×	71
0	00		RCL 2	34 02
g x≠y	35 21		÷	81
0	00		STO 6	33 06
RTN	24		RTN	24
RCL 2	34 02	ĺ	LBL	23
RCL 6	34 06		D	14
x	71		STO 2	33 02
RCL 8	34 08	ł	0	00
÷	81	ļ	g x≠y	35 21
STO 5	33 05		0	00
RTN	24		RTN	24
LBL	23		RCL 5	34 05
В	12		RCL 8	34 08
STO 8	33 08		×	71
0	00	١.	RCL 6	34 06
g x≠y	35 21		÷	81
0	00		STO 2	33 02
RTN	24	1	RTN	24
RCL 2	34 02		g NOP	35 01
RCL 5	34 05		g NOP	35 01
÷	81		g NOP	35 01
RCL 6	34 06		g NOP	35 01
×	71	-	g NOP	35 01
STO 8	33 08		g NOP	35 01
RTN	24	ļ	g NOP	35 01
LBL	23		g NOP	35 01
C	13		g NOP	35 01
STO 6	33 06		g NOP	35 01
0	00		g NOP	35 01
g x≠y	35 21		g NOP	35 01
0	00		g NOP	35 01
RTN	24		g NOP	35 01
<u> </u>	<u> </u>	_		

KEYS	CODE				
g NOP	35 01				
g NOP	35 01				
g NOP	35 01				
g NOP	35 01				
g NOP	35 01				
g NOP	35 01				
g NOP	35 01				
g NOP	35 01				
g NOP	35 01				
g NOP	35 01				
g NOP	35 01				
g NOP	35 01				
g NOP	35 01				
g NOP	35 01				
g NOP	35 01				
g NOP	35 01				
g NOP	35 01				
g NOP	35 01				
g NOP	35 01				
g NOP	35 01				
g NOP	35 01				
g NOP	35 01				
g NOP	35 01				
g NOP	35 01 35 01				
g NOP					
g NOP	35 01 35 01				
g NOP	35 01				
g NOP g NOP	35 01				
g NOP	35 01				
g NOF	33 0 1				

R ₁		R ₄		R ₇	
R ₂	Nu(Bi)	R ₅	h(k _c)	R ₈	×
R_3		R ₆	k (D _{ab})	R ₉	Used

STANTO **MBERS**

——————————————————————————————————————			
KEYS	CODE		
LBL	23		
Α	11		
STO 5	33 05		
0	00		
g x≠y	35 21		
0	00		
RTN	24		
RCL 2	34 02		
RCL 4	34 04		
х	71		
RCL 7	34 07		
X	71 34.06		
RCL 6	J-1 UU		
X	71		
STO 5	33 05		
RTN	24		
LBL	23		
B STO 4	12		
STO 4 0	33 04		
0 g x≠y	00 35.21		
y x <i></i> -y 0	35 21 00		
RTN	24		
RCL 5	34 05		
RCL 2	34 02		
÷	81		
RCL 7	34 07		
÷	81		
RCL 6	34 06		
÷	81		
STO 4	33 04		
RTN	24		
LBL	23		
C	13		
STO 7	33 07		
	L		

KEYS	CODE
0	00
g≠y	35 21
0	00
RTN	24
RCL 5	34 05
RCL 2	34 02
÷	81
RCL 4	34 04
÷	81
RCL 6	34 06
÷	81
STO 7	33 07
RTN	24
LBL	23
D	14
STO 6	33 06
0	00
g x≠y	35 21
0	00
RTN	24
RCL 5	34 05
RCL 2	34 02
÷	81
RCL 4	34 04
	81
RCL 7	34 07
-	81
STO 6	33 06

KEYS	CODE			
RTN	24			
RCL 5	34 05			
RCL 4	34 04			
RCL 7	34 07			
RCL 6	34 06			
x	71			
х	71			
÷	81			
STO 2	33 02			
RTN	24			
g NOP	35 01			
g NOP	35 01			
g NOP	35 01 35 01			
g NOP	1			
g NOP	35 01			
g NOP g NOP	35 01			
g NOP	35 01			
g NOP	35 01			
g NOP	35 01			
	35 01 35 01			
g NOP	35 01 35 01			
g NOP	35 01			
g NOP	35 01			
g NOP	35 01			
g NOP	35 01			
g NOP	35 01			
g NOP	35 01			
g NOP	35 01			
g NOP	35 01			

R ₁	R ₄	ρ	R ₇	v(D _{ab})
R ₂ St(Le) R ₅	h(k _c)	R ₈	
R ₃	Re	c _p	R ₉	Used

24

23

15

00 35 21

00

33 02

RTN

LBL

STO 2

g x≠y Ō

Ε

0

PRANDTL NUMBER

LBL 23 RCL 7 34 07 RCL 4 34 04 STO 7 33 07	KEYS	CODE		KEYS	CODE
STO 7 33 07 x 71 0 00 RCL 3 34 03 g x≠y 35 21 ÷ 81 0 00 STO 6 33 06 RTN 24 RTN 24 RCL 3 34 03 LBL 23 RCL 6 34 06 D 14 x 71 STO 3 33 03 RCL 4 34 04 0 00 ÷ 81 g x≠y 35 21 STO 7 33 07 0 00 RTN 24 RTN 24 LBL 23 RCL 7 34 07 B 12 RCL 4 34 04 STO 4 33 04 x 71 0 00 RCL 6 34 06 g x≠y 35 21 ÷ 81 0 0 STO 3 33 03 RTN 24 RTN 24 RCL 7 34 07 g NOP 35 01 RCL 7 34 07 g NOP 35 01	LBL	23		_	1
0 00 RCL 3 34 03 9 x≠y 35 21	Α	11		RCL 4	
g x≠y	STO 7	33 07			1
0 00 STO 6 33 06 RTN 24 RTN 24 RCL 3 34 03 LBL 23 RCL 6 34 06 D 14 x 71 STO 3 33 03 RCL 4 34 04 0 00 ÷ 81 g x≠y 35 21 STO 7 33 07 0 00 RTN 24 RTN 24 LBL 23 RCL 7 34 07 B 12 RCL 4 34 04 STO 4 33 04 x 71 0 00 RCL 6 34 06 g x≠y 35 21 ÷ 81 0 0 00 STO 3 33 03 RTN 24 RTN 24 RCL 3 34 03 g NOP 35 01 RCL 7 34 07 g NOP 35 01 RCL 6 34 06 g NOP 35 01 STO 4 33 04 g NOP 35 01 STO 4 33 04 g NOP 35 01 STO 4 33 04 g NOP 35 01 STO 6 33 06 g NOP 35 01 g x≠y 35 21 g NOP 35 01 g x≠y 35 21 g NOP 35 01 g x≠y 35 21 g NOP 35 01	_			1	
RTN 24 RTN 24 RCL 3 34 03 LBL 23 RCL 6 34 06 D 14 x 71 STO 3 33 03 RCL 4 34 04 0 000 ÷ 81 g x≠y 35 21 STO 7 33 07 0 00 RTN 24 RTN 24 LBL 23 RCL 7 34 07 B 12 RCL 4 34 04 STO 4 33 04 x 71 0 00 RCL 6 34 06 g x≠y 35 21 ÷ 81 0 0 00 STO 3 33 03 RTN 24 RTN 24 RCL 3 34 03 g NOP 35 01 RCL 7 34 07 g NOP 35 01 x 71 g NOP 35 01 STO 4 33 04 g NOP 35 01 STO 4 33 04 g NOP 35 01 C 13 g NOP 35 01 STO 6 33 06 g NOP 35 01 g x≠y 35 21 g NOP 35 01	g x≠y	1		l ⁻	
RCL 3				1	
RCL 6		ì			!
x 71 STO 3 33 03 RCL 4 34 04 0 0 00 00 00 00 00 00 00 00 00 00 0				1	
RCL 4 34 04 0 00 ÷ 81 g x≠y 35 21 STO 7 33 07 0 00 RTN 24 RTN 24 LBL 23 RCL 7 34 07 B 12 RCL 4 34 04 STO 4 33 04 x 71 0 00 RCL 6 34 06 g x≠y 35 21 ÷ 81 0 00 STO 3 33 03 RTN 24 RTN 24 RCL 3 34 03 g NOP 35 01 RCL 7 34 07 g NOP 35 01 RCL 7 34 07 g NOP 35 01 RCL 6 34 06 g NOP 35 01 x 71 g NOP 35 01 STO 4 33 04 g NOP 35 01 LBL 23 g NOP 35 01 STO 6 33 06 g NOP 35 01 STO 6 33 06 g NOP 35 01 g x≠y 35 21 g NOP	RCL 6			-	
÷ 81 g x≠y 35 21 STO 7 33 07 0 00 RTN 24 RTN 24 LBL 23 RCL 7 34 07 B 12 RCL 4 34 04 STO 4 33 04 x 71 0 00 RCL 6 34 06 g x≠y 35 21 ÷ 81 0 00 STO 3 33 03 RTN 24 RTN 24 RCL 3 34 03 g NOP 35 01 RCL 7 34 07 g NOP 35 01 RCL 7 34 07 g NOP 35 01 RCL 6 34 06 g NOP 35 01 x 71 g NOP 35 01 STO 4 33 04 g NOP 35 01 LBL 23 g NOP 35 01 STO 6 33 06 g NOP 35 01 STO 6 33 06 g NOP 35 01 G x≠y 35 21 g NOP 35 01 g x≠y 35 21 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
STO 7 33 07 0 00 RTN 24 RTN 24 LBL 23 RCL 7 34 07 B 12 RCL 4 34 04 STO 4 33 04 x 71 0 00 RCL 6 34 06 g x≠y 35 21 ÷ 81 0 00 STO 3 33 03 RTN 24 RTN 24 RCL 3 34 03 g NOP 35 01 RCL 7 34 07 g NOP 35 01 RCL 6 34 06 g NOP 35 01 x 71 g NOP 35 01 STO 4 33 04 g NOP 35 01 RTN 24 g NOP 35 01 LBL 23 g NOP 35 01 C 13 g NOP 35 01 STO 6 33 06 g NOP 35 01 0 0 g NOP 35 01 0 0 g NOP 35 01 g x≠y 35 21 g NOP <t< td=""><td></td><td></td><td></td><td>_</td><td></td></t<>				_	
RTN 24 RTN 24 LBL 23 RCL 7 34 07 B 12 RCL 4 34 04 STO 4 33 04 x 71 0 00 RCL 6 34 06 g x≠y 35 21 ÷ 81 0 00 STO 3 33 03 RTN 24 RTN 24 RCL 3 34 03 g NOP 35 01 RCL 7 34 07 g NOP 35 01 RCL 6 34 06 g NOP 35 01 X 71 g NOP 35 01 X 71 g NOP 35 01 STO 4 33 04 g NOP 35 01 C 13 g NOP 35 01 C 13 g NOP 35 01 STO 6 33 06 g NOP 35 01 STO 6 33 06 g NOP 35 01 g x≠y 35 21 g NOP 35 01 g x≠y 35 21 g NOP 35 01				_	
LBL 23 RCL 7 34 07 B 12 RCL 4 34 04 STO 4 33 04 x 71 0 00 RCL 6 34 06 g x≠y 35 21 ÷ 81 0 00 STO 3 33 03 RTN 24 RTN 24 RCL 3 34 03 g NOP 35 01 RCL 7 34 07 g NOP 35 01 ÷ 81 g NOP 35 01 X 71 g NOP 35 01 STO 4 33 04 g NOP 35 01 STO 4 33 04 g NOP 35 01 C 13 g NOP 35 01 C 13 g NOP 35 01 STO 6 33 06 g NOP 35 01 STO 6 33 06 g NOP 35 01 g x≠y 35 21 g NOP 35 01		1		-	
B 12 RCL 4 34 04 STO 4 33 04 x 71 0 00 RCL 6 34 06 g x≠y 35 21 ÷ 81 0 00 STO 3 33 03 RTN 24 RTN 24 RCL 3 34 03 g NOP 35 01 RCL 7 34 07 g NOP 35 01 ∴ 81 g NOP 35 01 x 71 g NOP 35 01 x 71 g NOP 35 01 STO 4 33 04 g NOP 35 01 C 13 g NOP 35 01 C 13 g NOP 35 01 STO 6 33 06 g NOP 35 01 STO 6 33 06 g NOP 35 01 g x≠y 35 21 g NOP 35 01 g x≠y 35 21 g NOP 35 01					
STO 4 33 04				1	
0 00 RCL 6 34 06 g x≠y 35 21 ÷ 81 0 00 STO 3 33 03 RTN 24 RTN 24 RCL 3 34 03 g NOP 35 01 c 81 g NOP 35 01 c 9 NOP 35 01 d 9 NOP 35 01	_				1
g x≠y 35 21					
0 00 STO 3 33 03 RTN 24 RTN 24 RCL 3 34 03 g NOP 35 01 FCL 7 34 07 g NOP 35 01 FCL 6 34 06 g NOP 35 01 STO 4 33 04 g NOP 35 01 STO 4 33 04 g NOP 35 01 LBL 23 g NOP 35 01 C 13 g NOP 35 01 STO 6 33 06 g NOP 35 01 STO 6 33 06 g NOP 35 01 G x≠y 35 21 g NOP 35 01 G x≠y 35 21 g NOP 35 01	_				
RTN 24 RTN 24 RCL 3 34 03 g NOP 35 01 RCL 7 34 07 g NOP 35 01 ⇒ 81 g NOP 35 01 RCL 6 34 06 g NOP 35 01 x 71 g NOP 35 01 STO 4 33 04 g NOP 35 01 RTN 24 g NOP 35 01 RTN 24 g NOP 35 01 LBL 23 g NOP 35 01 C 13 g NOP 35 01 STO 6 33 06 g NOP 35 01 STO 6 33 06 g NOP 35 01 g x≠y 35 21 g NOP 35 01					
RCL 3 34 03 g NOP 35 01 RCL 7 34 07 g NOP 35 01 ÷ 81 g NOP 35 01 RCL 6 34 06 g NOP 35 01 x 71 g NOP 35 01 STO 4 33 04 g NOP 35 01 RTN 24 g NOP 35 01 LBL 23 g NOP 35 01 C 13 g NOP 35 01 STO 6 33 06 g NOP 35 01 STO 6 33 06 g NOP 35 01 g x≠y 35 21 g NOP 35 01 g NOP 35 01	•				
RCL 7 34 07 g NOP 35 01 ÷ 81 g NOP 35 01 RCL 6 34 06 g NOP 35 01 x 71 g NOP 35 01 STO 4 33 04 g NOP 35 01 RTN 24 g NOP 35 01 LBL 23 g NOP 35 01 C 13 g NOP 35 01 STO 6 33 06 g NOP 35 01 STO 6 33 06 g NOP 35 01 0 0 g NOP 35 01 g x≠y 35 21 g NOP 35 01 0 00 g NOP 35 01					
÷ 81 g NOP 35 01 RCL 6 34 06 g NOP 35 01 x 71 g NOP 35 01 STO 4 33 04 g NOP 35 01 RTN 24 g NOP 35 01 LBL 23 g NOP 35 01 C 13 g NOP 35 01 STO 6 33 06 g NOP 35 01 0 00 g NOP 35 01 g x≠y 35 21 g NOP 35 01 0 00 g NOP 35 01					
RCL 6 34 06 g NOP 35 01 x 71 g NOP 35 01 STO 4 33 04 g NOP 35 01 RTN 24 g NOP 35 01 LBL 23 g NOP 35 01 G NOP 35 01 STO 6 33 06 g NOP 35 01 0 g x≠y 35 21 g NOP 35 01 0 00 g NOP 35 01		1			1
x 71 g NOP 35 01 STO 4 33 04 g NOP 35 01 RTN 24 g NOP 35 01 LBL 23 g NOP 35 01 C 13 g NOP 35 01 STO 6 33 06 g NOP 35 01 0 00 g NOP 35 01 g x≠y 35 21 g NOP 35 01 0 00 g NOP 35 01 0 00 g NOP 35 01					1
STO 4 33 04 g NOP 35 01 RTN 24 g NOP 35 01 LBL 23 g NOP 35 01 C 13 g NOP 35 01 STO 6 33 06 g NOP 35 01 0 00 g NOP 35 01 g x≠y 35 21 g NOP 35 01 0 00 g NOP 35 01 0 00 g NOP 35 01		1			1 1 1 1
RTN 24 g NOP 35 01 LBL 23 g NOP 35 01 C 13 g NOP 35 01 STO 6 33 06 g NOP 35 01 0 00 g NOP 35 01 g x≠y 35 21 g NOP 35 01 0 00 g NOP 35 01 0 00 g NOP 35 01		1			
LBL 23 g NOP 35 01 C 13 g NOP 35 01 STO 6 33 06 g NOP 35 01 0 00 g NOP 35 01 g x≠y 35 21 g NOP 35 01 0 00 g NOP 35 01	-				
C 13 g NOP 35 01 STO 6 33 06 g NOP 35 01 0 00 g NOP 35 01 g x≠y 35 21 g NOP 35 01 0 00 g NOP 35 01		1			
STO 6 33 06 g NOP 35 01 0 00 g NOP 35 01 g x≠y 35 21 g NOP 35 01 0 00 g NOP 35 01					
0 00 g NOP 35 01 g x≠y 35 21 g NOP 35 01 0 00 g NOP 35 01					
g x≠y 35 21 g NOP 35 01 0 00 g NOP 35 01		T.			
0 00 g NOP 35 01	-		1		
		1			1
					1
KIN	RTN	24		g NOP	35 01

KEYS	CODE
g NOP	35 01
g NOP a NOP	35 01 35 01
J 3	35 01
g NOP g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01

R ₁	R ₄ c _p	R ₇ μ
R ₂	R ₅	R ₈
R ₃ Pr	R ₆ k	R ₉ Used

S ER

KEYS	CODE
LBL	23
Α	11
STO 7	33 07
0	00
g x≠y	35 21
0	00
RTN	24
RCL 3	34 03
RCL 4	34 04
X	71
RCL 6	34 06
X	71
STO 7	33 07
RTN	24
LBL	23
В	12
STO 4	33 04
0	00
g x≠y	35 21
0	00
RTN	24
RCL 7	34 07
RCL 6	34 06
÷	81
RCL 3	34 03
÷	81
STO 4	33 04
RTN	24
LBL C	23
	13
STO 6 0	33 06
•	00
g x≠y O	35 21
U RTN	00 24
אווא	24

CHMIDT	NUMB
KEYS	CODE
RCL 7	34 07
RCL 4	34 04
÷	81
RCL 3	34 03 81
CTOC	22.00
RTN	24 23
D	14
STO 3	33 03
0 gx ≠ y	00 35 21
9 A 7 y O	00
RTN	24
RCL 7	34 07
RCL 6	34 06
÷	81
RCL 4	34 04 81
STO 3	33 03
RTN	24
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP g NOP	35 01 35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP g NOP	35 01 35 01
g NOP	35 01
3	30 01

?		
	KEYS	CODE
	g NOP	35 01
ĺ	g NOP	35 01
	g NOP	35 01
ĺ	g NOP	35 01
	g NOP	35 01
İ	g NOP	35 01
	g NOP	35 01
	g NOP	35 01
	g NOP	35 01
	g NOP	35 01
	9 1101	3301
Ì	g NOP	35 01 35 01
ı	g NOP	35 01

R ₁	R ₄ ρ	R_7 μ
R ₂	R ₅	R ₈
R ₃ Sc	R ₆ D _{ab}	R ₉ Used

ACTOR **FANN**

KEYS	CODE
STO 1	33 01
RTN	24
LBL	23
В	12
STO 6	33 06
RTN	24
LBL	23
С	13
1	01
6	06
RCL 1	34 01
2	02
3	03
0	00
0	00
g x≤y	35 22
GTO	22
1	01
gR↓	35 08
÷	81
STO 5	33 05
RTN	24
LBL	23
1	01
RCL 6	34 06
f	31
LN	07
-1	01
•	83
7	07
3	03
7	07
STO 2	33 02
x	71
2	02

ING FRICTION F					
KEYS	CODE				
. 2 8 + STO 5 ↑ ↑ LBL 2 + CLX RCL 5	83 02 08 61 33 05 41 41 41 23 02 61 44 34 05 51				
4 6 7 RCL 6 x RCL 1	04 83 06 07 34 06 71 34 01				
RCL 5 x 1 + STO 9 f LN RCL 2 x - RCL	81 34 05 71 01 61 33 09 31 07 34 02 71 51 34				
x -	71 51				

KEYS	CODE
g	35
g ¹/x	04
CHS	42
1	01
+	61
RCL 2	34 02
X	71
RCL 5	34 05
÷	81
1	01
+ ÷	61
	81
STO	33
+	61
5	05
g	35
ABS	06
EEX	43
CHS	42
6	06
g x≤y	35 22
GTO	22
2	02
RCL 5	34 05
↑	41
X	71
g 1/v	35
/ X	04
STO 5	33 05
RTN	24

R₁	Re	R ₄		R ₇	
R ₂	1.737	R ₅	1/√f, f	R ₈	
R ₃		R ₆	D _{eq} /€	R ₉	Used

	CONDUIT FLO				
KEYS	CODE		KEYS	CODE	
LBL	23]	RCL 2	34 02	
A	11		↑	41	
4	04		×	71	
÷	81] ↑	41	
STO 8	33 08		+	61	
0	00		÷	81	
RTN	24	İ	RCL 8	34 08	
LBL	23		_	51	
В	12	İ	RCL 5	34 05	
STO 4	33 04		÷	81	
0	00		STO 3	33 03	
g x≠γ	35 21		RTN	24	
0	00		LBL	23	
RTN	24		D	14	
RCL 2	34 02		STO 5	33 05	
↑	41		0	00	
×	71		g x≠y	35 21	
1	41		0	00	
+	61		RTN	24	
RCL 5	34 05		RCL 4	34 04	
RCL 3	34 03		RCL 2	34 02	
X	71		↑ ↑	41	
RCL 8	34 08		X	71	
+	61 71		↑	41	
x STO 4	33 04		+ ÷	61	
RTN	24			81	
LBL	23		RCL 8	34 08	
C	13			51	
STO 3	33 03		RCL 3	34 03	
0	00		STO 5	81 33 05	
g x≠y	35 21	ĺ	RTN	1	
0	00		LBL	24 23	
RTN	24		E	23 15	
RCL 4	34 04		STO 2	33 02	
1102 4	JT UT	l	3102	33 UZ	

	1
KEYS	CODE
0	00
g x≠y	35 21
0	00
RTN	24
RCL 4	34 04
RCL 5	34 05
RCL 3	34 03
×	71
RCL 8	34 08
+	61
↑	41
+	61
÷	81
f	31
√x	09
STO 2	33 02
RCL 7	34 07
0	00
g x≠y	35 21
g R↓ ÷	35 08
	81
STO	33
x 1	71
RCL 2	01 34 02
STO 7	34 02
RTN	24
g NOP	35 01
g NOP	35 01
g NOP	35 01
9 .101	33 01

R ₁	Re	R ₄	$\Delta P/\rho$	R ₇	V
R ₂	٧	R ₅	f	R ₈	K _T
R ₃	L/D _{eq}	R ₆		R ₉	Used

Y-ENGLISH **CONSERV**

KEYS	CODE	KEYS
STO 4	33 04	LBL
CLX	44	C
STO 8	33 08	
7	07	RCL 6
7	07	×
8	08	0
•	83	g x≠y
1	01	GTO
6	06	1
STO 5	33 05	RCL 8
3	03	RCL 6
2	02	÷
•	83	RTN
1	01	LBL
7	07	D
STO 6	33 06	↑
RTN	24	1
LBL	23	4
В	12	4
↑	41	STO 7
g	35	
ABS	06	RCL 4
×	71	÷
2	02	RCL 6
÷	81	×
0	00	0
gx≠y	35 21	g x≠y
GTO	22	GTO
1	01	1
RCL 8	34 08	RCL 8
2	02	RCL 7
X	71	÷
f _	31	RCL 4
√x	09	x
RTN	24	RCL 6
		·

1 /	ATION OF ENERGY		
	KEYS	CODE	
ļ	LBL	23	
1	С	13	
	↑	41	
1	RCL 6	34 06	
	×	71	
	0	00	
	g x≠y	35 21	
	GTO	22	
	1	01	
	RCL 8	34 08	
	RCL 6	34 06	
	÷	81	
	RTN	24	
	LBL	23	
	D	14	
	↑	41	
	1	01	
	4	04	
	4	04	
	STO 7	33 07	
	×	71	
	RCL 4	34 04	
	÷	81	
	RCL 6	34 06	
	X	71	
	0	00	
	g x≠y	35 21	
	GTO	22	
	1	01	
	RCL8	34 08	l

KEYS	CODE	
÷	81	
RTN	24	
LBL	23	
E	15	
↑	41	
RCL 5	34 05	
x	71	
RCL 6	34 06	
×	71	
0	00	
g x≠y	35 21	
GTO	22	
1	01	
RCL 8	34 08	
RCL 5	34 05	
÷	81	
RCL 6	34 06	
÷	81	
RTN	24	
LBL	23	
1	01	
gR↓	35 08	
STO	33	
+	61	
8	08	
0 DTN	00	
RTN g NOP	24	
g NOP	35 01 35 01	
g NOP	35 01	
gNOP	35 01	

R ₁	R ₄	ρ	R ₇	144
R ₂	R ₅	778.16	R ₈	ΣΕ
R ₃	R ₆	g	R ₉	Used

34 07 81

CONSE **IERGY-SI**

	
KEYS	CODE
LBL	23
Α	11
STO 4	33 04
CLX	44
STO 8	33 08
9	09
•	83
8	08
0	00
6	06
6	06
5	05
STO 6	33 06
RTN	24
LBL	23
В	12
↑	41
g	35
ABS	06
X	71
2	02
÷	81
0	00
g x≠y	35 21
GTO	22
1	01
RCL 8	34 08
2	02
X	71
f	31
√x pTN	09
RTN LBL	24
C	23 13
C	41
	41

RVATIO	N OF EN
KEYS	CODE
RCL 6	34 06
x	71
0	00
g x≠y	35 21
GTO	22
1	01
RCL 8	34 08
RCL 6	34 06
†	81
RTN	24
LBL	23
D	14
↑ BOL 4	41
RCL 4	34 04
0	81
1 -	35 21
g x≠y GTO	35 21
1	01
RCL 8	34 08
RCL 4	34 04
X	71
RTN	24
LBL	23
E	15
↑	41
0	00
g x=y	35 23
RCL 8	34 08
RTN	24
LBL	23
1	01
gR↓	35 08
STO	33
	0.1

KEYS	CODE
8	08
0	00
RTN	24
g NOP	35 01
g NOP g NOP	35 01 35 01
	35 01 35 01
g NOP	35 01

R ₁	R_4 ρ	R ₇
R ₂	R ₅	R ₈ ΣΕ
R ₃	R ₆ g	R ₉ Used

33 61

von KÁRMÁN ANALOGY

KEYS	CODE
STO 3	33 03
0	00
RTN	24
LBL	23
В	12
STO 2	33 02
0	00
g x≠y	35 21
0	00
RTN	24
RCL 5	34 05
2	02
÷	81
STO 6	33 06
D	14
÷	81
STO 2	33 02
RTN	24
LBL	23
С	13
STO 5	33 05
0	00
g x≠y	35 21
0	00
RTN	24
RCL 2	34 02
RCL 3	34 03
2	02
↑	41
3	03
÷	81
g	35
у×	05
X	71
STO 6	33 06

KEYS	CODE
LBL	23
1	01
D	14
RCL 2	34 02
X	71
STO 4	33 04
RCL 6	34 06
g x ≠y	35 07
_	51
RCL 4	34 04
RCL 2	34 02
_	51
RCL 6	34 06
÷	81
2 ÷	02
	81
1	01
.— ÷	51
÷	81
+	61
STO 6	33 06
_	51
g	35
ABS	06
EEX	43
CHS	42
8	80
g x≤y	35 22
GTO	22
1	01
RCL 6	34 06
2	02
x	71
STO 5	33 05
R/S	84

KEYS	CODE
LBL	23
D	14
RCL 6	34 06
RCL 3	34 03
1	01
-	51
↑	41
↑	41
5	05
x	71
6	06
÷	81
1	01
+	61
f	31
In	07
+	61
STO 8	33 08 35 07
g x f	35 07 31
√x	09
1	71
х 5	05
x	71
î	01
+	61
RTN	24
g NOP	35 01
g NOP	35 01
g NOP	35 01

R ₁		R ₄	Used	R ₇	
R ₂	St(k _c /v)	R ₅	f	R ₈	Used
R ₃	Pr(Sc)	R ₆	f/2	R ₉	Used

HEAT EXCHANGER EFFECTIVENESS

KEYS CODE KEYS CODE LBL 23 g x≥y 35 07 A 11 g NOP 35 01 x 71 RCL 1 34 01 STO 3 33 03 RCL 2 34 02 g x≥y 35 07 — 51 STO 2 33 02 x 71 RTN 24 RCL 6 34 06 LBL 23 g x≥y 35 07 B 12 ÷ 81 x 71 STO 5 33 05 STO 4 33 04 RCL 1 34 01 g x≥y 35 07 RCL 6 34 06 STO 1 33 01 RCL 6 34 06 STO 1 33 01 RCL 6 34 06 RCL 2 34 02 RCL 3 34 03 RCL 2 34 02 RCL 3 34 03 RCL 3 34 03 RCL 2 34 02 LBL 23 RTN 24			_		
A 11	KEYS	CODE		KEYS	CODE
x 71 RCL 1 34 01 STO 3 33 03 RCL 2 34 02 g x≥y 35 07 — 51 STO 2 33 02 x 71 RTN 24 RCL 6 34 06 LBL 23 g x≥y 35 07 B 12 ÷ 81 X 71 STO 5 33 05 STO 4 33 04 RCL 1 34 01 g x≥y 35 07 RCL 6 34 06 STO 1 33 01 RCL 4 34 04 RTN 24 ÷ 81 LBL 23 — 51 RCL 3 34 03 RCL 3 34 03 RCL 3 34 03 RCL 2 34 02 x 71 + 61 GTO 22 RCL 6 34 06 E 15 RCL 5 34 05 LBL 23 RTN 24 D 14 g NOP 35 01 g X≥y 35 07 g NOP 35 01	LBL	23		g x 	35 07
STO 3 33 03 RCL 2 34 02 g x≥y 35 07 - 51 STO 2 33 02 x 71 RTN 24 RCL 6 34 06 LBL 23 g x≥y 35 07 B 12 ÷ 81 X 71 STO 5 33 05 STO 4 33 04 RCL 1 34 01 g x≥y 35 07 RCL 6 34 06 STO 1 33 01 RCL 4 34 04 RTN 24 ÷ 81 LBL 23 - 51 RCL 3 34 03 RCL 3 34 03 RCL 3 34 03 RCL 2 34 02 x 71 + 61 GTO 22 RCL 6 34 06 RCL 3 34 03 RCL 2 34 02 x 71 + 61 GTO 22 RCL 6 34 06 RCL 1 34 01 g NOP 35 01 g X≥y 35 07 g NOP <t< td=""><td>Α</td><td>11</td><td>- 1</td><td></td><td>35 01</td></t<>	Α	11	- 1		35 01
g x≥y 35 07	×	71	-		34 01
STO 2 33 02 x 71 RTN 24 RCL 6 34 06 LBL 23 g x≥y 35 07 B 12 x 81 x 71 STO 5 33 05 STO 4 33 04 RCL 1 34 01 g x≥y 35 07 RCL 6 34 06 STO 1 33 01 RCL 6 34 06 STO 1 33 01 RCL 4 34 04 RTN 24 ÷ 81 LBL 23 — 51 RCL 3 34 03 RCL 3 34 03 RCL 3 34 03 RCL 2 34 02 x 71 + 61 GTO 22 RCL 6 34 06 RCL 5 34 05 RTN 24 D 14 g NOP 35 01 g X≥y 35 07 g NOP 35 01 g X≥y 35 07 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP		33 03	- 1	RCL 2	34 02
RTN				_	
BL	l				
B 12	1	: - 1	ŀ		
x 71 STO 5 33 05 STO 4 33 04 RCL 1 34 01 g x ≠ y 35 07 RCL 6 34 06 STO 1 33 01 RCL 4 34 04 RTN 24 ÷ 81 LBL 23 − 51 C 13 RCL 6 34 06 RCL 2 34 02 RCL 3 34 03 − 51 ÷ 81 RCL 3 34 03 RCL 2 34 02 x 71 + 61 GTO 22 RCL 6 34 06 E 15 RCL 5 34 05 LBL 23 RTN 24 D 14 g NOP 35 01 g x ≠ y 35 07 g NOP 35 01 g x ≠ y 35 07 g NOP 35 01 RCL 4 34 04 g NOP 35 01 LBL 23 g NOP 35 01 LBL 23 g NOP 35 01 STO 6 33 06 g NOP 35 01 STO 6 33 06 g NOP 35 01 RCL 3 34 03 g NOP 35 01 RCL 3 34 03 g NOP 35 01 RCL 3 34 03 g NOP 35 01 RCL 3 34 03 g NOP 35 01 RCL 3 34 03 g NOP 35 01 RCL 4 34 04 g NOP 35 01	LBL				1
STO 4 33 04 RCL 1 34 01 g x≥y 35 07 RCL 6 34 06 STO 1 33 01 RCL 4 34 04 RTN 24 ÷ 81 LBL 23 — 51 C 13 RCL 6 34 06 RCL 2 34 02 RCL 3 34 03 RCL 3 34 03 RCL 2 34 02 x 71 + 61 GTO 22 RCL 6 34 06 E 15 RCL 5 34 05 LBL 23 RTN 24 D 14 g NOP 35 01 g XZY 35 07 g NOP 35 01 g XZY 35 07 g NOP 35 01 RCL 4 34 04 g NOP 35 01 RCL 4 34 04 g NOP 35 01 E 15 g NOP 35 01 STO 6 33 06 g NOP 35 01 RCL 3 34 03 g NOP 35 01 RCL 3 34 03	В	. –			
g x≥y 35 07 RCL 6 34 06 RCL 4	1				
STO 1 33 01 RCL 4 34 04 RTN 24 ÷ 81 LBL 23 — 51 C 13 RCL 6 34 06 RCL 2 34 02 RCL 3 34 03 — 51 ÷ 81 RCL 3 34 03 RCL 2 34 02 × 71 + 61 GTO 22 RCL 6 34 06 E 15 RCL 5 34 05 LBL 23 RTN 24 D 14 g NOP 35 01 g XZY 35 07 g NOP 35 01 g XZY 35 07 g NOP 35 01 RCL 4 34 04 g NOP 35 01 RCL 4 34 04 g NOP 35 01 E 15 g NOP 35 01 STO 6 33 06 g NOP 35 01 RCL 3 34 03 g NOP 35 01 RCL 3 34 03 g NOP 35 01 RCL 4 34 04 g NOP </td <td></td> <td></td> <td></td> <td></td> <td></td>					
RTN					
LBL 23		1 - 1 - 1			
C 13 RCL 6 34 06 RCL 2 34 02 ÷ 81 RCL 3 34 03 ÷ 81 RCL 2 34 02 x 71 + 61 GTO 22 RCL 6 34 06 E 15 RCL 5 34 05 LBL 23 RTN 24 D 14 g NOP 35 01 g x≥y 35 07 g NOP 35 01 RCL 1 34 01 g NOP 35 01 RCL 4 34 04 g NOP 35 01 LBL 23 g NOP 35 01 LBL 23 g NOP 35 01 E 15 g NOP 35 01 STO 6 33 06 g NOP 35 01 RCL 3 34 03 g NOP 35 01 RCL 4 34 04 g NOP 35 01 RCL 3 34 03 g NOP 35 01 RCL 4 34 04 g NOP 35 01 RCL 3 34 03 g NOP 35 01 RCL 4 34 04 g NOP 35 01 RCL 4 34 04 g NOP 35 01				÷	
RCL 2 34 02				_	
- 51					
RCL 3 34 03 RCL 2 34 02 x 71 + 61 GTO 22 RCL 6 34 06 E 15 RCL 5 34 05 LBL 23 RTN 24 D 14 g NOP 35 01 RCL 1 34 01 g NOP 35 01 g x≥y 35 07 g NOP 35 01 - 51 g NOP 35 01 RCL 4 34 04 g NOP 35 01 x 71 g NOP 35 01 LBL 23 g NOP 35 01 E 15 g NOP 35 01 STO 6 33 06 g NOP 35 01 RCL 3 34 03 g NOP 35 01 RCL 4 34 04 g NOP 35 01	RCL 2	1			
x 71 + 61 GTO 22 RCL 6 34 06 E 15 RCL 5 34 05 LBL 23 RTN 24 D 14 g NOP 35 01 RCL 1 34 01 g NOP 35 01 g x≥y 35 07 g NOP 35 01 — 51 g NOP 35 01 RCL 4 34 04 g NOP 35 01 x 71 g NOP 35 01 LBL 23 g NOP 35 01 E 15 g NOP 35 01 STO 6 33 06 g NOP 35 01 RCL 3 34 03 g NOP 35 01 RCL 4 34 04 g NOP 35 01	-				
GTO 22 RCL 6 34 06 E 15 RCL 5 34 05 LBL 23 RTN 24 D 14 g NOP 35 01 RCL 1 34 01 g NOP 35 01 g x ≠ y 35 07 g NOP 35 01 - 51 g NOP 35 01 RCL 4 34 04 g NOP 35 01 x 71 g NOP 35 01 LBL 23 g NOP 35 01 LBL 23 g NOP 35 01 E 15 g NOP 35 01 STO 6 33 06 g NOP 35 01 RCL 3 34 03 g NOP 35 01 RCL 4 34 04 g NOP 35 01 RCL 3 34 03 g NOP 35 01 RCL 4 34 04 g NOP 35 01	RCL 3		1		
E 15 RCL 5 34 05 LBL 23 RTN 24 D 14 g NOP 35 01 RCL 1 34 01 g NOP 35 01 g x ≠ y 35 07 g NOP 35 01 - 51 g NOP 35 01 RCL 4 34 04 g NOP 35 01 x 71 g NOP 35 01 LBL 23 g NOP 35 01 LBL 23 g NOP 35 01 E 15 g NOP 35 01 STO 6 33 06 g NOP 35 01 RCL 3 34 03 g NOP 35 01 RCL 4 34 04 g NOP 35 01 RCL 4 34 04 g NOP 35 01				•	
LBL 23 RTN 24 D 14 g NOP 35 01 RCL 1 34 01 g NOP 35 01 g x ≠ y 35 07 g NOP 35 01 - 51 g NOP 35 01 RCL 4 34 04 g NOP 35 01 x 71 g NOP 35 01 LBL 23 g NOP 35 01 LBL 23 g NOP 35 01 E 15 g NOP 35 01 STO 6 33 06 g NOP 35 01 RCL 3 34 03 g NOP 35 01 RCL 4 34 04 g NOP 35 01 RCL 4 34 04 g NOP 35 01					
D 14 g NOP 35 01 RCL 1 34 01 g NOP 35 01 g x ≠ y 35 07 g NOP 35 01 RCL 4 34 04 g NOP 35 01 x 71 g NOP 35 01 LBL 23 g NOP 35 01 E 15 g NOP 35 01 STO 6 33 06 g NOP 35 01 RCL 3 34 03 g NOP 35 01 RCL 4 34 04 g NOP 35 01 RCL 4 34 04 g NOP 35 01	1				
RCL 1 34 01 g NOP 35 01 g x ≥ y 35 07 g NOP 35 01 - 51 g NOP 35 01 g NOP 35 01 RCL 4 34 04 g NOP 35 01 x 71 g NOP 35 01 LBL 23 g NOP 35 01 E 15 g NOP 35 01 STO 6 33 06 g NOP 35 01 RCL 3 34 03 g NOP 35 01 RCL 4 34 04 g NOP 35 01	1				1
g x≥y 35 07 g NOP 35 01 - 51 g NOP 35 01 RCL 4 34 04 g NOP 35 01 x 71 g NOP 35 01 LBL 23 g NOP 35 01 E 15 g NOP 35 01 STO 6 33 06 g NOP 35 01 RCL 3 34 03 g NOP 35 01 RCL 4 34 04 g NOP 35 01	. –				
- 51 g NOP 35 01 RCL 4 34 04 g NOP 35 01 x 71 g NOP 35 01 LBL 23 g NOP 35 01 E 15 g NOP 35 01 STO 6 33 06 g NOP 35 01 RCL 3 34 03 g NOP 35 01 RCL 4 34 04 g NOP 35 01	1				!
RCL 4 34 04 g NOP 35 01 x 71 g NOP 35 01 LBL 23 g NOP 35 01 E 15 g NOP 35 01 STO 6 33 06 g NOP 35 01 RCL 3 34 03 g NOP 35 01 RCL 4 34 04 g NOP 35 01	g x ₹y				1
x 71 g NOP 35 01 LBL 23 g NOP 35 01 E 15 g NOP 35 01 STO 6 33 06 g NOP 35 01 RCL 3 34 03 g NOP 35 01 RCL 4 34 04 g NOP 35 01	-	1			
LBL 23 g NOP 35 01 E 15 g NOP 35 01 STO 6 33 06 g NOP 35 01 RCL 3 34 03 g NOP 35 01 RCL 4 34 04 g NOP 35 01	RCL 4				
E 15 g NOP 35 01 STO 6 33 06 g NOP 35 01 RCL 3 34 03 g NOP 35 01 RCL 4 34 04 g NOP 35 01	1				
STO 6 33 06 g NOP 35 01 RCL 3 34 03 g NOP 35 01 RCL 4 34 04 g NOP 35 01	1				
RCL 3 34 03 g NOP 35 01 RCL 4 34 04 g NOP 35 01	-				1
RCL 4 34 04 g NOP 35 01	l .				1
g x>y 35 24 g NOP 35 01	1				
	g x>y	35 24		g NOP	35 01

3 1		
	KEYS	CODE
	g NOP	35 01
	g NOP	35 01
1	g NOP	35 01
	g NOP	35 01
	g NOP	35 01
	g NOP	35 01
	g NOP	35 01
Ì	g NOP	35 01
	g NOP	35 01
	g NOP	35 01
	g NOP	35 01
	g NOP	35 01
	g NOP	35 01
	g NOP	35 01
Į	g NOP	35 01
ĺ	g NOP	35 01
	g NOP	35 01
	g NOP	35 01
1	g NOP	35 01
	g NOP	35 01
	g NOP	35 01
	g NOP	35 01
	g NOP	35 01
	g NOP	35 01
	g NOP	35 01
	g NOP	35 01
	g NOP	35 01
	g NOP	35 01
	g NOP	35 01
	g NOP	35 01

R ₁	T _{hin}	R ₄	Ch	R ₇		
R ₂	T _{cin}	R ₅	E	R ₈		
R ₃	C _c	R ₆	q	R ₉	Used	

HEAT EXCHANGER HEAT TRANSFER

KEYS	CODE		KEYS	CODE
LBL	23		RTN	24
A	11		LBL	23
STO 1	33 01		E	15
g x ⇄ y	35 07		D	14
STO 2	33 02		RCL 3	34 03
RTN	24		RCL 4	34 04
LBL	23	ĺ	g x≤y	35 22
В	12		gx ⋛y	35 07
×	71	l	g NOP	35 01
STO 4	33 04		RCL 6	34 06
gR↓	35 08		g x 	35 07
×	71		÷	81
STO 3	33 03		RCL 2	34 02
RTN	24	ĺ	+	61
LBL	23		RTN	24
С	13		LBL	23
STO 5	33 05		E	15
RTN	24		RCL 1	34 01
LBL	23		RCL 6	34 06
D	14		RCL 7	34 07
RCL 3	34 03		÷	81
RCL 4	34 04			51
g x≥y	35 24		RTN	24
g x Ży	35 07		g NOP	35 01
g NOP	35 01		g NOP	35 01
STO 7	33 07		g NOP	35 01
RCL 5	34 05		g NOP	35 01
RCL 1	71		g NOP	35 01
RCL 1	34 01 34 02		g NOP	35 01
RCL 2	34 U2 51		g NOP	35 01
-	1		g NOP	35 01
X	71 35		g NOP	35 01
g ABS	06		g NOP	35 01
STO 6	33 06		g NOP g NOP	35 01
3100	33 00		gNOP	35 01

KEYS	CODE
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01 35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP g NOP	35 01
- AICID	35 01

R_1	T _{hin}	R ₄	C _h	R ₇	C _{min}	
R_2	T _{cin}	R ₅	E	R ₈		
R_3	C _c	R ₆	q	R ₉	Used	

COUNTER-FLOW HEAT EXCHANGER

KEYS	CODE		KEYS	CODE
LBL	23		STO 5	33 05
Α	11		RTN	24
×	71		LBL	23
STO 4	33 04		1	01
gR↓	35 08		RCL 8	34 08
×	71		RCL 7	34 07
STO 3	33 03		÷	81
RTN	24		↑	41
LBL	23		↑	41
В	12		1	01
STO 8	33 08	ı	+	61
D	14		÷	81
1	01		STO 5	33 05
-	51		RTN	24
RCL 8	34 08		LBL	23
RCL 7	34 07		С	13
+	81		STO 5	33 05
×	71		D	14
f ⁻¹	32		RCL 5	34 05
LN	07		g ¹/x	35
1	01	ı	1/x	04
g x ≠y	35 07		_	51
_	51		1	01
g LST X	35 00		g LST X	35 00
D	14	- 1	_	51
×	71	-	÷	81
1	01	- 1	f	31
g x 	35 07		LN	07
_	51	ı	D	14
0	00	ŀ	1	01
g x=y	35 23		g x 	35 07
GTO	22	-	_	51
1	01	- 1	0	00
g R↓	35 08		g x=y	35 23
÷	81	-	GTO	22

ANGER				
KEYS	CODE			
2	02			
gR↓	35 08			
÷	81			
RCL 7	34 07			
×	71			
STO 8	33 08			
RTN	24			
LBL	23			
2	02			
RCL 5	34 05			
1	01			
RCL 5	34 05			
-	51			
÷	81			
RCL 7	34 07			
×	71			
STO 8	33 08			
RTN	24			
LBL	23			
D	14			
RCL 3	34 03			
RCL 4	34 04			
g x>y	35 24			
g x 	35 07			
g NOP	35 01			
STO 7	33 07			
g x ≠y	35 07			
÷	81			
RTN	24			
g NOP	35 01			

R ₁	R ₄ C _h	R ₇ C _{min}	
R ₂	R_5 E	R ₈ AU	
R ₃ C _c	R ₆	R ₉ Used	

PARALLEL-FLOW HEAT EXCHANGER

KEYS	CODE
LBL	23
Α	11
×	71
STO 4	33 04
gR↓	35 08
х	71
STO 3	33 03
RTN	24
LBL	23
В	12
STO 8	33 08
D	14
1	01
+	61
RCL 8	34 08
RCL 7	34 07
÷	81
X	71
CHS	42
f ⁻¹	32
LN	07
CHS	42
1	01
+	61
1	01
D	14
+ ÷	61
	81
STO 5	33 05
RTN	24
LBL C	23 13
STO 5	33 05
5105 D	33 05
1	01
1	U

KEYS	CODE
+	61
RCL 5	34 05
×	7.1
CHS	42
1	01
+	61
f	31
LN	07
CHS	42
1	01
D	14
+	61
÷	81
RCL 7	34 07
×	71
STO 8	33 08
RTN	24
LBL	23
D	14
RCL 3	34 03
RCL 4	34 04
g x>y	35 24
g x Ży	35 07
g NOP	35 01
STO 7	33 07
g x ≠y	35 07
÷	81
↑	41
CLX	44
g x=y	35 23
1	01
STO 7	33 07
g R↓	35 08
RTN	24
g NOP	35 01

CHANGER			
KEYS	CODE		
g NOP	35 01		
g NOP	35 01		
g NOP	35 01		
g NOP	35 01		
g NOP	35 01		
g NOP	35 01		
g NOP	35 01		
g NOP	35 01		
g NOP	35 01		
g NOP	35 01		
g NOP	35 01		
g NOP	35 01		
g NOP	35 01		
g NOP	35 01		
g NOP	35 01		
g NOP	35 01		
g NOP	35 01		
g NOP	35 01		
g NOP	35 01		
g NOP	35 01		
g NOP	35 01		
g NOP	35 01		
g NOP	35 01		
g NOP	35 01		
g NOP	35 01		
g NOP	35 01		
g NOP	35 01		
g NOP	35 01		
g NOP	35 01		
g NOP	35 01		

R ₁		R ₄	C _h	R ₇	C _{min}	
R ₂		R ₅	E	R ₈	AU	
R ₃	C _c	R ₆		R ₉	Used	

PARAI LOW, MBER) (SHELL

KEYS LBL A × STO 4 g R↓ × STO 3 RTN LBL B STO 8 E D × CHS	23 11 71 33 04 35 08 71 33 03 24 23 12 33 08 15 14 71 42
A x STO 4 g R↓ x STO 3 RTN LBL B STO 8 E D x CHS	11 71 33 04 35 08 71 33 03 24 23 12 33 08 15 14 71
X STO 4 g R↓ X STO 3 RTN LBL B STO 8 E D X CHS	71 33 04 35 08 71 33 03 24 23 12 33 08 15 14 71
STO 4 g R↓ x STO 3 RTN LBL B STO 8 E D x CHS	33 04 35 08 71 33 03 24 23 12 33 08 15 14 71
g R↓ × STO 3 RTN LBL B STO 8 E D × CHS	35 08 71 33 03 24 23 12 33 08 15 14 71
X STO 3 RTN LBL B STO 8 E D X CHS	71 33 03 24 23 12 33 08 15 14 71
STO 3 RTN LBL B STO 8 E D x CHS	33 03 24 23 12 33 08 15 14 71
RTN LBL B STO 8 E D x CHS	24 23 12 33 08 15 14 71
LBL B STO 8 E D x CHS	23 12 33 08 15 14 71
B STO 8 E D X CHS	12 33 08 15 14 71
STO 8 E D x CHS	33 08 15 14 71
E D x CHS	15 14 71
D x CHS	14 71
x CHS	71
CHS	
f ⁻¹	32
LN	07
1	01
g x 	35 07
+	61
1	01
g LST X	35 00
_	51
÷	81
RCL 6	34 06
x	71
RCL 7	34 07
+	61
2	02
g x ⇄ y	35 07
÷	81
STO 5	33 05
RTN LBL	24 23
C	13

LLEL-COU MIXED, E	JNTER-F EVEN NU	= J
KEYS	CODE	
STO 5	33 05	
D	14	
2	02	
×	71	
RCL 6	34 06	
2	02	
RCL 5	34 05	
÷	81	
+	61	
RCL 7	34 07	
÷	51	
CHS	81	
1	42 01	
	61	
f	I	
LN	31 07	
RCL 6	34 06	
÷	81	
CHS	42	
E	15	
g LST X	35 00	
†	. 41	
x	71	
x	71	
RTN	24	
LBL	23	
D	14	
RCL 3	34 03	
RCL 4	34 04	
g x≤y	35 22	
gx Ży	35 07	

KEYS	CODE
x	71
g LST X	35 00
1	01
+	61
STO 7	33 07
CLX	44
1	01
+	61
f	31
√x	09
STO 6	33 06
RTN	24
LBL	23
E	15
RCL 3	34 03
RCL 4	34 04
g x≤y	35 22
g x ⇄ y g NOP	35 07
g NOP g R↓	35 01 35 08
ynv ÷	81
RTN	24
g NOP	35 01

R ₁	R ₄ C _h	R ₇ 1+(C _{min} /C _{max}))
R ₂	R_5 E	R ₈ AU	1
R ₃ C _c	$R_6 \sqrt{1 + (C_{min}/C)}$	$(R_9)^2$ R ₉ Used	╗

g NOP

CROSS-FLOW WITH FLUIDS UNMIXED

KEYS	CODE
STO 4	33 04
g x ≠y	35 07
STO 3	33 03
LBL	23
E	15
RCL 3	34 03
RCL 4	34 04
g x>y	35 24
g x ≠y	35 07
g NOP	35 01
STO 6	33 06
÷	81
STO 7	33 07
RTN	24
LBL	23
В	12
STO 8	33 08
E	15
Α	11
RCL 8	34 08
LBL	23
D	14
RCL 6	34 06
÷	81
↑	41
↑	41
	83
2	02
2	02
g y [×]	35
	05
RCL 7	34 07
×	71
	81
g LST X	35 00

	KEYS		DE
	x y	35	
	^←y CHS	33	42
f	-1		32
	.N		07
1			01
-	_		51
x			71
	-1		32
L	.N		07
	CHS		42
1			01
+			61
	RTN		24
	TO 5	33	
	RTN	İ	24
	BL		23
	; TO 5	22	13 05
1		33	05
'			51
	- CHS	į.	42
f	,,,,	İ	31
	.N	İ	07
	CHS		42
E	:		15
0	LX		44
F	RCL 6	34	06
×			71
	8 OT	33	80
	.BL		23
1			01
	RCL 8	34	08
		24	14
	RCL 8 RCL 8		80 80
Ľ	NUL 8	34	06

KEYS	CODE
EEX	43
5	05
÷	81
_	51
D	14
	51
g LST X	35 00
RCL 5	34 05
-	51
g x ⇄ y ÷	35 07
•	81
RCL 8	34 08
EEX	43
5 ÷	05
-	81
X	71
STO	33 51
8	08
_	35
g ABS	06
RCL 8	34 08
EEX	43
3	03
÷	81
g x≤y	35 22
GTO	22
1	01
RCL 8	34 08
RTN	24

R ₁	R ₄	Ch	R ₇	C _{max} /C _{min}
R ₂	R ₅	E	R ₈	AU
R ₃ C _c	R ₆	C _{min}	R ₉	Used

COMPOSI AND WALLS

KEYS	CODE
LBL A	23 11
	35
g π	02
STO 6	33 06
CLX	44
STO 8	33 08
gR↓	35 08
g x 	35 07
STO 7	33 07
g x ≠y	35 07
GTO	22
Α	11
LBL	23
1	23 01 24
RTN	24
LBL	23
Α	11
x	71
g	35
i/x	04
STO	33
+	61
8	80
GTO	22 01
1	01
LBL	23
В	12
g 1/	35
¹/x ~→	04
g x PCL 7	35 07
RCL 7 g x⇄y STO 7 ÷	34 07 35 07 33 07 81

TE CYLINDERS		
KEYS	CODE	
f	31	
LN	07	
×	71	
2	02	
÷	81	
STO	33	
_	51	
8	08	
GTO	22	
1	01	
LBL	23	
C	13	
RCL 8	34 08 35	
g ¹/x	04	
RCL 6	34 06	
X	71	
STO 4	33 04	
RTN	24	
LBL	23	
D	14	
1	01	
g x y	35 07	
LBL	23	
E	15	
1	01	
STO 6	33 06	
CLX	44	
STO 8	33 08	
gR↓	35 08	
GTO	22	
Ε	15	
LBL	23	
2	02	
RTN	24	

KEYS	CODE
LBL	23
E	15
g x ⇄ y ÷	35 07
÷	81
LBL	23
D	14
g 1/x	35
¹/x	04
310	33
+	61
8	08
GTO	22
2	02
g NOP	35 01
g NOP g NOP g NOP g NOP g NOP g NOP g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01 35 01
g NOP g NOP	35 01
g NOP g NOP	35 01 35 01
g NOP	35 0 1 35 0 1
	35 0 1 35 0 1
g NOP	35 0 1

R ₁	R ₄ U	R ₇ Used
R ₂	R ₅	R_8 ΣR
R ₃	R ₆ 1 or π	R ₉

STRAIGHT FIN EFFICIENCY

		_		
KEYS	CODE		KEYS	CODE
LBL	23	ſ	LN	07
Α	11	ı	f ⁻¹	32
STO 2	33 02	- 1	TAN	06
g x 	35 07		↑	41
STO 3	33 03	l	+	61
RTN	24		9	09
LBL	23	1	0	00
В	12			51
STO 4	33 04	1	f	31
gR↓	35 08		SiN	04
2	02		RCL 7	34 07
÷	81		÷	81
STO 1	33 01		STO 5	33 05
RTN	24		RTN	24
LBL	23		LBL	23
С	13		D	14
RCL 4	34 04		STO 6	33 06
RCL 1	34 01		RCL 1	34 01
+	61		↑	41
f	31		+	61
\sqrt{x}	09		x	71
g LST X	35 00		1	01
×	71		g x≤y	35 22
RCL 3	34 03		0	00
RCL 2	34 02		÷	81
÷	81		RCL 6	34 06
RCL 1	34 01	ŀ	RTN	24
÷	81		LBL	23
RCL 4	34 04		Ε	15
÷	81		RCL 4	34 04
f	31		RCL 1	34 01
√x	09		+	61
х	71		↑	41
STO 7	33 07		 	61
f ⁻¹	32		RCL 6	34 06

KEYS	CODE
x	71
RCL 5	34 05
x	71
RCL 1	34 01
↑	41
+	61
RCL 6	34 06
X	71
CHS	42
1	01
+	61
+	61
X	71
RCL 3	34 03
X	71
RTN	24
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01

R ₁	t/2	R ₄	L	R ₇	х
R ₂	k	R ₅	η_{f}	R ₈	
R ₃	h	R ₆	Nave	R ₉	Used

GRASHOF NUMBER

44=340	
KEYS	CODE
LBL	23
Α	11
STO 1	33 01
0	00
g x≠y	35 21
0 DTN	00
RTN RCL 5	24
RCL 7	34 05 34 07
X	71
RCL 8	34 08
1	41
Ť	41
×	71
X	71
x	71
STO 1	33 01
RTN	24
LBL	23
В	12
STO 8	33 08 00
0	00
g x≠y	35 21
0 DTN	00
RTN BCL 1	24
RCL 1 RCL 7	34 01
HUL /	34 07 81
RCL 5	34 05
+	81
3	03
	35
i/x	04
g	35
yx	05
g ¹/x g y ^x	

KEYS	CODE
STO 8	33 08
RTN	24
LBL	23
С	13
STO 5	33 05
0	00
g x≠y	35 21
0	00
RTN	24
RCL 1	34 01
RCL 7	34 07
÷	81
RCL 8	34 08
↑	41
↑	41
X	71
X	71
÷	81
STO 5	33 05
RTN	24
LBL	23
D	14
STO 7	33 07
0	00
g x≠y	35 21
0	00
RTN	24
RCL 1	34 01
RCL 8	34 08
↑	41
↑	41
X	71
X	71
÷	81
RCL 5	34 05

KEYS	CODE
÷	81
STO 7	33 07
RTN	24
LBL	23
E	15
STO 6	33 06
RTN	24
g NOP	35 01
g NOP g NOP	35 01
g NOP g NOP	35 01
g NOP	35 01 35 01
g IVOF	35 01

R ₁ Gr	R ₄	$R_7 = g\beta\rho^2/\mu^2$
R ₂	R ₅ ∆T	R ₈ x
R ₃	R ₆ k	R ₉ Used

VERTICAL WALLS, CYLINDERS, HORIZONTAL CYLINDERS

KEYS	CODE	K
LBL	23	4
Α	11	g
STO 1	33 01	y
RTN	24	:
LBL	23	0
В	12	2
STO 3	33 03	1
RTN	24	X
LBL	23 13	S
C BCL 1	34 01	"
RCL 1 RCL 3	34 01	
X	71	R
3	03	R
EEX	43	'.'
9	09	Ê
g x 	35 07	4
g x>y	35 24	g
GTO	22	Ö
1	01	÷
•	83	E
2	02	5
2 5	05	x
g	35	g
y×	05	g
•	83	0
5	05	÷
5	05	
5	05	2
X OTO 0	71	5
STO 2	33 02 24	g
RTN LBL	23	У
1 LBL	01	5
:	83	5 3
1	05	lĽ

KEYS	CODE
4	04
g	35
g y×	05
•	83
0	00
2	02
	01
X	71
STO 2	33 02
RTN	24
LBL	23
D	14
RCL 3 RCL 1	34 03 34 01
	71
x EEX	43
4	04
g x>y	35 24
0	00
÷	81
EEX	43
5	05
x	71
g x ≠y	35 07
g x>y	35 24
0	00
÷	81
•	83
÷ • 2 5	02
5	05
g	35
у×	05
•	83
5	05
3	03

ERS	
KEYS	CODE
x	71
STO 2	33 02
RTN	24
LBL	23
E	15
RCL 2	34 02
RCL 6	34 06
x	71
RCL 8	34 08
÷	81
RTN	24
g NOP	35 01
g NOP	35 01 35 01
g NOP	35 01

R ₁	Gr	R ₄		R ₇	
R ₂	Nu	R ₅	ΔΤ	R ₈	×
R_3	Pr	R ₆	k	R ₉	Used

Н ATES

	1
KEYS	CODE
LBL	23
A	11
STO 1	33 01
RTN	24
LBL	23
В	12
STO 3	33 03
RTN	24
LBL	23
C	13
RCL 1	34 01
RCL 3	34 03
X	71
2 EEX	02
7	43
, g x ≠y	07 35 07
g x←y g x>y	35 07
GTO	22
1	01
EEX	43
5	05
g x>y	35 24
Ŏ	00
÷	81
gR↓	35 08
•	83
2	02
5	05
g	35
yx	05
•	83
5	05
4	04
X	71

ORIZON	TAL PLA
KEYS	CODE
STO 2	33 02
RTN	24
LBL	23
1	01
3	03
EEX	43
1	01
0	00
g x≤y	35 22
0 ÷	00
- g R↓	81
3	35 08 03
g	35
1/x	04
q	35
y×	05
1.	83
1	01
4	04
×	71
STO 2	33 02
RTN	24
LBL	23
D DOL 1	14
RCL 1 RCL 3	34 01
X	34 03 71
3	03
EEX	43
5	05
g x>y	35 24
ő	00
÷	81
CLX	44

KEYS	CODE
EEX	43
1	01
0	00
g x ≠y	35 07
g x>y	35 24
0	00
÷	81
•	83
2	02
5	05
g x	35
y	05 83
2 5 g y [×] • 2 7	03 02
7	07
x	71
STO 2	33 02
RTN	24
LBL	23
E i	15
RCL 2	34 02
RCL 6	34 06
X	71
RCL 8	34 08
÷ DTN	81
RTN g NOP	24
g NOP	35 01 35 01
g NOP	35 01
g NOP	35 01
9 . 101	55 01

R ₁	Gr	R ₄	R ₇	
R ₂	Nu	R ₅ ∆T	R ₈	×
R ₃	Pr	R ₆ k	R ₉	Used

THERMAL RADIATION CONSTANTS

KEYS	CODE	KEYS	CODE
DSP	21	RTN	24
3	03	LBL	23
1	01	В	12
8	08	DSP	21
8	08	3	03
8	08	5	05
7	07	9	09
9	09	5	05
8	08	4	04
2	02	•	83
STO 1	33 01	4	04
2	02	STO 1	33 01
5	05	1	01
8	08	4	04
9	09	3	03
8	08	8	80
·	83	8	08
4	04	STO 2	33 02
STO 2	33 02	2	02
5	05	8	08
2	02	9	09
1	01	7	07
6	06	•	83
STO 3	33 03	8	. 08
•	83	STO 3	33 03
1	01	5	05
7	07	·	83
1	01	6	06
3	03	6	06
1	01	9	09
2	02	3	03
EEX	43	EEX	43
CHS	42	CHS	42
8	08	1	01
STO 4	33 04	2	02

NSTANTS	
KEYS	CODE
STO 4	33 04
RTN	24
LBL	23
C	13
RCL 4	34 04
1	01
•	83
0	00
1	01
0	00
5	05
×	71
STO 4	33 04
RTN	24
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01

R ₁	c ₁	R ₄ σ	R ₇
R_2	c_2	R ₅	R ₈
R ₃	C ₃	R ₆	R ₉

BLACK BODY RADIATION

DEAGK BODT NADI				
KEYS	CODE		KEYS	CODE
LBL	23		y ^x	05
Α	11		÷	81
STO 5	33 05		RCL 2	34 02
RCL 3	34 03		RCL 6	34 06
g x y	35 07		÷	81
÷	81		RCL 5	34 05
RTN	24		÷	81
LBL	23		f ⁻¹	32
В	12		LN	07
STO 6	33 06		1	01
RCL 3	34 03		 	51
gx ≠y	35 07		÷	81
÷	81		RTN	24
RTN	24		g NOP	35 01
LBL	23		g NOP	35 01
С	13		g NOP	35 01
RCL 5	34 05		g NOP	35 01
↑	41		g NOP	35 01
×	71		g NOP	35 01
↑	41		g NOP	35 01
x	71		g NOP	35 01
RCL 4	34 04		g NOP	35 01
×	71		g NOP	35 01
RTN	24		g NOP	35 01
LBL	23		g NOP	35 01
D	14		g NOP	35 01
RCL 1	34 01		g NOP	35 01
2	02		g NOP	35 01
×	71		g NOP	35 01
g	35	Ì	g NOP	35 01
π	02		g NOP	35 01
X	71		g NOP	35 01
RCL 6	34 06		g NOP	35 01
5	05	Ì	g NOP	35 01
g	35		g NOP	35 01

TION	ΓΙΟΝ				
KEYS	CODE				
g NOP	35 01				
g NOP	35 01				
g NOP	35 01				
g NOP	35 01				
g NOP	35 01				
g NOP	35 01				
g NOP	35 01				
g NOP	35 01				
g NOP	35 01				
g NOP	35 01				
g NOP	35 01				
g NOP	35 01				
g NOP	35 01				
g NOP	35 01				
g NOP	35 01				
g NOP	35 01				
g NOP	35 01				
g NOP	35 01				
g NOP	35 01				
g NOP	35 01				
g NOP	35 01				
g NOP	35 01				
g NOP	35 01				
g NOP	35 01				
g NOP	35 01				
g NOP	35 01				
g NOP	35 01				
g NOP	35 01				
g NOP	35 01				
g NOP	35 01				

R ₁	C ₁	R ₄	σ	R ₇	
R ₂	C ₂	R ₅	Т	R ₈	
R_3	C ₃	R ₆	λ	R ₉	

BLACK BODY RADIATION FOR SPECTRUM INTERVALS

KEYS	CODE
STO 6	33 06
RTN	24
LBL	23
В	12
STO 5	33 05
RTN	24
LBL	23
С	13
0	00
STO 8	33 08
STO 7	33 07
LBL	23
1	01
g R↓	35 08
CLX	44
RCL 8	34 08
RCL 2	34 08 34 02
RCL 5	34 03
÷	81
_	51
STO 8	33 08
3	03 35 07 81
g x ≠y	35 07
÷	
RCL 6	34 06
RCL 6	34 06
x ÷	71
-	81
1 - LCT Y	01
g LST X	35 00
÷	81 34 06
RCL 6	34 06
•	51
6	06
L	00

KEYS	CODE
RCL 6	34 06
÷	81
RCL 8	34 08
f^{-1}	32
√x ÷	09
÷	81
_	51
6	06
RCL 8	34 08
f ⁻¹	32
√x ÷	09
÷	81
RCL 8	34 08
÷	81
+	61
RCL 8	34 08
RCL 6	34 06
÷	81
f^{-1}	32 07
LN	07
X	71
RCL 8	34 08
÷	81
STO	33 61
+	
7	07
RCL 7	34 07
÷	81
EEX	43
CHS	42
5	05
g x≤γ	35 22
GTO	22
1	01
g R↓	35 08

KEYS	CODE
CLX	44
RCL 7	34 07
↑	41
+	61
g	35
π	02
X	71
RCL 1	34 01
x	71
RTN	24
LBL	23
D ↑	14 41
	41
c	13
g x ≠y	35 07
STO 6	33 06
C	13
_	51
CHS	42
RTN	24
LBL	23
E	15
RCL 5	34 05
4	04
g	35
y ^x	05
RCL 4	34 04
×	71
RTN	24

R ₁	C ₁	R ₄	σ	R ₇	sum
R_2	c ₂	R ₅	Т	R ₈	kc ₂ /T
R ₃	C ₃	R ₆	λ	R ₉	Used

SE LID

KEYS	CODE
LBL	23
A	11
x	71
÷	81
STO 6	33 06
RTN	24
LBL	23
В	12
STO 4	33 04
g x ≠y	35 07
STO 5	33 05
RTN	24
LBL	23
C	13
STO 7	33 07
RTN	24
LBL D	23 14
STO 8	33 08
2	02
÷	81
RCL 6	34 06
RCL 7	34 07
x	71
f	31
\sqrt{x}	09
÷	81
E	15
RCL 4	34 04
RCL 5	34 05
	51
X	71
RCL 5	34 05
+	61
RTN	24

MI-INFINITE SOI			
KEYS	CODE		
LBL	23		
Ε	15		
STO 1	33 01		
4	04		
•	83		
5	05		
g x≤y	35 22		
1	01		
RTN	24		
gR↓	35 08		
↑	41		
X	71		
2	02		
x	71		
STO 2	33 02		
1	01		
STO 3	33 03		
RCL 1	34 01		
LBL	23		
1	01		
RCL 2	34 02		
RCL 3	34 03		
2	02		
+	61		
STO 3	33 03		
÷	81		
RCL 1	34 01		
X CTO 1	71		
STO 1	33 01		
+	61		
g x≠y	35 21		

KEYS	CODE
g	35
π	02
f _	31
√x	09
÷	81
RCL 2	34 02
2	02
÷	81
f ⁻¹	32
LN	07
÷	81
RTN	24
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01

R ₁	Partial sum	R ₄	T _o (C _o)	R ₇	t	
R ₂	2a²	R ₅	T _s (C _s)	R ₈	x	
R_3	2n + 1	R ₆	α	R ₉	Used	

22 01

02

71

g x≠y GTO 1

2

x

HYDROCARBON COMBUSTION I

KEYS	CODE
LBL	23
Α	11
STO 1	33 01
RTN	24
LBL	23
В	12
STO 2	33 02
RTN	24
LBL	23
C	13
STO 3	33 03
RTN	24
LBL	23
D	14
STO 4	33 04
0	00
STO	33
9	09
g x 	35 07
RTN	24
LBL	23
D	14
STO	33
9	09
RTN	24
LBL	23
E	15
↑	41
EEX	43
2	02
÷	81
1	01
+	61
STO 5	33 05
RCL 1	34 01

KEYS	CODE
RCL 4	34 04
+	61
RCL 2	34 02
4	04
÷	81
+	61
RCL 3	34 03
2	02
÷	81
-	51
STO 6	33 06
×	71
4	04
•	83
7	07
6	06
2	02
X	. 71
STO 8	33 08
RCL 2	34 02
4	04
÷	81
+	61
RCL 3	34 03
2 ÷	02 81
+	61
RCL	34
9	09
2	09
÷	81
+	61
STO 7	33 07
RCL 5	34 05
1	01
1 '	J

- 51 EEX 43 2 02 x 71 RTN 24 g NOP 35 01	KEYS	CODE
2	_	51
X 71 RTN 24 g NOP 35 01	EEX	43
RTN 24 g NOP 35 01	2	02
g NOP 35 01 g NOP 35 01	×	71
g NOP 35 01 g NOP 35 01		
g NOP 35 01 g NOP 35 01		
g NOP 35 01 g NOP 35 01	g NOP	
g NOP 35 01 g NOP 35 01	g NOP	35 01
g NOP 35 01 g NOP 35 01	g NOP	35 01
g NOP 35 01 g NOP 35 01	g NOP	
g NOP 35 01 g NOP 35 01	g NOP	
g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01	g NOP	
g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01	g NOP	i .
g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01		
g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01	3	
g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01		
g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01		
g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01	g NOP	
g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01		
g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01		
g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01	1	
g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01	3	
g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01		
g NOP 35 01 g NOP 35 01 g NOP 35 01		
g NOP 35 01 g NOP 35 01		
g NOP 35 01	a NOP	
	1	
g NOP 35 01		

R ₁	С	R ₄	S	R ₇	prod
R ₂	Н	R ₅	air	R ₈	AF(mole)
R ₃	0	R ₆	O ₂	R ₉	N

HYDROCARBON COMBUSTION II

	HYDI	RC	CARBON	COMBU
KEYS	CODE		KEYS	CODE
LBL	23		8	08
Α	11		7	07
RCL 8	34 08		5	05
1	01		RCL	34
•	83		9	09
8	80		×	71
0	00		+	61
9	09		÷	81
4	04		RTN	24
×	71		LBL	23
RCL 1	34 01		Α	11
•	83		RCL 8	34 08
7	07		RTN	24
5	05		LBL	23
0	00		В	12
7	07		RCL 7	34 07
X	71		RTN	24
RCL 2	34 02		LBL	23
•	83		В	12
0	00		RCL 4	34 04
6	06		E	15
3	03		RTN	24
X	71		LBL	23
+	61		С	13
RCL 3	34 03		RCL 1	34 01
+	61		E	15
2	02		RTN	24
	83		LBL	23
0	00		С	13
0	00		RCL 2	34 02
- 1	04		2	02
RCL 4	34 04 71		÷	81
X +	61	i	E	15
•			RTN	24
•	83		LBL	23

KEYS	CODE
D	14
RCL 5	34 05
1	01
-	51
RCL 6	34 06
×	71
E	15
RTN	24
LBL	23
D	14
RCL 8	34 08
RCL 5	34 05
RCL 6	34 06
×	71
_	51
RCL	34
9	09
2 ÷	02
1	81
+	61
LBL E	23
RCL 7	15
HCL /	34 07
EEX	81 43
2	02
X	71
RTN	24
g NOP	35 01
g NOP	35 01
8 1401	33 0 1

R ₁	С	R ₄	S	R ₇	prod
R_2	Н	R ₅	air	R ₈	AF (mole)
R_3	0	R ₆	O ₂	R ₉	N

LINEAR REGRESSION; y = a + bx

KEYS	CODE	KEYS	CODE
f	31	RCL 2	34 02
REG	43	RTN	24
RTN	24	LBL	23
LBL	23	D	14
В	12	RCL 7	34 07
STO 1	33 01	RCL 3	34 03
g	35	RCL 5	34 05
DSZ	83	×	71
STO	33	RCL 8	34 08
+	61	÷	81
3	03	+	61
↑	41	↑	41
×	71	↑	41
STO	33	RCL 3	34 03
+	61	↑	41
4	04	×	71
RCL 1	34 01	RCL 8	34 08
RTN	24	÷	81
LBL.	23	RCL 4	34 04
С	13	+	61
STO 2	33 02	÷	81
STO	33	STO 1	33 01
+	61	×	71
5	05	RCL 5	34 05
†	41	↑ ↑	41
×	71	×	71
STO	33	RCL 8	34 08
+	61	÷	81
6	06	RCL 6	34 06
g LST X	35 00	+	61
RCL 1	34 01	÷	81
×	71	RCL 3	34 03
STO	33	RCL 8	34 08
+	61	÷	81
7	07	RCL 1	34 01

KEYS	CODE
x	71
RCL 5	34 05
RCL 8	34 08
CHS	42
÷	81
+	61
STO 2	33 02
RTN	24
LBL	23
D	14
CLX	44
RCL 1	34 01
RTN	24
LBL	23
D	14
g R↑	35 09
RTN	24
LBL	23
Ε	15
RCL 1	34 01
X	71
RCL 2	34 02
+	61
RTN	24
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01

R ₁	x _i ,b	R_4	Σx^2	R ₇	Σχγ	
R ₂	y _i ,a	R ₅	Σγ	R ₈	-n	
R_3	Σχ	R ₆	Σy^2	R ₉		

EXPONENTIAL CURVE FIT; y = aeb x

	EXPON	ENTIAL C	URVE
KEYS	CODE	KEYS	CODE
f	31	+	61
REG	43	7	07
RTN	24	RCL 2	34 02
LBL	23	RTN	24
B	12	LBL	23
STO 1	33 01	D	14
g	35	RCL 7	34 07
DSZ	83	RCL 3	34 03
STO	33	RCL 5	34 05
+	61	×	71
3	03	RCL 8	34 08
↑	41	÷	81
X	71	+	61
STO	33	↑	41
+	61	1	41
4	04	RCL 3	34 03
RCL 1	34 01	↑	41
RTN	24	×	71
LBL	23	RCL 8	34 08
С	13	÷	81
STO 2	33 02	RCL 4	34 04
f	31	+	61
LN	07	÷	81
STO	33	STO 1	33 01
+	61	X	71
5	05	RCL 5	34 05
↑	41	1	41
X	71	X	71
STO	33	RCL 8	34 08
+	61	÷	81
6	06	RCL 6	34 06
g LST X	35 00	+ ÷	61
RCL 1	34 01		81
X	71	RCL 3	34 03
STO	33	RCL 8	34 08

KEYS	CODE
÷	81
RCL 1	34 01
x	71
RCL 5	34 05
RCL 8	34 08
CHS	42
÷	81
+	61
f ⁻¹	32
LN	07
STO 2	33 02
RTN	24
LBL	23
D CLX	14 44
RCL 1	1
RTN	34 01 24
LBL	23
D	14
g R↑	35 09
RTN	24
LBL	23
E	15
RCL 1	34 01
x	71
f ⁻¹	32
LN	07
RCL 2	34 02
X	71
RTN	24

R₁	x _i ,b	R ₄	Σx^2	R ₇	Σx In y
R_2	y _i ,a	R ₅	Σ in y	R ₈	-n
R_3	Σχ	R ₆	$\Sigma (\ln y)^2$	R ₉	_

POWER CURVE FIT; y = axb

KEYS	CODE
f	31
REG	43
RTN	24
LBL	23
В	12
g	35
DSZ	83
f	31
LN	07
STO 1	33 01
STO	33
+	61
3	03
↑	41
x	71
STO	33
+	61
4	04
RTN	24
LBL C	23 13
STO 2	33 02
510 2 f	33 02
LN	07
STO	33
310	61
5	05
ŏ	41
'x	71
STO STO	33
+	61
6	06
g LST X	35 00
RCL 1	34 01
×	71
l	

KEYS	CODE
STO	33
+	61
7	07
RCL 2	34 02
RTN	24
LBL	23
D	14
RCL 7	34 07
RCL 3	34 03
RCL 5	34 05
×	71
RCL 8	34 08
÷	81
+	61
†	41
↑	41
RCL 3	34 03
↑	41
X	71
RCL 8	34 08
÷	81
RCL 4	34 04
+ ÷	61
-	81
STO 1	33 01
X	71
RCL5	34 05 41
•	• •
X RCL 8	71 34 08
HUL 8	34 08 81
RCL 6	34 06
+	34 06 61
÷	81
RCL 3	34 03
11023	37 03

KEVO	CODE
KEYS	CODE
RCL 8	34 08
÷	81
RCL 1	34 01
×	71
RCL 5	34 05
RCL 8	34 08
CHS	42
÷	81
+ .	61
f ⁻¹	32
LN	07
STO 2	33 02
RTN	24
LBL	23
D	14
RCL 1	34 01
RTN	24
LBL	23
D	14
g R↑	35 09
RTN	24
LBL	23
E	15
RCL 1	34 01
g	35
y ^x	05
RCL 2	34 02
X	71
RTN	24
g NOP	35 01

R ₁	x _i ,b	R ₄	$\Sigma (\ln x)^2$	R ₇	$\Sigma(\ln x)(\ln y)$
R ₂	y _i ,a	R ₅	Σ In y	R ₈	-n
R_3	ΣInx	R ₆	$\Sigma (\ln y)^2$	R ₉	

ENERGY CONVERSION

		_
KEYS	CODE	
LBL	23	Γ
С	13	
3	03	
6	06	
0	00	
0,	00	
×	71	
0	00	
g x=y	35 23	
GTO	22	
1	01	
gR↓	35 08	
STO 8	33 08	
0	00	
RTN	24	
LBL 1	23 01	
RCL 8	34 08	
g LST X	35 00	
y Lo⊤ ∧ ÷	81	ŀ
RTN	24	l
LBL	23	
В	12	
4	04	1
•	83	
1	01	
8	08	
4	04	
x	71	
0	00	
g x=y	35 23	
GTO	22	
1	01	
gR↓	35 08	
STO 8	33 08	
		-

ENGTO) N V E N
KEYS	CODE
0	00
RTN	24
LBL	23
Α	11
0	00
g x=y	35 23
RCL 8	34 08 24 35 08 33 08 00
RTN	24
g R↓	35 08
STO 8	33 08
-	
KIN	24
LBL.	23
D	14
1	01
0	00
5	UD
5	05
X	71
0	00
g x=y	35 23
GTO	22
1	01
gR↓	35 08
STO 8	33 08
0	00
RTN	24
LBL	23
E	15
1	01
•	83
3	03
5	05
5	05
8	08

ON	
KEYS	CODE
1	- 01
8	08
×	71
0	00
g x=y	35 23
GTO	22
1	01
gR↓	35 08
STO 8	33 08
0	00
RTN	24
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01

R ₁	R ₄	R ₇
R ₂	R ₅	R ₈ joule
R ₃	R ₆	R ₉ Used

PRESSURE CONVERSION

KEYS	CODE		
LBL	23	•	Γ
С	13		
1	01		
0	00		1
1	01	ĺ	1
3	03		
2	02		
5	05		1
X	71		ľ
0	00		ľ
g x=y	35 23		
GTO	22		١.
1	01		
g R↓	35 08		١.
STO 8	33 08		[]
0 RTN	00		3
LBL	24 23		ľ
1	01		
RCL 8	34 08		
	35 00		
÷	81		
RTN	24		,
LBL	23		(
В	12		١
•	83		Ì
1	01		
x	71		
0	00		0,00
g x=y	35 23		(
GTO	22		١
1	01		ı
g R↓	35 08	i	E
STO 8	33 08		7
0	00		7

SSURE CONVER		
KEYS	CODE	
RTN	24	
LBL	23	
Α	11	
0	00	
g x=y	35 23	
RCL 8	34 08	
RTN	24	
gR↓	35 08 33 08 00 24	
STO 8	33 08	
0	00	
LBL	23	
D 6	14	
8	06 08	
9	09	
4	09	
	83	
7	07	
5	05	
5 7	07	
2	02	
×	71	
0	00	
g x=y	35 23	
GTO	22	
1	01	
g R↓	35 08	
STO 8	33 08	
0 RTN	00 24	
LBL	24 23	
E	23 15	
4	04	
7	07	
1	_ ·	

ON	
KEYS	CODE
•	83
8	08
8	08
×	71
0	00
g x=y	35 23
GTO	22
1	01
g R↓	35 08
STO 8	33 08
0	00
RTN	24
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01
g NOP	35 01

R₁	R ₄	R ₇
R ₂	R ₅	R ₈ Nt/m ²
R ₃	R ₆	R ₉ Used

Sales and service from 172 offices in 65 countries. 19310 Pruneridge Avenue, Cupertino, California 95014