ROM USER'S
MANUAL™"

INTERNATIONAL

——t
1000A

I -+ 4 + e
*t y

10.A

—
T T

e n”"
ARCL 11 X
RCL 86 XR(
XROM"DC"
£526.10 GT

KEXHP - Y

PPC KOom
USER'S MANUAL

“Dedicated to : %ﬂf’M

“Whose intellect; entfuisiasm,
and, ymf&wnt“ contributions are
9(swealcudable vidue.,

FOREWORD

Because of the nature of the PPC ROM PROJECT, this
manual is somewhat unusual. This manual is the effort
of over one hundred users who worked directly on it,
and many hundreds of others who indirectly contri-
buted to its completion. Before diving into the
routines, the PPC ROM user should first read the
introductory material inPart 1, which includes the
Preface, Organization and Use of Manual, Functional
Grouping of Routines, Abstracts, and brief Intro-
duction to Synthetic Programming. Once you have read
Part 1 you may explore at random with a minimum of
difficulty. Refer to the Glossary in the Appendices
for definitions of unfamiliar terms.

This project is unique in the history of software
projects. IBM and other large corporations have
assigned multi-tens of programmers to a software
project, but never before have over 100 programmers
worked so long and so hard on a project--without
compensation of any kind. The PPC ROM PROJECT is a
community project in the true sense of the word. The
project has always been completely public with month
by month reports openly published for all to study
and respond to.

It took two years and two months to complete. The
first year was spent in mastering the HP-41 system,
and while we were "first in Tine" for HP's announced
Custom ROM Program, we waited until we could utilize
the full power of the HP-41 to produce as complete a
programmer's ROM as possible.

We believe in true personal computing and that a so-
called higher level Tanguage is not always the path to
greater computing power. We want to manage our always-
too-small memory in ways we think are best. We prefer
a flexible operating system that allows us to control
our programming environment,and we want a well thought
out operating system that can be altered if we wish.
The routines in the PPC ROM express these interests
and concerns. Much of the work that went into the ROM
is original and makes a contribution to the Art. Here
are a few examples.

Programmed and documented by hundreds of users
Outstanding ratio of features per byte
Unusually complete technical details

Personal contact for additional help

A rqutjnes ROM - not an applications program ROM.
This is a programmer's ROM.

The full power of Synthetic Programming is made
available to all HP-41 users.

Operating system extension and enhancement programs
Fastest known numerical sort routine
Block and matrix operations defined and programmed

Extended capability and improved accuracy in
financial calculations

Commendable integrator program

® Greatly expanded multiplot and high resolution
graphics programs

® Matrix format printing of flags set in View Flags
® Skipping zero data in Block View

® Better access to all of HP's ROMs with ET3
Routine

® Expanded memory using WL and L& for QUAD
"page" switching

One of the main objectives of the PPC ROM USER'S
MANUAL js to provide an expression of the type of
detail that programmers desire. This includes more
than just a collection of general purpose routines
with as many technical details as possible. The
users are an essential part of the loop,and the PPC
ROM project is designed to include user inputs. A
portion of the ROM fund is being held in reserve for
a follow-up addendum that will include:

Corrections for the errors found

Description of any BUGs that may be found

Additional examples

Additional Applications Programs

Suggestions for ROM or Manual improvement

Review of project

Conclusions and recommendations for future
"user community" software development projects

O +HO oo T

A word about bugs. BUGs are of concern to all users.
We define a BUG to be a failure of a routine or pro-
gram to operate according to the complete instructions.
Unless precise inputs and conditions are specified,

you may have questions regarding the complete instruc-
tions. If you think you have found aBUG, we want to
know about it. But first you should realize that after
hundreds of hours of testing we haven't found any
major BUGs. Therefore, a considerable effort on your
part should be expended before you think BUG and call
the PPC Clubhouse. Many "bugs" may be explained away
by gaining a better understanding of the complete
instructions. We do want to hear from you so your
inputs may be included in the addendum. Happy BUG
hunting.

There were many ideas for routines in the ROM that
for various reasons never became a reality. It is
possible that these creative ideas may appear in a
future PPC ROM. We would 1like to have seen more
alpha-string capabilities and_diagnostic routines.
In the math group we would 1ike to have seen some
routines in the statistics area. After reading this
manual and mastering the PPC ROM,you will no doubt
think of several routines that you will feel should
also have been included.

We had planned special microcode routines that would
have simultaneously simplified and expanded memory
management, but the SDS system that would allow
microcode in the ROM would have caused a three month
delay, so these routines did not materialize. One
reason alpha-string and diagnostic routines did not
materialize was lack of space,and these kinds of
routines tend to be memory intensive. There was very
1ittle discussion of statistics routines,and no specif-
ic statistics routines were actually submitted.

ii PP C ROM USERS MANUAL

PREFACE

The PPC ROM project represents one of those rare
occasions where a group of people join together to
accomplish a work for the primary reason that:

it's ‘a good idea. The ROM project wasn't undertaken
to solve a common problem, nor was it accomplished
to serve some commercial purpose. This manual
represents the PPC ROM effort, but, most important,
it is an expression of delight in the programming
and application of a truly personal! computer. The
PPC ROM project has been especially exciting to me
because it partially implements an idea that dates
back to early 1977.

In February 1977, I had the opportunity to visit
National Semiconductor and spend two days "exercising"
an EPROM version of their planned entry into the high-
end personal programmable calculator market. The
machine was the NS 7100. TI had not yet announced

the TI-59 (it was announced in July of the same year).
The 7100 was an exciting machine with such unique
features as indirect addressing from all registers,
480 fully merged instruction capacity, and non-
volatile file memory cartridges. I was most impressed
with the attitude of the project managers because they
wanted to give the 7100 user the ultimate in what
would be called "...the world's first operating

system based on a hand-held calculator."

After returning home I was thinking about National's
new machine and the software that was envisioned for
it. One Sunday Frank Vose (60) and I were discussing
caiculator functions. 1 had suggested that a calcula-
tor should have commonly used routines pre-programmed
for the user to call in his programs to save program
memory. Frank suggested a "list" of "needed" routines,
and between us we had a substantial wish 1ist. The
routine concept began to grow in my mind, and on
February 16, 1977, I wrote a ten page letter to
National suggesting what I called a Routines Library.

I envisioned a collection of routines that every
machine owner would get. The owners manual would
provide a wide range of programs that would essentially
be a series of routine calls. Here is a quote from
that Tetter (pages 2 & 3).

"The second, and main reason for this letter, is of
such major importance, that I recommend that you
review it immediately. As I have discussed with
you before, and several others at National, I believe
that the first Library cartridge produced should
be a Routines Cartridge. The remainder of this letter
will discuss this concept, its advantages, and provide
a few suggestions for specific routines.

SOME IDEAS

NATIONAL ROUTINES LIBRARY NO. 1.

"The National Routines Library, NRL, offers the user a
powerful capability of producing complete libraries of
programs in many fields. By utilizing the routines of
the 4096 - step NRL the user may write up to 32

(and more with special techniques) programs on a single
file cartridge which acts as an executive program.

1. An aTarm clock and a wristwatch are both considered
personal timepieces. Only the wristwatch is a truly
personal timepiece. Just like the personal timepiece,
a personal computer is always with the user. A

truly personal computer does not require a rigid form
of use, such as sitting at a table. A truly personal
computer is as easy to use while being pushed on a
swing, as it is in the students lecture hall.

This manual provides the instructions and program 1ist-
ing for hundreds of programs which the user may assem-
ble in his own custom "library" in his own field(s)

of interest. Specifically, executive routines are
grouped in the following fields. (no special order)

Electrical Engineering

Chemical Engineering

Physical Science (Physics, etc.)
Civil Engineering

Finance and Business

Mechanical Engineering
Navigation and Aviation

Games

Numerical methods

Statistics

QOO NOOCTHWN -

—

"The user simply selects the programs desired, assigns
labels to them, and keys them from the 1istings in
this manual. What makes this possible is the powerful
set of generalized mathematical subroutines pre-
programmed into the NRL. The short programs you key
as an executive program may only be ten steps, but
may execute many hundreds, or even thousands of steps
of the NRL. In this way the user gets the best of
two worlds - his programming, and the skills of the
Pro's at National, as well, as a reasonable cost of
writing ones own program. This concept fits well
with the computer personality of the 7100 in that the
user may work at a higher level than the usual
calculator.

"Thismanual also provides complete descriptions of all
the routines in the NRL including subroutine Tinking,
accuracy and timing considerations.”

TI announced the TI-59, and National decided not to
produce the NS-7100. (About a dozen were actually
made.) The routines concept stayed in my mind, and I
"preached" the idea to any who would 1isten. On one
occasion following a WESCON Calculator Session, 1
described the concept to the software manager at TI.
He showed a strong interest,and I got the feeling that
he almost grasped the concept. I would like to think
that he was sufficiently "routine oriented" to use the
concept in TI's Math/Utilities Library, but I will
never know.

One "problem" with the routines concept--from the
manufacturer's viewpoint--was the "purpose" of the
routine. A program (or routine) must do a pre-
determined job; it must be application oriented.

By the time the HP-41C was introduced in July 1979, I
had reached another conclusion regarding the routines
concept. The generality of the routines and their
implications was a programming task that was far
beyond the capabilities of any manufacturer. To

do the job right,the whole user community should
participate. What better approximation to the user
community than PPC! In the August, 1979, PPC JOURNAL
(V6N5P27c), 1 proposed that we take on a routines ROM.
In Tate August of 1979 I sent a formal letter to
Hewlett-Packard which stated in part:

"PPC would 1ike to purchase an 8K HP-41C Custom ROM.
Please consider this as a formal "Letter of Intent".
Enclosed is a check {PPC #999) for $1,000.00 as a
deposit."

The remaining part of the PPC ROM story has been
recorded in the pages of the "Journal" in a dedicat-

PP C ROM USERS MANUAL iii

ed ROM PROGRESS Column. The routines ROM that is
described in this manual is not the ideal ROM of
universal, pure function, routines originally
envisioned. The 153 routines (a few are actually
full blown applications programs, and a few are not

routines at all) in the the PPC ROM, however, represent

the creative efforts and talents of over 100 program-
mers and personal computing enthusiasts. It is an
accomplishment beyond any dreams (of reality) that I
may have had.

Now that the PPC ROM Project is history, it is
appropriate to ask: “What was the most difficult
aspect of the project?" Aside from the unplanned
growth (from a 150-200 page manual for 500 users to
this tome for 2500-and-more future users) I
personally will remember two areas of difficulty.
The first involves project management and also
personally doing a portion of the ROM. John Kennedy
(918) 1ifted the burden of 50% of my routines (see
PPC CJ,V8N1IP10a), and this made it possible for me
to handle the Housekeeping Group. Actually, working
on the routines is what makes it worth the effort,
so I would never want to be "demoted” to only the
management aspect of such a project.

The second "problem" I will always remember regarding
this project is the "order processing" aspect--the
bookkeeping, Togging of orders, etc. No matter how
clear you make the instructions,a significant
percentage of the participants will expect you to
do something special for them. My recommendations
for anyone trying to do something of this magnitude
is to carefully outline the order process and
simply return any order that is not in conformance.
You don't have to be so harsh if you have adequate
man power or time. I had neither and learned from
the experience.

Any project involving hundreds of people is a
challenge. As any manager knows, there are no
unsolvable technical problems; all "problems" are
people problems. In this regard I am amazed that
we didn't have the classical problems of fighting
over what would be done, how, and by whom. If we
had aproblem, it was the spouse who couldn't
understand why so much time was spent "on that PPC
thing." A volunteer activity must continuously
Jive with "IT'S 2 A.M.; I've got to get home or my
wife will divorce Me." Of course,employers "don't
understand" either, but somehow we all managed to
squeeze in the necessary hours to become a part of
the most exciting software project ever undertaken
by a user group.

Much of the success of the project was due to the
dedication of the four ROM committee members. Jake
Schwartz (1820) and John Kennedy (918) had been
involved with PPC Projects before and had some faint
idea of what effort might be required. Keith Jarett
(4360), however, sort of stumbled into the project,
and by all rights should have thrown up his hands
and said, "You are all mad." I will never forget the
early morning SDS loading session when I said, "It's
your turn." He looked at me and said, "Never in my
1ife have I worked more than 24 hours straight on
any project." We had an unofficial fifth committee
member, Roger Hi11 (4940). Roger has spent hundreds
and hundreds of hours of his time programming,
debugging, and documenting ROM routines. His mark
on the synthetic group is bold and bright. He has
Titerally contributed ideas and programs to all four
groups. It was obvious to all committee members that
we dedicate the PPC ROM USER'S MANUAL to him. I am
sure that all 4,000 PPC members want to say, thank
you Roger.

The number of man hours spent in perfecting and
documenting the PPC ROM routines is impossible to
record. Ray Evans (4928) conservatively estimates
400 hours for his EER routine. His effort was
measured against the best. How many hours were
previously spent by others on sort programs? The
ROM Progress Columns from August 1979 to July 1981
gontained 70% pages of ROM related topics. This

is equivalent to 140,000 words. I can account for
at least ten man years (20,000 hours) of effort, and
I'11 bet that if the total number of man hours that
PPC members have spent programming, studying, testing,

and thinking about ROM routines and topics were con-

sidered, the time would approach one man century. I
only wish we had an extra 200 hours to better inte-
grate the routines and anextra 300 hours to produce a
better manual.

It is true that PPC members have mastered the HP-41
all by themselves. It is also true, however, that
while those wild and weird synthetic programmers

were exploring the 41 system, HP was quietly cheering
and applauding their effort. It is not possible for
HP to endorse or approve synthetic instructions.
Also, there was no reason to restrict these instruc-
tions from being placed into the ROM--at PPC's risk,
of course. Formally, informally, officially, and
unofficially, HP personal assisted where they could.
Specially prepared short programs were loaded and
Tisted to test the SDS System. Today we know that
the risk is very low, when we committed to a 20%%
svnthetic-instruction ROM; however, we really didn't
know.

It is difficult remember now, but the proposed

ROM was 98% guts and 2% knowledge in late 1979.

Today the percentages are reversed. Synthetic
programming is a rapidly maturing activity and the
PPC ROM will bring all its power to the user community.
HP's contribution, in a hundred ways, was climaxed
on August 22, 1981, a week shy of two years from the
day 1 mailed the Jetter of intent. HP made a special
effort to provide 100 ROM's for the PPC Northwest
Conference at Oregon State University in Corvallis.
The conference attendees were the first group to get
hands-on experience with the ROM.

We cannot give credit to every person fqr every
detail of effort on-this project. Special mention

must be made, however, of the Orange County-Los Angeles
members who did much of the work in the final paste-up,

packaging, and shipping of the 30,000 pounds of ROM's
and ROM Manuals. These 'local' members are the same
members who stuff, seal, and mail the "Journal' each
month. We have tried to list all known contributors
in Appendice B.

If you are a PPC member you can be proud to have been
a part of this project.

Happy Programming.

Richard J. Nelson

I'm not sure of the exact date when Richard Nelson
first discussed with me the idea of forming a set of
programming routines for the HP-41C, but the time
frame was a month or two prior to August 1979. For
the last two years the PPC ROM project has consumed
a considerable portion of my spare time.

I am honored to have served on the PPC ROM committee
and hope that others may profit from the contributions
made by all those involved.
to thank Graeme Dennes (1757), Don Dewey (5148), Phi
Trinh (6171), Read Predmore (5184), Roger Hill (4940),
George Eldridge (5575), Richard Schwartz (2289), and
Bi11 Barnett (1514) for their special contributions.

iv PP C ROM USERS MANUAL

——

In particular I would like __

Many others are also deserving of thanks, but I con-
sider the contributions made by these people to be
significant,

The history of the project is somewhat documented in
the ROM PROGRESS column of the 'PPC Journal'. But what
is missing is an indication of the effort required to
bring the project to its conclusion. An estimate of
the number of man years would probably fall short of
the true number. Perhaps even more significant to
those of us intimately involved in the project has

been the weight of the responsibilities on our psyches.

I can clearly remember a feeling of relief when the
time came to ship the disk to HP that contained the
accumulated programs for the ROM. This marked the
completion of one phase of the project. My responsi-
bilities were for the math routines, and overall I felt
the size and variety of routines fit together fairly
well, but it took a long time to bring each program to
its final form. For each routine I kept a current
listing with a complete stack trace. This meant that

for each little change that was made I had to completely

re-write parts of the documentation that I was keeping.

Each new change was more agonizing, and I had the feeling

that nothing was permanent.

There were hundreds of changes made,and I felt Tike an
artist who could not finish a painting. There was
always some improvement to be considered that made
completing the job impossible. In the end, it was a
relief to know our work would be cast in concrete and
that no more changes could be accomodated.

After the disk was shipped, there were some last minute
changes, but soon it was truly all over. Nothing more
could be added and nothing would be taken away. A
short period of timepassed, and then we faced a
decision of whether to wait for a new SDS system that
might allow us to include the planned special microcode
routines in the ROM. This would have caused another
3-month delay and there was no guarantee the new SDS
system would accomodate our special routines.

The ROM Committee's decision was unanimous that we not
delay any longer. We really were committed now. The
disk was accepted and the masks were made.

The next phase of the project was work on the manual
documentation. Everyone involved in programming
agrees that the work required to document programs is
considerably greater than the programming effort that
produces the programs. Although I never doubted this,
I now know that it is true. The documentation went
through many changes, but I was now using a word
processor and the changes seemed less painful. It
still took a full day to print the 280-plus pages that
I accumuTated, and I went through several printinags.

A11 of my documentation (33 programs) was kept on
three 8-inch floppy diskettes. When it came time to
make the final printing, I needed to get a Dual Gothic
printwheel for my printer. I literally called every
word processing supplier in the Los Angeles area and
could not Tocate that particular element. I began to
wonder if I was ever going to get 9 months work off
those diskettes and onto paper.

No one that I called had the printwheel in stock and
no one was able to locate one when they called their
suppliers. Calls were made all across the country and
Richard Nelson finally located a dealer in
Massachusetts who had the printwheel in stock. When
the printwheel arrived the shipping case was cracked,
but the precious element wasn't damaged and I was able

to make the final printing. Use of a new waxing
machine required that I feed the paper to my printer
one sheet at a time. By the end of the day I had
blisters on my fingers, but I was relieved that my
portion of the documentation was nearing final form.

One theme that kept recurring in the whole project was
that,when you reached the point at which you thought
you were done with something, you were really only
about half-way done. Everything took twice as long to
do compared to the best estimates made by rational
human beings. As I collected my printed sheets,
1ittle did I know how much work remained.

It was after 5 A.M. in the morning when Richard Nelson
and I finished cutting my material. Thanks to a new
waxing machine, the time required to wax all the cut
pieces for paste-up was much shorter than it would
have been otherwise. As I left the clubhouse to go
home and assemble all the work, Richard told me it
would probably take one hour to lay out 6 manual pages.
I expected to do 20 pages in one hour, but in fact, it
took three times as Tlong to complete that particular
task. I ended up with 125 pages of material. At
times it seemed endless.

The next job was to lay in all the special typeset
titles and special symbols and the two-character

global Tabels. This seemingly simple task occupied
one full week of my summer vacation. But I could see
things fitting together and became more enthusiastic
about finishing the manual. There was more proof
reading to be done and then corrections had to be made,
and some final additions were made. A1l little things,
but all time consuming and always on your mind. We
were producing documentation as well as artwork, and
both jobs are perhaps little understood by programmers.
The programming done earlier was definitely easier
than producing the documentation and artwork.

The whole project seemed to grow as progress in each
of the phases was completed. The task before us has
turned out to be rather enormous, and I'm not convinced
we could repeat our accomplishments. Two years ago I
did not expect the final outcome to be as it is now.
The quantity and quality is more than I should have
expected.

At the recent Corvallis, Oregon, conference people were
discussing "the next" PPC ROM, but I know that there
are a few people (to go nameless for sure) who will
never again volunteer for a project like this. There
were times when each of us would have been satisfied
to have quit before the final goal was accomplished.

The rewards will come as all of us learn from the
information provided and as we develop new programs
and new programming techniques. But a word of warning
should go out to those members contemplating doing
another PPC ROM. DON'T DO IT! Just enjoy the ROM you
have. You really don't want to know how much work is
involved once you start such a project.

John Kennedy (918)
PPC ROM Committee Member

The purpose of the Peripheral Routines section
of the PPC ROM is to extend the capabilities of HP-41
peripheral devices. For the wand, the Barcode Anal-
yzer program is an analog of the card reader's verify
operation. For the 82143A printer, three areas are
concentrated upon for enhancement. First, to allow
formatted columns of printed information, Columnar

Print Formatting is presented. Secondly, to enhance

PP C ROM USERS MANUAL v

the printer's plotting capabilities, we have the High
Resolution Histogram/ Histogram with Axis and the
Multifunction Plotting/ High Resolution Plotting pairs
of routines. Thirdly, to significantly €xpand the
printer's character set, the Special Characters rou-
tine was proposed for the ROM. This was later de-
leted; however, it appears in its entirety in barcode
and with complete instructions in this manual in Ap-
pendices M and L respectively.

It is my feeling that the Peripheral Routines
section achieves its goal of expanding the usefulness
of the wand and printer. So much good material was
received for proposed inclusion in this section of the
PPC ROM that eventually a custom module dedicated to
peripheral routines may be justified. Perhaps this
ROM could be written in assembly language? More per-
ipherals in the future should also prove the need for
such a module. However, for now we may look forward
to new prospects for better programming with the PPC
ROM as we know it, in conjunction with the HP-41C/V
personal computing system.

For the sake of completeness and to acknowledge
the fine efforts by PPC members everywhere, here is a
{partial?) list of routines, complete or under devel-
opment, which were considered for inclusion in the
peripheral routines section:

1. 3-D Grey Scale Plotting
2. Y=f(X) Function Value
Tabular Printing
3. Text Justifier Program
4. Family of Curves Plot-
ting
. 3-D Plotting
. More Special Charac-
ters (thousands!!)
7. Generallized HP-41C
(X,Y) Graphics Plotting

Steve Wandzura (4635)
John Dearing (2791)

Roger Hill (4940)
William Wimsatt (5807)

Valentin Albillo (4747)
Many members

[ex @)

John Burkhart (4382)

There are many people to thank for their assist-
ance in completing this project, some of whom deserve
special recognition. There's Tim Fischer (5793), who
saved us over 300 bytes in both combining and greatly
improving the multifunction and high resolution plot-
ting programs. And, of course, Roger Hill (4940),
who seemingly had a hand in cleaning up every routine
in every section, and for programming ‘under pressure’
whenever the need arose. Many thanks to Richard
Schwartz (2289) for making sure the peripheral rou-
tines made it safely through the SDS System with
all updates and corrections intact. My good feelings
also go out to those who provided miles of printer
paper and pounds for magnetic cards for the cause; in
alphabetical order: George Duba (4248), Jerry Lee
(5406), Charles Slocum (2907) and Jack Sutton (5622).
Last, I'd like to thank the ten or so people from the
Philadelphia Chapter who aided in writing, editing,
programming, debugging, etc. until the manual was
done. Special thanks to Mark Trebing (4421), who
donated time and effort to type many pages into a

IRy

word processor, and to Charles Allen (4691) for ex-
tensive testing and documentation right up to the
last minute. We're all better off as a result of the
volunteer work these few have provided.

Jake Schwartz (1820)
PPC ROM Committee Member

The ROM has been a bigger project than I ever antici-
pated, primarily because of the extensive documentation
that Richard wanted. I think that you'll find the
documentation quite complete, especially considering
the short amount of time and the fact that most of the
people involved had full time jobs to contend with.
One of the major surprises was that except for some

of the more complex routines, there was very little
overlap between the group of members that submitted
synthetic programs and the group that worked cn the
writeups.

I'd like to thank everyone who helped out, especially
those who did the unglamourous work of documentation.
Those who contributed programs, whether or not they
were the final version, are generally credited in the
Contributor's History for each routine. Errors and
omissions, of which there are undoubtedly several,
will be corrected in the addendum if anyone notifies
me. The people that I'd 1ike to thank for writeups
are Roger Hill (4940) for@ys.SI3, A, 3 .0CH.(00.
and3; Harry Bertuccelli (3994) forED,53.E3,
ER.0G), The Towers of Hanoi Appendix (APPENDIX A),

PPC ROM Pocket Guide, and most of the Curtain Moving
Appendix (APPENDIX M); David E. White (5353) forlEid,
3.0, ., 83,0, and rough draft material forlll®,
5.8, and B; Greg McCurdy (3957) forid.0S .03,
BA.3, andf@W; Les Matson (5608) forga U, andGd:
Richard H. Hall (4803) for@m andGl¥; Tom Cadwallader
(3502) forgryy,ED.L1M, andf®:; Paul Lind (6157) for
E3and@; Dave R. Kaplan (3678) for[id.IZ¥, andEl;
Carter Buck (4783) forEI3 andgml; William Cheeseman
(4381) forgm; Keith Kendall (5425) and Doug Fauser
(4968) for rough draft material for .1, andiEd;
and Joe Bell {5781) for rough draft material for N
and@@. 1 am grateful to Bill Wickes (3735) who wrote
the Introduction to Synthetic Programming, and to John
McGechie (3324) who wrote the early history of . I'd
also like to thank Charles Ragsdale (7251) for writing
virtually all of the synthetic routine abstracts as
well as rough draft material forggd. Last, but most
certainly not least, I thank George Duba (4248) and
Clifford Stern (4516) for their compilation of the
technical details tables.

Now that this thing is done, I think I'11 call Jack
Baldrige's desert island travel agency...

Keith Jarett (4360)
PPC ROM Committee Member

The PPC ROM Committee was composed of the following

people.

Math Routines - John R. Kennedy (918), Math teacher
at Santa Monica College in Santa Monica, California.

Peripheral Routines - Jake Schwartz (1820), Bio-
Medical Engineer at Childrens Hopital, Philadelphia,
Pennsylvania.

Synthetic Routines, Keith Jarett (4360), Systems
Engineer, at Hughes Aircraft, E1 Segundo, California.

Housekeeping Routines, Richard J. Nelson (1),

ETectronics Engineer/Consultant, Santa Ana, California.

Vi PP C ROM USERS MANUAL

—

~—

A1l ROM inputs were divided into one of the four groups
managed by the group coordinator. The 122 global-
labeled routines are listed below under their group
coordinator.

ROM Routines Listed by Documentation Coordinator:

Keith Jarett - (Synthetic Routines)

[cu] LHN | [NR | 3 VK]

[8] iF | [s | | Rb |

[1K | 3 [om]

m Pa] [sD] [XD]

DS | | PD] | SK] [XE]

m | PK &8

[€7] B [SU]

(o | (e | T3 [QR | [sx |

EX] [RD] 'Sb |

m | RF] FuD]

[GE | [RK | VA

[CK] (HD] [NH] [RT] o3 (67)
PREFACE

In addition to this manual the PPC ROM has three
additional items for making the programmers task
a little easier. These are:

a. PPC ROM Pocket Guide
b. Plastic HEX Table
c. Optional, more bold Tabel

Each is self explanatory. The plastic card is
conveniently kept in the Pocket Guide.

The PPC ROM USER'S MANUAL was originally planned to
be of three distinct parts as described in the
Organization and Use of Manual section beginning on
page 1. Part I was to be the introductory and ex-
planatory material. Part Il was to be the main body
of the manual with references grouped in Appendices
as Part III. When the manual was assembled, however,
there was no room for most of Part III if the 500
page budget was to be maintained. When 10,000 copies
of a manual are printed, adding "a few more pages"
can "add many more dollars" so the organization of
Part III had to be changed.

The problems of assembling the art work from four
sources dictated that a plan of pagination be adopted
that would allow concurrent paste-up of the routines.
For this reason, and the desire to provide rear tab
indixing for the 122 routines, it was decided to
start each routine on an even page. If a given
routine happened to have an odd number of pages

there would be a few odd pages sprinkled throughout
the manual. As it turned out, there were 39 such
pages. The original plan was to fill these pages
with related reference materials such as forms,
tables, artwork, etc. An alternate plan was to
provide a formal NOTES page that was identified

with space in the index for the user to fill in

for his own reference.

Jake Schwartz - (Peripheral Routines)

[BA) HA) [HS | VP

(HP] « (7)
Richard Nelson - (Housekeeping Routines)

|AM | [BV Vs | &3 (71

[Bi) [FL | [PO 53] (TN |

| BL | (MA] [51] e XL | (15)
John Kennedy - (Math Routines)

[6C B4 (8= E3 (DR I e ~ o ~ | SE g
[BD] [CA] m m m [7B |
[BE K [Fi] [1 [P [UR I
(e K (Cv) G [m2 By G

[BR kg (GN | B * RN | (16%)
| 3 c) £ * (33)

*These routines are actually part of the Housekeeping
group. John Kennedy assumed responsibility for these
routines.

POSTSCRIPT

The solution to the problem was to use the "odd"
pages for the "leftover" part three material.
This solution was essential, because we had
referenced the appendices in previously pasted-
up parts of the manual and it would have been
too much work to redo the manual at the last
minute. This was especially important, because
the PPC communication link was at stand still
while this manual was being finished. The phone
bulletin was receiving calls at the rate of 20
per hour around the clock. Members were expecting
their ROM's,

The Appendices are scattered, in order, throughout
the manual on pages 33, 37, 61, 105, 109, 121, 131,
135, 143, 165, 169, 173, 187, 227, 233, 251, 259,
273, 297, 335, 345, 349, 367, 373, 387, 415, 423,
429, 439, 443, 449, and the 'normal' continuous
pages of 466 thru 487. Most of the broken up
Appendices are single page, but a few are five

pages in length. These are started with an
“Appendix X from Page N" and end with "Appendix X
Continued on Page N". As an additional aid in

using the "misplaced”" Appendices we have boxed their
page numbers. They are all on odd pages and you may
use this designation to turn the pages to the next
Appendix.

This unconventional organization was essential if
the 500 page budget was to be maintained and no
material was to be left out. We accomplished both
objectives.

None of the PPC ROM objectives could have been met
without the encouragement and support of the PPC
membership at large. For me, the time period
between the first two U.S. Space Shuttle launches
was one of intense concentration on this manual.
Without the infinite patience of my wife Paz, none
of my PPC activities would be possible, and this
manual would have a 1983 date on it.

Richard Nelson

PP C ROM USERS MANUAL vii

E ds:i

TABLE OF CONTENTS

PART I - INTRODUCTORY MATERIAL

Title Page and Dedication
Foreword

Prefaces. o o Lo L.

Organjzation and Use of Manual
Functional Grouping Table of Routines
Abstracts

PART II - ROM ROUTINE INSTRUCTIONS

| MISCELLANEOQUS |

m . 20 MB. . . 2%
NUMERIC

3. . .3 E. .. 3

E. . 3 ... ;3 m. .. 4
m. . . g

@m. . . 4 .. .5 B3 .. 5
. . .5 EN. 58 C@. . . 62
3. . . E3.. .6 B 70
o3 . 72 E3. . .74 3. .. 82
2. .. E3.. .9 ED.. . 9
.. 06 BB, . (110 EB. . .120
Q. . .22 E@. . .12¢ EB. . .12
3. . .132 €E3. . .134

@a. . .13 @E. 133 B3, . Lap
GB. . . E3.. .14 BB, . .3
@& . 170

B, . .74 ED. . .17

B, . .73 EB. . .15 CA. . .15
a. . .20

3. . .o .. .220 . . . 228
. . . o3

o . .23 DB, . L2 HA. . . g
. . 254

.. .20 EB. . .26 EB. . .28

- 274
- 298

—

- 340
. 352

2
I

. 354

- 356
. 366

. 372

- 374
. 382

HE
=1

- 42 . 388

- 400
- 410
. 426

- 54
- 64

T1

-428

.- 84
- 98

.438

. 442

- 452
. 128

<454

- 462

- 166

PART 11

0. . .276 E@. . .27 CIB. . . 296
3. . .33 @@. . . 333
3. 342 B@. . . 346 ED. . . 350
.. 358 E3. . .30 ED. .. 364
. . .38 3. . .37
C@. . 376 3. . .373 GB. . .38
3. . .33 CO. . .38
B3. . .30 B3. . .39 EA. .. 398
E3. . .42 E3. . .46 ED. .. 408
B. . .27 3. . .416 BEB. .. 424
3. . .43 &B. . .43
0D . . 440
M@, . 244 .. .206 WB. . . 45
E3. . .45 EA. . . 460

SIGMA
> c IR

SUPPORTATIVE MATERIAL (APPENDICES)

Appendix A

Appendix B

o

Appendix

o=

. 188 Appendix

Appendix

Appendix

Appendi x
- 230 Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix

O =Z E M R G- Do o m mMm

Appendi x

270

PP C ROM USERS MANUAL

- Advanced Applications of 33
M/ &3 and CO/ 0D
- ROM Project Contributors 105
- ROM Routine Author List 109
- References and Accessories 121
(Commercial Products)
- ROM project Expense Summary 131
- ROM Order List 135
- Glossary of Terms. 187
- Table of Tables. 297
- I1lustrations and Figures . . 335
- ROM Listing. 345
- Routine Label-XROM Table 415
- Special Characters - SC 423
- Curtain Moving 466
- Barcodes of ROM Routines 469
- Barcodes of Applications 479
Programs
.................. 488

B o]

ORGANIZATION
AND USE OF MANUAL

This manual is divided into three major parts. Part |
contains the introductory reading material. Part [I
is the working (user's) part of the manual. Part (1]

contains the reference and resource materials.

Part | consists of introductory material. This
includes the foreword, the prefaces, the table of
contents, the section which you are now reading which
describes the organization and explains the use of the
manual, a table of the functional grouping of the
routines, the abstracts of all 122 global labels, and
a section which is a brief inftroduction to synthetic
programming.

Part 11 consists of the complete write-ups for each of
the 122 global labels and is really the heart of the
entire manual. The material contained in Part | and
Part 11l simply augments and supports the complete
descriptions of all the routines which appear in
alphabetical order in Part Il.

Part |1l contains the appendices and the index. The
titles of the appendices include: Advanced
Applications of F/£A&CE/OLY ;ROM PROJECT
Contributors; ROM Routine Author List; References and
Accessories (commercial products); ROM PROJECT Expense
Summary; ROM Order List; Glossary of Terms; Table of
Tables; Illustrations & Figures; ROM Listing; Routine
Labe!=XROM Table; Special Characters; Barcodes of ROM
Routines; Barcodes of Applications Programs.

The table consisting of the functional grouping of the
ROM routines helps place fogether those routines that
are logically related by function. The categories or
groups consist of: alpha register usage, block
operations, curtain operations, display functions, key
assignments, loading bytes, general mathematics,
matrix operations, memory management, miscellaneous,
non-normal ized numbers, peripherals, program pointer,
return stack, and sorting operations.

Thus all 122 routines have been grouped into 15
categories that provide a broad outline of the ROM.
Since there is no agreement on the exact placement
into the categories, any routine may appear in more
than one group. The grouping table will make it
faster and easier fo determine routines related by
function. Those readers with special inferests may
wish to initially concentrate on one particular group.
The functional grouping table makes it easy to
determine a desired two-character label, but the
alphabetical order of the individual routine write-ups
in Part [l makes it easier fo actually locate within
the manua! the complete information about the desired
routine.

The list of abstracts which appears with the other
introductory material in Part | is provided for those
readers who on their first reading wish to obtain an
overview of the features and capabilities of the ROM
routines. The abstracts of all 122 routines are

collected in alphabetical order and located in one
place.

Bach routine write-up in Part || conforms to the
following format. Note that many of the ma jor
sections are optional, but, when these sections are
present, they will appear in the following order:

Title

Abstract

Short Example

Background (optional)

Complete Instructions

More Examples

Further Discussion (optional)
Application Programs (optional)
Formulas Used (optional)
Routine Listing (form provided)
Line By Line Analysis
References (optional)
Contributor's History

Final Remarks (optional)
Further Assistance

Notes (optional, form provided)
Technical Details (form provided)

Each routine begins with its ftitle at the top of an
even numbered page and contains in reverse print the
two characters used in the global label. This is
immediately followed by a one- or two-paragraph
abstract which describes (without technical details)
the purpose and function of the routine. ROM routines
are referenced throughout the manual by two-character
reverse print symbols.

Next appear one or two short examples which illustrate
what is required to run the routine. Although these
first examples are called "short", they are not
necessarily short in length, but rather illustrate a
typical use of the routine. The purpose of these
first examptes is future reference on how to run the
routine. They provide the user who is vaguely
familiar with tThe routine an illustration of its use
which avoids a long, detailed reading of the complete
insftructions,

The next section is called Background and is optional
since many of the routines are simple in nature and
general ly do not require any special background
knowledge. When a background section occurs, it
provides a transition between the abstract and first
examples and the complete instructions.

The Complete Instructions section is self-explanatory
and is the primary reference point when you have a
question about how fto run the routine. These
instructions will describe step by step how to
exercise the routine. The Complete Instructions
section is then followed by more examples which
turther illustrate the use and options associated with
the routine.

Some routines may benefit from further discussion
following the complete instructions and the examples.
The information provided under Further Discussion is
not necessarily required to run the routine, but may
provide insight on how to get the most out of the
routine.

Applications Programs are programs which use or call
the global label as a subroutine. These programs will
illustrate and provide ideas for how you may use the
routine in your own programs. There are many creative
applications that we either did not think of or did
not have time to fully develop. It is expected that
you will also develop and share with other PPC members
your own applications programs. Not all routines have
complete applications programs.

PP C ROM USERS MANUAL 1

Many of the math routines contain formulas, and these
are |isted for reference purposes, in some cases with
comments about their implementation. This section is
followed by the Routine Listing which apears in a
special boxed form. Although the majority of routines
are straightforward, a few of the more complex
synthetic routines will not include listings of all
the called subroutines. Where convenient, the called
subroutine lines are given in addition to the program
!ines that make up the routine. Don't be surprised
when you see two sets of |ine numbers that are not
consecutive.

The Line By Line Analysis section follows the routine
listing so that |ine numbers are easily referred to.
This part will describe in some detail exactly how the
various program |ines accomplish the objective of each
routine. Those interested in this detailed form of
documentation will find many enjoyable hours of
reading and studying the programming techniques that
are to be found here.

References are optional and may refer to previous PPC
Journal articles, books, or other periodicals. You
may wish to add your own references in some cases.

The Contributor's History is a brief indication of the
people instrumental in making the routine a reality.
The Final Remarks section is provided as a starting
point for future work. The comments here may apply to
future dreams about how the routine could be improved
if the routine were to be implemented on a future

machine, especially if we assume such a machine has
few constraints.

As if all the above were not enough, we have also
tried to provide the names of two people you may
contact for further assistance on the routine. You
should feel free to contact these people if you have
difficulty making the routine behave as described.
These people may also wish to hear your feedback on
the routines. At the end of some of the routines a
little space was left over, so we provided a form on
which you may write your own notes that should contain
everything we left out.

The technical details for each routine are provided in
a special table which shows registers and flags used,
local labels and global labels called, execution
times, display and angle modes and other technical
details. The top of the table shows the XROM numbers
and the SIZE require to run the routine. In many
cases the indicated SIZE is a minimum and in other
cases the SIZE is given as variable or no special SIZE
is required,

All the stack and data registers used are listed.
Where possible the content of registers used is
briefly indicated, but in some cases the values are
not constant so only the word "used" is given. The
same is true of flags used. Where possible we have
tried to indicate the significance of the flag being
set or cleared. In some cases more complete
information will have to be obtained from the Complete
Instructions section. The Technical Details section
is primarily intended to be used for quick reference.

The Unused Subroutine Levels is the number of
remaining levels when the routine is called as a
direct subroutine from one of your own programs.
Global labels called may be direct or secondary. A
secondary call occurs when the ROM subroutine calls
another ROM subroutine. Some global labels are used
with a GTO or are dropped into by another routine and
hence do not appear as direct subroutine calls.

The term "interruptible" near the bottom of the
Technical Details table means that you may press R/S
twice: once to stop the routine and a second time to
resume execution; no detrimental effects will result.
Except for special synthetics, most routines are
interruptible. The meaning of Execute Anytime is that
the routine requires no data input and that no special
condition of the machine is required. All that needs
to be done is to execute the two-character global
label., Only a few of the routines fit in this
category.

If you load a routine into RAM, you may find a
discrepancy between the actual byte count and the
number given in the table. In many cases, the byte
count in the table may be reduced because of RTN/END
combinations or extra local labels or other parts not
always required. Because the HP-41C COPY function
only applies to complete program files, the number of
registers to copy is the number of registers for the
entire file.

The brief introduction to synthetic programming is
provided for beginners who are not familiar with
synthetic functions but may also serve as review for
experienced synthetic programmers. The techniques and
applications of synthetic programming are ever
expanding, so a complete coverage of this topic is
neither intended nor possible in this part of the
manual. This introduction contains a description of
the functions of the internal status registers and
includes a memory map of the HP-41 system. An HP-41
Combined Hex/Decimal Byte Table and its use to create
synthetic instructions are explained. More
information about synthetic programming may be
obtained from the references. This introduction
serves the purpose of helping novice users obtain a
minimal background for using the synthetic routines
that are in the ROM.

Part I'll of the manual contains the appendices and the
index. The index is self-explanatory.

Appendix A illustrates how expanded operating system
concepts advocated by PPC members may be implemented
by synthetic programming. Hundreds of people have
contributed to this project.

Appendix B lists the PPC members who have made
signifcant contributions. Our apologies for any
omissions, which we will correct in the addendum to be
produced in mid 1982. Please contact us if your
contribution is not |isted.

Appendix C |ists those persons who may be considered
the primary authors of routines. The original
intention was to assign credit to one person per
routine, but in some cases more than one name is
included, and in other cases it was not possible to
assign credit due to the many people who contributed.

Appendix D |ists some commercial products related to
the HP-41 and provides references for further
information about these products. Included are a port
extender, EPROM boxes, magnetic card holders, books
and other accesories.

Appendix E contains the summary of the expenditures
for this project. Because the ROM is a custom product
which has a substantial tooling charge, this project
could only have been accomplished by having members
pool their resources and purchase the ROM as a group.
The PPC ROM PROJECT is a special project of PPC.

2 PP C ROM USERS MANUAL

Appendix F contains the list of the ROM orders by
member number. 5000 ROMs were purchased from
Hewlett-Packard for +his project. Each order received
is for two ROMs including manuals. 2500 orders
comprise the complete project. The ROM order list
accounts for these 2500 orders and is arranged by
member number order.

Appendix G contains a glossary of technical ferms. We
discourage unnecessary Jargon, but the study of
personal computers necessitates technical terminoiogy
for effective communication. We wish to promote
consistent use of standard terminology and this
includes terms developed by HP and PPC.

Appendix H lists any tabular data found in the manual .
lists illustrations and figures found in

Appendix |
t+he manual.

Appendix J is a complete Iine-by-line listing of the
entire PPC ROM. This listing was done in the NORMAL
mode on the 82143A Printer because non-printable ASCI!
characters are more easily observed in this mode. The
spacing in NORMAL mode also makes it easier to locate
labels.

Appendix K lists XROM numbers and corresponding
function labels for the PPC ROM, the 82143A Printer
and the Card Reader. Two |ists are provided. One is
in XROM number order (this is the same as CATALOG
order) and the other is alphabetical order by function
name.

Appendix L contains a program originally planned for
+the ROM, At the time of final selection and loading
it was decided that these 1000+ bytes would be better
utilized if replaced by many shorter routines. This
special characters routine is described in the same
format as the other ROM routines. It is in barcode,
and it includes a demonstration program for the
printer.

Appendix M contains introductory and background
material on curtain moving {(re-numbering of data
registers under program control). The characteristics
and usage of the PPC ROM curtain moving routines [cu 8

€3, 0 » B, and @3 are compared.

Appendix N contains the 22 program files that comprise
+he ROM and is printed on special paper near the end
of the manual. These barcodes correspond exactly with
the ROM listing in Appendix J. See paragraphs below
for details on copying and/or locading ROM routines
into RAM,

Appendix N contains barcodes of the more signifcant
applications programs that are described in the
individual routine write-ups. Many of these routines
contain synthetic instructions.

6 few remarks concerning some of the routines are
included here because these notes did not fit as part

of any one particular routine's documentation. There
are six "keyboards" associated with the math routines.
Four of these keyboards are fully documented in the
routine write-ups for , B3, ER, and 8 .
However, two program files,) and @, also
contain local labels associated with the top row of
keys. |If you key GTO "EI@" and switch on USER mode,

the following routines will be assigned (default) to
keys A, B, C, D, E, e:

| @ GO cD 3D

If you key GTO "(I@" and switch on USER mode, the
following routines will be assigned (default) fo keys
B, C, and D:

& =3 @

By using the top row of keys you can avoid keying XEQ
"XX" where XX is one of the associated global labels.
There is no mention of this use of these keys in the
write-ups for any of these global labels. For
example, when you first exercise the examples in the
base conversion routines [and , you may find
it more conveniept to stop the program pointer in the
program file ED (key GTO "EB") and then simply
press A or B to execute EB or EA.

As another example, pressing C in USER mode, when in
the file (B, will execute B , the solve routine
(assuming of course no other function has been
assigned to key C). These local labels were first
used when the routines were under development, and it
was decided that it would be a convenience feature to
leave the loca! labels in the final ROM version.

The following application programs of math routines
are in barcode at the end of the manual, and no
mention of this resource is made in the corresponding
routine write-ups.

CVPL (IE])

LPAS and FAST (IGR)
MI0 and RRM (EE)
PHN (BE)

Another remark may apply to any one of the 122 global
labels. In RAM program memory you can usually
simulate, alter, or customize a global label to your
own liking. This may be desirable if your application
program makes many calls of a ROM routine, especially
if that routine requires a certain setup before it can
be called. Most users would probably do this anyway,
but there may be times when you feel a ROM routine
prevents you from using it the way you feel it should
be used. In almost all cases, a short customized
setup before a call to a ROM global label will free

you from apparent limitations.

As a simple example, someone is bound fo question why
the base conversion routines are called [and .
If these two routines are inverses of each other, why
weren't the "idiots" who programmned them consistent in
their selection of global labels? [+ would have been
more consistent to name them BD and DB or TB and BT.

The reason the obvious choices were not used was fo
avoid conflicts with other global labels that are used
by HP in other existing ROMs. See VINIOP7b for a list
of two-letter labels used by HP as of early 1981. But
in any case, if you don't use those ROMs you could
write the program:

PPC ROM USERS MANUAL 3

01 LBL*BT
02 XROM ED)
03 RTN

which gives you the combination TB and BT which you'l!l
have an easier time remembering.

As another simple example, the input for the block
rotate routine EXD is assumed to be in the form:

Y: 1st register in source block
X: * number of registers within the block

If you would prefer to enter the block parameters in
the form tbbb.eee (the sign of X determines the
direction of rotation), the following customized
routine may be used: BRX = Block Rotate Extended

01 LBL¥*BRX 09 E-3

02 SIGN 10 ST + Y
03 ST * L 1/

04 LASTX 12 rY

05 enTEr} 13 -

06 INT 12 %

07 STO T 15 6T0 E3
08 -

The PPC ROM is an extensive, complex piece of software
designed to serve many users in diverse areas.

Because of this aspect of the ROM, users in different
areas may find apparent inconsistencies. There were
many implementation decisions made as the ROM was
being developed. While you may not agree with (or may
be ignorant of) the decisions made, it is usually
possibte to work around apparent obstacles, and by
doing so you'll find more use for and have a greater
appreciation of the PPC ROM.

A few notes follow concerning copying ROM routines.
The PPC ROM is comprised of 8,170 bytes (22 bytes
unused) programmed in 22 files--remember that an HP-41
program file is that series of instructions between
two "END" instructions. The ordering of the routines
is for maximum use of ROM bytes., Shared code and the
falling of one routine into another, while maximizing
the number of routines the ROM may hold, tends to
confuse the user, because of an apparen% lack of
order. The routine ordering also makes it difficult
to combine routines into a common file so that they
may be run in RAM. Caution must be exercised if you
copy ROM routines into RAM and expect them to run
correctly.

1. Copy all called or used routines.

2. Convert all XROM calls to XEQ.

3. Change all local labels that are duplicated
and have "reverse" calls to them. This is
most important when deleting ENDs to combine
routines into functional blocks.

4. ldentify--as a suggested convention--RAM versions
of PPC ROM routines with three~letter global
labels having the first two letters the same as
the ROM and the third a duplicate of the second.

5. RAM versions will usuvally run 10 to 25% slower
than ROM versions.

6. EE and EE are routines that are required to
be in ROM; they will not run in RAM without major
changes or special operating conditions.

The optimization of label length (number of
characters) and the number of returns dictated that
file lengths be 63 registers or less so as to fit into
a basic HP-41 without memory modules. The
introduction of the HP-41C/CV and Quad Memory Module
made this requirement less important. Two program
files exceed this requirement (B - 71 registers and
WA- 88 registers).

The synthetic ROM routines provide capabilities never
before seen in a programmable calculator. These
capabilities range from convenience features |ike SIZE
finding to operating system enhancements |ike
key-assignment management and curtain control
(programmable register renumbering). The large number
of synthetic routines and the unforgiving nature of a
few of them may be intimidating, or at least
confusing, to the beginner. Therefore an attempt has
been made to group the synthetic routines into three
levels of difficulty, corresponding to the amount of
knowledge needed to make real use of them.

The Level | routines can be used by anyone who has
read the Owner's Handbook. They require no knowledge
of the internal workings of the machine. Many of the
Level |l routines require a rudimentary knowledge of
HP-41C memory structure or program instruction
structure (the byte table). In most cases, however,
the needed information is contained in the routine
write-up. Level Il routines require more background
reading to use them to their full potential. For
example, there is a separate appendix discussing
curtain moving, and the subroutine stack extension
program has a lengthy write-up with several
application programs.

The Technical Details tables for the synthetic
routines use a s|ightly different convention for stack
usage than do the other routines. The contents of the
stack after execution of the routine are |isted.

—
0]
<
(]

K XK

%
* *

*

r

N - N 2

EEBEEEEREBEEEWERARTER -
b 3

*significant risk of
MEMORY LOST with
improper use

M < HEl B
EEEE0EEEEEEEEEREEEEREERREER
-
x 2 - m (2] 2
EEEBBEEEEEERREREREEBEEEEE ¢

4 PP C ROM USERS MANUAL

@ and ail the routines that call KGB replace
register contents of all registers between the last
key assignment and the .END. with zero. Be aware of
this if you have any data in these registers due to
your programming or HP's ROMs or accessories. This
means that I, G, EX® , etfc. will overwrite
these registers.

Another note of caution: DON'T R/S INDISCRIMINATELY
IN THE PPC ROM. Very nasty things can happen if you
don't watch what you're doing. For example, if you
R/S after QZ¥ or » you get MEMORY LOST (usually),
courtesy of B or [. At the very least, an
indiscriminate R/S is |ikely to cause your flag
register contents to be disrupted.

NOTES

The synthetic routines are much more than just a
collection of programs; they are a fully integrated
package. For example, there are 68 XROM instructions
(calls of other PPC ROM routines) in the synthetic
group. This amount of repeated use of routines saves
many bytes, enabling more and better routines to be in
the availabie ROM space.

The PPC ROM is like a high-performance sports car. [t
can run circles around ;ts ordinary cousins, but it
demands more skill of its operator and is less
forgiving of mistakes. If you keep this in mind
you'tl find that the PPC ROM is a lot of fun to drive.

PP C ROM USERS MANUAL 5

,_
1=}
=

|

2 © @ 2z
EE 2 g g

™ ofa
HEE el

EEHB
35

EEEE BE BER
= x| =

i EHB
2

3 alolalo b =
EEEEEEHEEEEEEE!E!! 4B

[+)]

ROM ROUTINES GROUPED BY FUNCTION

BYTS...oovivvnlt is
FLeviovvunnananens is
REG...vvvivnininnnn is
CALLS.ovvnnieennns is

to run.

ROUTINE TITLE

AL 1L ISR L

ALPHA REGISTER

Alpha to Memory

Alpha Detete Last Character
Memory to Alpha

Nth Character

Substitute Character

View Alpha

42
38
276
340
412
422

BLOCK OPERATIONS

Block Clear

Block Exchange

Block Increment

Block Move

Block Rotate

Block View

Block Extremes

Block Statistics

Delete Record

Insert Record

Matrix, Interchange Rows

Matrix, Multiply Row by Constant
Matrix, Add Multiple of Another Row

CURTAIN

Curtain Finder
Curtain Up
Curtain to Abs.
Tocation in X
Hide Data Registers
Uncover Data Registers
ZREG Curtain Exchange

Decimal

DISPLAY

Display Set
Display Test
Recall Display Mode
Store D1sp1ay Mode

KEY ASSIGNMENTS

Additional Key Assignment
First Key Assignment
Assigrment Register Finder

Clear Key Assignments
Make Multiple Key Assignments

Pack Key Assignment Registers
Reactivate Key Assignments
Suspend Key “Assignments

V1ew Key Assignments

LOAD BYTES

Store Part of LB
BLDSPEC Inputs for LB
Flag Inputs for LB
Load Part of LB

Load Bytes
XROM Inputs for LB

MATHEMATICS

Base B to Base Decimal

Block Extremes

Block Statistics

Complex Arithmetic

Talendar Date to Julian Day Number
Tombinations

Turve Fit

Decimal to Fraction

Exponent of X

Financial CaTculations

First Derivative

Fractions

Gaussian RN Generator

Tntegrate

Julian Day Number to Calendar Date
Mgtr1x, Interchange Rows

Matrix, Multiply Row by Constant
Matrix, Add Multiple of Another Row
Matrix, Register Address to (1,J)
Matrix, (i,j) to Register Address
Mantissa of X

72
120

182

438
464

132
134
374
400

24
36

94
278

360
378
406
446

26
166
238

242
460

two letter global label.

17

18
112
102
22

102

memory aid routine description.

number of registers to copy file.
a list of all ROM Global Labels required

=

<f<
BEEERE

BEEEEEEEEEEEE

BEE 8BE

Bege

<[alel=
5660 B B8E

o=
EE!H

EEEEEEEEEEEEEEEAEEEEE EG@

page location of routine instructions.
number of bytes Label to RTN inclusive.

program file described by first LBL in file.

NONE
NONE
NONE

NONE
NONE

NONE
NONE
NONE
NONE
NONE
(VA

NONE
NONE
NONE
em]

NONE
NONE
NONE

NONE
NONE
[c N cul

NONE
NONE

NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE
5o X5 B rol
o]
NONE
NONE
NONE
NONE
NONE

[OR]
NONE
NONE

L

< =Jufo
EEH!~

2 -]
BEEEEEE

ai

4

™ -

AFale o
] “

Az

olels
EEEEE!HH

e
El! EEEBEEEE EEEEEEEBE

2

ROUTINE TITLE PG BYTS FL
MATHEMATICS CONTINUED
Next Prime 346 45
Permutations 364 32 €3
Pack Register 368 21 €A
Quotient Remainder 372 21 UM
Random Number Generator 380 29
Telection Without Replacement 402 27 ED
Solve Routine 416 51 WO
Base Ten to Base B 430 90 €3
Unpack Register 440 23
View Mantissa 450 26
MATRIX
Block Extremes 68 65
Block Statistics 70 25
Matrix, Interchange Rows 260 55 M2
Matrix, Multipley Row by Constant 266 20 M2
Matrix, Add Multiple of Another Row 268 37 @A
Matrix, Register Address to (i, j) 270 20
Matrix, (i, j) to Register Address 274 38
MEMORY
.END. Finder 136 23 E&@
Erase Program Memory 138 74 @
Free Register Finder 142 26 Q@3
Initialize Page 228 60
Locate Free Register Block 248 81
Memory Lost Resize to 017 296 36
Memory to Stack 336 31
Open Memory 354 o9 WA
Pack Register 368 21
Page Switch 370 126 8L
Recall from Absolute Address in X 384 23 U@
Size Finder 398 26
Stack to Memory 408 36 E@
Store Y in Absolute Address X 424 16 U
Unpack Register 440 23
Verify Size 452 44
Sigma REG Finder 462 18
MISCELLANEOUS
Calendar Date to Julian Day Number 86 58 M
Go to .END. 174 84 @
Tnvert Flag 216 56 W
Julian Day Number to Calendar Date 234 98 @
Reset Flags 376 17
Beep ATternative 428 35
Tone N (0-127) 432 34
View Flags 444 101 €@
NON-NORMALIZED NUMBERS
Decode 2 Bytes to Decimal 34 61 KB
Character to Decimal 84 63
Decimal to Character 122 68
FEX to NNN 184 107 I
NN to HEX 342 120 C5F
NNN to Recall 350 32 &8
NNN Store 352 25 O
HEX to Decimal 454 36
PERIPHERALS
Barcode Analyzer 46 337 3
Tolumn Print Formating 98 56
High Resolution Histogram with Axis 176 92
High Resolution Plot 188 586 RE@
High Resolution Histogram 208 92
PPC Logo 252 47
Muttiple Variable Plot (1-9) 298 13 1@
Paper Out 366 14 0B
XROM Entry 456 58
PROGRAM POINTER
Alpha Store b 4 99 U
Count Bytes g2 14 @
Decimal to Program Pointer 126 30
Program Pointer Advance 356 13 A
Program Pointer to Decimal 358 24 A
Recall b 8 9 &3
Store b in ROM 426 8 B
XROM Entry 456 61 ED3
RETURN STACK
Lengthen Return Stack 254 40 ED
Return Address to Decimal 382 29 EA
Shorten Return Stack 410 59 €3
SORTS
Alphabetize X & Y 40 105 viC
Stack Sort 388 46
Small Array Sort (<32) 390 124 BB
Large Array Sort (>32) 394 159

PP C ROM USERS MANUAL

NONE
NONE

NONE
NONE
[Rn]

NONE

NONE

NONE
NONE
NONE
NONE
NONE

NONE

= &y

Mmoo . ~
< =]
~
<

=Za

NAE TTAN
2218 3

=1 Q
Zz=
BEAEEz:zRE
<
>

= zi
SHOoOM
= =
m m

NONE

H

NONE
m

NONE
NONE
NONE
NONE
m. B3
[iF B

NONE
NONE
NONE
NONE
NONE
NONE
NONE
3

NONE
NONE
NONE
NONE

ABSTRACTS

B3 - ADDITIONAL KEY ASSIGNMENTS

This routine provides a non-prompting method for
making additional key assignments after initial
setup work has been completed by either EI3or EIW.
It is used mainly as a subroutine in programs that
set up their own key assignments.

S STORE PART OF 3

This routine allows bytes to be loaded under the con-
trol of a users program. @ must be executed to
initialize this programmable byte loader which loads
the decimal byte in the X register.

- FIRST KEY ASSIGNMENT

This routine is a subroutine version of BE¥ which is
non-prompting and may be used in a user program to
make a key assignment. B may also be used from
the keyboard.

2] - DECODE TWO BYTES TO DECIMAL

This routine decodes the last two bytes of the X
register to their decimal equivalents. It is useful
for decoding program pointers, which consist of two
right-justified bytes.

XD - ASSIGNMENT REGISTER FINDER

This routine finds the number of key assignment
registers that are in use, placing this result in
the X register.

IZX2) - ALPHA DELETE LAST CHARACTER

This routine removes the rightmost character from the
alpha register. It is the equivalent of manually
going into ALPHA mode and appending a backarrow.

XN - ALPHABETIZE X & Y

This is a general-purpose alphabetizing subroutine.
It compares two alpha strings and, if they are not
already in proper order, exchange them. This routine
may be used in two different modes. In the direct
mode, ALPHA strings in the X and Y registers are
alphabetized. In the indirect mode, registers

designated by the contents of X and Y are alphabetized.
BGIB - BLOCK INCREMENT

[X- ALPHA TO MEMORY

The AM routine stores the contents of the Alpha
register into a block of data registers defined

by a bbb.eeeii formatted control number. The
control number is the only required input for EXI
and its inverse routine Y .

X3 - ALPHA STORE b

This routine stores the contents of the ALPHA register
in register b using ASTO b. This provides an ultra-

fast ROM entry capability similar to E@, but with
no return back to RAM.

I} - BARCODE ANALYZER

This program analyzes single lines of HP41C barcode
for barcode type and additional information on its
contents. After executing@@¥, the display prompts
‘SCAN' and the user scans the line in question. Then
the 82143A printer (which is required) prints the bar-
code type by number and abbreviated name, the value of
each 8-bar byte individually in binary, decimal, hex,
and eguiva]ent printer ACCHR character if possible,
and f1na11y the computed checksum from bytes #2 thru
the final byte of 8 bars. This checksum may be com-
pared to the value of byte #1 (the barcode checksum)
to evaluate whether the barcode row is valid or will
yield an error.

3 - BLOCK CLEAR

This is the block clear routine and Is used to store
zeros In a block of registers. uses the complete
form of the general block control word bbb.eeell and
can thus be used to clear blocks of consecutive
registers or can be used to skip over registers within
a block.

ED)- BASE B TO BASE DECIMAL

This is a base converslion routine from base b to
base 10 where 2<=b<=25. This routine takes advantage
of the alpha capabilities when using bases greater
than 10. The routine also employs synthetic
instructions. The number input Is assumed to be in

the alpha register when this routine Is called. The
base b 1s to have been previously stored. The
resulting number in base 10 Is left in X. This
routine Is the inverse of the routine 3.
E3- BLOCK EXCHANGE
This routine was inspired by the HP=-67/97
Primary-Secondary exchange function. But E@ Is far

more versatile as It handles any size blocks anywhere
in data memory. Moreover, the blocks need not consist
of consecutive registers. [E@ uses the complete form
of the general block control word bbb.eeeli. The
parameters for the two blocks are completely
Independent (the blocks may even overlap).

This routine may be used to load a defined block
(bbb.eeeii) of registers with zero, a numerical
constant, or an incrementing (or decrementing)
sequence of numbers when the start and increment
values are provided as inputs.

M- BLDSPEC INPUTS FORIED

is used to process seven BLDSPEC numbers to
convert them into the equivalent bytes that would
be used to represent the BLDSPEC "character" as an
alpha text line in a program. W is a supporting

PPC ROM USERS MANUAL 7

program for and is intended to be used manually
from the keyboard as a programming aid.

EIM)- BLOCK MOVE

This routine Is called block move and applies to any
block of consecutive data registers. The routine will
move the block anywhere within the defined data
reglster area. Input to B requires the register
number of the first register in the block, the
reglster number which will be the destination of the
first reglister, and finally the number of reglsters
within the block.

G5 - BLOCK ROTATE

This routine is called block rotate and applies to any
block of consecutive data registers. Thls routine was
Inspired by the roll up and roll down functions which
apply to the XYZT stack registers. Input to & is
the number of the first reglister in the block and #n
where n 1s the number of registers within the block.
The sign of n determines the direction of the
rotation,

M- BLOCK VIEW

The routine allows rapid viewing (or listing if
an 82143A printer is connected and on) of a block of
registers defined by the block control number of the
format bbb.eeeii. Non-zero data is sequentially
displayed along with the appropriate register number.
Zero register contents are skipped. A pause is added
to the display time if flag 9 is set, a STOP if flag
10 is set.

IEZ3- BLOCK EXTREMA
also be

can be
routine

This routine Is called block extrema and may
considered part of the matrix group since It
used to determine pivoting operations. This
wiil find the largest or smallest element in any block
of registers, including any row or column of a matrix.
By setting a flag, absolute values of the numbers are
used. The actual max/min values as well as thelr
register addresses are returned.

E3- BLOCK STATISTICS __

This routine 1s called block statlstics, but may be
consldered part of the matrix group since 1t Is
designed to compute vector dot products. Given the
appropriate input parameters, this routine can be used
to compute matrix products (multiply a row In one
matrix by a column in another matrix).

- CURTAIN FINDER

This routine provides the absolute address of the
"Curtain" which separates data and program memory.
This routine is used by @SB to find the current SIZE.

[N - COMPLEX ARITHMETIC

This is a complex arithmetic program which employs an
inflnite complex stack with push and pop operations.
Each complex palr must be pushed onto the complex
stack from X and Y where palrs are assumed to be in
rectangular form. All number operations leave their

results on the complex stack as well as in X and Y,
The functlons provided are: addition, subtraction,
multiplication, divislon, natural log and anti-log,
complex Y to the complex X power, complex sine, and
complex cosine, a complex X exchange Y functlon and a
complex Last X functlon. The complex stack may be
Inltiatized or cleared at any time, although for the
majJor Ity of applications this needs to be done only
once. The first element pushed onto the complex stack
after clearing Is considered to be on the top of the
stack and may be replicated as many times as desired.

I3 COUNT BYTES

This routine can be used to find the number of bytes
in program memory between any two lines by decoding
two program pointers supplied by the user {obtained
by using a RCL b key assignment).

[5)- CHARACTER TO DECIMAL

This routine is a character decoding subroutine that
will handle up to 15 characters one by one. Each
execution of decodes the rightmost character in
the alpha register to a decimal number between O and
255 (from the byte table). The rightmost character
in the alpha register may or may not be removed from
the alpha register, under the control of user flag 10.

[oN] - CALENDAR DATE TO JUL!AN DAY NUMBER

This Is a calendar routine which computes the Jullan
Day Number of a given day. The valid range Is from
March 1 year 0. This routine can be used to compute
the day of the week or the number of days between two
dates. Gregorian or Jullan calendar dates may be
Input depending on a flag setting. The Input is of
the form with the year In Z, the month In Y, and the
day in X, This routine Is the Inverse of the routine

[Jc B

8- CLEAR KEY ASSIGNMENTS

This routine clears all function key assignments and
anything else below the permanent .END.. Global
Jabel key assignments are inactivated until a program
card is read in.

LT - COMBINATIONS

This routine computes the number of combinations of n
objects taken k at a time. This routine selects the
optimum Input parameters fo minimize overflow errors
and execution time.

G - COLUMN PRINT FORMATTING

This routine aligns numeric data into columns for
printing tables or lists with the HP82143A printer. A
skip index value for each numeric column keeps decimal
points in constant position. While EAonly adds a
single numeric column to the printer's buffer (a sin-
gle line at a time), it may be called repeatedly to
build multiple columns across the 24-character printed
Tine. Columns of ALPHA information may be accumulated
at any time by conventional use of the ACA function,
to create virtually any combination of multiple numer-
ic and/or ALPHA columns in printed output. A 'printer
preparation form' aids the user in planning output be-
fore programming, in order to eliminate the trial and
error period.

8 PP C ROM USERS MANUAL

[E0- CurTAIN UP

By modifying the contents of the c¢ register, this
routine allows the user to raise and Tower the curtain
which separates the numbered data registers from pro-
gram memory. This effectively renumbers the data
registers and allows a program to hide data from a
subroutine.

[- CURYE FIT

This program will glve the curve of best fit to a set
of data points. The four standard curve types are:
linear (1), exponential (2), logarithmic (3), and
power (4) curves, This program will compute the
coefficients in the equation of a given curve type as
well as give the coefficient of determination, a
measure of the goodness of fit, Once a curve type has
been selected predictlions may be made for either new x
or new y values when a y or x value Is Input.

Although logs are used, datea Input may be negative for
elther x or y In the case of a linear fit, x may be
negative in the exponential fit, and y may be negative
in the logarithmic fit. When all data Input are
positive, a best fit function is provided which will
select the best curve type based on the largest
coefflclent of determination.

=3 - CURTAIN TO ABSOLUTE DECIMAL LOCATION IN X

By modifying the contents of the ¢ register, this
routine allows the curtain to be moved to an absolute
address specifiey by a decimal number in the X
register.

I3 - DECIMAL TO CHARACTER

This routine is the basic byte building routine used by

@@ and ME. It converts a decimal input between 0
and 255 to a byte, which is appended to alpha. This
permits arbitrary strings of bytes to be assembled
simply by specifying the corresponding decimal codes
in sequence.

I - DECIMAL TO FRACTION

This routine is a decimal to fraction routine. Any
decimal value may be Input. The output is a fraction
whose approximation to the decimal Input depends on a
previously stored display setting. Setting a flag
automatically displays the resulting fraction in the
alpha register.

G- DECIMAL TO PROGRAM POINTER

This routine converts a decimal number in the X regis-
ter to a RAM pointer usable for a STO b command. EIJ
is used in 3 to move a program pointer.

53 DELETE RECORD

This routine Is called delete record and can be
considered part of a data base management system.
applies to files consisting of fixed length
records where each record Is a block of consecutive
data registers., EID is a special block move routine
which deletes a given record from the flle and moves
the remaining fliles Into the space occupled by the
deleted record so that the data area is used as
efficiently as possible. See also the routine WER .

BX33- DISPLAY SET

This routine provides a capability similar to the HP-
67/97 DSP function, which sets the number of decimal
places to be displayed without changing the display
mode type (FIX, ENG OR SCI).

- DISPLAY TEST

This routine allows the user to verify that all of the
display segments work. It turns on 12 commas then
all of the other display elements.

G -END FINDER

This routine determines the absolute decimal address
of the .END. in program memory by decoding the pointer
from status register c.

- ERASE PROGRAM MEMORY

This routine provides a means to clear user program
memory (RAM) without destroying data, key assignments,
and status information.

23 - CXPONENT OF X

This routine isolates the exponent of the number in
the X register. It is faster and more accurate that
LOG, INT.

EE- FREE REGISTER FINDER

This routine finds the number of unused registers open
for program or data use. It provides a programmable
equivalent to the manual procedure of switching to
PRGM mode at 1ine 00.

- £IRST DERIVATIVE

This routine will approximate the first derlvative of
a function at a point Tn one of two ways. A quick
approximation may be made using a step size that the
user inputs, or an adaptive procedure may be used
which automatically searches for the optimal step
size, A four-point interpolation/approximation Is
used. In the adaptive routine setting a flag allows
the user to view convergence of the optimal step size.
The routine may also be used to compute partial
derivatives,

G- FINANCIAL

This is a complete financlal program which uses the
top two rows of keys to elther Input or solve for the
standard financial values of n [PV PMT FV, This
program also handles cases of different compounding
and payment periods so that it can be used wlth
Canadian and/or other special types of mortgages. The
program also handles the case of continuous
compounding. The program thus extends the
capabilities of previous HP flnancial calculators and
programs. The program Is also highly accurate. The
standard financial sign convention is used; money you
pay out Is negative, money you receive is positive. A
BegIn/End switch Is provided and a status function
allows the user to easily determine the state of the
toggle functions that the program uses,

P PC ROM USERS MANUAL 9

G - FLAG INPUTS FOR

Tike and are programming aid programs
intended for keyboard use. The (GEE program takes
sequential flags set inputs and produces seven one
byte outputs. These are used as inputs for)
to produce a synthetic text Tine that, if stored in
the d register, controls all 56 HP-41 flags.

3 - ERACTIONS

This is a program which conslists of routines that
provide addition, subtraction, multiplication,
division, and reduction of fractions. Inputs to all
these routines assume the fractions are in the stack
and the results are also returned in the stack or may
be displayed as fractlions In the alpha register by
setting a flag.

3- G0 TO .END.

This routine ignores {actually destroys) all pending
subroutine returns and instead executes'the .END.,
halting at line 00 of the last program 1n RAM.

[~ GAUSSIAN RANDOM NUMBER GENERATOR

This Is a Gausslan random number generator which
ylelds a Gausslan bell-shaped distribution (also
called normal dlstribution) where the mean and
standard deviation are specified by the user. This
routine calls the G routine and hence requires a
register polnter in X when used. [returns two
numbers in the specified range. & also uses the
rectangular-polar coordinate conversion functions and
should be used In Degrees Mode.

[HA B HIGH RESOLUTION HISTOGRAM WITH AXIS

This routine will generate in the print buffer, a
high resolution bar-chart bar, extending from a user-
prescribed axis position to the input value, for use
in charts or histograms. The height of the bar may
be from 1 to 168 printer columns, with the axis po-
sition in any column. The printed bar always has the
axis and the input value as its limits, thus it may
extend up or down from the axis, depending upon the
position of the input value. The user specifies the
fill-character from the standard printer character
set, to fill in 7-column portions of the bar. The
remaining printer columns are filled by a user-de-
fined fill-column using printer function ACCOL values,
Bars created by BI3 are accumulated into the print buf-
fer but not printed, thus allowing additional infor-
mation to be added later. The inputs toGd match
those of the printer's REGPLOT routine, allowing ei-

ther GE or REGPLOT to be called for the same inputs.
D) - HIDE DATA REGISTERS

This routine moves the curtain's absolute address up
by k registers as specified by a decimal number k in
the X register. The former contents of Ry,-R,_; are

then hidden until EIis executed to lower the curtain.

CIN - HEX TO NNN

This routine converts up to 14 hexadecimal characters
in the ALPHA register to a 7-byte non-normalized
number in the X register.

G- HIGH RESOLUTION PLOT

This routine allows between 1 and 9 user functions,

written as programs in RAM memory, to be plotted sim-
ultaneously in high resolution on the HP82143A print-
er. High resolution denotes 7 plot points per printed
1ine, allowing each thermal dot position in the X dir-
ection to represent a plot point. Plot symbols are
individual thermal dots, with different functions
1Qent1fied by different dot sequences on or off in any
single print row of 7 plot points. Functions are
plotted like the standard PRPLOT function from X and Y
Timits input by the user. Various options may be im-
plemented, such as changing the standard printed head-
er information, adjusting the order and usage of plot
function identifiers and modifying function behavior
when values exceed user-specified Y 1imits.

8 - HIGH RESOLUTION HISTOGRAM

This routine generates in the HP82143A print buffer a
high resolution bar-chart bar, whose height extends
from the first empty print buffer column position, up
to the input value which is scaled between 0 and 1
inclusive. The buffer is not automatically printed,
so additional information may be added. The user
specifies the fill-character from the standard print-
er character set, to fill in 7-column sections of the
bar. The remaining unfilled columns of the bar are
filled by a user-defined fill-column, using printer
function ACCOL values. A user-specified plot width
between 1 and 168 columns determines the maximum size
of any bar.

@[3 - INVERT FLAG

This routine inverts the state of any of the 56 flags.
It can be used to increase the execution speed of
programs when the printer is connected to set the low

battery indicator, or to do other fun and useful things.

I8 - INTEGRATE

This routine uses the Romberg Method of obtalining a
numerical approximation for the definite integral of a
function. The accuracy depends on the display setting
and a flag may be set so the user may view the
successlve lterations as they converge to the final
answer. This routine is similar to the Integrate
function on the HP-34C.

§0B - INITIALIZE PAGE

This routine stores the last five bytes of register c
into the absolute location 256, the last register of a
quad memory module. It is used prior to XEQ EEB to
setup a switchable quad for page switching.

@B - INSERT RECORD

This routine Is called insert record and is the
beginning of a data base management system. UGN
applies to files consisting of fixed length records
where each record Is a block of consecutive data
reglsters. UGB Is a speclal block move routine which
makes room between two file records for Insertion of a
new record. See also the routine EI3,

- JULIAN DAY NUMBER TO CALENDAR DATE

This is a calendar routine which computes a calendar
date glven the Julfan Day Number of the date. Input
the Jullan Day number in X and returns the date
year in Z, the month in Y and the day number of the

month in X. Depending on a flag setting, the output
date 1s for the Gregorian or Jullan calendar. This

routine Is the inverse of B .

10 PP C ROM USERS MANUAL

(AN

(3 LOAD HALF OF IR

This routine initializes the programmable byte loader.

It is executed by the user's program before executing
| . returns control to the user's program.

- LOAD BYTES

Thi§ routine loads bytes into program memory from
decimal or hexadecimal numbers keyed in by the user.

0 - LOCATE FREE REGISTER BLOCK
This routine provides the location of the highest

register used by key assignments and the location of
the .END. of program memory. This routine is used by

to find the number of available registers between
It is also used

the .END. and the last key assignment.

(XN - MEMORY TO ALPHA

This routine is the inverse of EXM and stores into

the Alpha register the contents of data registers

as defined by the bbb.eeeii formatted control number.
X1 and XY provide a convenient means to store and

recall the Alpha register for later use.

I3- MAKE MULTIPLE KEY ASSIGNMENTS

This routine extends the capabilities of the ASN
function to one-or two-byte codes. This routine
enables the user to make synthetic key assignments,
ones like STO M, X<>d, byte jumpers, byte maskers,
Q-loaders and similtar synthetics. This routine makes
it much easier for users who do not have access to

a cardreader to construct synthetic programs.

by EXto find the number of assignment registers used.

X&) - PPC LOGO

This routine adds a special-graphics representation
of the PPC Togo to the current contents of the HP41C
print buffer. The Togo consists of 21 columns of
graphics, filling roughly half of the capacity of the
HP82143A buffer. Use the Togo to identify material
related to PPC, or to members of the club.

Xl - LENGTHEN RETURN STACK

Along with the Eroutine, this routine permits the
use of more than six subroutine levels. This routine
stores five subroutine return addresses, allowing the
user program to call another six subroutine levels.
After returning, the user program executes E¥ to
extract the stored return addresses from the data
registers and add them to the pending subroutine
return stack.

T - MATRIX 1
This routine will interchange any two rows in a
matrix. Input is simply the two row numbers.

A - MATRIX 2

This routine will muitiply @ row In a matrix by a

constant, |nput Is the constant and the row number.
8 - MATRIX 3
This routine will add a constant multiple of one row

to another.
constant,

Inputs are the two row numbers and the

OO - WWTRIX 4

This routine will give the row and column number of
the element in a matrix, given the data reglster
number of the element., This routine is the Inverse
of BB .

@3- WRIX 5

This routine wil! compute the number of the data
reglster for a given element In a matrix, gliven the
row and column numbers for that element., This routine
Is the Inverse of .

PPC ROM USERS MANUAL

@78 - MEMORY LOST RESIZE TO 017

This routine provides a SIZE 017 function when used
immediately after a MASTER CLEAR. FIX 2 display
status is also set.

O - MULTIPLE VARIABLE PLOT (1-9)

This routine allows between 1 and 9 user functions,
written as programs in RAM memory, or multiple sets of
numerical values to be plotted simultaneously on the
HP82143A printer. Plot symbols are single columns of
dots, chosen from printer ACCOL values. Numerical val-
ues are plotted like the standard REGPLOT function.
User functions are plotted like the standard PRPLOT
function from X and Y 1imits input by the user. Plot
resolution is one plotted value per printed line. Many
options may be exercised, such as changing standard
printed header information, adjusting the order and
symbol usage by functions, and changing the behavior
when function values exceed user-specified Y Timits.

QEB - MEMORY TO STACK

€8 is the inverse of €@ . This routine recalls
five registers, the lowest numbered register being
stored in RO6, into the stack in X, Y, Z, T, L order.
Any valid register number may be stored in R06, but
special considerations must be made for 0, and R0O2
through RO6. See recommendations and warnings in the
I3 section.

- MANTISSA OF X

This routine provides the mantissa of the number in
the X register, returning the result to the X register.

G - NTH CHARACTER

This routine is used to pick out a character from the
ALPHA register. It replaces a string of up to 24
bytes by one of the ten rightmost bytes. The ex-
tracted byte is also stored in the X register.

DT~ NNN TO HEXADECIMAL
This routine converts a Non-Normalized Number in the X

register to its 14 hexadecimal digit representation in
the ALPHA register.

11

3 - NEXT PRIME

This routine gives the next prime divisor of an
Integer greater than or equal to a specified trial
divisor which may be 2 or any odd number. Pressing
R/S automatically gives the next prime divisor. One
of the applications of thls routine Is to find the
prime factors of an Integer.

CL3 - NNN RECALL

This routine is used to recall into the X-register an

may be u§ed to move the 82143A printer paper out of
Fhe machine or as a 1/5 second delay if the printer
is not connected.

8 - PAGE SWITCH

This routine allows the user to switch between
initialized pages of RAM memory. It simplities page

switching when using switchable RAMS or a port extender.

I} - QUOTIENT REMAINDER

arbitrary seven byte or shorter hexadecimal code string—

previously stored in a pair of data registers by @I

B3 - NNN STORE

This routine enables the user to store a Non-Normalized tjon.

Number or any hexadecimal code string of up to seven

bytes into a pair of user selected numbered data regis-

ters. The PPC ROM routines @R and BB provide a
means to store Non-Normalized Numbers and recall them
without normalization.

I - OPEN MEMORY

This routine places the curtain's absolute address at
16 (decimal). It is used mainly as a utility sub-
routine by (I3 and to permit access to program
memory and the key assignment registers.

G - PROGRAM POINTER ADVANCE

This routine provides a means to move the program
pointer relative to its previous location by a
selectable increment. This selectable byte jumper
is useful for creating synthetic instructions or
inspecting postfix bytes of multi-byte instructions.

2] - PROGRAM POINTER TO DECIMAL
This routine decodes a RAM program pointer into the
number of bytes from the bottom of program memory.

The input to EIY is normally obtained by using a
RCL b key assignment.

I - PACK KEY ASSIGNMENT REGISTERS
This routine packs the assignment registers left
unused by deleted key assignments, freeing them for

use in making more key assignments or adding program
lines.

G - PERMUTATIONS

This routine computes the number of permutations of n
objects taken k at a time.

3 - PACK REGISTER

This routine 1s called pack register and complements
the Q@ routine. (GG provides storage of

information In a data register In base b encoded form.
The uses of this routine were also described in BETTER

PROGRAMMING ON THE HP-67/97.
3 - PAPER QUT

This routine consists of five ADV instructions and

This routine is a complete MOD function, providing

not only y mod x, but also the quotient, (y-y mod x)/
x. It is useful for decomposing decimal numbers to
alternate base digits and is used by EXJ ., converting a
two digit hexadecimal number to its decimal representa-
It is used by many PPC ROM routines to slice
bytes into nybbles.

IEG) - RECALL DISPLAY MODE

This routine is used to restore the status of flags 16
through 55 of register d after B was used to save
them in a data register. It is useful in Tong programs
which destroy the original display mode.

3B - RESET FLAGS

LR sets all flags to their default (MEMORY LOST)
status, except for FIX 2. It is useful when a program
sets a number of flags and it is desirable to clean up
d-register. Another use is to eliminate the speed
penalty caused by having the printer connected during
program execution.

I - REACTIVATE KEY ASSIGNMENTS
This routine is used to restore the use of previous key

assignments that were temporarily deactivated by the
execution of 8 . This routine reactivates the key

assignments that were in effect before EXM was executed.

LI - RANDOM NUMBER GENERATOR

This routine Is a random number generator and can be
used to generate uniformiy distributed pseudo-random
numbers In the range 0 < r < 1, The resulting random
numbers can be re-scaled to produce uniform random
numbers within any specified range. Input to this
routine requires a register pointer value which points
to the register which will hold the starting seed as
well as the subsequent random number decimals.

{RT B RETURN ADDRESS TO DECIMAL
This routine evaluates the first subroutine return

address in RAM when the contents of the b register has
been recalled to the X register.

Gs - RECALL FROM ABSOLUTE ADDRESS IN X

This routine recalls and normalizes a register Tocated
at an absolute address specified in the X register.
X3is usually used to recall data stored by E3 .

K33 - ReCALL b

This routine performs the synthetic instruction RCL b

12 PP C ROM USERS MANUAL

in the PPC ROM. KB , along with » provides a
simple means to find which port the PPC ROM is plugged
into. K also enables construction of a port-
independent PPC ROM entry routine.

— [EEB - STACK SORT

BB sorts the stack registers X, Y, Z,.and T into
an order that has the highest numeric value in X and
the Towest in T. The reverse order is obtained if
flag 10 is set. Suitable for ordering scores, etc.

3 - SMALL ARRAY SORT (<32)

A numerical array as defined by the block controtl
number bbb.eeeii is sorted into an order that has
the lowest value in the array stored in bbb. regis-
ter and the highest value stored in the eee regis-
ter. is called as a subroutine by E. Opti-
mum speed is obtained if the array is 32 or fewer
registers, but may be used for larger arrays to
take advantage of the ii capability of the control
number,

B3] - LARGE ARRAY SORT (>32)

Large arrays of numerical data may be sorted by EB
using the format bbb.eee to define the registers to
be sorted. € is the fastest known numerical sort
routine for the HP-41. Any register from RO3 up to
the 1imit of the SIZED memory may be sorted.

- SIZE FINDER

This routine finds the current SIZE by decoding the
absolute address of the curtain found in register c.

E53) - STORE DISPLAY MODE

This routine saves flags 16 through 55 in a register
defined by X. It is useful at the beginning of
programs which alter the display or trig status.

&3 is used to restore these flags.

13 - SELECTION WITHOUT REPLACEMENT

This routine Is a selection without replacement
routine and can be used to select at random an element
from any block of consecutive registers. Subsequent
items selected from the block will not be repeated.
The data block that this routine selects from can have
its data arranged In any order. For example, if this
routine is used to deal cards from a deck of cards the
cards do not have to be shuffled. In a different
light, due to the selection technique used, this
routine can be considered as a random shuffler which
will scramble data that has been serially ordered.

ER calls the random number generator routine LI .

B3 - SUSPEND KEY ASSIGNMENTS

This routine suspends both global Tabel and function
key assignments. The key assignments are saved and
may be restored by executing EI® or by reading in a
program card. Two registers (lowest number in X) are
used to store the key map. This is useful when the
local Tabel assignments are needed by a user program,
for example EZR .

EI - STACK TO MEMORY

This routine provides a convenient means to store the

five registers X, Y, Z, T, and L into a block of
registers as controlled by R06. The Towest of the
five registers block is stored in R06. R06 may con-
tain any number, but 0, and 2 through 6 must be used
with the considerations described in the EHD and

B write-up.

B} - SHORTEN RETURN STACK

Along with the UGB routine, this routine permits the
use of more than six subroutine Tevels. The
routine stores five subroutine return addresses,
allowing the user program to call another six sub-
routine levels. After returning, the user program
executes ED to extract the stored return addresses
from the data registers and add them to the pending
subroutine return stack.

€01 - SUBSTITUTE CHARACTER

This routine is used to edit the alpha register. The
ten rightmost bytes in the alpha register may be re-
placed one character at a time.

B - soLvE

This routine is a solve routine which approximates a
solution to an equation of the form f(x)=0 using the
Secant Method (a simplified form of Newton's Method).
Input requires an initlal guess and an Initial step
size, The output will leave the x-value In X which
most closely makes f(x)=0. A flag may be set to
display the successive approximatlons as they converge
to the final answer. Convergence depends on the

initial guess.

B33 - STORE Y IN ABSOLUTE ADDRESS X

This routine may be used to store data or program
bytes in any desired register in user memory. It
permits direct modification of programs and key
assignments or storing data in the unused memory
space between the .END. and the assignment registers.
This is especially useful when "page switching"”
memory .

™ - STORE b IN ROM

This routine provides a simple way to transfer program
execution to any point in a ROM program from which a
RTN is not required.

- BEEP ALTERNATIVE

Tl is the only one of many special sound effect
routines that were proposed for the ROM that survived.
It is a rapid sequence of synthetic tones that provides
a Beep Alternative.

- BASE IEN TO BASE B

This Is a base conversion routine from base 10 to base
b where 2<=b<=19, The base 10 number s assumed to
be In the X-register when this routine is called. The
resulting number In base b Is left in the alpha
register and may be automatically viewed by setting a
flag. This routine also uses synthetic instructions
and Is the inverse of the routine [O¥ .

P PC ROM USERS MANUAL 13

N

- TONE N (0-127)

A1l HP-41 synthetic tones may tge P)eard using G0N >
which may be thought of as an indirect tone instruc-
tion. When EQBIsS executed, the number in X is con-
verted into a TONE byte and executed. 3 is 8
simple example of the power of synthetic programming.

O - UNCOVER DATA REGISTER

changing the display mode and without disturbing the
stack.

B8} - VERIFY SIZE

This routine prompts the user to resize if the current

size is not sufficient as specified by the user's
calling program.

This routine uses the information stored in ROO by mm_ HEX TO DECIMAL

to return the curtain to the position it had prior to
the last call to €3 -

I3 - UNPACK REGISTER

This routine is called unpack register and Is one of
the two data packing routines In the ROM. See also
G . This routine Is a carry over from the HP-67/97
and allows recalling of Information In a data register
which has been encoded in base b. The scope of thls
routine is described in BETTER PROGRAMMING ON THE
HP-67/97.

- VIEW ALPHA

This routine functions as an alternative to the stand- m

ard AVIEW. It displays the contents of the alpha
register and also prints it if, and only if, the printer
is connected, turned on, and enabled, without halting
the program execution. avoids the program halt
encountered in a running program when the printer is

not connected, flag 21 is set and AVIEW is executed.

- VIEW FLAGS
This routine displays the user and system flags which
are set. A list of the set flags will be printed if
the printer is connected, turned on, and enabled.

- VIEW KEY ASSIGNMENTS
This routine displays for each assigned key the
assigned key's coordinates on the keyboard. It is

similar to the 82143A printer's PRKEYS routine, but
doesn't require a printer.

- VIEW MANTISSA

Thi§ routine allows the user to view the full ten
digit mantissa of a number in the X register without

14 PP C ROM USERS

This routine converts a two digit hexadecimal number
in the alpha register to its decimal representation
which is stored in the X register.

EG@ - XROM ENTRY

This routine provides a means to enter any ROM routine
at any point without the need for a global label.

This enables the use as a subroutine of a ROM program
written for manual use.

- XROM INPUTS FOR LB

along with and EIW are keyboard executed
programs that are intended to be programmers aids.

converts two XROM number inputs to the corres~
ponding memory bytes to use as @B inputs or MK
{and other key assignment programs) inputs. Any
XROM instruction may be entered into program memory

og]assigned to a key, even if the ROM is not avail-
abTe.

- ZREG FINDER

This routine provides the number of the first register
in the statistical register block. It provides the
capability of finding these registers without using
the printer's PRFLAGS function.

& - IREG CURTAIN EXCHANGE

This routine interchanges the pointers in status
register ¢ to ROO and to the statistical block of
register, raising the curtain by n registers if
preceded by a call to ZREG n command, then restoring
the original curtain the second time it is called.

MANUAL

INTRODUCTION
TO SYNTHETIC PROGRAMING

PART T -

New users of the HP-41C/V, and even many experienced
users, may be surprised upon reading the program list-
ings in this manual to encounter a number of 41C pro-
gram lines that they do not recognize. "STO M" and
"RCL b", for example, can not be found in the HP-41C/V
owner's manuals; yet they are well defined, quite ex-
ecutable and useful functions. They can be assigned
to keys, recorded on cards, etc.--in short, they pos-
sess all of the properties of "normal" functions.
These new functions are called "synthetic functions",
because they are created in the calculator memory by
synthesizing together combinations of program bytes
that can't be obtained with ordinary keystrokes. A
"RCL b" is the result of combining the "RCL" prefix
with the "b" postfix (as found normally in "“LBL b").

"Synthetic programming" simply refers to any use of
synthetic functions in HP-41C programming. Stated

most concisely, the synthetic program lines constitute
an extension of the normal HP-41 function set. Their
usefulness depends on the particular application, and
on the programmer's creativity--just like any normal
function. If a programmer doesn't have a use for the
“LN" function, he doesn't really care whether it's
available. But if he needs it, there is no substitute
for it. The same applies to synthetic functions. They
perform certain operations--if you can use them, they're
great; if you can't, you can forget about them.

Historically synthetic instructions have been used

in programs ever since the HP-41C was introduced on
July 17, 1979. The HP-67 compatibility feature of
the HP-41C card reader "translated" certain exponent
instructions to produce such program lines as E3,
-E3, E-3, etc. These "short form" versions of 1E3,
-1E3, and 1E-3 saved a byte and executed faster.

From a historical viewpoint HP provided the first
synthetic instructions in their Solutions books.
After more than two years of using synthetic instruc-
tions, it is clear that they are here to stay.

George Lithograph has barcode generating programs that
are refined to the point of accurately processing all
known synthetic instructions. HP's most recent ROM
revisions haven't changed the HP-41's processing of
these synthetic instructions, and the latest HP-41CV
runs synthetic programs just like the earliest
machines. Early synthetic programs may have used
BUG's that were only found in very early ROM re-
visions. Synthetic instructions do not require any
BUG's to run, except in very rare situations. There
is no valid reason to avoid synthetic instructions
because we now understand the HP-41C/CV.

The applications of synthetic functions fall into two
general categories: program enhancement, and user-
machine interaction. For program enhancement, syn-
thetic functions perform certain tasks faster than
normal functions, and other tasks that normal functions
can't do at all. An example of the latter is the func-
tion "RCL d", which recalls a number representing the
status of all 56 user and system flags into the.X-
register. This number can be restored back to its
origin at any time via a "ST0 d" Tine--thus, the user
can control the configuration of all 41C flags with a

PPC ROM

OVERVIEW

single program line or keystroke. An example of the
second class of application, user-machine interaction,
is synthetic key assignments, where multi-keystroke
operations like "GTO IND X" can be assigned to a key
for single-keystroke execution or program entry.

The application of synthetic programming depends on

the user's understanding of two general topics. The
first is the structure of HP-41C instructions; the
second is the organization of the 41C memory, in
particular the nature and roles of the 16 "scratch
registers" (so-called by HP), also known as the "status

registers”. We will consider each of these in turn.

A. HP-41C INSTRUCTIONS

A1l HP-41C user-generated instructions are coded and
stored as strings of binary "bits", i.e., "1's" and
"0's" represented electronically. As the Central
Processing Unit (CPU) "reads" the binary strings, it
translates them into executable processes. This trans-
lation is invisible to the user--he presses "+", for
example, and sees the result of the addition. To actu-
ally perform the additon, however, the CPU had to per-
form a large number of steps, from decoding which key
was pressed, to finding the numbers to be added, and
finally to displaying the result. Moreover, it carried
out a number of routine "housekeeping" chores, like
Tooking for peripherals that might want attention or
checking the battery state. '

For the most part, instruction codes are not handled by
the CPU as individual binary bits, but are grouped to-
gether into groups of 8 bits called "bytes". A byte

is the smallest unit of program code over which the user
has keyboard control. Many 41C instructions are re-
presented as a single byte, and the remainder as multi-
byte groups; none are coded with fewer than 8 bits.

There are 256 possible values for an 8-bit number,

from 0 to 255. These may be conveniently organized
into a 16 x 16 matrix, which provides a compact, easily
understood representation of the 41C instruction set.
The matrix, usually called the "Byte Table" or 'Hex
Table" is shown in the table of this section. Each
entry in a horizontal row has the same initial 4 bits;
the entries in a vertical column have the Tast 4 bits
in common. Recall that 4 bits can represent the num-
bers one through sixteen; hence, a group of 4 bits

can be represented by a single digit in the hexadeci-
mal number system. (In the "hex" system, the numbers
10 through 15 are represented by the single characters
“A" through "F", respectively.) Each 8-bit byte is
thus represented by a two-digit hex number, 00 through
FF. For a particular entry in the table, its vertical
position identifies its first four bits; its horizontal
positon shows the remaining four bits. The particular
operation that results from each byte depends upon its
relation to other bytes in memory; the table shows each
byte's possible roles by the various entries in the box
for each byte.

USERS MANUAL 15

-

HP-41C COMBINED HEX/DECIMAL BYTE TABLE

HP-41C COMBINED HEX/DECIMAL BYTE TABLE

1

3

5

6

7

8

9

A

C

E

NULL
00 ~
0 =

LBL 00
01 &
.I kS

LBL 01
02 8
2 =

LBL 02
03 &8
3 =

LBL 03
04 *
4 o

LBL 04
05 <
5 B

LBL 05
06 7
6 I

LBL 06
07 &
7 +

LBL 07
08 B
8§ &

LBL 08
09 B
9 o

LBL 09
10 B
10 =

LBL 10
1 8

LBL 11
12 »
12 v

LBL 13
14 B
14 ~

LBL 14
15 810
15 ¥

16 B8
16 &

1
17 B8
17 «

18 &
18 &

3
19 B
19 A

4
20 8
20 &

5
21 B
21 A

6
22 &
22 4

7
23 B
23 o

8
24 B
24 &

9
25 B
25 O

26 B
26 O

EEX
27 B
2] &

NEG
28 &
28

GTO™
29 &«
29 =

XEQ T
30 B
30 £

WT
31 &1
31 #

RCL 00
32
32

RCL 01
33 !
33 !

RCLO
34 "
34

RCL 03
35 4
35 %

RCL 04
36 ¢
36 &

RCL 05
37 %
37 x

RCL 06
38 %
38 &

RCL 07
39
39

RCL 08
40 <
40 <

RCL 09
4
41 >

RCL 10
42 x
42 *

RCL 11
43 =
43 +

RCL 12
44
44 -

RCL 13
45 -
45 -

RCL 14
46 .
46 -

RCL 15
47 /|2
47 -

STO 0
48 &
48

®

STO 0
49 !
49 1

STO 02
50 ¢
50 2

STO 03
51 3
51 3

STO 04
52
52 4

STO 05
33 5
53 5

STO 06
54 b
54 &

STO 07
55 1
55 7

STO 08
56 8
56 8

STO 09
57 9
57 9

STO 10
58
58

STO 11
59 >
59

ST0 12
60 <«
60 <

STO 13
61 =
61 =

STO 14
62
62 >

STO15
63 713
63 7

64
64

®ra

65 H
65 A

66 13
66 E

X<Y?
68 I
68 D

X>Y?

69 &
69 E

X<y?
70 F
70 F

r+
7V L
71 G

z —
72 H
72 H

HMS +
73 I
73 I

HMS-
74
74

MOD
75 kK
75 K

%
76
76

-

% CH
77 ™M
77 ™

PR
78 N
78 W

RoP
79 0|4
79 0

LN
80
80

m™

X12
81 I
81 &

SQRT
82 R
82 R

CHS
84 T
84 T

ETX
85 U
85 u

LOG
86 v
86 ¥

101X
87 W
87 W

EtX-1
88 x
88 X

SIN
89 v
89 v

Cos
90 £
90 Z

TAN
91 C
91 €

ASIN
92
92 ~

ACOS
93 1
93 1

ATAN
94 7
94 1

-~DEC
95 _ |5
95

/X
96 T
96 -

ABS
97 o
97 a

FACT
98 b
98 b

X>0?
100 o
100 d

LNT+X
101 «
101 &

X<0?
A B
102 ¢

X=0?
B &
103 =

INT
c &
104 h

FRC
D B
105 1

D—R
E B
106 J

R—-D
107 k

+HMS
G &
108 1

-+HR
H B8
109 ™

RND
| 8
110 n

-0CT
111 ¢

CLX
112 @

X<>Y
Z B
113 4

Pl
Y 8
114 +

Rt
116 ¢

RDN
ML B
117 U

LASTX
N/ B
118 =

CLX
01 8
119 w

X=Y?
Pt B
120 >

X#Y?
Q&
121 >

SIGN
FT g
122 =

X<0?
a B
123 w

MEAN
b &
124 1

SDEV
c B
125+

AVIEW
d I
126 =

CLD
e 17
127 +

0000

1
0001

0010

0100

5

6

0101

0110

7

0111

8

1000

9

1001

A
1010

101

C
1100

D

E

1101

1110

111

HP-41C COMBINED HEX/DECIMAL BYTE TABLE

0

1

2

4

5

6

7

8

9

A

B

C

DIEIF

DEG
IND 00
128 +

RAD
IND 01
129 =

GRAD
IND 02
130 X

ENTERT
IND 03
131 <

STOP
IND 04
132 o

RTN
IND 05
133 B

BEEP
IND 06
134 I~

CLA
IND 07
135 4

ASHF
IND 08
136 A

PSE
IND 09
137 o

CLRG
IND 10
138 +

AOFF
IND 11
139 =

AON
IND 12
140 v

OFF
IND 13
141 <

PROMPT
IND 14
142 «

ADV
IND 158
143 #

RCL
IND 16
144 B

STO
IND 17
145 0

ST+
IND 18
146 &

ST—
IND 19
147 A

ST %
IND 20
148 a

ST/
IND 21
149 A

ISG
IND 22
150 &

DSE
IND 23
151 &

VIEW
IND 24
152 &

LREG
IND 25
153 O

ASTO
IND 26
154 O

ARCL
IND 27
155 &

FIX
IND 28
156

SCl
IND 29
157 =

ENG
IND 30
158 £

TONE
IND 3139
159 #

XR 0-3
IND 32
160

XR 4-7
IND 33
161 1!

XR8-11
IND 34
162 *

X12-15
IND 35
163 #

X16-19
IND 36
164 %

X20-23
IND 37
165 =%

X24-27
IND 38
166 &

X28-31
IND 39
167 °

SF
IND 40
168 <

CF
IND 41
169 2

FS?C
IND 42
170 »

FC?C
IND 43
171 +

FS?
IND 44
172 -

FC?
IND 45
173 —

SIQIND
IND 46
174 .

SPARE
IND 47 A
175 ~

SPARE
IND 48
176 8

GTO 00
IND 49
177 1

GTO 01
IND 50
178 2

GTO 02
IND 51
179 3

GTO 03
IND 52
180 4

GTO 04
IND 53
181 S

GTO 05
IND 54
182 6

GTO 06
IND 55
183 7

GTO 07
IND 56
184 &

GTO 08
IND 57
185 9

GTO 09
IND 58
186 :

GTO 10
IND 59
187 &

IGTO 11
IND 60
188 <

GT10 12
IND 61
189 =

GTO 13
IND 62
190 >

GTO 14
IND 63]B
191 2

GLOBAL
IND 64
192 @

GLOBAL
IND 65
193 A

GLOBAL
IND 66
194 &

GLOBAL|
IND 67
195 C

GLOBAL
IND 68
196 D

GLOBAL
IND 69
197 E

GLOBAL
IND 70
198 F

GLOBA
IND 71
199 G

GLOBAL
IND 72
200 H

GLOBAL
IND 73
201 1

GLOBAL
IND 74
202 J

GLOBAL|
IND 75
203 K

GLOBAL
IND 76
204 L

GLOBAL
IND 77
205 M

X<>——
IND 78
206 M

LBL --
IND 79 C
207 0

GT0 —-
IND 80
208 P

GTO —-
IND 81
209 @

GTO --
IND 82
210 R

GTO —-
IND 83
211 8§

GTO —-
IND 84
2127

GT0 --
IND 85
213 u

GTO --
IND 86
214 ¥

GTO —
IND 87
215 W

GTO --
IND 88
216 ¥

GT0 --
IND 89
217 %

GTO —-
IND 90
218 2

GTO —-
IND 91
219 €

GTO --
IND 92
220 ~

GTO —-
IND 93
221 1

GTO —-
IND 94
222 1

GTO —-
IND 95]D
223 —

XEQ -
IND 96
224 ™

XEQ --
IND 97
225 a

XEQ --
IND 98
226 b

XEQ —-
IND 99
227 ¢

XEQ —-
IND100
228 d

XEQ -~
IND101
229 e

XEQ --
IND102
230 ¢

XEQ --
IND103
231 =

XEQ —-
IND104
232 w

XEQ --
IND105
233 i

XEQ --
IND106
234 4

XEQ —-
IND107
235 k

XEQ —-
IND108
236 1

XEQ --
IND109
237 m

XEQ —-
IND110
238 n

XEQ —-
INDIT1} E
239 o

TEXT 0
IND T
240 ©

TEXT 1
IND Z
241 a

TEXT 2
IND Y
242

TEXT 3
IND X
243 =

TEXT 4
JIND L
244 ¢

TEXT 5
INDML
245 u

TEXT 6
IND N/
246 v

TEXT 7
INDO1]
247 w

TEXT 8
IND Pt
248 =

TEXT 9
INDQ -
249 v

TEXT10
INDFT
250 =

TEXT1
IND o
251 w

TEXT12
IND b
252 1

TEXT13
IND ¢
253 »

TEXT14
IND d
254 =

TEXT15
INDe |F
255 +

0

1

0000

0001

2

0010

3
oon

4

0100

5

6

0101

0110

7
omm

8
1000

9

1001

A

1010

1011

C

1100

D

E

1101

1110

F

1111

16

PP C ROM USERS MANUAL

The byte table is organized as much as possible so that
bytes in a particular row have a certain amount of sim-
ilar processing in common. For example, we see that
the instructions "STO 00" through "STO 15" occupy

the entire row 3. When the processor encounters any of
these bytes, it knows that a store instruction is pend-
ing, and it can carry out much of the processing be-
fore even checking the second 4 bits to find out which
user register is addressed.

As mentioned previously, all 41 instructions are coded
with one-or-more byte groups. A1l of the bytes in rows
0 through 8, with the exception of bytes 1D and 1E

(1F is not used in this context) represent "one byte
functions". That is, when one of these bytes is read
to begin a new operation, no additional bytes are re-
quired to identify the operation. "72" results in the
"SIN" function being executed; "82" results in "GRAD"
mode being set. The byte "00" represents the "null"
function. This byte is simply a place holder, result-
ing from program insertions and deletions, and is nor-
mally "invisible" in a program display.

The bytes in rows 9 and A, plus bytes CU and CF, may
be considered as "prefixes" for two-byte functions.
That is, when one of these bytes is encountered, one
additional byte must be read to complete the instruc-
tion. The second, or "postfix" byte identifies either
the user register or the label name (for CF) upon
which the operation jdentified by the prefix byte is
to be performed. The postfix role of a byte is shown
by the number or single letter immediately below the
prefix entry in the corresponding byte table box. Thus
we have, for example, 9152 representing "STO 82" (note
that 52 in hexadecimal is the same as 82 in decimal),
or CF 7C representing "LBL b".

Bytes A0-A7 are reserved for functions found in exter-
nal peripherals. Whenan "A" digit starts a prefix, the
next bit determines whether the function is found in
the 41C (1) or in a peripheral (Q).

Since two-byte functions, by definition, occupy more
user memory space than one-byte instructions, certain
frequently used instructions, LBL 00 through LBL 14,
and STO and RCL 00 through 15, are assigned one-byte

representations, found in rows 0, 2, and 3 respectively.

Additional two-byte functions could have been given
similar "shorthand" codes, but that would not have

left enough of the 256 codes for the other functions
that give the 41C its versatility. We note that the
postfix values found in rows 0-7 are duplicated in rows
8-F. The duplication is only apparent; a postfix from
the bottom half of the table indicates an indirect
operation. While "9120" encodes "STO 32", "91A0"
represents "STO IND 32". This rule is modified slight-
1y when the prefix is "AE". In this case. the postfix
actually determines the role of the prefix. If the
postfix is less than "80" the function is "GTO IND",
whereas, a postfix of "80" or greater causes an "XEQ
IND". For example, "GTO IND 69" is coded "AE 45", but
“XEQ IND 69" is "AE C5"

Rows B and D in the table consist of two- and three-
byte GTO's, respectively. In both cases, only the
first hex digit is needed to identify the function as
a "GT0". The remaining bits of the instructions iden-
tify the name of the addressed program {numeric) label
and also the location of the label relative to the GTO.
The encoding of the Tabel positon is done the first
time a program is run, which results in faster execu-
tion on subsequent runs, since execution can jump
directly to the label without any searches. The
encoding, or "compiling", is Tost any time the program
is edited. The two-byte GTO's have only 7 bits avail-

able for location coding, so that the Tabel must be
within 112 bytes of the GT0 to enable a compilation.

The three-byte GT0's have 12 bits for the jump code,

so there is no 1imit to the distance between the GTO
and the corresponding label (within the normal range

of the 41C memory). Row E contains the (numeric) XEQ's,
which are essentially identical to the 3-byte GTO's.

The entries CO-CD initiate “global" instructions in-
cluding alpha labels and END's, which require three

or more bytes. The first hex digit of a global program
line identifies it as global, i.e., it is included in
the Tabel chain shown in the user catalog (CAT 1). The
next 3 digits indicate the distance to the next global
Tine in the chain. The third byte determines whether
the code is an alpha label or an END: if the byte is
from row F, the line is a label; otherwise it is an END.
The portion of alpha labels starting with the third
byte, and program text lines are coded nearly the same,
starting with a byte from row F. The second digit of
the "Fn" byte indicates that the next "n" bytes are to
be included in the program line. For text lines, all n
bytes are used to encode the key assignment for the
label. The text character represented by each byte is
shown in the corresponding byte table box. Example:
"CAT" s coded as "F3 43 41 54; LBL "CAT" is Ca bc F4
jk 43 41 54", where the digits abc locate the next
alpha label in the chain, and the digits jk identify
the key (if any) assigned to the Tlabel. The only
remaining bytes in the table are AF and BO, which have
no prefix roles, and 1D and 1E. The latter initiate
alpha GT0 and alpha XEQ, respectively. These bytes are
followed in memory by alpha strings coded as described
in the preceding paragraph, which identify the alpha
label addressed. There is no compiling of addresses
associated with these program lines, since the labels
are found by scanning along the global Tabel chain.

B. MEMORY ORGANIZATION

The HP-41C 1is designed to handle 10-digit decimal
numbers. Each decimal digit requires 4 binary bits,
i.e., one hex digit; in addition a hex digit each is
required to encode the mantissa and exponent signs,
and 2 more for the exponent itself. 41C number stor-
age therefore requires 14 digits, or 7 bytes for each
number. The user memory (RAM), used both for programs
and for data storage, is accordingly organized into 7
byte segments called "registers". Individual registers
are identified and located by three digit register
numbers. Program memory, including program and data
registers, starts at Register OCO and continues "up-
wards" (see Memory Partitioning Map) to a maximum (for
the 41CV or a 41C with four memory modules) of 1FF.
Individual bytes within a register are numbered from

0 to 6; the full address of a program byte is coded
with 4 digits "abcd", where "a" is the byte number

and "bcd" is the register number. Single digits in

a register are identified by a number 0 thru 13:
digits 0 & 1 is byte 0, 12 & 13 is byte 6, etc.

Program execution proceeds (not counting GTO or XEQ
jumps) byte-by-byte "downward" through program memory.
The 41C has a "program counter" that keeps track of the
bytes currently being executed. In the data portion

of user memory, each number or alpha string occupies an
entire register. For numbers, byte 6 (the first, or
leftmost byte of the register) contains the mantissa
sign (digit 13, which is: 0 for +, and 9 for -) and
the most significant mantissa digit; bytes 5 through 1
store the remainder of the mantissa and the exoonent
sign (digit 2); byte 0 is the exponent. Alpha strings

PP C ROM USERS MANUAL 17

24

S

are coded with byte 6 = "10". Bytes 5 through 0 con- tents up or down so that the first data register is

tain up to six character bytes. "Imn" registers below the current top of memory as de-
termined by the number of memory modules installed, and
recodes the ROO address accordingly.

HP-41C/CV RAM MEMORY PARTIONING User key assignments are coded in program registers
starting with register 0CO. Each register can hold
two assignments; each new pair of assignments is stored

BYTE in 0CO, pushing previous assignments upwards in memory.
6 ., 5 4 3 2 1 , 0 €NUMBER| The coding in each assignment register is as follows:
A . i ¥ 511 Byte 6 is "FO", identifying the register as a key
TOP™ OF MEMORY (IFF) assignment register. Bytes 2 and 1 identify the first
assigned function. If the function requires only one
byte, then byte 2 is filled with "04". Byte 0 identi-
fies the assigned key, with a value {b-1)a or (b-1)
(a+8) corresponding to unshifted or shifted key "ab"
DATA (column a, row b), respectively. Bytes 5, 4, and 3
play analogous roles for the second of the two assigned
. N . functions.
+ 4 4 4?8)
1C0
HP-41C STATUS REGISTER USAGE O THRU 15 ABSOLUTE
6 | 5 | 4 | 3 2 i 1 | 0 «— BYTE
1 | T ! L NUMBER
-1 LI
I e SHIFTED KEY ASSIGN. /fTCgH NISE 015
L | | I ', L {0OF)
=3 [i 7 ! I
2o + 384 d USER FLAGS (0-29) 1 | SYSTEM FLAGS 014
i (180) i | ' (30-55) | (00E)
= l fowo T
xR0 L L 44 4 -4 = - c £REG sTapT | REG 00 | .END. O%SOD)
TT|FIRST USER PROGRAM }
3rd ADDRESS
b | gy | 2nd RETURN] 1st RETURN | pOINTER 0(1500
PROGRAMS
3rd 011
320 a 6th RETURN | 5th RETURN | 4th RETURN] g7y (008)
(140) |
gl— UNSHIFTED KEY ASSIGN. SCRATCH 010
LAST l‘JSER PROGRAM LEND. = | (00A)
O L T I T B —_— - p— o~ - =
T
UNUSED PROGRAM § Q TEMTORARYIALPHA SCRA.?H 0?309)
(USUALLY NULLS) — ! T T
‘ A = p SCRATCH FOR ALPHA REGISTER
-+ y - 256 | = ALPHA 25-28 99-04 008
(100) | & | | i (008)
o
. [(POSSIBLE SYSTEM USAGE) _ _ _ | & 0 ALPHA REGISTER 15-21 CHAR. 007
first key assignment o | | | (007)
-
Lt <L
= KEY ASSIGNMENTS = N ALPHA REGISTER 8-14 CHAR. 006
S <2 | (006)
s ' = l |
last key assignment
=) " " L + . L 192 M ALPHA REGISTER 1-7 CHAR. 005
= (oco) (005)
< 176 REGISTER "VOID"
£ (NONEXISTENT REGISTERS) L STACK REGISTER L 004
{004)
. ’ ‘ ' ' B TACK REGISTER X
16 STATUS REGISTERS (00F) | X STACK REGISTE 003
. . . 0 (003)
Régoo) Y STACK REGISTER Y 002
NO. | (002)
(HEX) STACK REGISTER Z 001
(o01)
The boundary between program and data storage is estab- 7 STACK REGISTER T 000
1ished simply by storing the address of ROC, the first | [(000)
data register, in one of the scratch registers. All . " REG
data access functions, such as STO nm, RCL nm, or X<>nm s mantissa =l exo Ino
access the register whose address is "nm" greater than S 3 (ﬁEX)

ROO. The "SIZE lmn" operation moves user memory con-

18

PP C ROM USERS MANUAL

Between the topmost key assignment register, and the
location of the .END. (i.e., the end of user programs)
is a space of varying length called the 1/0 buffer.
This space is not used (and may be non-existent if
memory is full) by any current 41C peripherals.

At the "bottom" of user memory, occupying locations 000
through OOF (note that there are no registers corre-
sponding to locations 010 through OBF), is a group of
16 "scratch" registers, also called the "status" regis-
ters, since their contents are recorded on track 1 of

a status card. Normal user access (i.e., STO, RCL and
%<>) is restricted to registers 000, 1, 2, 3, and 4,
which are the "stack" registers T, Z, Y, X, and L,
respectively. The following figure shows the Status
Registers.

The following is a 1ist of the roles of the remaining
status registers. Synthetic programming depends heav-
i1y on the exploitation of these roles through direct
storage and recall of the contents of these registers.
Just as register 000, for example, has a symbolic name
{register T) arising from the program Tines that access
it, the status registers take symbolic names from the
41C display of their corresponding (synthetic) store
and recall lines.

1. REGISTERS M, N, O & P--THE ALPHA REGISTER

Registers 005 through 008 constitute a block of 28
contiguous bytes that the 41C uses to store alpha
strings, i.e., they are "the" alpha register. Normally,
only 24 (two display widths) of these characters are
considered to be "in" the alpha register; bytes 6, 5,

4, and 3 of register P are occasionally used for other
purposes by the 41C.

When an alpha string is entered, the first character is
stored in the byte 0 of register M. Each subsequent
character also enters byte 0, with previous characters
pushed into bytes 1, 2, 3, etc., and eventually into
registers N, 0, and P as needed.

2. REGISTER Q--ALPHA SCRATCH

Register 009 is used for a number of bookeeping pur-
poses by the 41C. Primary among these is its use as

a temporary repository for alpha strings that are not
entered into the alpha register, such as are generated
when the user keys in an alpha function or label name.
It is also used for scratch purposes during key assign-
ing or program text string entry.

3. Register F--THE KEY ASSIGNMENT BIT MAP

When a 41C key is pressed in USER mode, the 41C must
check to see whether the key is assigned or in a de-
fault state. The first 35 bits of register b are

used for this purpose, one bit to a key. The remainder
of the register is used for scratch purposes, typically
to store an exponent or a register address during var-
ious operations.

4. REGISTERS a AND b--THE PROGRAM COUNTER AND
RETURN STACK

The 4-digit program counter mentioned above is stored
in bytes 1 and 0 of register 00C. The remaining 5
bytes of 00C (register b), plus all 7 bytes of register
00B (register a), store up to 6 4-digit subroutine
addresses. When an XEQ is performed, the program
counter value is moved (actually a condensed form, to
allow for calls to peripheral routines) to the first
return position, bytes 2 and 3 of register b. Each

subsequent call pushes the return "stack" to make room
for the new program counter; each RTN "drops” the stack
so that the first pending return address becomes the
new program counter.

5. REGISTER c--MEMORY ORGANIZATION

Three key memory allocation parameters are stored in
register 00D (register c). Byte 6 and the Tast half of
byte 5 store the three digit register address of the
first sigma register. The address of ROO is encoded

in digits 3-5 (byte 2 and half of byte 1); the location
of the permanent .END. is stored in digits 0-2. Note
that the numerical difference between digits 3-5 and
0-2 is the total number of registers currently allocat-
ed to user programs. Digits 6-8 contain the hex number
169, the so-called "cold start constant". The proces-
sor checks this value frequently. If it has changed
from 169, the calculator does a "cold start"--including
clearing of memory. Digits 9 and 10 appear not to be
used. They are normally both zero.

6. REGISTER d--THE 56 FLAGS

Each of the 56 bits of register 00FE {register d} is
one of the system or user flags, starting with the
last bit of byte 6 as flag 00 and running through the
first bit of byte 0 as flag 55.

7. REGISTER e--MORE KEY ASSIGNMENTS, AND THE LINE
NUMBER

The last 35 bits of register 00F (register e) are used
as a key assignment bit map for shifted keys, exactly
the same as the corresponding bits in register b are
used for unshifted keys. In addition, digits 0, 1, and
2 store the current program line number. During a run-
ning program this value is set to FFF. After a program
is run, the next time PRGM mode is activated, a new
Tine number is computed by counting down from the pre-
ceding END.

C. SYNTHETIC PROGRAMMING

A “synthetic instruction” is any combination of HP-41C
bytes that can not be entered into a program or manu-
ally executed using normal keystrokes. Various tech-
niques have been developed that enable the construction
of arbitrary byte sequences in program memory. When
the 41C processor encounters a byte sequence, it must
process it, whether it is a normal combination or not.
The results of executing non-standard byte combina-
tions often turn out to have useful, practical applica-
tions.

There are two generally applicable methods of generat-
ing synthetic instructions represented in the PPC ROM.
The first, the @CB program, is used for creation of
all non-standard program lines. Any sequence of pro-
gram bytes can be entered into program memory using
this program. The second fundamental program, | VI I
enables the assignment of arbitrary two-byte functions
to user keys. Functions so assigned can be manually
executed or entered into program merely by pressing a
key. Included here are any two-byte peripheral func-
ions, whether or not the peripheral is instalied, and
any two-byte mainframe function, such as GTO IND X or
X<>99.

There is a considerable variety of additional methods
that can be used to generate synthetic instructions.
For descriptions of the evolution, theory, and applica-
tion of these techniques, the reader is referred to

PP C ROM USERS MANUAL 19

| T

the references. For our purposes here, ¥ and G
give the user sufficient control.

Synthetic instructions can be divided into two general
c]as§es for discussion: synthetic functions, and syn-
thetic text. We shall consider each separately.

1. SYNTHETIC FUNCTIONS

Of all the possible non-text byte combinations possible,
the most important are those that allow direct user
access to and control of status registers 005 through
00F. The ability to code and execute functions such

as STO b, RCL M, and X<>c 1is the foundation of all syn-
thetic programming--without these functions, programs
such as EE® and [would be impossible.

The existence of the status register access functions
derives from the fact that the status registers are

RAM registers similar to the rest of user memory regis-
ters. Access to registers X, Y, Z, T, and L is a stand-
ard feature; access to the remaining status registers
was simply not implemented in the 41C. However, using
synthetic programming, we can join any postfixes from
row 7 to ST0, RCL, and X<> prefixes. The happy result
is that the resulting instructions execute the same as
the normal stack functions. The codes 90 75 through

90 7F, for example, recall the contents of registers
005 through 00F. The display of these instructions
Tooks just Tike a stack recall function: 90 75 is

"RCL M" (RCL | on the printer). The "M" is just an
accidental consequence of the operating system. Sim-
ilarly, we obtain the following table:

BYTE DISP PRNT
75 M i
76 N \
77 0]
78 p 4
79 Q _
7A F T
78 a a
7C b b
7D o C
7E d d
7F e e

Let us consider the function "X<>d" as a prototype syn-
thetic function. When executed, it does exactly what
its functional form suggests: it exchanges the con-
tents of register X with those of register d. The stor-
egge of the original X value into d affects the status

of all 56 system and user flags simultaneously--an
obvious consequence is the gained ability to set or
clear normally inaccessible system flags.

The central point is this: with the existence of syn-
thetic functions, the status registers 005-00F obtain
an accessibility equivalent to that of the stack regis-
ters. For the alpha registers 005 - 008 (M - P), this
accessibility adds a new dimension to user control of
alpha strings. For the remaining registers, 009 - 0OF,
we must remember that these registers play an active
role in the organization of 41C execution. The ability
to store user-chosen guantities into these registers
gives the user enhanced control over the system that is
simply not available using the normal function set.
Again, a prime example is the X<>d instruction.

One important feature that all status registers have in
common is that recall functions (including RCL, X<>,
and VIEW) operating on these registers do not result
in their contents being normalized. If these opera-
tions are applied to the numbered data registers, their

contents are normalized, i.e., non-standard hex digit
combinations are eliminated.

As an example of the more exotic applications of syn-
thetic functions, consider the following sequence:

01 X<>¢
02 XY
03 STO 00
04 X<>¥
05 ST0 ¢

This sequence is the heart of all byte-loading and
synthetic key assignment programs, for it allows direct
storage into any 41C RAM register, regardless of whether
it is in data memory, program memory, or key assianment
memory.

In Tine 01, we presume that the quantity in X, which is
exchanged with the current contents of register ¢, con-
tains the address of the register into which we wish to
store as digits 3, 4, and 5.

Following execution of Tine 01, that register will be
designated as R0O0. Note that as we stored into ¢, we
preserve its original contents by using X<>c rather
than STO c. In Tine 02, we exchange X and Y, then
store the original contents of Y into the "new" RQO

in Tine 03. Lines 04 and 05 restore the original con-
tents of ¢, so that when execution halts, the address
of the .END. is restored, that the sigma-register and
ROO addresses are valid, and that the cold-start con-
stant is intact. Failure to satisfy any of these con-
ditions will result in immediate MEMORY LOST!

2. SYNTHETIC TEXT LINES

The second general class of synthetic program lines is
“synthetic text Tines". A synthetic text line is any
text line alpha label, GT0 or XEQ, that contains any
bytes other than the standard display character set.

We notice in the byte table that there are a number of
characters (some quite useful) that do not appear on
the alpha keyboard. In addition, all of the characters
in the lower half of the byte table, and many in the
upper half, have no special display character assigned,
and default to the "starburst" (or "boxed star") char-
acter.

The application of synthetic text lines is not Timited
to their obvious use for placing the full display char-
acter set at the user's disposal. The full 128-char-
acter printer character set also becomes accessible
through program text Tines, without the necessity for
use of ACCHR, ACSPEC, BLDSPEC, or flag 13, which leads
to great savings of program bytes.

Furthermore, a 7-character text line followed by a

RCL M places the text bytes into the X-register, where
they can be used for a variety of purposes, including
storage into other status registers (Tike the flag
register). Ffor arbitrary control of the byte sequence
in X, we must utilize general character sequences--
synthetic text lines.

D. CONCLUSION

It would take more space than we have here to give

a complete list of the practical applications of syn-
thetic programming. As a matter of fact, the programs
in the PPC ROM contain the quintessence of synthetic
programming--they are the best examples that can be
provided. In closing, it should be reemphasized that
there is nothing magic about synthetic programming,
despite its strange history and "exotic" creation

20 PP C ROM USERS MANUAL

| gt

techniques. Synthetic instructions are just instruc-
tions that didn't happen to find their way into the
Owner's Manual. Their use should be embraced by all
serious HP-41C/V programmers.

E. REFERENCES

Essential information on synthetic programming (status
registers, program instruction structure, memory struc-
ture, etc.) can be found in the following PPC CALCULATOR
JOURNAL articles

V6N4P11b HP-41C Main Function Table
V6N5P20b HP-41C Postfix Table

PART IT -

V6N6P19d HP-41C Data and Program Structure
V6N8P27 Through the HP-41C with Gun and
Camera, by W. C. Wickes (3735).

An extensive step-by-step introduction to synthetic
programming is contained in SYNTHETIC PROGRAMMING ON
THE HP-41C by W. C. Wickes (3735) (see the appendix D
on references and accessories).

An introduction to the use of the byte table can
be found in this part entitled "HP-41C Combined
Hex/Decimal Byte Table".

HP-41C COMBINED HEX/DECIMAL BYTE TABLE

THE PLasTIC SHIRT PockeT CARD AND How To Use It

The pocket hex table puts an end to the frustration of
trying to find a copy of the 83" x 11" version. It is
small enough (68mm x 117mm) to fit easily alongside the
HP-41 in its carrying case, so you'll always be ready

to do synthetic programming. The pocket hex table will
also fit in a standard HP magnetic card holder or in
your shirt pocket. Its credit card construction--
plastic between plastic--makes it waterproof and durable
enough for heavy use. Each table weighs 0.22 ounce.

Despite its small size, the pocket hex table is quite
fegible. The primary function appears at the top of
each of the 256 boxes, while the postfix equivalent
appears directly beneath. This arrangement is espe-
cially convenient when using B . The decimal equiva-
lent appears at the lower left of each box. At the
Tower right of each box is the printer character which
results when PRA is executed with that byte in the
alpha register, In the first half of the hex table
(rows 0 through 7) the display characters appear at
the center right of each box. Since all display
characters from the second half (rows 8 through F) of
the hex table are starbursts, these are not shown
explicitiy. This allows the full indirect postfixes
to be shown on the second half of the table.

The pocket hex table also includes some features not
seen on previous tables. The display characters are
photographically reduced copies of actual display
segments, rather than line drawings. Shading is used
to denote printer control characters (PPC CJ, V7N6P20)
in rows A through E. Accentuated lines at 4-box
intervals make it easier to locate a particular byte.
Binary equivalents are given along the bottom of each
half of the table for convenient binary conversions.

One pocket hex table is supplied with each PPC ROM.

The pocket hex table has two minor errors. The display
character J is missing the vertical segment at the
left, and the postfixes N and IND N show / rather than
\ as the printer equivalent. Extras or replacements
are available at some dealers who carry Bill Wickes'
(3735) Synthetic Programming book. They are also
available by mail. (See Appendix D).

A combined hex/decimal byte table (hex table for short)
is essential for synthetic programming on the HP-41.

Even with the advanced features of the PPC ROM
program , the hex table is needed to determine
the decimal or hexadecimal numeric equivalents of
the synthetic instructions you wish to create.

PPC ROM

Synthetic instructions are those which cannot be
entered directly from the keyboard. For instance E-3
works as well in a program as 1E-3, it's faster, and it
saves a byte to boot. But the HP-41 insists on adding
the 1 when you press E-3 in PRGM mode. Example 3

below will show you how to permanently remove that
superfiuous 1. Other examples will show you how to

put nonstandard characters into text Tines and

how to create the powerful status register access
instructions.

As noted in Appendix D of the HP-41 Owner's Handbook,
many program instructions are made up of a number of
pieces. Each piece is an 8-bit code, or byte. For
example, the instruction FS? IND 03 begins with an FS?
prefix byte. This byte tells the processor that the
program Tine is incomplete, and to interpret the
following byte as a postfix in order to complete the
instruction. The second byte of the FS? IND 03
instruction appears as IND 03. In this case the same
byte would be ENTER4 if it were not preceded by the FS?
byte. The presence of the FS? prefix byte caused the
following byte to lose its identity as an ENTER4
instruction and become the postfix IND 03. A major
theme in the examples to follow will be the placement
of synthetic postfixes after standard prefixes to
create synthetic instructions which can allow other-
wise impossible thinas to be done on your HP-41.

A byte can range in value from OOOOOOOO2 to 111111112;

however, it is more convenient to use hexadecimal

(OO16 to FF16) or decimal (010-25510) to express the

value of a byte. The Byte Table is based on the
hexadecimal representation rcigs where r is the row

number (O through F) and ¢ is the column number.

Each of the 256 boxes of the Byte Table shows several
possible interpretations for a given byte.

For example, consider the byte 7E16' The box at row 7,
column E Tooks like this:

AVIEW

126 ¢

At the top of the box is the primary (prefix) inter-

USERS MANUAL 21

pretation AVIEW. At the middle left is the postfix
interpretation d, as in LBL d. At the bottom left is
the decimal equivalent, hex 7E = decimal 126. The
middle right entry is the display character produced
when this byte appears in the alpha register. The
Tower right entry is the printer character produced
when this byte is printed from the alpha register.
(No display characters are shown from rows 8-F since
they are all starbursts--14 segments 1it. Printer
characters from rows 8-F are invisible in program
1istings, while the shaded characters from rows A-E
cause additional unusual behavior when listed.)

The fastest known method for creating synthetic in-
structions requires a "prefix masker" key assignment.

This assignment is made as follows *(Do this precisely
as shown):

1. MASTER CLEAR (to MEMORY LOST status)

This is done by holding down the backarrow key
while turning on the calculator, then releasing
the key.

ASN "+" to the LN key

ASN "DEL" to the LOG key

Switch to USER mode

In PRGM mode do these steps:

oW N

LBL ||TI| T
CAT 1, R/S immediately with LBL T showing
DEL 001 (press LOG, %+)
BST (this takes a while to execute;
be patient)
GTO .005 (use LN for 005), see LBL 03
DEL 003 (press LOG, vx), see STO 01
COAAAAAA", see "PATT "
6. Switch out of PRGM mode.

#Jsing the PPC ROM routines i, , or GO,

decimal inputs for the "LN" key would be: 247,
ENTER+, 63, ENTERt, 15. The bootstrapping pro-
cedure was discovered by Keith Kendall (5425).

The prefix masker is now assigned to the LN key.
Whenever you see the mnemonic PM in the following
discussion, press the LN key in USER mode. If you
preview this key assignment you'll see XROM 28, 63.
When the prefix masker is inserted between two lines
of a program it absorbs the first byte of the second
(i.e., the following) program Tine (although this
sometimes requires PACKing first). If the absorbed
byte was a prefix for a multi-byte instruction then
the following (postfix) bytes are free to become
vstand alone™ functions or prefixes to new functions.

CAUTION--Do not PM at the step immediately preceding
an END. That messes up CAT 1 and makes it difficult
to BST. If your keyboard ever "locks up", simply
remove the battery pack (and the printer if present)
for a couple of seconds and replace the printer (if
present) for a couple of seconds and replace it. You
may still need to MASTER CLEAR to restore operation.

Now let's make some synthetic instructions.

Example 1: Synthesizing X<>M.
GTO.. and key in
01 ENTER#
02 X<> IND 06
Then GTO .001 and PM (press the LN key). You'll see
T-72----®. The starburst is the X<> prefix. SST to see
03 BEEP
22

This is the IND 06 postfix from X<> , now free to
assume its own identity as an instruction. Row 8,
column 6 of the byte table shows that iine 03 is a
hexadecimal 86 byte. This byte is a BEEP instruction,
but it becomes IND 06 when preceded by a prefix byte
that requires a postfix byte. X<> (hex CE) is such a
prefix byte. Now let's edit the exposed postfix byte
and reattach it to the X<> prefix. Backarrow line 03
and replace it by RDN. GT0.001, PM, DEL 002, and SST.
We have masked the prefix masker, freeing the X<>
prefix (the starburst you saw before) from the text
line. The exposed X<> prefix immediately absorbed

the RDN byte (hex 75) to become X<> M. This synthetic
instruction accesses the rightmost seven characters of
the alpha register, but in a numerical form. M can

be used as an all-purpose scratch register as long as
ALPHA is not needed. This synthetic instruction can
be freely recorded, packed, or deleted, just like any
other instruction.

Example 2: Synthesizing arbitrary text lines.

The procedure of Example 1 can be generalized to allow
editing of text characters. This exampie illustrates
the creation of the partially synthetic text Tine
"WE'RE #1".

Key in 01 ENTER%
02 "WEARE X1"

Then GTO .CO1 and PM. SST to line 05. You will see
05 E+X-1

This is the instruction-equivalent of the character X
(see row 5, column 8 of the byte table). Backarrow
this line and replace it by RCL 07, which is hex-
adecimal 27, the instruction-equivalent of the apos-
trophe character. SST to line 09, backarrow it, and
replace it by RCL 03 (hex 23), which will become the

character. Now we need only to re-expose the hidden

text prefix (hex F8) to convert these instructions back —

to characters.
the result.

GTO .001, PM, DEL 002, and SST to see

Example 3: Synthesizing short form exponents.

Now we are ready to create a synthetic exponent entry
line. Key in 01 ENTER#
02 1E-3

Now PACK (do not GTO ..), GTO .001, and PM. The star-
burst character is the absorbed 1. Backarrow and SST
to see 02 E-3

An alternate procedure that does not require packing is
to key in lines 01 and 02 as above, GTO .001, insert
X<>Y and PM. Then backarrow twice and SST. The X<>Y
is a