N OPERATING MANUAL

STRING VARIABLES ROM
11274B & OPTION 274

9830A CALCULATOR SHOWN WITH 9866A PRINTER

HEWLETT—PACKARD CALCULATOR PRODUCTS DIVISION
P.O.Box 301, Loweland, Colorado 80537, Tel. (303} 667-5000
{For World-wide Sales and Service Offices see rear of manual.)

Copyright by Hewlett—Packard Company 1972

TABLE OF CONTENTS
> > > > - > > > > o oo o

CHAPTER 1: INTRODUCTORY DESCRIPTION

EQUIPMENT SUPPLIED
INSPECTION PROCEDURE
OTHER REQUIREMENTS

CHAPTER 2: CHARACTERISTICS OF STRINGS

STRING NAMES

STRING DEFINITION & STORAGE SPACE
SUBSTRINGS

STRING BOUNDARIES

CHAPTER 3: RULES OF STRING MODIFICATION

NO SUBSCRIPT
ONE SUBSCRIPT
TWO SUBSCRIPTS

CHAPTER 4: STRING FUNCTIONS

THE LEN FUNCTION
THE POS FUNCTION
THE VAL FUNCTION

CHAPTER 5: STRING COMPARISONS
CHAPTER 6: INPUT AND OUTPUT OF STRINGS

THE INPUT STATEMENT
THE READ STATEMENT
THE PRINT STATEMENT
THE WRITE STATEMENT
THE DISP STATEMENT

CHAPTER 7: SAVING STRING VARIABLES
APPENDIX

ERROR MESSAGES

SAMPLE APPLICATIONS
Insert Characters in a String
Delete Characters from a String
Concatenation (Linking) of Strings
Conversation with a User
Printing a Form Letter
A Language Interpreter

5-1
6-1
6-1
6-2
6-2
6-3
6-4
7-1
A-1
A-1
A-2
A-2
A-2
A-3

A-4

iv

PREFACE

P P P P PP

The String Variables Read-Only-Memory (ROM) can be
purchased as an accessory plug-in block or as an internal
modification to the calculator.

The Plug-in Version:
The 11274B String Variables ROM block is installable by
the user. It plugs into any of the five slots behind the ROM
door on the left side of the calculator.

The Calculator Modification:
The Option 274 String Variables ROM must be installed
by qualified HP personnel. When it is installed, a decal
showing the option number (Option 274) is attached to
the inside of the ROM door.

Should you wish to add the option after you have received
your calculator, please order accessory number HP 11274F
from the sales office nearest to you (see the back of this
manual). The Option 274 will then be installed for you by
our field personnel.

Once either version of the ROM (the plug-in block or the
internal modification) has been installed, the operation is
identical. Therefore, this manual makes no further distinction
between the two types of ROM.

Chapter 1
INTRODUCTORY DESCRIPTION

The String Variables Read-Only-Memory (the String ROM) provides additional capabilities
to the Model 30, permitting the calculator to process strings (non-numerical data).

With the String ROM, the calculator can use strings of alphanumeric data, instead of just
numeric data, in input and output operations; can perform character-by-character
comparisons of such strings; and can use the numeric portions as variables in arithmetic
calculations. Here are a few applications:

—Conversational Programming

A two-way conversation, in English, between the calculator and the user
can be simulated in a program. Replies such as “YES” and “NO’ can be
accepted by the calculator instead of the numerical codes often used in
response to data requests. *

—Text Editing

Variable information such as names and addresses can be inserted into a
form letter to be printed on a calculator controlled typewriter. Also, a
body of text such as a manuscript can be edited. For example, certain
characters or character groups can be located within the text and changed
or deleted, or each line of text could be limited to a certain length.

—Language Interpreters

A BASIC program written to teach the calculator another language is
called an interpreter. You can write a language interpreter so that the
calculator can recognize and act upon statements like “FIND AVERAGE
WEIGHT” or “WHAT IS THE TOTAL COST?”. For example, a carpet
salesman might find an interpreter very useful if it could recognize terms
such as “PRICE PER SQ. YD.”, “TOTAL AREA” and “TOTAL PRICE
AT $6.00 PER SQ. YD.".

*BASIC statements without strings:

16 DTEF
26 DISF

i THF
48 IF

TIHUE™S
PO

BASIC statements with strings:

LB DTEF DO YO0 WIEH T COHTINUE®S
28 IHFUT Ag ‘ ‘
36 IF RE="YES" THEN 108

1-1

—o—<o—-o—o—<o EQUIPMENT SUPPLIED << < <

An Operating Manual, -hp- Part Number 09830-90002, is supplied with each String
Variabies ROM.

oo [INSPECTION PROCEDURE & << <

Refer to Appendix A in the 9830A Calculator Operating and Programming Manual for
the procedures used to verify the operation of ROM’s.

o< <o < 0OTHER REQUIREMENTS <= < < < -

It is assumed that you are afready familiar with BASIC programming and with the
operating procedures for the HP 9830A Calculator.

Chapter 2
CHARACTERISTICS OF STRINGS

A string is an array, named in a DIM or a COM statement, which can contain alphabetic
characters and symbols as well as numerics. A one-dimensional array of up to 255
characters or the nuli string {no characters) can be used. For example:

“ABCDEF"
“12345"
“AB2X?"

2ot

Strings can be assigned values, and String Functions can be executed, either from the
keyboard or from a program,

oo STRING NAMES o —o—o <o

A string name consists of a single letter {A through Z) followed by the dollar sign ($),
such as AS$, BS, Z$.

—— STRING DEFINITION AND STORAGE SPACE —

To reserve storage space for strings longer than 1 character, a DIM or a COM statement is
used. The number of characters specified for a string, the array size, must be an integer
from 1 to 255, as:

e DI pEllea Bl 2nd

Until a string is defined in a DIM statement it is assumed to have a length of 1.(All strings
must be initialized in the programming mode before being used in the calculator mode.)
The string length given in the DIM statement is the maximum number of characters which
may be assigned to the string. It is usually helpful to dimension a string array so that it is
larger than is necessary.

The space required (in words) to store a string is one half the number of characters
reserved in the DIM statement plus three. For example, a string with a 100 character
length takes up 53 words of calculator memory.

—~o—o o—o—o—- SUBSTRINGS oo <o <2

A ‘substring’ is a part of a string. It can be a single character, or a contiguous set of
characters within a string, referenced by the subscripted string name. A single subscript
specifies the first character of a substring and implies that all characters following are also
part of the substring. Alternatively, a second subscript can be used as a limiter to specify
the last character to be included in the substring. Expressions may be used as subscripts.

2-1

2-2

OO O—9— SUBSTRINGS <29 <o <@ <o

(continued)

Example
Program Statement: Result Field:

TR RN SEEADICKARUN
DICKARUN
SR E DICK

A ‘A’ represents spaces or blanks within a string.

NOTE

To gain a better understanding of strings, you may wish to write simple
programs containing a DIM statement, a string value statement, and a
DISP or PRINT statement. To see the result contained in AS$, for instance,
you could use PRINT AS$. To see only a substring, you might use PRINT

A$(5,8). A string or substring of up to 72 characters can be printed with a
PRINT statement.

When two subscripts are used to specify a substring, the second subscript is generally
greater than or equal to the first. If the first subscript exceeds the second subscript an

error will occur, unless the first exceeds the second by exactly one, in which case the
null string is assumed.

Example
Program Statement: Result Field:

ABANDONASHIP
DO
D

(the null string)
ERROR

"® < —*—* STRING BOUNDARIES <+ <<+ <+ <

The logical boundaries of a string are its first and last elements containing assigned values.
The value of a single subscript, or of the first subscript, if two subscripts describe a
substring, must be no more than the logical string length plus one. When the logical right

boundary is exceeded by more than one, or the logical left boundary is negative or zero,
an error will occur.

Example
Program Statements: Result Field:

LOOKAOUTABELOW!

5] !

N v
=

(the null string)
’ : ERROR
i o i ERROR

1A

Chapter 3
RULES OF STRING MODIFICATION

A string or substring can be modified by another string or substring. For example, part of
a string can be changed, or an insertion can be made. The string to be modified is called
the destination string. For the statement A$=B$, then, A$ is a destination string, and B$
is @ modifying string.

The characteristics (length, content) of the destination string after modification depend
not only upon the characteristics of the modifying string, but also upon the number of
subscripts given for the destination string.

—o—o—o—o—o—o NO SUBSCRIPT <o 2o <o <o <

When the destination string has no subscript, the entire string is replaced by the
modifying string or substring, and its characteristics after modification are the same as
those of the modifying string or substring.

Example
Program Statements: Result Field:

1234
ABCDEFGH
ABCDEFGH
CDEFGH
BCD

—o—o——o—o—o ONE SUBSCRIPT o< < <o <

When the destination string has one subscript, the indicated substring is replaced by the
modifying string or substring.

If the indicated destination substring is shorter than the modifying string or substring, the
modification causes the destination string to be lengthened.

Example
Program Statements: Result Field:

ABCDE
ABCXYZ
ABANDONASHIP

3-2

-o—o—o—o—o—o- ONE SUBSCRIPT o2 <o o
(continued)

If the indicated destination substring is the null string (that is, when the subscript is

equal to the logical length of the destination string plus one), the modifying string is
attached at the end of the destination string.

Example
Program Statement: Result Field:

ABC
ABCXYZ

If the indicated destination substring is longer than the modifying string or substring, the
modification causes the destination string to be shortened.

Example
Program Statement: Result Field:

ABCDEF
AB12
] AB

If the indicated destination substring is equal in length to the modifying string or
substring, the modification will not affect the length of the destination string.

Example
Program Statement: Result Field:

ABDCEF
ABCXYZ
A12345

—o—o—o—o—o— TWO SUBSCRIPTS —-—e—e < <

When the destination string has two subscripts, the indicated substring is replaced by the
modifying string or substring.

The leftmost character in the modifying string or substring is moved to the leftmost
position in the indicated destination substring. Then the next adjacent character is
moved, and so forth, until the indicated destination substring is filled. If the modifying
string or substring is shorter than the indicated destination substring, the remainder of
the destination substring is filled with spaces. If the modifying string is longer than the

indicated destination substring, the remainder of the modifying string or substring is
truncated.

Example
Program Statement: Result Field:

AIRAMAIL
AIRAFOIL
Tk TINAFOIL
SIR B TINACANS

When the destination string has two subscripts, its length after modification will either be
greater than before, or remain unchanged. When the value of the second subscript is

greater than the logical length of the destination string, the modification results in a
lengthened string.

Example
Program Statement: Result Field:

JOHN

JOHNAISATALL.
JOHNAISATALENTED .A

AR JOHNAHASAFIVEACHILDR

4-0

NOTES

4-1

Chapter 4
STRING FUNCTIONS

A string function returns a numerical value to an expression, in the same way that any
other function, such as the square root function, does.

String functions enable you to determine the length, and analyze the content, of a string.
This is useful when strings of different length or content are processed at the same time;
for instance, when entering strings from the keyboard.

The following syntax notations are used:
‘string name’ can be a string or substring. A literal value, enclosed in quotes, is not
permitted.

‘string’ can be a string, substring or literal value enclosed in quotes.
parentheses () are required when shown.

NOTE
Shifted string variables are not equal to their corresponding unshifted values thus,
@ does not equal @ However, the 9866A printer and the calculator
display will print both codes as a capital “A”.

THE LEN FUNCTION o<+ < -

LEN (string name)
The LEN function obtains the length of a string or substring. The logical length is found,
which is not necessarily equal to the reserved length defined by the DIM statement.

Example

Program Statement: Result Field:

ABCD

4
ABCDEFG
ABCDEF!

= AND, OR NOT

Although logical operators cannot be used with string variables directly (see page 5-1) , the
LEN function may be used with logical operators, as shown below:

-o—o—o—o— THE POS FUNCTION —o—<2—<o—<

POS (string name, string)

The POS function determines the position of a substring within a string. |f the second
string is not a part of the first, the value of the function is zero. If the second string is
found to be part of the first, the value of the function is the position in the first string
at which the second string starts.

Example
Program Statement: Result Field:

ABCD
3

BC

., 2

R E--R ABC!
0

—~——o—<—<——< THE VAL FUNCTION o< < <

VAL (string name)

The characters in a string are not recognized as numeric data and therefore they cannot normally
be used in computations. The VAL function allows the numerical value of a string of digits to be
used in computations. The string is converted into a number by the same rules used in an INPUT
statement. The first character must be a digit; decimal points, plus or minus sign and E-notation are
also allowed. Also, numerical data entries can be combined logically with input text.

Example
Program Statement: Result Field:

ABC123X5

123

46
HLCAEFD FOSCRE " 3] 10 615

Chapter 5
STRING COMPARISONS

The IF statement allows comparison of strings or substrings. All of the relational
operators allowed in numerical comparisons apply to string comparisons, as follows:

= equal to > greater than
or <> not equal to < = less than or equal to
< less than > = greater than or equal to

The following string comparison could be included in a program to allow communication
between the calculator and the user.

(The logical operators — AND, OR, NOT — cannot be used with string variables.)

When the data request (?) is displayed the user can enter “YES”, “NO” or another
appropriate reply.

In some cases, such as in alphabetic sequencing problems, it is useful to compare strings
for conditions other than “‘equal to” and ‘‘not equal to”. For example, to arrange several
different strings in alphabetical order, the following type of string comparison could be
included in a program.

Within the calculator memory, each character contained in a string is represented by a
standard ASCI|* octal code, as shown in Table b-1. When two string characters are
compared, the smaller of the two characters is the one whose octal code is smaller. For
example, 2" (octal code 062) is smaller than “R" (octal code 122).

Strings are compared character by character from left to right until a difference is found,
(thus “ANT" is smaller than “BEE"). If one string ends before a difference is found, the
shorter string is considered smaller. For example, “STEVE' is smaller than both
“STEVEA" and “STEVEN",

* ASCIl — American Standard Code for Information Interchange.

5-1

5-2

Table 5-1. ASCII Characters and Their Octal Equivalents

OCTAL ASCII OCTAL ASCI OCTAL ASCll
CODE CHARACTER CODE CHARACTER CODE CHARACTER
040 A (blank) 076 > 134 \
041 ! 077 ? 135]
042 " 100 @ 136 1
043 # 101 A 137 «
044 $ 102 B 141 a
045 % 103 C 142 b
046 & 104 D 143 c
047 ! (apost.) 105 E 144 d
050 { 106 F 145 e
051) 107 G 146 f
052 * 110 H 147 g
053 + 111 | 150 h
054 , (comma) 112 J 151 i
055 13 K 152 [
056 . 114 L 153 k
057 / 115 M 154 !
060 0 116 N 155 m
061 1 117 0] 156 n
062 2 120 P 157 o]
063 3 121 Q 160 p
064 4 122 R 161 q
065 5 123 S 162 r
066 6 124 T 163 S
067 7 125 U 164 t
070 8 126 \% 165 u
071 9 127 W 166 v
072 : 130 X 167 w
073 ; 131 Y 170 X
074 < 132 Z 171 Y
075 = 133 (172 Z

Chapter 6
INPUT AND OUTPUT OF STRINGS

As mentioned in Chapter 2, the standard input and output statements are used with
strings. Here we will briefly mention the general rules which apply to the use of input
and output statements, but most of the discussion will be about special rules which apply
to string input and output.

-o—o—<—<—< THE INPUT STATEMENT o<+ —<——

The INPUT statement allows string values to be entered from the calculator keyboard
during program execution. You may enter up to 80 characters at a time into a string, or,
for longer strings, you may enter several substrings of up to 80 characters:

18 DIF A$L 166
2R THPUT)
36 THFUT

After the first 80 characters are entered, a second data request (?) will appear on the
display so that the second 80 characters may be entered. Up to 255 characters can be
entered in a string using this method.

Strings and numeric variables may be mixed in the INPUT statement:

16 T
BRTMPUT

Notice that the variable A and the string A$ can be used in the same program. When a
data request (?) appears, the strings and variables can be entered all at once, with strings
enclosed in quotes and fields separated by commas, e.g.,, ?“TODAY’S RECEIPTS",
512.52, “PAID OUT", 272.12. Avoid keying in leading blanks (i.e., spaces) before the
value of the numeric variable or before the string variable within a quote field.

Alternatively, when the total length of the data entry is greater than 80 characters, each
item can be entered separately. (In this case, the quotes would be optional):

?TODAY’S RECEIPTS
75612.52

?PAID OUT

?272.12

During data entry, the word STOP is recognized as a string value. Therefore, to exit from
a programmed INPUT loop, the calculator END key is used. Otherwise, a test can be

6-1

6-2

-o—o—<o—<o—< THE INPUT STATEMENT o<

{continued)

included in your program so that when a certain input condition is met, the loop is
satisfied:

THEM T

In the above example, data requests (?} will continue until “STOP” is entered.

—~o—o—<—<o <o THE READ STATEMENT <o—o—<——<— <

The READ statement is used with the DATA statement. The DATA statement may
contain a mixture of string and numeric variables, but all string values must be enclosed
in quotes.

»LET. T

If string values are found when numeric data is expected, or numeric data is found when
strings are expected, an error will occur.

~——<—<—< THE PRINT STATEMENT <o <<+ -

The PRINT statement can print up to 72 characters on the output printer or typewriter.
Any characters beyond 72 in the string or substring will not be printed. For longer
strings, you may print several substrings of up to 72 characters each.

A mixture of strings, numeric variables and constants may be included in a PRINT
statement:

{8 DIM ASL281)E4
20 READ AsAgo
38 DATA S6s “TEMPERATURE" ‘“EHIHH%It
48 FRINT A$s " TODRY 15" 1A

~——<o—<o—<—< THE WRITE STATEMENT o< —<*—<+ <

The WRITE statement allows strings to be output to other output devices, as well as to
the primary printer.

WRITE statements which do not reference a FORMAT statement restrict their outputs to

a maximum line-length of 72 characters. This is because they behave exactly like PRINT
statements. Thus,

WRITE (15,+)A$
is equivalent to

PRINT A$
Strings and numeric variables can be mixed in a WRITE statement. However, unlike
numeric variables, the string variables do not reference the corresponding FORMAT
specifications. In program 2 (below), for example, the format specifications (2F5.1) are

ignored by the strings and used only by the numeric variables.

The following two sets of instructions, which include WRITE statements with a mixture
of strings, numeric variables and constants, have the same printout (as shown):

B TEMPERATURE "« fiv " BFAR

STy B
- {4 1T LI E
B R O b T e ™

AHE S Ha BEy2W,

TEMFERATURE 56,8 BRAROMETER 28,5

When the WRITE statement does reference a FORMAT statement, the length of any
output is no longer restricted to 72 characters maximum. For example, in program 2
(above) the WRITE statement in line 60 references the FORMAT in line 50; therefore,
the output could have had more than 72 characters (assuming of course that A$ and B$
had originally been dimensioned large enough, and assuming a large enough printer).

—&——o—<¢—<¢ THE WRITE STATEMENT &< <<

(Continued)

None of the FORMAT statement specifications affect string length; the simple fact that
the FORMAT statement is referenced is sufficient to lift the 72-character restriction. This
is illustrated in the following program, where the WRITE statement contains no numeric
variables so would not normally need to reference a FORMAT statement.

This program can output a 160-character string on one line (assuming that the
column-width of the printing device allows at least 160 characters). Since there is no
other FORMAT statement for the WRITE statement (line 40) to reference, the FORMAT
in line 45 has been added. The F2.0 in the FORMAT statement is a ‘dummy’
specification in that it does not affect the printout but is needed to complete the
FORMAT syntax. (The ‘dummy’ specification does not have to be F2.0 — E8.1, B, or
any other allowable specification would be just as effective.)

—~——< << THE DISP STATEMENT &<+ <<+ <

The DISP statement allows the 32 character display to be used as an output device:

Chapter 7
SAVING STRING VARIABLES

When programs are reproduced into memory from the tape cassette by means of a LINK
statement, all variables currently in memory are saved. If LOAD (or LOAD KEY) is used
to reproduce the program, however, any string variables currently in memory are lost,
including those strings defined in a COM statement.t (Numeric variables defined in the
COM are, of course, retained). Thus, if LOAD (or LOAD KEY) must be executed, then
those strings which must be saved should first be stored on a cassette, so that they can
be loaded back into memory afterwards.

Data is stored on the tape cassette with the STORE DATA command. The general syntax
has an optional “‘array’’ parameter, but this parameter applies only to numeric arrays and
cannot be used for storing strings. Therefore, when storing string data, the syntax is:

STORE DATA file

Thus to store strings on tape, the string names must first be specified in a COM
statement. All variables specified in COM are stored on the indicated file when the above
syntax is used. For instance, to store A$ and B$ on file 3 of your tape cassette, your
program could be as follows:

5 OTHEUT
5 THRUT
4 ETORE

Of course, had numeric variables been specified in COM, they too would have been
stored in file 3.

The command used to load the strings back into memory must parallel the STORE
DATA command; so the syntax is:

LOAD DATA file

When the LOAD DATA command is executed, the memory must contain a suitable COM
statement, capable of properly accepting the new data.

{The Advanced Programming | ROM (Option 279 or 112798} has a TRANSFER statement which can convert a string
to a numeric array, and vice versa. This adds considerable flexibility to string manipulation; for example, strings defined
in a COM statement can be saved, in numerical form, when a LOAD command is executed, and strings effectively
longer than 255 characters can be used.

7-2

NOTES

APPENDIX

¢ <<+ <+ ERROR MESSAGES <+ <<+ <+ <

INDICATION

MEANING

Incomplete {F statement.

IHlegal string function syntax.

Logical string length exceeded.

Operation is on non-contiguous string. Substring requested is
beyond the logical boundary for the string and is undefined.

Maximum string length exceeded. Additional string length
must be specified in the DIM statement. If DIM (255) has
already been specified, program modification may be required.

Ilegal DATA encountered during READ statement execution.
Character data found; numeric data expected.

VAL function argument non-numeric.

Illegal characters entered during INPUT statement execution.
Character data found; numeric data expected.

A-1

A-2

——<o—<—< SAMPLE APPLICATIONS o< < <

INSERT CHARACTERS IN A STRING —=
To insert “XYZ" in “ABCDEF" giving “ABCXYZDEF", you would use program
statements as foliows:

Program Statement: Result Field:

ABCDEF
ABCDEFDEF
ABCXYZDEF

DELETE CHARACTERS FROM A STRING —=

To delete ““CD” from “ABCDEF”, contained in A$, giving “ABEF"’, you would simply
use A$(3)=A3$(5). Suppose you are to find and delete any occurrences of the combina-
tion /* in a string entered from the keyboard. Here is such a program:

R F
GOTO !

When the above program is executed, input will be checked for /* substrings until STOP
is found. Notice that the POS function is used here, since exact positions of the
characters cannot be predicted.

It is often useful to remove blanks from input text with this technique.

CONCATENATION (LINKING) OF STRINGS —

To link 123" to “ABC”, contained in A$, giving “ABC123”, you would use
A$(4)="123". If the length of A$ is unknown, such as when A$ is entered from the
keyboard, the LEN function can be used as follows.

L
FEOIHFLUT
28 BELLEL
FE AELLEMOAE»+]
FRIMT R#

be EH 1! :

RIFTION OF THIS FERSOH®

— CONVERSATION WITH A USER

If you have written a program, you will know which data is to be given and the required
order of input from the keyboard. However, your program may be used by others who
are not familiar with the operation of your program. To help them, you can make your
program ‘“‘conversational’’ by using strings. The program can inform the user of the data
required, and can accept answers such as “YES" and “NQ”, rather than numeric codes

which might have little or no meaning to the user. Here is an example of conversational
programming:

vkl THEW 1148
T ™

SRELLIHG IT, "

AL E
1ebi

CROSHOULD BE ELEFHANT"

o

AT

Notice in the above example that if the word elephant is not found, a misspelling of the
word, (e.g. elefant) is accepted. Also, the POS fuction is used so that if the substring is
found anywhere in the entered character string, such as in the plural form or as part of a
sentence, the response is accepted as a correct response.

~ PRINTING A FORM LETTER

A form letter like the one below might be used by a publishing company in processing
magazine subscriptions. The letter is printed using the following program.

DEHE FIE L JHRES T »

FTFTION T BUSTHESS WIENS
OEWFIRE. ..

YR =

o REOLT

VOLHEED HOT MISS A HEWSY WORD OF
MOVEL TDER THIS MOWTH OF AMY OTHER !

BHRF FHMT
MESE WIEWS

A-3

permitted, because they make things easier to read, but are not required. ‘Price’ must be
the first item entered. It may be dollars, as $43.99, it may be cents, as 89 cents, or it
may be just a number, as 9.98. ‘Quantity’ can be entered as: ‘doz’ or ‘dozen’, as 8 doz or
8 dozen, ‘Ib’, as 5lb, ‘0z’, as 20 oz, ‘Ib,0z’, as 1 |b 4 oz, or it may stand alone.

Here are some sample entries: 50 cents per 5 Ibs; $5.00/doz; $.43/1 Ib 4 oz.

IRHTITY " g

OF 0 THEH 478

THEM e

Sl THEM 3VE

Ty AR

SUBROUTIME CHECES 210 DRTH
AWAL FUNCTIOHN

LEH RS

100" THEH 466

115" 8" THEM 456
I " THEH 468

A-5

—~——<——<—<—< THE DIM STATEMENT <=+ < < <o

PR DD R

——<—<—< STRING MODIFICATION <+ << <

Program Statement: Result Field:

JOHN
JOHNAISATALL.
THATAISATALL.
THATAISAALL.

—~—<—<—<o—<— THE LEN FUNCTION =< < < <

LEN (string name) Obtains the length of a string or substring.

——<——<——< THE POS FUNCTION —&—¢—¢—<—o

POS (string name, string) Determines the position of a substring within a string.

———<—<o—+—<— THE VAL FUNCTION —=—o—w——o—

VAL (string name) Converts the digits in a string to a number.

—~—<o—<—<—< STRING COMPARISONS =+ —<+—<—<+

= equal to > greater than
or < > not equal to < = less than or equal to
< less than > = greater than or equal to

—o—<—<o— THE USE OF STRING FUNCTIONS oo

Program Statement: Result Field:
EE AF="STOP THE TREAIH!" STOPATHEATRAIN!
FEOTF FOSCAE "STOR" »=8 THEM 26 STATEMENT 80
80 AFLLEHCAE +1 MO STOPATHEATRAIN!ANOW!
90 AF="S42 FEORLES 542APEOPLE
1 542

