

INTRODUCTION

This HP-19C/HP-29C Solutions book was written to help you get the most from your calculator. The programs were chosen to provide useful calculations for many of the common problems encountered.

They will provide you with immediate capabilities in your everyday calculations and you will find them useful as guides to programming techniques for writing your own customized software. The comments on each program listing describe the approach used to reach the solution and help you follow the programmer's logic as you become an expert on your HP calculator.

You will find general information on how to key in and run programs under "A Word about Program Usage" in the Applications book you received with your calculator.

We hope that this Solutions book will be a valuable tool in your work and would appreciate your comments about it.

The program material contained herein is supplied without representation or warranty of any kind. Hewlett-Packard Company therefore assumes no responsibility and shall have no liability, consequential or otherwise, of any kind arising from the use of this program material or any part thereof.

TABLE OF CONTENTS

	1
This program computes the distance to an object of known height whose base is obscured by the horizon. It also computes distance to horizon for a given height of eye and the distance of visibility of an object of known height.	
DISTANCE BY HORIZON ANGLE AND DISTANCE SHORT OF HORIZON This program calculates the distance between an observer and an object given (1) the vertical angle between its waterline and the horizon observed from a known height of eye or (2) the object's height and its subtended angle.	5
DISTANCE OFF AN OBJECT BY TWO BEARINGS	9
VELOCITY TRIANGLE	2
COURSE TO STEER	.5
ESTIMATED TIME OF ARRIVAL	.8
GREAT CIRCLE NAVIGATION [*]	:1
GREAT CIRCLE COMPUTATION	<u>'</u> 4
COMPOSITE SAILING	?7
RHUMB LINE NAVIGATION [*]	\$O

* THIS PROGRAM ALSO APPEARS IN THE HP-19C/29C APPLICATIONS BOOK. IT HAS BEEN INCLUDED HERE, IN SLIGHTLY MODIFIED FORM, FOR THE SAKE OF COMPLETENESS.

DISTANCE TO OR BEYOND HORIZON

This program computes the distance to an object of known height whose base is obscured by the horizon and whose top subtends a sextant altitude hs with the horizon. The sextant altitude is corrected for index error and height of eye. Additional features are the calculation of the distance to the horizon for a given height of eye and the distance of visibility of an object of height H above sea level.

EQUATIONS:

$$D = \sqrt{\left(\frac{\tan h_{a}}{2.46 \times 10^{-4}}\right)^{2} + \frac{H-HE}{0.74736}} - \frac{\tan h_{a}}{2.46 \times 10^{-4}}$$
$$D_{hor} = 1.144 \sqrt{HE}$$
$$D_{vis} = 1.144(\sqrt{HE} + \sqrt{H})$$

where

D = distance to object, nautical miles D_{hor} = distance to horizon, nautical miles D_{vis} = distance of visibility, naut. miles H = height of object beyond horizon, feet HE= height of eye, feet ha= hs + IC - 0.97 \sqrt{HE} hs= sextant altitude, D.MS IC= index correction, M.m

2

EXAMPLE 1:

The height of eye of of an observer is 9 feet above sea level, how far away is his horizon?

EXAMPLE 2:

An observer "bobs" Farallon Light on the horizon and finds his height of eye to be 16 feet. The light is 358 feet above sea level. How far is the observer from the light? (Accuracy is affected by abnormal refraction)

EXAMPLE 3:

The top of a lighthouse, whose base is obscured by the horizon, is known to be 300 feet above sea level. It is found to have a sextant altitude of 25:6 above the horizon. The height of eye is 20 feet and the sextant requires an index correction of +1!3.

What is the distance to the lighthouse?

What is the distance to the horizon?

It has been determined that the luminous range of the light is "strong", now compute its visibility for the given height of eye. SOLUTIONS:

(1)

(2)

(3)

9.00	ST02	
	GSB2	
3.43	***	n.m.
16.00	ST02	
358.00	ST03	
	GSB2	
	R∕S	
26.22	***	n.m.
1.30	ST01	
20.00	ST02	
300.00	ST03	
0.2536	GSB1	
6.28	***	n.m.
	GSB2	
5.12	*** R/S	n.m.
24.93	***	n.m.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Key in the program			
2.	Store pertinent data:			
	Index correction (minutes)	IC	STO 1	
	Height of eye (feet)	HE	ST0 2	
	Height of object (feet)	н	STO 3	
3a.	Enter sextant height (D.MS) and compute distance to object	hs	GSB 1	D.(naut. mi.)
3b.	and/or Compute distance to horizon and distance		GSB 2	D _{hor(naut.mi.}
	of visibility		R/S	D _{vis} (nautmi.)
]
]
]
]
]
]
]
] [
ļ				
ļ				

	i	8		8	
01 #LBL1 02 →H 03 RCL1 04 RCL2 05 JX 06 . 07 9 08 7 09 × 10 - 11 6 12 0 13 ÷ 14 +	hs(D.M hs°	IS)	48 × 49 LSTX 50 RCL2 51 JX 52 × 53 R/S 54 + 55 R/S	1.144 *** D ** D	hor
15 TAN 16 2 17 . 18 4 19 6 20 EEX 21 CHS 22 4 23 ÷ 24 ST05 25 RCL3 26 RCL2 27 -					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	√ x² + ** D	y²		' may be inse ' may be used	rted before "R/S". to replace
	1 -	1.	STERS	4	5
0	1 IC	² HE	³ H	4	⁵ Used
6	7	8	9	.0	.1
.2	.3	.4	.5	16	17
18	19	20	21	22	23
24	25	26	27	28	29
L	I	L	1	L	<u>ا ــــــــــــــــــــــــــــــــــــ</u>

DISTANCE BY HORIZON ANGLE AND DISTANCE SHORT OF HORIZON

This program calculates the distance between an observer and an object when (1) the vertical angle between its waterline and the horizon has been observed from a known height of eye or (2) the object's height is known, together with its subtended angle.

This program also calculates the height of an object if its subtended angle and distance from the observer are known.

EQUATIONS:

$$D = \frac{HE}{tan(hs + IC + .97 \sqrt{HE})}$$

$$D = \frac{H}{\tan (hs + IC)}$$

where

D = distance to object, feet HE= height of eye, feet IC= index correction, M.m H = height of object, feet hs= sextant altitude, D.MS

NOTE:

hs < 10' may make D unreliable due to atmospheric conditions when vertical sextant altitude between object and horizon is taken.

EXAMPLE 1:

The sextant altitude between the waterline of a buoy and the horizon is found to be 21!4. The observer has a height of eye of 22 feet and the sextant requires a +1!7 index correction. How far is the observer from the buoy?

EXAMPLE 2:

The sextant altitude subtended by the base and the top of a 41 foot light tower is 56:2. The sextant requires a -1:9 index correction. How far is the observer from the light tower?

EXAMPLE 3:

A vessel is anchored 2015 feet from an observer. The sextant altitude between the vessel's waterline and truck of mast is 1°15!2. There is no index error. How high is the truck of the mast above the waterline?

6

SOLUTIONS:

(1)

	ST01	1.70
	ST02	22.00
	GSB1	0.2124
ft.	***	2735.25
	R∕S	
n.m	***	0.45

1. J. S. S. .

(2)

-1.90	ST01	
41.00	ENTT	
0.5612	GSB2	_ .
2595.50	***	ft.
	R∕S	
0.43	***	n.m.

(3)

0.00	ST01	
2015.00	ENTT	
1.1512	GSB3	
44.08	***	ft.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Key in the program			
2.	Store pertinent data:			
	Index correction (minutes)	IC	STO 1	
	Height of eye (feet)	HE	ST0 2	~
3a.	Enter sextant height (D.MS) and convert to	hs	GSB 1	D(feet)
	distance			
3b.	(Optional) convert to nautical miles		R/S	D(naut.mi.)
	OR			
4a.	Enter height of object (feet)	н	ENT↑	
	Enter sextant height (D.MS) and convert	hs	GSB 2	D(feet)
	to distance			
4b.	(Optional) convert to nautical miles		R/S	D(naut.mi.)
	QR			
5	Enter distance to object (feet)	D	ENT↑	
	Enter sextant height (D.MS) and convert	hs	GSB 3	H(feet)
	to height			
ļ				
				·- ·
L	· · · · · · · · · · · · · · · · · · ·			

81 #LBL1 hs 82 #H hs 83 RCL1 # 84 RCL2 # 85 IX # 86 7 # 87 9 # 88 7 # 18 + 1 19 + 1 11 GSB0 12 12 RCL2 13 13 X2Y 14 14 ± D 15 GT09 hs H 16 #LBL2 hs H 17 #H 1 18 RCL1 19 19 GSB0 2 20 ± 2 21 #LBL9 ** D(ft.) 22 R/S ** D(ft.) 23 6 2 24 # # 25 7 ** D(n.m.) 28 #L3 hs D(ft.) 38 # ** H (ft.) 37 #LB4 ** H (ft.) 38 # ** H (ft.) 37 # * 38 # * 39 * * 48 TAN * 41 RTN *							-
36 6 37 0 38 ÷ 39 + 40 TAN 41 RTN	02 +H 03 RCL1 04 RCL2 05 JX 06 . 07 9 08 7 09 × 10 + 11 GSB0 12 RCL2 13 X:Y 14 ÷ 15 GT09 16 *LBL2 17 +H 18 RCL1 19 GSB0 20 ÷ 21 *LBL9 22 R/S 23 6 24 0 25 7 26 6 27 ÷ 28 R/S 29 *LBL3 30 +H 31 RCL1 32 GSB0 33 × 34 R/S	D hs H D ** hs D	D(ft.) D(n.m.) (ft.)				
** "Printx" may be inserted before "R/	35 \$LBL8 36 6 37 0 38 ÷ 39 + 40 tan	**			may be inse	rted before "R/	s".
REGISTERS							
0 1 IC 2 HE 3 4 5				3	4	5	
6 7 8 9 .0 .1	6			9	.0	.1	
.2 .3 .4 .5 16 17	.2	.3	.4	.5	16	17	
18 19 20 21 22 23	18	19	20	21	22	23	
24 25 26 27 28 29		£J	20	<u></u>	28	29	

DISTANCE OFF AN OBJECT BY TWO BEARINGS

To determine the distance off an object as a vessel passes it, observe two bearings on the bow and note the distance run between bearings. The program calculates the distance off the object when it is abeam and at the time of the first and second bearings.

EQUATIONS:

$$D_{2} = \frac{\sin RB_{1}}{\sin(RB_{2} - RB_{1})} D_{run}$$

$$D_{abeam} = |D_{2} \sin RB_{2}|$$

$$D_{1} = |\frac{D_{abeam}}{\sin RB_{1}}|$$

where

 $RB_{1} = First relative bearing$ $RB_{2} = Second relative bearing$ $D_{run} = St = Distance run$ S = speed of vessel t = time in minutes $D_{1}, D_{2} = Distance at time of first$ or second bearing $D_{a} = Distance when abeam$ EXAMPLE 1:

A lighthouse bears -026° (26° counterclockwise) at 1130 and -051° at 1140. Our speed is 15 knots. How far will we be off the light when it is abeam? How far off were we at 1130 and 1140?

EXAMPLE 2:

A buoy is sighted bearing Ol5° on the bow, after a 3 mile run it bears 105°. What was its distance when abeam?

SOLUTIONS:

(1)

(2)

-26.00 ENT† -51.80 GSB1 15.00 ENT† 0.10 GSB3 D 4.60 *** ₽ŧ D_{2} *** 2.59 R. Dabeam 2.02 *** 15.00 ENT? 105.00 GSB1 3.00 GSB2 R↓ R↓ D_{abeam} 8.75 ***

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Key in the program			
2.	Store bearings (D.d):			
	at t _i	RB 1	ENT 1	
	at t ₂	RB ₂	GSB 1	
3a.	Enter distance run (naut. mi.)	R _{run}	GSB 2	D _i (naut.mi.)
	and compute distances			
	OR			
3b.	Enter speed (knots) and time (H.MS) and	S	ENT ↑	
	compute distances	$t=t_2-t_1$	GSB 3	D1(naut.mi.)
4.	Display remaining distances:		R↓	D₂(naut.mi.)
			R↓	D _a (naut.mi.)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $				<u> </u>			<u> </u>		
0 1 RB1 2 RB2 3 4 Used 5 6 7 8 9 .0 .1 .2 .3 .4 .5 16 17 18 19 20 21 22 23	02 ST02 03 X≠Y 04 ST01 05 R/S 06 *LBL3 07 →H 08 × 09 *LBL2 10 RCL2 11 RCL1 12 - 13 SIN 14 ÷ 15 RCL1 16 SIN 17 × 18 ST04 19 RCL2 20 SIN 21 × 22 ABS 23 RCL4 24 LSTX 25 RCL1 26 SIN 27 ÷ 28 ABS		t,s Drun D ₂ D _{abeam}	1					
0 1 RB1 2 RB2 3 4 Used 5 6 7 8 9 .0 .1 .2 .3 .4 .5 16 17 18 19 20 21 22 23	· · · · · · · · · · · · · · · · · · ·			REGI	l STERS		L		
6 7 8 9 .0 .1 .2 .3 .4 .5 16 17 18 19 20 21 22 23	0	1	RB ₁			4 Us	ed	5	
18 19 20 21 22 23	6			NO 2	9			.1	
18 19 20 21 22 23									
24 25 26 27 28 29	18	19		20	21	22		23	
	24	25		26	27	28		29	

VELOCITY TRIANGLE

SOLUTION:

This program is an interchangeable solution for the vector addition problem. Given any two of the vectors shown, the program computes the third.

5.00 STO1	
20.50 STO2	
6 0.0 0 ENT†	
2.00 GSB1	
90.00 ENT†	
3.00 GSB3	
GSB5	
1.02 ***	knots
X≠Y	
98.86 ***	°۲

Compass course is corrected on input for magnetic variation and deviation. True course is decorrected on output to yield compass course. Remember to update the values used for variation (changes with location) and deviation (changes with heading).

EXAMPLE:

A vessel is making 2 knots through the water, steering 060° by the compass. The magnetic variation is $20.5^{\circ}E$ and the deviation is $5^{\circ}E$. Calculate the set and drift of the current if the vessel is making good 3 knots on a course of $090^{\circ}T$.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Key in the program			
2.	Store compass corrections:			
	Deviation (negative if west)	<u>+</u> Dev°	ST0 1	
	Variation (negative if west)	<u>+</u> Var°	STO 2	
3.	Enter any two of the three vectors:			
3a.	Heading -			
	Compass course	۲ _с ۰	ENT↑	
	Speed	S,knots	GSB 1	
3b.	Current -			
	Set	Set°	ENT	
	Drift	Drift,knots	GSB 2	
3c.	Course -			
	Course made good	CMG°		
	Speed made good	SMG, knots	GSB 3	
4.	Compute the remaining vector:			
4a.	Heading —			
	Speed		GSB 4	S,knots
	Compass course		x↔y	۲ _{с°}
	True course		RCL 4	Cto
4b.	Current -			
	Drift		GSB 5	Drift/knot
	Set		x↔y	Set°
4c	Course -			
	Speed made good		GSB 6	SMG, knots
	Course made good		x↔y	CMG°
				· · · · · ·

ef #LEL1 Enter heading 59 PCL5 X1, y1 82 X27 51 3+R X1, y1 94 5703 57 X27 57 K27 95 PCL1 57 X27 57 PCL9 96 PCL2 57 S706 57 S706 97 PCL2 56 S289 Normalize angle 57 S706 98 PCL2 Enter current 66 HLE 57 S706 11 PC3 Enter current 66 X27 SMG 16 PC3 Enter course 66 X27 X1, y1 16 PC3 Enter course 66 X27 X1, y1 17 HER3 Enter course 67 S7.8 X1, y1 18 S707 66 HLE8 X2, y2, y1 X2, y2, y1 26 S76 Compute heading 72 + Y2, Y1 27 S88 Compute heading 72 + Y2, Y1 26 S87 Ct 76 S89 Normalize angle 27 - S88 Compute current 81 6 6 28 - S104 Ct 77 S77 X1, y1 29 S705 Speed 65 S7 S77 S96 29 - S804 Compute current 82 + 9				T			
67 RL2 S6 656 658 CMG 69 659 ST07 557 ST07 SMG 11 $R/5$ Enter current 64 $RL2$ SMG 14 $R/5$ Enter current 63 $RL2$ SMG 14 $R/5$ Enter current 64 R X_1, y_1 15 ST07 ST07 ST07 SMG 14 Xrr G3 RL2 $RL2$ X_1, y_1 15 ST07 ST08 G4 R X_2, y_2, y_1 16 $R/5$ Enter course 66 Srr X_1, y_1 18 ST07 SG8 Z_2, y_2, y_1 Z_2, y_2, y_1 21 $R/5$ Compute heading 71 R_1 $X_2, y_2, y_1 + y_2$ 25 SR1 Compute heading 71 R_1 $X_1 + x_2, y_1 + y_2$ 26 CHS 77 STN 76 SSB9 Normalize angle 28 ST05 Speed 76 SSB9 $R1$ <td< td=""><td>02 ST05 03 X#Y 04 ST03 05 RCL1</td><td>Enter</td><td>r heading</td><td>51 →R 52 ST.0 53 X≠Y 54 RCL8</td><td></td><td>X1,y1</td><td>1</td></td<>	02 ST05 03 X#Y 04 ST03 05 RCL1	Enter	r heading	51 →R 52 ST.0 53 X≠Y 54 RCL8		X1,y 1	1
19 STO4 Normalize 39 STO7 SMG 11 $R.S$ Enter current 60 $R.S$ SMG 12 #LB12 Enter current 60 $R.S$ SMG 13 STO9 Enter current 62 RLS SMG 14 $X.Y$ 63 RLT 64 $R.Y$ X1.y1 15 STO8 Enter course 66 $X.Y$ 67 $ST.R$ X1.y1 16 $R.S$ Enter course 66 $X.Y$ 69 R X_2 , y_2 , y_1 20 STO6 Enter course 66 $X.Y$ K_1 X_2 , y_2 , y_1 20 STO6 Enter course 66 $X.Y$ K_2 , y_2 , y_1 V_2 21 $R.S$ Compute heading 71 $R4$ 73 $RC.8$ $X_1 + y_2$ $Y_1 + y_2$, $y_1 + y_2$ 22 $RL1$ C T 76 $St.8$ $X_1 + y_2$ $Y_1 + y_2$ <t< th=""><th>07 RCL2 08 +</th><th></th><th></th><th>56 6580 57 sto6</th><th></th><th>CMG</th><th></th></t<>	07 RCL2 08 +			56 6580 57 sto6		CMG	
13 ST09 Little Current 62 RL6 14 X2Y 63 RCL7 64 R X1 + y1 15 ST08 Enter course 65 ST.8 X1 + y1 16 R/S Enter course 67 RTN K1 + y1 18 ST07 Enter course 67 RTN K2 + y2 + y1 20 ST06 Compute heading 71 R4 R2 ST07 R1 21 R/S Compute heading 71 R4 R2 ST04 X1 + x2 + y1 + y2 22 SE87 Compute heading 71 R4 R2 ST07 R1 23 SE87 Compute heading 71 R4 R2 ST04 Ct 76 SE89 Normalize angle S2 R2 R1 ST07 ST ST07 ST ST S6 ST03 ST SC ST SE	18 ST04 11 R/S		-	59 ST07 60 R/S		SMG	
10 k/S Enter course 63 51.6 18 ST07 Enter course 66 x_{2} 19 ST06 69 x_{2} x_{2} , y_{2} , y_{1} 20 ST06 74 Stelle x_{2} , y_{2} , y_{1} 21 R/S Compute heading 71 RL 22 SEB7 Compute heading 72 $+$ 23 SEB7 Compute heading 71 RL 24 RLL9 76 SEB9 Normalize angle 25 RCL1 78 stB19 76 26 CHS 76 SEB9 Normalize angle 28 ST04 Ct 78 stB19 26 CHS 78 stB19 79 30 SEB9 Normalize angle 82 $+$ 31 RCL2 88 81 0 33 SEB9 Normalize angle 82 $+$ 34 ST03 Speed 85 $x(0)$ 37 R/S Speed <th>13 ST09 14 XZY</th> <th>Enter</th> <th>current</th> <th>62 RCL6 63 RCL7</th> <th></th> <th>V. V.</th> <th></th>	13 ST09 14 XZY	Enter	current	62 RCL6 63 RCL7		V. V.	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	16 R/S 17 #LBL3 18 STO7	Enter	° course	65 ST.0 66 X2Y 67 RTN			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20 ST06 21 R/S 22 #LBL4	Compu	te heading	69 →R 70 S+.0 71 R∔		X2, y 2	, y 1
28 ST04 Ct 77 RTM Reference 29 RCL1 79 3 Reference 80 6 31 RCL2 80 6 81 0 82 4R 32 - 80 6 81 0 82 4R 32 - 81 0 82 4R 83 4P 34 ST03 C _C 85 X(02) 4 360 - 36 ST05 Speed 85 X(02) 4 - - 37 R/S Speed 85 X(02) 4 - - - 38 BL5 Compute current 86 FT08 4 -<	24 RCL8 25 RCL9			73 RC.0 74 →P 75 X‡Y		x1+x2	₂ ,y 1 +y 2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	27 GSB0 28 ST04 29 RCL1 30 - 31 RCL2	Ct		77 RTN 78 *LBL9 79 3 80 6		Norma	lize angle
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	33 GSB9 34 ST03		lize angle	82 →R 83 →P		1 260	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	36 ST05 37 R/S			85 X<0? 86 GTD8		<u></u> ,300	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	40 RCL4 41 RCL5	Compu		89 RTN 90 *LBL8		L	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	43 65 80 44 sto8	Set				360 +	Ĺ
49 RCL4 REGISTERS 0 1 Dev 2 Var 3 Cc 4 Ct 5 Speed 6 CMG 7 SMG 8 Set 9 Drift 0 Used 1 12 .3 .4 .5 16 17 18 19 20 21 22 23	46 ST09	Drift					
0 1 Dev 2 Var 3 Cc 4 Ct 5 Speed 6 CMG 7 SMG 8 Set 9 Drift .0 Used .1 .2 .3 .4 .5 16 17 18 19 20 21 22 23		Compu	te course				
0 1 Dev 2 Var 3 Cc 4 Ct 5 Speed 6 CMG 7 SMG 8 Set 9 Drift .0 Used .1 .2 .3 .4 .5 16 17 18 19 20 21 22 23							
6 CMG 7 SMG 8 Set 9 Drift .0 Used .1 .2 .3 .4 .5 16 17 18 19 20 21 22 23		11 0					
.2 .3 .4 .5 16 17 18 19 20 21 22 23			0				
						<u>u</u>	17
24 25 26 27 28 29	18	19	20	21	22		23
	24	25	26	27	28	<u></u>	29

COURSE TO STEER

This program calculates a course to steer given your location, the location where you want to go, your boat's speed through the water, and the set and drift of the current.

DESTINATION CMG DISTANCE SOURCE

EXAMPLE:

A vessel making 6 knots through the water is at $(45^{\circ}N. 124^{\circ}40'W)$ and she wishes to steer a course toward $(44^{\circ}40'N, 124^{\circ}10'W)$. The magnetic variation is 20°5E and there is a 2 knot current setting 090°. What course should she steer.

SOLUTION:

0.00	ST01	
20.50	ST02	
90.00	ST08	
2.00	ST09	
45.00	ENTT	
124.48	ENTT	
44.40	ENTT	
124.10	GSB1	
29.20	東東東	Dist., n.m.
6.00	GSB2	
125.93	***	Course to steer, degrees
	R∕S	
7.30	***	Speed made good,knots
	R∕S	Speca made good, knoes
4.00	***	Transit time, H.MS

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Key in the program			
2.	Store compass corrections:			
	Deviation (negative if west)	+Dev°	STO 1	
	Variation (negative if west)	<u></u> tVar°	ST0 2	
3.	Store current vector:			
	Set	Set°	STO 8	
	Drift	Drift/knot	s STO 9	
4.	Enter positions and compute distance between	n:		
	Source latitude	$L_1(D.MS)$	ENT	
	Source longitude	λ_1 (D.MS)		· ·
	Destination latitude	L ₂ (D.MS)	ENT	
	Destination longitude	λ_2 (D.MS)	GSB 1	Dist.(n.m.)
5.	Enter speed through the water and compute	S,knots	GSB 2	۲ _с °
	compass course to steer			
6.	Compute speed made good		R/S	SMG(knots)
7.	Compute time to reach destination		R/S	t(H.MS)

0: *LBL 02 → 03 X=	L2	11	50 ST07 51 GSB7 52 CHS 53 GSB0	SMG,	CMB
04 → 05 ST. 06 R 07 X≠	λ1		54 RCL1 55 - 56 RCL2 57 -		
08 -) 09 - 10 CH:	$\lambda_1' - \lambda_2' = \lambda_1 + \lambda_2 + \lambda_$	2	58 GSB9 59 R/S 60 RC.1	C _C Dist	;
11 ST. 12 R 13 + 14 S	Li		61 RCL7 62 R/S 63 ÷		(knots)
14 5 15 + 16 2 17 ÷		L ₂ latitude	64 +HNS 65 R/S 66 *LBL9 67 3	Norn	e (H.MS) nalize: angle < 360
18 CO 19 RC. 20 ×			68 5 69 0 70 →R		ungre × JOU
21 RC. 22 +1 23 6 24 0		y ² vert to n.m.	71 +P 72 X#Y 73 X<0? 74 GT08		
25 x 26 ST. 27 X#			74 6108 75 X±Y 76 R↓ 77 RTN		
28 658 29 570 30 X2 31 R/S 32 #LBL2	CMG Dist. Enter	(n.m.) speed and	78 *LBL8 79 + 80 RTN 81 *LBL0 82 } R	Vect X2,)	tor add 12
33 ST0 34 RCL6 35 RCL6 36 RCL6		ite C _C	83 S+.0 84 RJ 85 + 86 RC.0	y ₁ -	
37 - 38 SIN 39 RCLS 40 X			87 →P 88 X≢Y 89 GSB9	×1 + r θ	• X ₂
41 RCL5 42 ÷ 43 SIN-			90 RTN 91 #LBL7 92 } R 93 ST.0	θ Vect ×1,)	tor add /1
44 - 45 GSB9 46 RCL5 47 GSB7			94 X=Y 95 RCL8 96 RCL9		
48 6568 49 XIY			97 RTN		
	·····	REGI	STERS	I	
0	1 Dev	2 Var	3	4	⁵ Speed
⁶ CMG	⁷ SMG	⁸ Set	⁹ Drift	.0 Used	.1 Used
^{.2} Used	.3	.4	.5	16	17
18	19	20	21	22	23
24	25	26	27	28	29
	t		·	·	

ESTIMATED TIME OF ARRIVAL

This program computes the time of arrival at the next port in local zone time and GMT, when distance, speed, departure date and time in local zone time are input.

It also computes speed required to make a given ETA, when distance, date and time of departure in local zone time and date and time of desired arrival in local zone time are input.

All computations can be made in GMT by storing zeros in registers 4 and 5 and entering GMT times.

EXAMPLES:

- A vessel departs San Francisco at 0030 on the 2nd of January local time, bound for Guam, distance 5,146 miles. What will be the date and time of arrival Guam local time, and GMT at 15.5 knots.
- 2. If the same Vessel makes the same departure time and wishes to arrive in Guam at 0700 on the 16th of January local Guam time, what speed is required.

NOTE:

Zone time of San Francisco is +8 and Guam is -10.

REFERENCE:

This program is adapted from HP-65 Users' Library program #02185A by Capt. Kenneth R. Orcutt.

- SOLUTIONS:
- (1) 5146.00 STO1 15.50 STO2 8.00 STO4 -10.00 STO5 2.0030 GSB1 16.1430 *** Local time R/S 16.0430 *** GMT
- (2) 2.0030 ENT† 16.0700 GSB2 15.8582 *** Knots

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Key in the program			
2.	Store pertinent data:			
-	Distance (nautical miles)	Dist	ST0 1	
	Speed (knots)	Speed	ST0 2	
	Departure time zone (negative if east)	DTZ	STO 4	
	Arrival time zone (negative if east)	ATZ	ST0 5	
3.	To compute arrival time and date:			
3a.	Enter departure time and date in DD.HHMM	DD.HHMM	GSB 1	DD.HHMM (local time)
	format and run. e.g., 2:30 p.m. Jan 3			
	would be written 3.1430			
3b.	For GMT time and date of arrival		R/S	DD.HHMM(GMT)
	Note: If arrival is in the next month,			
	subtract the number of days in the			
	month.			
4.	To compute speed required to make a given			
	ETA:			
4a.	Enter departure time and date	DD.HHMM	ENT↑	
4b.	Enter arrival time and date and compute	DD.HHMM	GSB 2	Speed, knots
	speed			
	NOTE: If arrival is in the next month,			
	enter date plus the number of days			
	in the month.			
				_ · · ·

r		<u> </u>	1		·····
01 *LBL1 02 4 03 ST00 04 R4 05 \$\$80 06 RCL1 07 RCL2 08 ÷ 09 RCL9 10 ÷ 11 + 12 ST07 13 RCL5 14 RCL9 15 ÷ 16 - 17 *LBL9 18 INT	i = 4 Time Add t tim	of transit o departure	50 + 51 RTN 52 *LBL2 53 5 54 STO0 55 R4 56 GSB0 57 X2Y 58 DS2 59 GSB0 60 - 61 RCL1 62 X2Y 63 ÷ 64 RCL9 65 ÷ 66 R/S	Tir i = 1 Dep. i = 4 Tota Speed **	5 time 4 1 transit time
16 1R1 19 LSTX 20 FRC 21 RCL9 22 x 23 >HMS 24 1 25 0 26 0 27 ÷ 28 + 29 R/S 30 RCL7 31 GT09 32 *LBL0 33 FIX4 34 INT 35 LSTX 36 FRC 37 1 38 0 39 0 40 × 41 >H 42 2 43 4 44 ST09 45 ÷ 46 + 47 RCLi 48 RCL9	Fo ** Arriv dat GMT	lisplay DD.		may be inser	ted before "R/S".
49 ÷	1				
		REGI	STERS		
⁰ i	¹ Distance	² Speed	3	⁴ Dep.Time Zor	ne ⁵ Arriv. TIME Zo
	7	8	9 24	.0	.1
6	Used		9 <u>24</u>		
6 .2	.3	.4		16	17
		.4 20	21	22	23
.2	.3				

GREAT CIRCLE NAVIGATION

This program calculates the great circle distance between two points and the initial course from the first point. Coordinates are input in degrees-minutesseconds format. The distance is displayed in nautical miles and the initial course in decimal degrees.

EQUATIONS:

$$D = 60 \cos^{-1} \left[\sin L_1 \sin L_2 + \cos L_1 \cos L_2 \cos (\lambda_2 - \lambda_1) \right]$$
$$C = \cos^{-1} \left[\frac{\sin L_2 - \sin L_1 \cos (D/60)}{\sin (D/60) \cos L_1} \right]$$

$$C_{i} = \begin{cases} C; \sin (\lambda_{2} - \lambda_{1}) < 0\\ 360 - C; \sin (\lambda_{2} - \lambda_{1}) \ge 0 \end{cases}$$

where:

 L_1 , λ_1 = coordinates of initial point

 L_2 , λ_2 = coordinates of final point

D = distance from initial to final point

 C_i = initial course from initial to final point

REMARKS:

- Southern latitudes and eastern longitudes must be entered as negative numbers.
- Truncation and round off errors occur when the source and destination are very close together (1 mile or less).

- Do not use coordinates located at diametrically opposite sides of the earth.
- Do not use latitudes of $+90^{\circ}$ or -90° .
- Do not try to compute initial heading along a line of longitude $(L_1=L_2)$.
- This program assumes the calculator is set in DEG mode.

EXAMPLE 1:

Find the distance and initial course for the great circle from Tokyo (L35°40'N, λ 139°45'E) to San Francisco (L37°49'N, λ 122°25'W).

EXAMPLE 2:

What is the distance and initial great circle course from L33°53'30"S, λ 18°23'10"E to L40°27'10"N, λ 73°49'40"W?

SOLUTIONS:

(1

(2

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Key in the program.			
2.	Key in latitude and longitude of origin.	L1(D.MS)	ENT↑	Lı
		λ_1 (D.MS)	ENT↑	λ1
3.	Key in latitude and longitude of	$L_2(D.MS)$	ENT↑	L ₂
	destination.	λ_2 (D.MS)		λ2
4.	Calculate distance and initial course.		GSB 1	D(n.m.)
			R/S	C _i (dec.deg)
		_		

			0
01 *LBL1		48 SIN	
02 →H		49 ÷	С
03 ST03		50 COS⊣ 51 RCL0	-
04 R↓ 05 →H		52 SIN	
05 7H 06 ST01		52 51R 53 X(0?	
07 R4		54 GT09	
08 +H		55 R4	
09 ST04		56 3	
10 R4		57 6	
11 +H		58 0	
12 ST02		59 X≠Y	
13 RCL2		60 -	** 0
14 SIN		61 RTN	** C _i
15 RCL1		62 *LBL9	
16 SIN		63 R4	++ 0
17 X		64 RTN	** ^C i
18 RCL2			
19 COS			
20 RCL1			
21 COS 22 ×			
22 × 23 RCL3		·	
23 RCL3 24 RCL4			
25 -			
26 ST00			
27 COS	1		
28 ×			
29 +			
30 ST05			
31 COS-			
32 ST06			
33 6			
34 0			
35 ×	** D		
36 R/S	-		
37 RCL1		** "Drinty" may	bo inconted
38 SIN 39 RCL2		** "Printx" may before "R/S"	and "RTN"
40 SIN			
40 SIN 41 RCL5			
42 X			
43 -			
44 RCL2			
45 COS			
46 ÷			
47 RCL6			
]	STERS	
$\begin{array}{c c} 0 & \lambda_2 - \lambda_1 & 1 \end{array}$		0	A₁ ⁵ COS D/60
$\frac{\lambda_2 - \lambda_1}{6}$ 7		9 .0	λ_1 ⁵ COS D/60
.2 .3		.5 16	17
18 19		21 22	23
24 25	26	27 28	29
		I	

GREAT CIRCLE COMPUTATION

This program computes the latitude corresponding to a specified longitude on a great circle passing through two given points.

EQUATIONS:

where

 (L_1, λ_1) = coordinates of initial point (L_2, λ_2) = coordinates of final point (L_j, λ_j) = coordinates of intermediate point

NOTES:

The program does not compute along lines of longitude $(\lambda_1 = \lambda_2)$.

EXAMPLE:

A ship is proceeding from Manila to Los Angeles. The captain wishes to use great-circle sailing from L12°45!2N, λ 124°20!1E, off the entrance to San Bernardino Strait, to L33°48!8N, λ 120°07!1W, five miles south of Santa Rosa Island. Find the latitudes corresponding to 1) λ = 160°34'W; and 2) λ = 180°.

SOLUTION:

12.4512	ENT†	
-124.2006	ENTT	
33.4848	ENT†	
120.0706	GSB1	
160.3400	GSB2	
41.2108	***	°N
180 .000 0	GSB2	
39.4133	***	°N

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Key in the program			
2.	Enter positions:			
	Initial latitude (negative for south)	L (D.MS)		
	Initial longitude (negative for east)	$\lambda_1(D.MS)$		
	Final latitude (negative for south)	$L_2(D.MS)$		-
	Final longitude (negative for east)	$\lambda_2(D.MS)$	GSB 1	
3.		$\lambda_{i}(D.MS)$	GSB 2	Lj
	corresponding latitude			
4.				
		1		
·				
				н

		<u> </u>				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	02 →H 03 ST03 04 R↓ 05 →H 06 ST01 07 R↓ 08 →H 09 ST04 10 R↓ 11 →H 12 ST02 13 R/S	λ2 L2 λ1 L1				
Notice N/S Notice N/S	15 →H 16 ST08 17 RCL4 18 - 19 SIN 20 RCL1 21 TAN 22 × 23 RCL8 24 RCL3 25 - 26 SIN 27 RCL2 28 TAN 29 × 30 - 31 RCL3 32 RCL4 33 - 34 SIN 35 ± 36 TAN +			** ⊮Du≐	ntyll may bo	incerted
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		** L _i	REGISTER		re "R/S".	Insertea
6 7 8 λ_1 9 .0 .1 .2 .3 .4 .5 16 17 18 19 20 21 22 23				<u>s</u>	4	
.2 .3 .4 .5 16 17 18 19 20 21 22 23		-	-			
.2 .3 .4 .5 16 17 18 19 20 21 22 23			\;			1
	.2 .3		.5		16	17
	18 19	20	21		22	23
			<u> </u>			

When the great circle would carry a vessel to a higher latitude than desired, a modification of great-circle sailing, called composite sailing, may be used to good advantage. The composite track consists of a great circle from the point of departure and tangent to the limiting parallel, a course line along the parallel, and a great circle tangent to the limiting parallel and through the destination. This program computes, for each of two points, the longitude at which a great circle through the point is tangent to some limiting parallel.

EQUATIONS:

$$\lambda_{\mathbf{V}^1} = \lambda_1 + \cos^{-1}\left(\frac{\tan L_1}{\tan L_m}\right) \mathbf{s}_1 \mathbf{s}_2$$

$$\lambda_{\mathbf{V}_2} = \lambda_2 + \cos^{-1}\left(\frac{\tan L_2}{\tan L_{\max}}\right) \mathbf{s}_3 \mathbf{s}_2$$

where

$$(L_1, \lambda_1)$$
 = initial position
 (L_2, λ_2) = final position
 (L_{max}, λ_{V^1}) = point at which limiting
parallel is met

$$(L_{max}, \lambda_{V^2})$$
 = point at which limiting
parallel is left

80)

$$s_1 = \operatorname{sgn} (\lambda_2 - \lambda_1)$$

$$s_2 = \operatorname{sgn} (|\lambda_2 - \lambda_1| - 1)$$

$$\mathbf{s}_3 = -\mathbf{s}_1$$

$$sgn(x) = \begin{cases} +1 ; x \ge 0 \\ -1 ; x < 0 \end{cases}$$

EXAMPLE:

A ship leaves Baltimore bound for Bordeaux (Royan), France. The captain desires to use composite sailing from L36°57!7N, λ 75°42!2W one mile south of Chesapeake Light to L45°39!1N, λ 1°29!8W, near the entrance to Grande Passe de l'Quest, limiting the maximum latitude to 47°N.

Required:

- The longitude at which the limiting parallel is reached.
- (2) The longitude at which the limiting parallel should be left.

SOLUTION:

36.5742 ENT1	
75.4212 ENT1	
45.3906 ENT†	
1.2948 GSB1	
47.0000 GSB2	
30.1607 ***	$\lambda_{vl}(D.MS)$
R∕S	••
18.5653 ***	λ_{v_2} (D.MS)

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Key in the program			
2.	Enter positions:			
	Initial latitude (negative for south)	$L_1(D.MS)$	ENT↑]
	Initial longitude (negative for east)	λ_1 (D.MS)	ENT↑]
	Final latitude (negative for south)	$L_2(D.MS)$	ENT↑]
	Final longitude (negative for east)	$\lambda_2(D.MS)$	GSB 1]
3.	Enter latitude of limiting parallel	L _{max} (D.MS)	GSB 2	$\lambda_{v^1}(D.MS)$
	and compute λ_{V_1} (limiting parallel is met)			
4.	Compute λ_{V2} (limiting parallelis left)		R/S	$\lambda_{V_2}(D.MS)$
]
]
]
]
]
]
]
]
]
]
]
		-]
] [

		0		0	
01 *LBL1 02 →H 03 ST03 04 R↓ 05 →H 06 ST01	λ2	L ₂ λ ₁ L ₁	50 ÷ 51 CDS-1 52 RCL6 53 × 54 RCL3 55 GT00	sg	jn
07 R↓ 09 ST04 10 R↓ 11 →H 12 ST02 13 R/S 14 #LEL2 15 TAN 16 ST05 17 RCL2 18 TAN 19 X≠Y 20 ÷	Ent	er L _{max}			
21 COS- 22 RCL3 23 RCL4 24 - 25 ENT† 26 ABS 27 1 26 8 29 0		$-\lambda_{1}$ $2 - \lambda_{1} \lambda_{2} - \lambda_{1}$			
30 - 31 × 32 ENT↑ 33 ABS 34 ÷ 35 ST06 36 CHS 37 × 38 RCL4	<u>+</u>	1			
39 *LBL0 40 + 41 1 42 →R 43 →P 43 →P 44 X2Y 45 →HMS 46 R/S 47 RCL1 48 TAN		Normalize Angle ^A vı, ^A v2	** "PRINT)	X" may be ins	serted before "R/S
49 RCL5	1 L ₂	2 L1	$\frac{\text{GISTERS}}{3 \lambda_2}$	4 λ1	⁵ tanL _{max}
6	7	8	9	.0	.1
sgn 2	.3	.4	.5	16	17
-		20	21	22	23
10				200	123
18	19 25	26	27	28	29

RHUMB LINE NAVIGATION

This program is designed to assist in the activity of course planning. You supply the latitude and longitude of the point or origin and the destination. The program calculates the rhumb line course and the distance from origin to the destination.

Since the rhumb line is the constantcourse path between points on the globe, it forms the basis of short distance navigation. In low and midlatitudes the rhumb line is sufficient for virtually all course and distance calculations which navigators encounter. However, as distance increases or at high latitudes the rhumb line ceases to be an efficient track since it is not the shortest distance between points.

The shortest distance between points on a sphere is the great circle. However, in order to steam great circles, an infinite number of course changes are necessary. Since it is impossible to calculate an infinite number of courses at an infinite number of points, several rhumb lines may be used to approximate a great circle. The more rhumb lines used the closer to the great circle distance the sum of the rhumb line distances will be. The Great Circle Computation program may be used to calculate intermediate course change points which can be linked by rhumb lines.

Latitudes and longitudes are input in degrees-minutes-seconds. Course is displayed in decimal degrees. Southern latitudes and eastern longitudes are input as negative numbers.

EQUATIONS:

$$C = \tan^{-1} \frac{\pi (\lambda_1 - \lambda_2)}{180 (\ln \tan (45 + \frac{1}{2}L_2) - \ln \tan (45 + \frac{1}{2}L_1))}$$

$$D = \begin{cases} 60 (\lambda_2 - \lambda_1) \cos L; \cos C = 0\\ \\ 60 \frac{(L_2 - L_1)}{\cos C}; \text{ otherwise} \end{cases}$$

where:

 (L_1, λ_1) = position of initial point

 (L_2, λ_2) = position of final point

D = rhumb line distance

C = rhumb line course

REMARKS:

- No course should pass through either the south or north pole.
- Errors in distance calculations may be encountered as cos C approaches zero.
- Accuracy deteriorates for very short legs.
- This program assumes the calculator is set in DEG mode.

EXAMPLE 1:

What is the distance and course from L35°24'12"N, $\lambda125^{\circ}02'36"W$ to L41°09'12"N, $\lambda147^{\circ}22'36"E?$

EXAMPLE 2:

What course should be sailed to travel a rhumb line from L2°13'42"S, $\lambda179^{\circ}07'54"\text{E}$ to L5°27'24"N, $\lambda179^{\circ}24'36"W?$ What is the distance?

SOLUTIONS:

(1)	35.2412 ENT†	
()	125.0236 ENT†	
	41.0912 ENT†	
	-147.2236 GSB1	
	4135.60 ***	(DIST.,n.m.)
	R∕S	
	274.79 ***	(C,dec,deg.)

(2)

+	
-2.1342 ENT†	
-179.0754 ENT*	
5.2724 ENT†	
179.2436 GSB1	
469.31 ***	(DIST.,n.m.)
R/S	(52011,500,000)
10.73 ***	(C,dec,deg.)

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS		
1.	Key in the program					
2.	Key in latitude and longitude of origin	L ₁ (D.MS)	ENT↑			
		$\lambda_1(D.MS)$	ENT+			
3.	Key in latitude and longitude of	L ₂ (D.MS)	ENT↑			
	destination	λ_2 (D.MS)				
4.	Calculate distance and course		GSB 1	D(n.m.)		
			R/S	C(dec.deg.)		
	NOTE:					
	Southern latitudes and eastern longitudes					
	must be input as negative numbers.					
····						
L						
		0			2	
---	---	---	---	---------------	--	---------------------------------------
01 *LBL1 02 →H 03 ST03 04 R4 05 →H 06 ST01 07 R4 08 →H 09 ST04 10 R4 11 →H	λ_2 L ₂ λ_1		48 LN 49 RTN 50 *LBL8 51 3 52 6 53 0 54 RCL5 55 ABS 56 - 57 *LBL7 58 ABS		E to V	V 360 - C
12 ST02 13 RCL4 14 RCL3 15 - 16 ST00 17 2 18 ÷ 19 SIN 20 SIN-' 21 9 22 0 23 ÷	L ₁ λ ₁ -λ ₂ Make - < 180	180 < λ ₁ -λ ₂	59 STO6 60 1 61 8 62 0 63 RCL0 64 ABS 65 X≰Y? 66 GSB6 67 RCL1 68 COS 69 × 70 STO7 71 DD14			[-λ2] > 180° subtract from
24 Pi 25 × 26 RCL1 27 GSB9 28 RCL2 29 GSB9 30 − 31 →P 32 R4 33 ST05 34 RCL0 35 SIN	С		71 RCL1 72 RCL2 73 - 74 RCL5 75 COS 76 X≠0? 77 ÷ 78 ENT↑ 79 X=0? 80 RCL7 81 6 82 0		is C =	= 90°?
36 SIN- 37 X(0? 38 GTO 8 39 RCL5 40 GTO7 41 *LBL9 42 2 43 ÷ 44 4	wes If wes	ans east to t t to east answer	83 × 84 ABS 85 R/S 86 RCL6 87 RTN 88 *LBL6 89 3 90 6 91 0		** Dis ** Cou If [λ ₁	
45 5 46 + 47 Tan			92 X#Y 93 - 94 RTN 95 R/S		then 3	360-[λ ₁ -λ ₂]
	4		STERS	1.		
$\lambda_1 - \lambda_2$	1 L2	² L ₁	3 λ2	4 λ_1		⁵ Used
6	7	8	9	.0		.1
.2	.3 ** "Dri	l ntx" may be i	I			17
18	19					
		20	21	22		23
24	25	26	27	28		29.
	l	L	I			J

This program calculates a ship's DR position given the ship's course, speed, and elapsed time from the last fix or DR position. The DR position is stored so that on subsequent legs just course, speed, and elapsed time need be entered to obtain the updated DR position. The program may be used for both small and large area DR problems.

EQUATIONS:

The updated position (L,λ) is given by following a loxodrome (rhumb line) from the initial position (L_{i},λ_{i}) for a distance determined by the speed and time.

$$L = L_i + \Delta t \frac{S \cos C}{60}$$

$$\lambda = \begin{cases} \lambda_{i} + \frac{180 \tan(10 \tan(45 + \frac{L_{i}}{2}) - 10 \tan(45 + \frac{L_{i}}{2}))}{\pi}; \\ C \neq 90 \text{ or } 270 \ (L_{i} \neq L) \\ \lambda_{i} - \Delta t \ \frac{S \sin C}{60 \cos L_{i}}; \ C = 90 \text{ or } 270 \ (L_{i} = L) \end{cases}$$

where:

- L_i = initial latitude (N, positive; S, negative)
- L = updated latitude
- λ_i = initial longitude (W, positive; S, negative)
- λ = updated longitude
- S = ship's speed, knots
- C = ship's course, degrees
- Δt = the time (H.MS) between initial and final positions.

NOTES:

- The program cannot follow a meridian over a pole.
- The program loses accuracy and gets incorrect answers when within 0.5° of a pole.

EXAMPLE (Fig. 1):

A vessel's position is L33°49!1N, $\lambda 120^{\circ}52!0W$ at 1200. If she steams as shown, what is her position at each time?

TIME	С	s	DR
1200			L33°49'06"N,X120°52'00"W
1330	120°	15 knots	(L33°37'51"N,λ120°28'34"W)
1510	240°	15 knots	(L33°25'21"N,λ120°54'32"₩)
1823	90°	17 knots	(L33°25'21"N,λ119°49'01"W)
1 9 55	355°	20 knots	(L33°55'54"N,λ119°52'14"W)

SOLUTION:

33.4905 ENT†	
120.5200 GSB1	
13.3000 ENT†	
12.0000 GSB3	
120.0000 ENT†	
15.0000 GSB2	
33.3751 ***	
R/S	1330 DR
120.2834 ***	
15.1000 ENT†	
13 .3000 GSB3	
240.0000 ENT†	
15.0000 GSB2	
33.2521 ***	
R/S	1510 DR
120.5433 ***	
18.2300 ENT†	
15.1000 GSB3	
90.0000 ENT†	
17.0000 GSB2	
33.2521 ***	1823 DR
R/S	1020 DK
119.4902 ***	
19.5500 ENT† 18.2300 GSB3	
355.0000 ENTA	
20.0000 GSB2	
33.5554 ***	
8010004 ### R/S	1055 00
119.5214 ***	1955 DR
きょうさいんよう ホケテ	

User Instructions

L,D.MS
λ,D.MS
∆t, H.MS

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			0		C	<u> </u>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	02 FIX4 03 $+H$ 04 ST02 05 XZY 06 $+H$ 07 ST01 06 R/S 09 $*LBL2$ 10 $+R$ 11 ST05 12 $R4$ 13 ST06 14 $R4$ 15 $+H$ 16 ST07 17 $RCL5$ 18 \times 19 6 20 0 21 $=$ 22 $RCL1$ 23 $+$ 24 $ST01$ 25 $LSTX$ 26 $SB0$ 21 $=$ 22 $RCL1$ 23 $+$ 24 $ST01$ 25 $LSTX$ 26 $SB0$ 31 $=$ 32 LN 33 $RCL6$	S C Scos Ssin L L Li C =	1 Δt C C	51 RCL1 52 +HMS 53 R/S 54 RCL2 55 +HMS 56 R/S 57 *LBL0 58 9 59 0 60 + 61 2 62 ÷ 63 TAN 64 RTN 65 *LBL9 66 RCL6 67 RCL7 68 x 69 RCL1 70 COS 71 6 72 0 73 x 74 CHS 75 FTO8 76 *LBL3 77 +H 78 X=Y 79 +H 80 - 81 ABS 82 +HMS 83 R/S *** "PRINTX"	may be i	<pre>λ *** L ** λ Δt routine ** Δt inserted before "R/S".</pre>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	46 1 47 →R 48 →P					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	┝────		BEAL	STEDS		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	1 .			4	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			~^			00030
.2 .3 .4 .5 16 17 18 19 20 21 22 23	⁶ SsinC	⁷ Λ 1	8	9	.0	
18 19 20 21 22 23			.4	.5	16	17
24 25 26 27 28 29	18	19	20	21	22	23
	24	25	26	27	28	29
					<u> </u>	

nik

CELESTIAL NAVIGATION AND DEAD RECKONING

This program allows you to update a vessel's position and correct it using sights on a celestial object. The program is started with your latitude and longitude and the object's GHA and declination all determined for the same time. Then when any other time is keyed in, the corresponding DR is computed. If a sight is taken at that time, the resulting altitude may be entered into the calculator to yield an intercept and azimuth. The DR may be moved accordingly if desired.

The dead reckoning technique used is midlatitude sailing which, while not as accurate as rhumb line dead reckoning, is sufficiently good for most purposes. Altitude intercepts "toward" are considered to be positive, even though careful reading of Bowditch would indicate the opposite. By using this convention, it is easy to compute the intercept terminus (most probable position or MPP).

The program contains a useful subroutine, GSB 7, which can be used for translating almanac entries in degrees, minutes and tenths (DM.M) to decimal degrees (D.d).

REFERENCE:

This program is based on private communications with Paul E. Shaad of Sacramento, California.

EXAMPLE:

On February 19, 1975, a ship is steaming on course 240 at 17 knots. At 1800 GMT her dead reckoning position is 42°N,135°W. Compute her position at 2115.

Her navigator shoots the Sun from a height of 65' (dip = 7!8). At 2340 he obtains a sextant altitude of $28^{\circ}25'36''$. Compute the altitude intercept and azimuth and correct the ship's DR.

SOLUTION

From The	Nautical	Almanac	we	take	the
Sun's GH	A and dec	lination	at	1800	and
1900 GMT	and also	the Sun'	s s	semidi	amter.

		UNC J	un 3 30	in ra raine	,
G.M.T.	·	S	SUN		
u.	G.1	1.A.	D	ec.	
d h	o	ł	0	1	
19 18	86	31.5	S11	18.5	
19	101	31.5		17.6	
86,52 -1118,50 -11,30 16,20	STO1 800 GSB7	DEC Sem	at 1800 at 1800 idiamete)	
135.00 7.80 0.13 240.00	000 STO4 000 STO5 000 GSB7 300 *** STO6 000 STO7 000 ENT†	Lat Lon Dip ho Cou	g. of the rizon rse	Posit at 1	
0,2		de	ed conve grees pe e		
10131.5 101.5 8631.5 86.5	250 *** 000 GSB7	, , }	Calcula Rate of of GHA		
-11.2 -1118.5 -11.3	ST.1 1000 GSB7 1933 *** 1000 GSB7	k 7 k k	Calcula Rate of of DEC		

Now that the setup is compelte, you can dead reckon and reduce sights all day long.

21.1500 GSB1 New time 41.3223 *** Latitude X:Y (New Position at 2115 136.0409 *** Longitude)

-

23.4000 GSB1 41.1150 ***	New time Latitude {New Position at 2340
X#Y 136.5134 *** 28.2536 GSB2	Longitude Sextant altitude
-4.3689 *** XIY	Altitude intercept
219.4574 *** X2Y	Azimuth
GSB7 -0.0728 *** GSB3	Intercept converted to degrees
41.1512 *** X≠Y	Latitude Intercept terminus on Line of Position
136.4752 ***	Longitude)

.

39

User Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Key in the program			
2.	Store the following values			
	Greenwich Hour Angle of object (negative if east)	GHA,D.d	STO 1	
	Declination of object (negative if south)	DEC,D.d	ST0 2	
	Semi-diameter of object (negative if U.L.)	SD,D.d	STO 3	
	Latitude (negative if south)	L,D.d	STO 4	
	Longitude (negative if east)	λ,D.d	STO 5	····
	Dip of the horizon	Dip,D.d	STO 6	
	Course	C,D.d	STO 7	
	Speed (in knots divided by 60)	S,D.d	STO 8	
	Time	t,H.h.	STO 9	
·	Rate of change of GHA*	gha,D.d/hr	STO 1	
	Rate of change of dec*	dec.D.d/hr	STO 2	
3.	Enter a new time and compute new DR	t _{new,} H.MS	GSB 1	L,D.MS
			x↔y	λ ,D.MS
4.	Enter sextant altitude and compute inter-	h _s ,D.MS		
	cept and azimuth		GSB 2	a,mi.
			х↔у	Zn,D.d
5.	Update DR to MPP after GSB 2 in Step 4		GSB 7	a,D.d
	(i.e.: An in y; a in x)		GSB 3	L,D.MS
			x↔y	λ,D.MS
*	Enter GHA or DEC for some time V	alue,,D.MS	→∦	Value ₁ ,D.d
	Enter GHA or DEC for one hour earlier V	alue2,D.MS	→H	Value ₂ ,D.d
	OR		-	Rate D.d/hr
	Enter GHA or DEC for some time V	alue ₁ ,DM.M	GSB 7	Value ₁ ,D.d
	Enter GHA or DEC for one hour earlier V	alue2,DM.M	GSB 7	Value2,D.d
			[]	Rate D.d/hr

ι

$e_1 * LBL1$ $Se_1 \div$ $Se_1 \div$ $e_2 \to HH$ $S1$ $ e_3 RCL5$ $G_2 RCL3$ $e_4 X2Y$ Update $S5$ $e_5 STC9$ Update $S5$ $e_6 X2Y$ $Time$ $S5$ $e_7 S6$ $RCL2$ e_8 $ST.4$ $S5$ e_7 $S6$ $RCL2$ e_8 $ST.4$ $S5$ e_7 $S6$ $RCL2$ e_8 $ST.4$ $G6$ g_7 $S7$ $C6$ g_7 $S7$ $G6$ g_7 $S7$ $S7$			<u> </u>				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$02 \rightarrow H$ $03 \ RCL9$ $04 \ X \pm Y$ $05 \ STC9$ $06 \ X \pm Y$ $07 \ -$ $08 \ ST.4$ $09 \ RC.1$ $10 \ X$ $11 \ ST+1$ $12 \ RC.4$ $13 \ RC.2$ $14 \ X$ $15 \ ST+2$ $16 \ RC.4$ $17 \ RCL8$ $18 \ X$ $19 \ RCL7$ $20 \ X \pm Y$ $21 \ *LBL3$ $22 \ \Rightarrow R$ $23 \ ST+4$ $24 \ 2$ $25 \ \div$ $26 \ RCL4$ $27 \ X \pm Y$ $28 \ -$ $29 \ COS$ $30 \ \div$ $31 \ ST-5$ $32 \ RCL1$ $33 \ RCL5$ $34 \ -$ $35 \ STO0$ $36 \ RCL5$ $37 \ +HMS$ $38 \ RCL4$ $39 \ +HMS$ $38 \ RCL4$ $39 \ +HMS$ $38 \ RCL4$ $39 \ +HMS$ $40 \ RTN$ $41 \ *LBL2$ $42 \ \Rightarrow H$ $43 \ RCL6$ $44 \ -$ $45 \ ENT^{+}$ $46 \ TAN$ $47 \ 1/X$ $48 \ 6$	Time Updat GHA DEC Updat DR Νew λ New L Compu	te	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Con DM.r to		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		I	DE		I		\neg
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 1 1 4	1 0115	1.		4	5	
I DÎD I CISI tI I dha		ипа –			<u> </u>	<u>^</u>	\neg
2 3 U 4 H 5 Ucod 16 17	Dip	L C	S	t	.0	gha	
	.2	^{.3} H ₀	^{.4} H _c	^{.5} Used	16	17	
dec Ho nc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	18 dec	19	20 C		22	22	\neg
24 25 26 27 28 29	24	25	26	27	28	29	

Section and the section of the secti

東京のなどのなどの

R.

41

This program calculates the computed altitude, Hc, and azimuth, Zn, of a celestial body given the observer's latitude, L, and the local hour angle, LHA, and declination, d, of the body. It thus becomes a replacement for the nine volumes of HO 214. Moreover, the user need not bother with the distinctions of same name and contrary name; the program itself resolves all ambiguities of this type.

EQUATIONS:

$$Zn = \begin{cases} Z; & sinLHA < 0 \\ 360-Z; sinLHA & 0 \\ Z = cos^{-1} \frac{sin d - sin L sin Hc}{cos L cos Hc} \end{cases}$$

REMARKS:

Southern latitudes and southern declinations must be entered as negative numbers.

The meridan angle t may be input in place of LHA, but if so, eastern meridan angles must be input as negative numbers.

The program assumes the calculator is set in DEG mode.

NOTE:

This program may also be used for star identification by entering observed azimuth in place of local hour angle and observed altitude in place of declination. The outputs are then declination and local hour angle instead of altitude and azimuth. The star may be identified by comparing this computed declination to the list of stars in The Nautical Almanac.

EXAMPLE 1:

Calculate the altitude and azimuth of the moon if its LHA is 2°39'54"W and its declination 13°51'06"S. The assumed latitude is 33°20'N.

EXAMPLE 2:

Calculate the altitude and azimuth of REGULUS if its LHA is 36°39'18"W and its declination is 12°12'42"N. The assumed latitude is 33°30'N.

EXAMPLE 3:

Hc=sin⁻¹[sin d sin L + cos d cos L cos LHA] At 6:10 G.M.T. on January 12, 1977 a star peeked through the clouds over Corvallis (L44°34'N, 123°17'W). An alert observer using a bubble sextant quickly determined its altitude to be 26° and its azimuth 158°. Using the Nautical Almanac identify the star.

SOLUTIONS:

(1)	33.20 ENT†	
	-13.5106 ENT†	
	2.3954 GSB1	
	42.4447 ***	(Hc,D.MS)
	R∕S	
	183.5 ***	(Zn,dec.deg.)
(2)		
(-)	33.3000 ENT†	
	12.1242 ENT†	
	36.3918 GSB1	
	50.2425 ***	(Hc,D.MS)
	R∕S	<i>i</i>
	246.3 ***	(Zn,dec.deg.)

(3)

Contractory of the

44.3400 ENT† 26.0000 ENT† 158.0000 GSB1 -16.3725 *** (d,D.MS) R/S 339.4 *** (LHA,dec.deg.) 123.17 +H + 462.7 *** (GHA,dec.deg.) 203.4 -+HMS 259.2 *** (SHA,D.MS)

User Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Key in the program			
2.	Input the following:			
	Observer's latitude	L(D.MS)	ENT ↑	
	Declination	d(D.MS)	ENT↑	
	Local hour angle	LHA (D.MS)		
3.	Calculate:			
	Altitude		GSB 1	Hc(D.MS)
	Azimuth		R/S	Zn(dec.deg.)
	<u>OR</u> :			
2.	Input:			
	Observer's latitude	L(D.MS)	ENT↑	
	Altitude	Hc(D.MS)	ENT↑	
	Azimuth	Zn(D.MS)		
3.	Calculate:			
	Declination		GSB 1	d(D.MS)
	Local hour angle		R/S	LHA (dec.deg

29 FIX1 *** "PRINTX" may be used to replace "R/S 30 RCL1 *** "PRINTX" may be used to replace "R/S 31 SIN 32 RCL3 33 32 RCL0 34 SIN 35 36 - - - - 37 RCL0 - - - 36 - - - - 37 RCL0 - - - 38 COS - - - 39 ÷ - - - 40 RCL4 - - - 41 COS - - - 42 ÷ - - - 43 COS-1 - - - 44 RCL2 - - - - 45 SIN Z - - - 46 X(0? - - - - 47 GTO0 2 LHA 3 Sin	82 ST02 L 49 3 58 6 84 R1 51 8 51 8 51 8 8 7 8 8 7 8 7 8 7 8 8 7 8 8 51 8 8 7 8 8 7 8 8 7 8 7 8 7 8 7	02 →H 03 ST02 04 R↓ 05 →H 06 ST01 07 R↓ 08 →H 09 ST00 10 SIN 11 RCL1 12 SIN 13 × 14 RCL0 15 COS 16 RCL1	d	49 3 50 6 51 0 52 X‡Y 53 - 54 RTN 55 *LBL0 56 R↓ 57 RTN	
36 - 37 RCL0 38 COS 39 ÷ 40 RCL4 41 COS 42 ÷ 43 COS-1 44 RCL2 45 SIN 46 X(0? 47 GTO0 REGISTERS 0 L 1 d 2 LHA 3 Sin Hc 4 Hc 5	36 - 37 RCL0 38 COS 39 ÷ 40 RCL4 41 COS 42 ÷ 43 COS ⁻¹ 44 RCL2 45 SIN 46 X(0? 47 ETO0 REGISTERS 0 L 1 d 2 LHA 3 Sin Hc 4 Hc 5 6 7 8 9 .0 .1 1 12 3 .4 .5 16 17 18 19 20 21 22 23	18 × 19 RCL2 20 COS 21 × 22 + 23 ST03 24 SIN- 25 ST04 26 →HMS 27 FIX4 28 R/S 29 FIX1 30 RCL1 31 SIN 32 RCL3 33 RCL0 34 SIN	Hc,D.MS		
.2 .3 .4 .5 16 17 18 19 20 21 22 23	124 125 126 127 128 129 I	32 RCL3 33 RCL0 34 SIN 35 × 36 - 37 RCL0 38 COS 39 ÷ 40 RCL4 41 COS 42 ÷ 43 COS-1 44 RCL2 45 SIN 46 X{0? 47 GTO0 0 L 1 46 7 .2 .3	REGIS 2 LHA 8 .4 20	3 Sin Hc 4 9 .0 .5 16	.1 17

In the Hewlett-Packard tradition of supporting HP programmable calculators with quality software, the following titles have been carefully selected to offer useful solutions to many of the most often encountered problems in your field of interest. These ready-made programs are provided with convenient instructions that will allow flexibility of use and efficient operation. We hope that these Solutions books will save your valuable time. They provide you with a tool that will multiply the power of your HP-19C or HP-29C many times over in the months or years ahead.

Mathematics Solutions Statistics Solutions Financial Solutions Electrical Engineering Solutions Surveying Solutions Games Navigational Solutions Civil Engineering Solutions Mechanical Engineering Solutions Student Engineering Solutions