

INTRODUCTION

This HP-19C/HP-29C Solutions book was written to help you get the most from your calculator. The programs were chosen to provide useful calculations for many of the common problems encountered.

They will provide you with immediate capabilities in your everyday calculations and you will find them useful as guides to programming techniques for writing your own customized software. The comments on each program listing describe the approach used to reach the solution and help you follow the programmer's logic as you become an expert on your HP calculator.

You will find general information on how to key in and run programs under "A Word about Program Usage" in the Applications book you received with your calculator.

We hope that this Solutions book will be a valuable tool in your work and would appreciate your comments about it.

The program material contained herein is supplied without representation or warranty of any kind. Hewlett-Packard Company therefore assumes no responsibility and shall have no liability, consequential or otherwise, of any kind arising from the use of this program material or any part thereof.

TABLE OF CONTENTS

1.	PROPERTIES OF CIRCULAR SECTIONS
2.	PROPERTIES OF RECTANGULAR SECTIONS
3.	PROPERTIES OF ANNULAR SECTIONS
4.	THIN-WALLED PRESSURE VESSELS
5,	STRESS IN THICK-WALLED CYLINDERS
6.	MOHR CIRCLE FOR STRESS
7.	CIRCULAR PLATES WITH SIMPLY SUPPORTED EDGES
8.	CIRCULAR PLATES WITH FIXED EDGES
9.	COMPRESSIVE BUCKLING
10.	ECCENTRICALLY LOADED COLUMNS

1.

PROPERTIES OF CIRCULAR SECTIONS

This program performs an interchangeable solution for four properties of circular sections. Given either the moment of inertia I, diameter d, polar moment of inertia J, or area A, the remaining properties can be calculated.

EQUATIONS:

$$I = \frac{\pi d^4}{64}$$
$$J = \frac{\pi d^4}{32}$$
$$A = \frac{\pi d^2}{4}$$

EXAMPLE 1:

If the moment of inertia of a section must be 60 in., what is the necessary diameter? What is the polar moment of inertia? What is the area?

EXAMPLE 2:

The diameter of a section is 10 centimeters. What is the moment of inertia? What is the polar moment of inertia? What is the area?

SOLUTIONS:

1.

2.

60.00	GSB1		
60.00	***	(in. ⁴)	Ι
	R↓		
120.00	東京東	(in. ⁴)	J
	R4		
27.46	***	(in. ²)	Α
	R↓	. ,	
5.91	***	(in.)	d
		• •	

10.00	GSB4		
490.87	***	(cm ⁴)	Ι
	R4	(
981.75	***	(cm ⁴)	J
	R∔		
78.54	* **	(cm²)	Α
	₽ŧ		
10.00	***	(cm)	d

1

1.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Key in the program			
2.	Input one of the following:			
	Moment of inertia	Ι	GSB 1	I
	Polar moment of inertia	J	GSB 2	I
	Area of section	A	GSB 3	I
	Diameter of section	d	GSB 4	I
3.	Roll the stack to see the results:			
	(Moment of inertia already on display)			
	Polar moment of inertia		R↓	J
	Area of section		R↓	A
	Diameter of section		R↓	d
4.	For a new case, go to step 2			
		•		

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			0				1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	02 Pi 03 ÷ 04 JX 05 2 06 × 07 GT09 08 *LBL2 09 2 10 ÷ 11 GT01 12 *LBL3 13 Pi 14 ÷ 15 GT09 16 *LBL4 17 X ² 18 4 19 ÷ 20 *LBL9 21 ST01 22 ST02 23 ST×1 24 4 25 ST÷1 26 × 27 JX 28 RCL2	J A d²/4 d	- <u>-</u>				
	35 RCL1 36 R/S 0 1 US 6 7	*** I	Веді 2 d ² /4 8	STERS 3 9	4	5	re "R/S".
			l		l		•
							1

PROPERTIES OF RECTANGULAR SECTIONS

This program performs an interchangeable solution for the moment of inertia I, the width b and the height h of a rectangular section. When b and h are known, the polar moment of inertia J and the section area can also be found.

SOLUTION:

5.00	ENTT	
3.00	ENTT	
0.00	GSB1	
31.25	***	(in. ⁴)
	R∕S	
15.00	***	(in.²)
	R/S	e
42.50	兼兼兼	(in.4)
5.00	ENT†	
0.00	ENTT	
40.00	GSB1	
3.84	東東東	(in.)

EQUATIONS:

$$I = \frac{bh^3}{12}$$
$$J = \frac{bh(b^2+h^2)}{12}$$
$$A = bh$$

REMARKS:

Values of polar moment of inertia J calculated by this program must not be used to calculate torsional stress and strain in rectangular members.

EXAMPLE:

What is the moment of inertia of a section with b=3 and h=5? What is the polar moment of inertia? What is the area? What would b have to be if I=40?

2.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Key in the program			
2.	Enter the following (enter a zero for the			
	unknown quantity):			
	Height of section	h	ENT 1	
	Width of section	b	ENT	
	Moment of inertia of section	I		
3.	Compute the unknown quantity		GSB 1	I,b,or h
4.	(Optional) Compute the area of the section		R/S	A
5.	(Optional) Compute the polar moment of		R/S	J
	inertia			
	+			· · · · · · · · · · · · · · · · · · ·

01 *LBL1 02 1 03 2 04 ST04 05 R↓ 06 ST01 07 R↓ 08 ST02 09 X‡Y 10 ST03	I b h		48 →P 49 X ² 50 RCL2 51 RCL3 52 × 53 R∕S 54 × 55 RCL4 56 ÷ 57 R∕S	** £ ***	
11 X=0? 12 GTO9 13 R4 14 X=0? 15 GTO8		ulate h			
15 6108 16 RCL2 17 RCL3 18 3 19 Y ^x 20 x		ulate b ulate I			
21 RCL4 22 ÷ 23 GTO0 24 *LBL9 25 RCL1 26 RCL4 27 ×	I				
28 RCL2 29 ÷ 30 3 31 1/X 32 Y× 33 ST03 34 GT00 35 *LBL8 36 RCL1	h			may replace	
37 RCL4 38 × 39 RCL3 40 3 41 Y× 42 ÷ 43 STO2 44 *LBL0 45 R/S 46 RCL2	b **	I,h, or b		iliay de 1nse	rted before "R/S"
47 RCL3		BE	GISTERS		
0	1 I	2 b	³ h	4 12	5
6	7	- D 8	9	.0	.1
· ·	.3	.4	.5	16	17
.2	19	20	21	22	23

PROPERTIES OF ANNULAR SECTIONS

This program provides an interchangeable solution for the moment of inertia I, the outside diameter d_0 , and the inside diameter d_i of an annular section. Once d_0 and d_i are known, the polar moment of inertia J and the area of the section can be calculated.

EQUATIONS:

$$I = \frac{\pi (d_0^{4} - d_1^{4})}{64}$$
$$J = \frac{\pi (d_0^{4} - d_1^{4})}{32} = 2I$$
$$A = \frac{\pi (d_0^{2} - d_1^{2})}{4}$$

EXAMPLE:

If d_{1} equals 3 inches and I equals 10 in $^{4}\text{,}$ what is $d_{0}\text{?}$ What is A?

What would I be if d_0 equals 4.5 inches?

SOLUTION:

3.00 ENT† 0.00 ENT† 10.00 GSB1 4.11 *** d_o (in.) ₽ŧ 3.00 *** d_i (in.) ₽₽ I (in.⁴) 10.00 *** 2.00 х J(in.⁴)20.00 *** R4 A $(in.^2)$ 6.18 *** 3.00 ENT† 4.50 ENT† 0.00 GSB1 4.50 *** ₽ŧ 3.88 *** ₽¥ 16.15 *** I (in.⁴)

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Key in the program			
2.	Enter the following (enter zero for the			
_	unknown quantity):			
	Inside diameter	di	ENT [↑]	
	Outside diameter	do	ENT↑	
	Moment of inertia	I	GSB 1	do
3.	Roll the stack to see the results:			
	(Outside diameter already in display)			d
	Inside diameter		R↓	di
	Moment of inertia		R↓	I
	Polar moment of inertia		2 X	J
	Area of section		R↓	Α
4.	For a new case, go to step 2			

		0			
01 *LBL1 02 ST03 03 R4 04 ST01 05 X2Y 06 ST02 07 X=0? 08 GT09 09 R4 10 X=0? 11 GT08 12 RCL1 13 4 14 Y* 15 RCL2 16 4 17 Y* 18 - 19 Pi 20 X 21 6 22 4 23 ÷ 24 ST03 25 *LBL7 26 RCL1 27 X2 28 RCL2 29 X2 30 - 31 Pi 32 × 33 4 34 ÷ 35 RCL3 36 RCL2 37	Cal	culate d _i culate d _o culate I	48 RCL3 49 GSB0 50 ST01 51 GT07 52 *LBL0 53 6 54 4 55 × 56 Pi 57 ÷ 58 RCL1 59 4 60 Y* 61 + 62 4 63 1/X 64 Y* 65 RTN	Stack" may "R/S".	be inserted
47 ST01					
-			GISTERS	1.	
0	1 d _o	2 di	3 I	4	5
6	7	8	9	.0	.1
2	3		.5	16	17
.2	.3	.4	.5	16	17
		i i	1	1	1
	10	20			
18	19	20	21	22	23

THIN-WALLED PRESSURE VESSELS

This program can be used to correlate diameter, stress, pressure and thickness for cylindrical and spherical pressure vessels. Either the hoop stress s_c or the longitudinal stress s_L may be input for cylinders. For spheres, only the hoop stress s_{sphere} is applicable.

EQUATIONS:

for hoop stress in cylinders: $s_c = \frac{Pr}{t}$

for longitudinal stress in cylinders: $s_L = \frac{Pr}{2t}$

for hoop stress in spheres: $s_{sphere} = \frac{Pr}{2t}$

where:

P is internal pressure; D is diameter of vessel (r=D/2); t is thickness of vessel

REMARKS:

The thickness of the walls must be negligible with respect to the value of the radius. The equations are not valid in the neighborhood of end closures for cylindrical vessels.

EXAMPLE 1:

A basketball has a diameter of 9.3 inches. The thickness of the cord layer which resists virtually all of the internal pressure is 1/32 inch. The recommended pressure is 9 pounds per square inch. What is the stress in the cord layer?

EXAMPLE 2:

A four inch diameter pipe contains steam at 1000 pounds per square inch. What thickness is required if hoop stress is not to exceed 15000 pounds per square inch?

SOLUTIONS:

1.

2.

9.30	ENTT	
0.00	ENTT	
9.00	ENTT	
32.00	17X	
	GSB1	
669.60	***	(psi

)

4.00 ENT1 15000.00 ENT1 2.00 ÷ s_c/2 1000.00 ENT1 0.00 GSE1 0.13 *** (in)

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Key in the program			
2.	Enter the following (enter zero for the			
	unknown quantity):			
	Vessel diameter	D	ENT	
	Hoop stress/2 or longitudinal stress for			
		<u>s</u> c,sL, ss 2	ENT↑	
	a cylinder <u>or</u> hoop stress for a sphere	-		
	Pressure	Р	ENT↑	
	Wall thickness	t		
3.	Calculate the unknown quantity		GSB 1	D, <u>s</u> c, s _L , s _s , P, or
				s _s , P, or
4.	For a new case, go to step 2			
				· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·			
	+		LJ J J	

01 #LBL1 02 ST04 03 R4 04 ST03 05 R4 06 ST02 07 R4 08 4 09 ÷ 10 ST01 11 X=0? 12 ST09 13 R4 14 X=0? 15 GT08 16 R4 17 X=0? 18 GT07 19 RCL1 20 RCL3 21 X 22 RCL4 23 GT00 24 #LBL9 25 RCL4 26 RCL2 27 X 28 4 29 X 30 RCL3 31 GT00 32 #LBL8 33 RCL1 34 RCL3 35 X 36 RCL2 37 GT00 38 #LBL7 39 RCL4 40 RCL2 41 X 42 RCL1 43 #LBL0 44 ÷ 45 R/S	t P s _c /2 or s _L or s _s D/4 Calculate D Calculate t Calculate P Calculate s _c /2 or s _L or s _s *** D,S _X ,P, or t		tx" may be e "F/S".	inserted
	REGIS	STERS		
0 1 D/4	2 S _X	3 P 4	t	5
6 7	8	9.0		.1
.2 .3	.4	.5 16		17
18 19	20	21 22		23
24 25	26	27 28		29
L				

This program calculates the radial and tangential components of normal stress for thick-walled, cylindrical, pressure vessels.

EQUATIONS:

$$s_{r} = \frac{r_{i}^{2}P_{i} - r_{0}^{2}P_{0}}{r_{0}^{2} - r_{i}^{2}} - \frac{r_{i}^{2}r_{0}^{2}(P_{i} - P_{0})}{r^{2}(r_{0}^{2} - r_{i}^{2})}$$
$$s_{t} = \frac{r_{i}^{2}P_{i} - r_{0}^{2}P_{0}}{r_{0}^{2} - r_{i}^{2}} + \frac{r_{i}^{2}r_{0}^{2}(P_{i} - P_{0})}{r^{2}(r_{0}^{2} - r_{i}^{2})}$$

where:

- sr is the radial component of stress;
- st is the tangential component
 of stress;
- r_i is the internal radius;
- r_{o} is the outer radius;
- r is the radius where calculated stresses occur;
- P_i is the internal pressure;
- $P_{\rm O}$ is the outside pressure.

EXAMPLE:

A cylinder has an inner radius of 1.00 inch and an outer radius of 2.00 inches. The inner pressure is 10,000 pounds per square inch and the outer pressure is 150 pounds per square inch. What are the values of radial and tangential stresses for radii of 1.00, 1.25, 1.75 and 2.00 inches?

SOLUTION:

1.00 GSB1	
2.00 ENT†	
150.00 ENT†	
1.00 ENT†	
10000.00 R/S	
-10000.00 ***	s _r psi
XIY	°r P°'
16266.67 ***	
1.25 GSB1	s _t psi
R∕S	
-5272.00 ***	
X≠Y	^s r
11538.67 ***	
1.75 GSB1	st
R/S	
-1155.10 ***	c
X≢Y	^s r
7421.77 ***	c .
2.00 GSB1	st
R∕S	
-150.00 ***	-
XIY	Sr
6416.67 ***	st
	JC

REMARKS:

A negative stress indicates compression.

REFERENCE:

J.E. Shigley, Mechanical Engineering Design, McGraw Hill, 1963.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Key in the program			
2.	Enter r	r	GSB 1	
3.	Enter the following:			
	Outside radius	r _o	ENT+	
	Outside pressure	P _o	ENT+	
	Inside radius	ri	ENT	
	Inside pressure	Pi		
4.	Compute radial stress component		R/S	Sr
5.	Compute tangential stress component		x↔y	s_t
6.	For a different r, enter r and go to step 4	r	GSB 1	U U
7.	For a new case go to step 2			
		·		

81 + LBL1 P r P 82 REL4 P P P 84 P P P P 85 REL4 P P P 86 RCL1 P P P 87 RL2 P P P 87 RL2 P P P 87 RL2 P P P 98 RC11 P P P 99 R/S P P P 11 X2 P P P 12 ST02 P P P 13 R4 P P P 19 R4 P P P 19 Y2 P P P 21 x r1 2 r_0 ² P P 22 RC1 P P P 23 RC1 P P P 24 - r0 ² - r1 ² P P 31 - P P P P 32 RC14 P P P P 32 RC14 P						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	02 ST05 03 RCL4 04 JX 05 RCL3 06 RCL2 07 JX 08 RCL1 09 R/S 10 XIY 11 X2 12 ST02 13 R4 14 ST01 15 XIY 16 ST03 17 - 18 R4 19 X2 20 ST04 21 X 22 XIY 23 R4 24 X 25 RCL1 26 RCL2 27 X 28 RCL3 29 RCL4 30 X 31 - 32 RCL4 33 - 34 - 35 - 36 XIY 37 LSTX 38	$P_{i} r_{i}$ $P_{i}-P_{0}$ $r_{1}^{2}r_{0}^{2}$ $r_{0}^{2}-r_{0}$	2 j ²			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	39 X2 40 × 41 ÷ 42 − 43 STO6 44 LSTX 45 2 46 × 47 + 48 RCL6	sr st				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			REGI	I STERS		
0 5 9 10 11 $.2$ $.3$ $.4$ $.5$ 16 17 18 19 20 21 22 23	0 11	P -	2 2 2		4 <u>2</u>	5 5
.2 .3 .4 .5 16 17 18 19 20 21 22 23	J		- r ₁ -	L ! O		I I
18 19 20 21 22 23]		.0	
	.2 .3	3	.4	.5	16	17
	18 1	9	20	21	22	23
			26			
	2 ⁴	<u> </u>	20	<i>C1</i>	20	23

Given the state of stress on an element, the principal stresses and their orientation can be found. The maximum shear stress and its orientation can also be found.

EQUATIONS:

$$s_{smax} = \sqrt{\left(\frac{s_x - s_y}{2}\right)^2 + s_{xy}^2}$$
$$s_1 = \frac{s_x + s_y}{2} + s_{smax}$$

6.

$$s_{2} = \frac{s_{x} + s_{y}}{2} - s_{smax}$$

$$\theta = 1/2 \tan^{-1} \left(\frac{2s_{xy}}{s_{x} - s_{y}} \right)$$

$$\theta_{s} = 1/2 \tan^{-1} - \left(\frac{s_{x} - s_{y}}{2s_{xy}} \right)$$

where:

- s_{smax} is the maximum shear stress;
 - \$1 and \$2 are the principal
 normal stresses;
 - θ is the angle of rotation from the principal axis to the original axis;

1

ł

- θ_s is the angle of rotation from the axis of maximum shear stress to the original axis;
- s_x is the stress in the x direction;
- s_v is the stress in the y direction;
- $\boldsymbol{s}_{\boldsymbol{X}\boldsymbol{Y}}$ is the shear stress on the element.

REFERENCE:

Spotts, M.F., Design of Machine Elements, Prentic-Hall, 1971.

EXAMPLE:

If $s_x = 25000$ psi, $s_y = -5000$ psi, and $s_{xy} = 4000$ psi, compute the principal stresses and the maximum shear stress.

SOLUTION:

```
25000.00 ENT↑

-5000.00 ENT↑

4000.00 GSB1

25524.17 ***

R/S s1 (psi)

-5524.17 *** s2 (psi)

R/S

-37.53 *** θ (degrees)

R/S

15524.17 *** s<sub>smax</sub> (psi)
```

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Key in the program			
2.	Enter the following:			
	Stress in the x direction (negative for	s _x	ENT 1	
	compression)			
	Stress in the y direction (negative for	Sy	ENT↑	
	compression)			
	Shear stress	s _{xy}		
3.	Compute the following:			
	First principal stress		GSB 1	S ₁
	Second principal stress		R/S	S ₂
	Angle of rotation (principal)		R/S	θ
	Angle of rotation (shear)		R/S	θs
	Maximum shear stress		R/S	s smax
	NOTE: Do not disturb the stack during			
	step 3			
4.	For a new case, go to step 2.			
L				

	·	<u> </u>				
<pre> 81 *LBL1 82 ENT↑ 83 R4 84 ST03 85 R4 86 X=Y 87 ST01 88 X=Y 89 ST+1 18 - 11 2 12 ST=1 13 ÷ 14 ST04 15 →P 16 ST02 17 RCL1 18 + 19 R/S 28 X=Y 21 RCL1 22 RCL2 23 - 24 R/S 25 X=Y 26 2 27 ÷ 28 R/S 29 RCL4 38 RCL3 31 ÷ 32 CHS 33 TAN+ 34 2 35 ÷ 36 R/S 37 RCL2 38 R/S </pre>	s _x s _y s _x -	sy ^s x ^s xy ^s y (s _y)/2		•intx" may r •intx" may b	eplace "R/S	5". before "R/S".
			REGISTERS			
	. \ /0	² S _{Smax}	3 SXJ	/ 4 (s.)	-s _y)/2 5	
0 1 (Sy	+Sv}/2	1 ~\Uav				
	+s _y)/2	8	19	10		
6 7	+sy)/2	8	9	.0	.1	
	+sy)/2	8	9	.0	.1	
6 7	+sy)/2	8			17	
6 7 2 3	+sy)/2	.4	.5	16		

CIRCULAR PLATES WITH SIMPLY SUPPORTED EDGES

This program can be used to calculate the deflection and stress at the center of a simply supported circular plate with uniformly distributed or concentrated central loads.

EQUATIONS:

for a concentrated central load:

$$y_{max} = \frac{(3 + \mu)Pr^{2}}{16\pi(1 + \mu)D}$$

$$s_{max} = \frac{P}{h^{2}} \left[(1+\mu) \left(0.485 \ln \frac{r}{h} + 0.52 \right) + 0.48 \right]$$

for a uniformly distributed load:

$$y_{max} = \frac{(5 + \mu)Wr^{4}}{64D(1 + \mu)}$$
$$s_{max} = \frac{3(3 + \mu)Wr^{2}}{8h^{2}}$$

where:

7.

$$D = \frac{E h^3}{12(1 - \mu^2)}$$

y_{max} is the maximum deflection;

- s_{max} is the maximum stress;
 - u is Poisson's ratio;
 - E is the modulus of elasticity;
 - h is the thickness of the plate;
 - r is the radius of the plate;
 - W is the uniformly distributed load;
 - P is the concentrated central load.

REFERENCES:

Spotts, M.F., Design of Machine Elements, Prentice-Hall, Inc., 1971.

REMARKS:

Deflections must be small compared to thickness of plate.

EXAMPLE 1:

Assuming that a manhole cover with an automobile tire at its center may be modeled as a simply supported flat plate with concentrated central load, what is the deflection at the center of the plate? What is the stress?

E =
$$30 \times 10^{6}$$
 psi
h = 0.75 in
 μ = 0.3
r = 15 in
P = 1500 1b

EXAMPLE 2:

A simply supported 1/4 inch thick plate (E = 30×10^6 , $\mu = 0.3$) withstands 50 pounds per square inch. If the radius is 5 inches, what is the deflection and what is the stress at the center of the plate?

SOLUTIONS:

(1) 30.+06	ENT↑	(2) 30.+06	ENTT
0.75	ENTT	0.25	ENTT
0.30	ENTT	0.30	ENT↑
15.00	GSB1	5.00	GSB1
1500.00	GSB2	50.00	GSB3
0.01	***(in)	0.05	*** (in)
	R/S		R∕S
8119.49	***(psi)	24750.00	*** (psi)

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Key in the program			
2.	Input modulus of elasticity	E	ENT+	E
3.	Input thickness of plate	h	ENT	h
4.	Input Poisson's ratio	μ	ENT↑	
5.	Input radius of plate	r	GSB 1	
6.	If the load is distributed go to step 10			
7.	Input concentrated load and calculate			
	deflection	Р	GSB 2	y _{max}
8.	Calculate maximum stress		R/S	s _{max}
9.	For new load go to step 7. For new case			
	go to step 2.			-
10.	Input distributed load and calculate			
	deflection	W	GSB 3	y _{max}
11.	Calculate maximum stress		R/S	s _{max}
12.	For new load go to step 10. For new case			
	go to step 2.			
		 		
		<u> </u>		
				,
				······································

01 *LBL1 02 ST01 03 $R4$ 04 ST02 05 $R4$ 06 ST03 07 3 08 Y^{\times} 09 \times 10 3 11 \div 12 1 13 RCL2 14 $ 15$ \div 16 ST04 17 R/S 18 $*LBL2$ 19 ST05 20 $RCL1$ 21 X^2 23 4 24 \div 25 Pi 26 \div 27 3 28 $*LBL0$ 29 $RCL2$ 30 $+$ 31 \times 32 $RCL1$ 36 $RCL3$ 37 \div 38 LN 3	4 D (P	1 + μ)	48 RCL2 49 1 50 + 51 × 52 . 53 4 54 8 55 + 56 RCL3 59 X2 60 ÷ 61 R/S 62 *LBL3 63 STO6 64 RCL1 65 2 66 ÷ 67 4 68 Y* 69 × 70 5 71 GSB0 72 R/S 73 RCL1 74 RCL3 75 ÷ 76 X2 77 8 78 ÷ 79 3 80 × 81 3 82 RCL2 83 + 84 × 85 RCL6 86 × <td>*** s W <u>r</u>⁴ 16</td> <td></td>	*** s W <u>r</u> ⁴ 16	
46 2 47 +					
	<u> </u>	BEAN	STERS		
0	1 2		2	4	5 D
	r	<u> </u>		4 4 D(1+µ)	P
⁶ W		8	9	.0	.1
.2	.3	.4	.5	16	17
18	19	20	21	22	23
24	25	26	27	28	29
		20	<i>בי</i>	20	²³

CIRCULAR PLATES WITH FIXED EDGES

This program can be used to calculate the maximum deflection and stress for a circular plate with fixed edges. Either central concentrated loads or distributed loads may be input.

$$y_{max} = \frac{Pr^{2}}{16\pi D}$$

$$s_{max} = \frac{P}{h^{2}} (1+\mu) \left(0.485 \ln \frac{r}{h} + 0.52 \right)$$

for distributed loads:

$$y_{max} = \frac{Wr^4}{64D}$$

s_{max} = $\frac{3 W r^2}{4 h^2}$ (at edge of plate)

where:

$$D = \frac{E h^{3}}{12(1-\mu^{2})}$$

 \boldsymbol{y}_{max} is the maximum $\boldsymbol{d} e \boldsymbol{f} lection$

s_{max} is the maximum stress;

P is the concentrated load;

W is the distributed load;

r is the radius of the plate;

h is the thickness of the plate;

- μ is Poisson's ratio;
- E is the modulus of elasticity.

REFERENCE:

Spotts, M.F., Design of Machine Elements, Prentice-Hall, Inc., 1971.

REMARKS:

Deflections must be small compared to the thickness of plate.

EXAMPLE 1:

The cap on a pressure vessel is a 1/4 inch thick steel plate (E = 30×10^6 psi, $\mu = 0.3$) with a 6 inch radius. It is clamped to the opening of the pressure vessel by a ring of bolts. What are the maximum and minimum deflections and stresses in the plate if pressure cycles from 50 to 60 psi?

EXAMPLE 2:

An adjustable focal length mirror is to derive its concaved shape due to a variable force applied at its center. The mirror is chrome plated steel (E = 30×10^6 psi, $\mu = 0.3$), 0.1 inches thick and has a radius of 12 inches. What is the deflection of the center for a force of 6.0 pounds. The edges are held securely.

SOLUTIONS:

(1)	30.+06	ENTT	(2)	30.+06	ENT [†]	
	0.25	ENTT		0.10	ENT†	
	0.30	ENTT		0.30	ENTT	
	6.00	GSB1		12.00	GSB1	
	50.00	GSB3		6.00	GSB2	
	0.02	***	(in)min		FIX5	
		R∕S		0.00626	***	(in)
	21600.00	***	(psi)			
	60.00	GSB3				
	0.03	***	(in)max			
		R∕S				
	25920.00	***	(psi)			

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
٦.	Key in the program			
2.	Input modulus of elasticity	E	ENT↑	E
3.	Input thickness of plate	h	ENT↑	h
4.	Input Poisson's ratio	μ	ENT	μ
5.	Input radius of plate	r	GSB 1	D
6.	If the load is distributed go to step 10			
7.	Input concentrated load and calculate			
	deflection	Р	GSB 2	y _{max}
8.	Calculate maximum stress		R/S	s _{max}
9.	For new load go to step 7. For new case			
	go to step 2			
10.	Input distributed load and calculate			
	deflection	W	GSB 3	y _{max}
11.	Calculate maximum stress		R/S	s _{max}
12.	For new load go to step 10. For new case			
	go to step 2.			

		<u> </u>			
01 *LBL1 02 ST01 03 R4 04 ST02 05 R4 06 ST03 07 3 08 Y* 09 X 10 1 11 2			48 × 49 RCL5 50 × 51 RCL3 52 X ² 53 ÷ 54 R/S 55 *LBL3 56 ST06 57 RCL1 58 2	** W	r* s _{max}
12 ÷ 13 1 14 RCL2 15 X ² 16 - 17 ÷ 18 STM			59 ÷ 60 4 61 Y [×] 62 × 63 4 64 ÷ 65 RCL4	r"	/16
18 ST04 19 R/S 20 *LBL2 21 ST05 22 RCL1 23 4 24 ÷	P		66 ÷ 67 R/S 68 RCL1 69 2 70 ÷ 71 RCL3	**	y _{max}
25 X2 26 X 27 RCL4 28 ÷ 29 Pi 30 ÷	r ² /16		72 ÷ 73 X2 74 3 75 × 76 RCL6 77 × 78 R/S		/4h ²
31 R/S 32 RCL1 33 RCL3 34 ÷ 35 LN 36 . 37 4 38 8 39 5 40 × 41 . 42 5	*** y	,max	70 K/S	**	* s _{max}
43 2 44 +			** "Printx"	may be re	place "R/S".
45 1			*** "Printx"	may be in	serted before "R/\$"
45 RCL2 47 +					
	1		AISTERS	l	
0 1	r	2 µ	³ h	4 D	5 p
6 W 7		8	9	.0	.1
.2 18 19		20	21	22	
24 25		26	21	22	23
		<u> </u>		<u> </u>	

. 🌒

This program performs an interchangeable solution for the four properties of slender compression members or columns: P_{cr} , the critical buckling load; E, the modulus of elasticity; I, the minimum moment of inertia; and ℓ , the length of the member.

EQUATIONS:

Three configurations are possible, identified by the number of fixed ends on the member: 0, both ends hinged; 1, one end free and one fixed; 2, both ends fixed.

REMARKS:

Uncertainties such as the amount of restraint at the ends, eccentricity of the load, initial warp, nonhomogeneity of the material and deflection caused by lateral loads, can cause very significant changes in the behavior of a compressive member.

EXAMPLE 1:

If an 8 inch steel (E = 30×10^6 psi) piston rod (a piston rod has zero fixed ends) must withstand a load of 15000 pounds without buckling, what moment of inertia must it have?

EXAMPLE 2:

Steel columns 40 feet long are used to support a bridge. What is the maximum load that the column can withstand without buckling? Assume 1 fixed end. $E = 30 \times 10^6$ psi, I = 700 in⁴.

SOLUTIONS:

0.00	GSB1	
15000.00	ENT†	
30.+06	ENTT	
0.00	ENTT	
8.00	GSB2	
3.24-03	***	I
	15000.00 30.+06 0.00 8.00	0.00 GSB1 15000.00 ENT† 30.+06 ENT† 0.00 ENT† 8.00 GSB2 3.24-03 ***

(2)	1.00	GSB1	
(2)	0.00	ENTT	
	30.+06	ENTT	
	700.00	ENT †	
	480.00	GSB2	
	224893.33	东京东	Ρ

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS	
1.	Key in the program				
2.	Select column geometry by entering the	0,1, or 2	GSB 1		
	number of fixed ends				
3.	Enter the following (enter a zero for the				
	unknown quantity)				
	Vertical load	Р	ENT↑		
	Modulus of elasticity	Е	ENT 1		
	Moment of inertia	I	ENT ↑		
	Length of column	l			
4.	Compute the unknown quantity		GSB 2	P,E,I,orl ²	
5.	For another calculation, go to step 2				

	······	\mathbf{C}	· · · · · · · · · · · · · · · · · · ·		
01 *LBL1 02 5 03 STO0 04 RJ 05 Pi 06 X2 07 STO1 08 RJ 09 X=0? 10 R/S 11 2 12 X#Y? 13 1/X 14 X2 15 ST×11 16 R/S 17 *LBL2 18 X2 19 STO5 20 R4 21 STO2 22 R4 23 STO3 24 R4 25 STO4 26 X=0? 27 GTO9 28 DSZ 29 R4 30 DSZ 29 R4 33 DSZ 34 X#0? 35 DSZ 36 RCL1 40 # <t< td=""><td><pre>% I E Calcu i = 4 Calcu i = 3 Calcu</pre></td><td>or 2 /4 or 4 : P late P late ℓ^2</td><td>48 *LBL0 49 RCL; 50 ÷ 51 R/S *** R/S may</td><td>*** (</td><td><pre>&²,E,I, or P before "R/S".</pre></td></t<>	<pre>% I E Calcu i = 4 Calcu i = 3 Calcu</pre>	or 2 /4 or 4 : P late P late ℓ^2	48 *LBL0 49 RCL; 50 ÷ 51 R/S *** R/S may	*** (<pre>&²,E,I, or P before "R/S".</pre>
45 RUL3 46 × 47 ×					
		REGI	STERS		
⁰ i	1 cπ ²	² I	³ E	4 P	5 l ²
6	7	8	9	.0	.1
.2	.3	.4	.5	16	17
18	19	20	21	22	23
24	25	26	27	28	29
L	I	I	1	<u> </u>	

ECCENTRICALLY LOADED COLUMNS

This program calculates the maximum deflection, the maximum moment, and the maximum stress in an eccentrically loaded column under compressive stress.

EQUATIONS:

$$y_{max} = e \left[\sec \frac{\pounds}{2} \sqrt{\frac{P}{EI}} - 1 \right]$$
$$M_{max} = P \left[e + y_{max} \right]$$
$$s_{max} = \frac{P}{A} \left[1 + \frac{ecA}{I} \sec \frac{\pounds}{2} \sqrt{\frac{P}{EI}} \right]$$

the outer surface;

section

A is the area of the cross

where:

REMARKS:

Columns must be of constant cross section. Stresses may not exceed the elastic limit of the material.

REFERENCE:

Spotts, M.F., Design of Machine Elements, Prentice-Hall, 1971.

EXAMPLE:

A column 50 feet long is to support 8000 pounds. The load is to be offset 6 inches. What are the maximum values of deflection, moment, and stress in the member?

...

Е	=	30	x	10 ⁶
I	=	10	17 i	in ⁴
Α	=	7	in²	2
с	=	2	in	

SOLUTION:

				RAD	
У _{max}	is	the maximum deflection;	107.00	ST01	
			30.+06	ST02	
е	is	the eccentricity;	50.00	ENTT	
l	is	the column length;	12.00	х	
		-		ST03	
P	15	the compressive load;	6.00	ST04	
Е	is	the modulus of elasticity;	8000.00	ST05	
т	ic	the moment of inertia;		GSB1	
1	12	the moment of thereta,	0.74	***	(in)
Mmax	is	the maximum internal moment;		GSB2	(,
max			53936.76	***	(in-1b)
S	is	the maximum normal stress	2.00	ENTT	
^s max	in	the column;	7.00	GSB3	
			2151.02	非非非	(psi)
С		the distance from the			
	neı	tral axis of the column to			

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Key in the program			
2.	Initialize		g RAD	
3.	Store data:			
	Moment of inertia	I	ST0 1	
	Modulus of elasticity	E	ST0 2	
	Length of column	l	ST0 3	
	Eccentricity	е	STO 4	
	Load	Р	STO 5	
4.	To calculate maximum deflection		GSB 1	y _{max}
	To calculate maximum moment		GSB 2	M _{max}
6	To calculate maximum stress:			
-	Enter distance from neutral axis	C	ENT↑	
		A	GSB 3	s _{max}
	Enter section area and run			
7 [•]	For a new case, go to step 3 and store different value(s).			

		8		8-	
01 *LBL1 02 GSB0 03 R/S 04 *LBL2 05 GSE0 06 RCL4 07 + 08 RCL5 09 × 10 R/S 11 *LBL0	*** y *** M		48 1/X 49 x 58 1 51 + 52 RCL5 53 RCL7 54 ÷ 55 x 56 R/S	***	s _{max}
12 RCL5 13 RCL2 14 ÷ 15 RCL1 16 ÷ 17 JX 18 RCL3 19 × 20 2 21 ÷					
22 COS 23 1/X 24 1 25 - 26 RCL4 27 × 28 RTN 29 *LBL3	sec (x)			
30 ST07 31 × 32 RCL4 33 × 34 RCL1 35 ÷ 36 ENT↑ 37 RCL5 38 RCL2 39 ÷	cA				
40 4 41 ÷ 42 RCL1 43 ÷ 44 JX 45 RCL3 46 × 47 COS			"R/S".	'may be in	serted before
		1 -	STERS		
0	1 I	² E	3 l	4 e	5 P
6	7 A	8	9	.0	T
.2	.3	.4	.5	16	17
18	19	20	21	22	23
24	25	26	27	28	29
	L	<u></u>	<u>~</u>		

In the Hewlett-Packard tradition of supporting HP programmable calculators with quality software, the following titles have been carefully selected to offer useful solutions to many of the most often encountered problems in your field of interest. These ready-made programs are provided with convenient instructions that will allow flexibility of use and efficient operation. We hope that these Solutions books will save your valuable time. They provide you with a tool that will multiply the power of your HP-19C or HP-29C many times over in the months or years ahead.

Mathematics Solutions Statistics Solutions Financial Solutions Electrical Engineering Solutions Surveying Solutions Games Navigational Solutions Civil Engineering Solutions Mechanical Engineering Solutions Student Engineering Solutions

