HEWLETT-PACKARD

atrix ROM Manual

HP-83/85




Printed in U.S.A.

(ﬁﬂ HEWLETT

PACKARD

HP-83/85
Matrix ROM Manual

December 1980

00085-90144 Rev. B 12/80

©Hewlett-Packard Company 1980



Contents

Section 1: Getting Started ... ... ... . .. 5
It OdUCHON o e 5
Matrix ROM Installation .. ... ... e 5
CONVENEIONS . . e 5

Arrays, Vectors, and Matrices . ... ... .. 5
Statement and Function Notation . ....... ... . e 6
Data Ty PES . e e 6
Dimensioning an Array . ....... ... 6
Redimensioning an ATy ... ..ot 7

Section 2: Assigning Values to Array Elements ....................................... 1
Assigning Values From the Keyboard ...... ... .. ... . . . . 1
Assigning Values in @ Program ... ... .. 12
Assigning the Values 1 and O . ... .. . 13
Assigning the Value of a Numeric EXpression .......... ... i 14
Creating an Identity Matrix . ... ... . 14

Section 3: Displaying and Printing Arrays ............... .. . i i 17

Section 4: Array Operations ... ... .. .. .. 21
ATTAY TrBNSPOSE . ot e e e e 21
Scalar OpPeratioNS ... ... 22
Arthmetic Operations .. ... ..o e e e e 23
Matrix MUBIpICation ... e 25
Cross ProdUC .. 28
Inverting @ Matrix .. ... o 30
Solving the EQUation AX = B ... ... s 32
Summing Rows and COUMNS ... ..ot e 35

Section 5: Copying Arrays and Subarrays ... ... ... ... ... 39
COpYING 8N ATTAY o 39
Copying From/Into @ Subarray . ............ 40

Section 6: Array Functions ......... ... . ... .. 49
Sum of Elements
Sum of Absolute Values
Maximum and Minimum Element
Maximum Absolute Value
Frobenius/Euclidean Norm
Row and Column Norms
Determinant
Dot Product
Upper and Lower Bounds

Appendix A: Maintenance, Service, and Warranty .............. .. .. ... .. ... 55
AN ENANCE .. . o 55
LT Yo 55

Warranty Information ... ... 56

How to Obtain Repair Service ...... ... ... . i 57

Serial NUMbEr . 57
General Shipping INStrUCONS .. ... e 57
Syntax SUMMArY ... . 59
Error MeSsages ... ... i e Inside Back Cover



Notes






Section 1

Getting Started

Introduction

The HP-83/85 Matrix ROM provides you with a powerful set of statements and functions for working with
arrays (matrices and vectors). These capabilities enable you to calculate with more convenience, speed, and
accuracy than if you worked with arrays without the ROM.

This manual assumes that you have a working knowledge of linear algebra and matrix theory. In addition, it
presumes that you are familiar with operating and programming an HP-83 or HP-85 Computer, as
described in the Owner’s Manual and Programming Guide. Section 8 of that manual (Using Variables:
Arrays and Strings) contains information that is particularly relevant.

All Matrix ROM statements and functions—excepting only the " and

statements—work both in “calculator” mode (that is, from the keyboard) and in program mode.

The Matrix ROM uses 69 bytes of the computer’s memory (not including any memory allocated to arrays).
If you attempt to load into memory a large program written for the computer alone (including programs

from application pacs) the message ! i - .7 may result, indicating that the program
does not fit into memory. Such a program can be loaded after installing a 16K Memory Module or

removing the ROM drawer.

Throughout this manual, “HP-83/85"is used to refer to both the HP-83 and the HP-85.

Matrix ROM Installation

The Matrix ROM should be installed in an HP 82936 A ROM Drawer. Please refer to the instructions
accompanying the ROM Drawer, or to appendix B of the computer owner’s manual, for complete ROM
and ROM Drawer installation instructions.

Conventions
Arrays, Vectors, and Matrices

.

Throughout this manual, the term *‘array’’ is used in referring to a variable with either one or two dimensions

(that is, a variable that has been declared with either one or two subscripts). The term *‘vector’” is used in referring

‘6 s

to an array with only one dimension; the term ‘‘matrix’" is used in referring to a two-dimensional array. The
Matrix ROM regards all vectors as column vectors, not row vectors. Except for the ]
and the 1} 1+ (with

in effect)—can be used wherever a vector can be used. In all cases, a vector can be used wherever a one-column

= operation

! function, a matrix declared with only one column—Iike |

matrix can be used.

References to both matrices and vectors throughout this manual generally have the array name printed in boldface

type (for example, matrix A, vector B). However, if the array name is part of a BASIC statement or function, it

(as well as the rest of the statement or function) is printed in i 2 type (for example,




6 Section 1: Getting Started

Statement and Function Notation

Statements and functions are described throughout this manual using the following conventions:

Items shown in dot matrix type must be entered exactly as shown (in either upper-
case or lowercase letters). If several items are shown stacked, one (but only one) of

the items must be specified.

[ ] Items shown between brackets are optional. If several items are stacked between

brackets, you can specify any one or none of the items.

Three dots (ellipsis) following a set of brackets indicate that the items between the

brackets may be repeated.

italics Items shown in italic type are numeric expressions or names of arrays that should be

specified in the statement or function.

The result array, specified on the left side of the = signina [T statement, is the array whose elements are assigned

values. Many Matrix ROM statements specify one or two operand arrays as well as a result array. The operand

array, specified on the right side of the = signina statement, is the array from which values are taken to be

operated upon.

The array specified as the result array may be the same as the array specified as an operand array. Thus, values

can be changed and stored in the original array without allocating storage to a new array variable.

Data Types

Like the HP-83/85 itself, the Matrix ROM works with numeric array variables (or, simply, numeric arrays);

string array variables are not allowed.

As described in section 3 of the HP-83 and HP-85 owner’s manuals, a numeric array can be any of three

data types: and Operations provided by the Matrix ROM put no

restrictions on the types of array variables or simple variables named in statements. For example, a typical
Matrix ROM statement specifies that values are to be taken from the elements of an operand array,

manipulated in some particular way, and then assigned to the elements of a result array. In all cases, the type

of the result array depends only on how the array was declared, not on the type of the operand array(s).

When values are taken from a variable (simple or array) and assigned to a

array, the values are rounded before the assignment takes place.

Dimensioning an Array

Arrays should be dimensioned before they appear in a Matrix ROM statement or function. If this is not

done, errors will result. It is best to dimension arrays explicitly using a i, or

statement. (Refer to section 8 of the HP-83 or HP-85 owner’s manual for a discussion of these

declarative statements.)



Section 1: Getting Started 7

You can also dimension arrays implicitly by assigning a value to an array element, but this allows the

possibility of an unexpected Error 7 (% . For example, suppose your program does not
contain one of the four declarative statements mentioned above, but it does assign values to the elements in

the first three rows and first three columns of an array A. As discussed in section 8 of the owner’s manual,

array A would automatically be dimensioned as an 11 X 11 matrix (assuming £11s in

effect). If you were subsequently to execute a statement (described on page 17 of this manual)

to display the elements of A, 112 }- error messages would be displayed in addition to the nine
(3 X 3) values you assigned.* This is because the elements in the last eight rows and the last eight columns

had been implicitly allocated storage but were never assigned values. In this example, the error messages

could have been avoided by dimensioning A as before specifying the array in the |

statement.

Remember to specify i if you want the row and column numbers of your arrays to

).

Throughout this manual (unless otherwise specified), examples of operations in program mode use

begin with 1 rather than 0. (Refer to section 8 of the owner’s manual for a discussion of

, while examples of operations in calculator mode use

Redimensioning an Array

You can reorganize an array into a more useful configuration by redimensioning it. This changes the working size
of the array; subsequent statements affect only the elements included in the new working size. However, elements
not included in the new working size are still associated with the array. The values of these elements are not

changed, and they can be accessed if the array is redimensioned again.

tarray ‘redim subscripts i [ . array ‘redim subscripts F]

The redimensioning subscripts are numeric expressions, variables, or constants that specify a new upper bound

for each dimension. The number of subscripts must be the same as the number specified in the original

s

i, or ' statement. Furthermore, the total number of elements in the new working size

cannot exceed the number originally dimensioned.

Examples:

4 assumed.
Redlmenswns workmg size from five to
four elements.

Redimensions B from 3 X 5 matrix (15
elements) into 4 X 3 matrix (12 elements).
Redimensions A and B back to original
sizes.

Redimensions C from 2 X 10 matrix into
4 X 5 matrix.

When a matrix is redimensioned, the values of its elements are reassigned to different positions within the matrix.
Values of matrix elements are stored in order from left to right along each row, from the first row to the last.
The redimensioning takes the elements out of the matrix in that order, and reassigns them in accordance with the

new working size of the matrix.

* You could terminate the display of these messages—as well as halt program execution—by pressing .



8 Section 1: Getting Started

The following example shows how values of matrix elements are reassigned when a matrix originally declared to
be 3 X 3 is redimensioned into a 2 X 2 matrix. The values of the original matrix elements are integers that

indicate the order in which the elements are stored before the redimensioning.

Example:

Array A is originally dimensioned as
3 x 3.

Assigns values 1 through 9 to the nine
elements of matrix A.

Displays original 3 X 3 matrix.
Redimensions A down to a 2 X 2 matrix.
Displays redimensioned 2 X 2 matrix.
Redimensions A back uptoa 3 X 3 matrix.
Displays redimensioned 3 X 3 matrix.

L Subroutine that displays matrix A.

Nine elements of original 3 X 3 matrix.

Four elements of redimensioned 2 X 2
matrix. Values of elements have been
reassigned sequentially within new work-
ing size.

Nine elements of 3 X 3 matrix with
original values still assigned.

Note that redimensioning a matrix does nor isolate a submatrix. In other words, if you redimension a 3 X 3
matrix into a 2 X 2 matrix, the resulting matrix is not the 2 X 2 submatrix from the upper left corner of the

original matrix. (A submatrix can be isolated using a different Matrix ROM statement; refer to Copying From/Into
a Subarray, page 40.)



Section 1. Getting Started 9

and

i is not the only statement that redimensions an array. The M~ T
tatements allow you optionally to specify redimensioning subscripts. These statements assign certain values
to the array specified. If redimensioning subscripts are specified, the array is redimensioned before the assignment

is done.

Furthermore, redimensioning may also occur with all Matrix ROM statements that specify both a result array and an
operand array. In each case, the result array is redimensioned (if necessary) to accommodate the elements of the
operand array before the new values are assigned. The number of rows in the result array will then equal the number
of rows in the operand array, and the same is true for the number of columns. (This occurs in example 2 on page 42
and in the example on page 45.) If the size of the result array is greater than that of the operand array, the
result array is first redimensioned downward to the size of the operand array. Conversely, if the current size of
the result array is smaller than that of the operand array, the result array is first redimensioned upward to the size
of the operand array; but this requires that the size of the result array when originally dimensioned was at least as
large as the current size of the operand array.

v

Note: If an array has been redimensioned—either explicitly (that is, in a

statement) or implicitly (any other statement)—the array remains

redimensioned even when the program that originally dimensioned it is run again. The array is not

automatically dimensioned back to the original size declared in the program'’s

.

or statement. If a program is rerun, and it contains an array that is redimensioned (either

in the program or from the keyboard), a

i statement that specifies the original size should be
included in the program between the ! statement and the first

statement or function that specifies the array.

Furthermore, if redimensioning occurs in a program, values of all variables (simple and array) can be

traced only by executing = (or i) in the program, not from the keyboard.






Section 2

Assigning Values to Array Elements

Assigning Values From the Keyboard

T array [ - array] ...

When this statement is executed, the computer displays the name of the first element of the array—for example,
- F(f f Lo (f

can then enter the value by typing it in and pressing . You can also enter values for several consecutive

5 is in effect) or # ¢

! is in effect). You

clements, separated by commas; if you do, the total number of characters (including spaces) cannot exceed 95—

nearly three full lines.

All elements are assigned values in order from left to right on each row, from the first row to the last. After

you press , the computer displays the name of the next element to be assigned a value.

Values can be entered as numbers, as numeric variables, or as numeric expressions.

The ! f statement is programmable only; it cannot be executed from the keyboard.

Example:

Computer prompts for first element of R.
Input value into first element of R.

Input value into second element of R.

Input values into third element of R and
first four consecutive elements of S.
Computer prompts for next element to be
assigned a value.

Input values into next 13 consecutive
elements of S.

11




12 Section 2: Assigning Values to Array Elements

Assigning Values in a Program

Computer prompts for next element to be
assigned a value.

Input values into last three elements of S.
Computer prompts for first element of T.
Input values, as expressions, into elements
of T. Values are computed before assign-
ment using values of X and Y assigned in
statement 40.

tarray | - array] ...

This statement is used in conjunction with one or more

elements of the array are assigned values from the list of numbers in a

i statements. When |

is executed,

statement. Array elements are

assigned values in order from left to right on each row, from the first row to the last. Values are read from

itemsina .

The

Example:

statements as described in section 8 of the HP-83 and HP-85 owner’s manuals. Remember that the

statement that correspond to array elements must be numbers, not strings.

statement is programmable only; it cannot be executed from the keyboard.

N is declared as an integer matrix.

A$ and B are string variables, not arrays.
Years.

Numbers of U.S. drivers.

Title.

Reads data matrix.
Reads title.



Section 2:

Assigning the Values 1 and 0

Assigning Values to Array Elements 13

“redim subscripts E]

“.redim subscripts ?f]

assigns the value 1 to all elements of the result array.

assigns the value 0 to all elements of the result array. A matrix in which all elements are zero is

frequently called a zero marrix. Likewise, a vector of which all elements (components) are zero is frequently
called a zero vector.

Examples:

Example:

. B &1 assumed.
Assigns value 1 to all nine elements of A.
Assigns value 0 to all nine elements of B.

Array C originally dimensioned as 4 X 3
matrix.

Assigns value 0 to all 12 elements of C.
Displays C.

Redimensions C down to a 3 X 2 matrix,
then assigns value 1 to the six elements in
current working size. Values of remaining
six elements are not changed.

Displays C.
Redimensions C back upto a4 X 3 matrix.
Displays C.



14 Section 2: Assigning Values to Array Elements

Value 0 assigned to all 12 elements of
array C.

C redimensioned down to 3 X 2 matrix,
and value 1 assigned to six elements in
current working size.

C redimensioned back up to original size.
Value O still assigned to remaining six
elements.

Assigning the Value of a Numeric Expression

numeric expression

This statement assigns the value of the numeric expression to every element of the result array.

Examples:

Assigns value 30.48 to all elements of X.

Assigns value of variable M to all elements
of Y.

Assigns value of 277R® to all elements of
Z.

Creating an ldentity Matrix

" result matrix ==

“.redim subscripts Iis]

! assigns the value 1 to all diagonal elements of the result matrix and assigns the value O to all other

elements. (Diagonal elements are those for which the row subscript is equal to the column subscript.) A matrix

ki statement is frequently called an identity matrix or unit matrix.

created by the !

The array named must be a square matrix (after redimensioning, if necessary)—that is, it must have two

dimensions, and the number of rows must be the same as the number of columns.



Section 2: Assigning Values to Array Elements 15

i . &} assumed.
Defines I as 5 X 5 identity matrix.
Redimensions J from a 2 X 6 matrix into a
3 X 3 matrix, then defines that 3 X 3
matrix as an identity matrix. Values of
remaining three elements are not changed.







Section 3

Displaying and Printing Arrays

The Matrix ROM provides two kinds of statements for displaying and for printing arrays. The two kinds,
like the i B £ :
HP-83/85, differ in the degree of control you have over the format in the display or printout.

{ and - statements provided in the

1oor i

and

Fand ! " give you three convenient display/ print formats.

The terminator (semicolon, comma, or slash) following the array name is used to specify the spacing

between elements of the array.

Terminator Spacing Between Elements

Close; elements will be separated by two
spaces. A minus sign, if present, occupies one
of these two spaces.

Wide; elements will be placed in 21-column
fields. The number of fields per line depends on
the line length of the system printer.

One element per line.

If no terminator appears after the last array specified, the elements of that array will appear spaced as they

would if you had specified a comma after the array name.

i printer has been declared,

! outputs to the ! = printer. If no

output defaults to the CRT on the HP-83, and to the internal printer on the HP-85.

If you specify i/ before an array name, elements are displayed or printed on each line by rows, beginning
with row 1. Each row begins on a new line, and the elements in each row are listed in order from the first
column to the last. More than one line may be required to list the elements in each row; this depends on the
terminator following the array name, the number of elements in each row, the number of digits in the values

of the elements, and the printer line width.

If you specify i before an array name, elements are displayed or printe don each line by columns,
beginning with column 1. Each column begins on a new line; and the elements in each column are listed in
order from the first row to the last. Again, more than one line may be required to list the elements in each
column; this depends on the terminator following the array name, the number of elements in each column,

the number of digits in the values of the elements, and the printer line width.

17



18 Section 3: Displaying and Printing Arrays

Specifying neither ! nor L-iil before an array name has the same effect as specifying

If more than one array is specified, a blank line appears between the display or printout of each array.

Examples:

Displays array F by rows with wide
spacing.

Prints array G by rows with close spacing.
Prints array H by rows with wide spacing
and array I by rows with one element per
line.

Displays array J by rows with close spac-
ing and array K by columns with close
spacing.

Prints array L by rows with one element
per line and array M by columns with
wide spacing.

.. before the vector

Normally, vectors are displayed or printed with one element per line. If you specify i

name, however, elements of the vector are displayed or printed across a line.

Example:

format string[ E [

{: statement number [ ;

 format string[ ; [

]

= Statement number [ H




Section 3: Displaying and Printing Arrays 19

The first form of each statement includes a format string that specifies how array elements are displayed or

printed. The second form of each statement specifies the line number of an statement that includes
the format string. Section 10 of the HP-83 and HP-85 owner’s manuals describes the contents of format

strings and their results.

As with the

elements to be displayed or printed in order from top to bottom along each column, from the first column to the

and

statements, specifying ! before the array name causes
last. Otherwise, elements are displayed or printed in order from left to right along each row, from the first row
to the last.

Examples:

Prints matrix A (by rows) using format
string.
Prints title on one line, then vector B on

the next line (by columns) using
statement.

Prints matrix C (by rows) using I
statement.

Matrix A.

e N R A Vector B.

Matrix C.







Section 4

Array Operations

Array Transpose

result array = “operand arrav

This statement finds the transpose of the operand array. The result array will contain the same elements as ux
operand array, but the rows and columns will be interchanged.

Example:

Sets array B equal to transpose of array A.

An array can be replaced by its transpose.

o Array A.

Array B, equal to transpose of A. Notice
that B has been redimensioned from a
5 X 5 matrix down to a 3 X 2 matrix.

Array A, now equal to transpose of
original array. A has been redimensioned
£ from a 2 X 3 matrix into a 3 X 2 matrix.

21




22 Section 4: Array Operations

Scalar Operations

result array = scalar .. operand array

Scalar operation statements perform arithmetic operations between a scalar (a number, numeric variable, or
numeric expression) and each element of the operand array. The resulting values are assigned to the corresponding
elements of the result array.

Example:

Defines A as an identity matrix.
Multiplies all elements of A by 2.

Array A.

If you need to change the sign of all elements in a matrix, you can do so simply with a statement of the following

form:

[ result array = - operand array

For example, modify the program above by inserting the following statement:

Array A, with signs of elements changed.




Section 4: Array Operations 23

Arithmetic Operations

 result array = operand array 1 operand array 2

Arithmetic operation statements perform arithmetic operations (addition, subtraction, multiplication, division)
between corresponding elements of the two operand arrays. The resulting values are assigned to the corresponding

elements of the result array.

Multiplication of corresponding elements is denoted by a period ( .« ); the asterisk (#) is used to denote matrix
multiplication, which is a different kind of operation. (Matrix multiplication is described on page 25.)

The two operand arrays must have the same number of elements in each dimension.

Example: Firebird Stove Works employs three welders building wood
stoves. The table below shows for each welder the monthly efficiency
goal (in average units per day), the actual number of units produced,
and the number of days worked. Write a program that calculates how far

the welders exceeded or fell short of their goals.

Efficiency Goal Units Produced Days Worked
Welder
JAN FEB MAR JAN FEB MAR JAN FEB MAR
A 35 38 40 75 72 81 21 19 20
B 27 3.1 3.4 53 55 58 21 19 17
C 22 23 2.5 33 35 38 16 17 15

Solution: In the following program, the efficiency goals are entered in matrix G, the number of units in matrix U,
and the number of days in matrix D. The actual efficiency rates are calculated by dividing each element of U
by the corresponding element of D. Finally, these rates are compared to the goals by subtracting from each

element of the resulting matrix the corresponding element of G.



24 Section 4: Array Operations

Sets elements of matrix E equal to actual
efficiency rates.

Sets elements of matrix E equal to differ-
ence between actual efficiency rates and
efficiency goals.

Performance above (+) or below (—)
efficiency goal.

The results of two scalar multiplications can be added in one statement. This saves the storage space that would

otherwise be allocated to the results of each multiplication.

“result array = iscalar : % operand array 1 + <scalar : i operand array 2

Example:

Specifies matrix A.

Specifies matrix B.
Adds multiples of A and B.

Linear combination of A and B.




Section 4. Array Operations 25

Multiplying or dividing the results of two scalar muitiplications cannot be done in one statement. However,

subtracting the results of two scalar multiplications can be accomplished in one statement by changing the sign
of the second scalar.

Example: In the preceding example, change statement 60 to

Subtracts multiples of A and B.

Matrix Multiplication

[ result array = operand array 1 * operand array 2

This statement calculates the product of two arrays, such as the product A = BC. The value of each element of

the result array is determined according to the usual rules of matrix multiplication.

The number of columns in the first operand array must be the same as the number of rows in the second operand
array. The result array has the same number of rows as the first operand array and the same number of columns

as the second operand array.

Either (but not both) of the operand arrays can be vectors.

Example: The Whackit Racket Company is considering raising the
prices on each of its four models. Using the data in the following table,

calculate and print a matrix that shows the total income (in thousands
of dollars) in each of the three sales regions at the old and at the new

prices. (The price increase is not expected to affect the number of units
sold.)




26

Section 4: Array Operations

Monthly Sales Forecast (Thousands of Units)

Model
Sales Region
WR01 WR02 WR03 WRO04
East 25 23 17 12
Midwest 17 13 11 7
West 21 18 12 13

Price (Per Unit)

Model Old New
WRO1 $10 $15
WR02 $20 %27
WRO03 $35 $50
WR04 $60 $80

Solution: In each sales region, the total income (either at the old or at the new prices) can be determined by

multiplying the quantity by the price for each model, then adding the results. Applying this process to the data

in the forecast and price tables above, we multiply each entry in a row of the forecast table by the corresponding

entry in a column of the price table and then add the results. The sum could be entered into the same row and

column of another table, in which each row shows the total income in a sales region and each column shows the

total income at the old or at the new prices. Since all this is just what happens in matrix multiplication, these

calculations can be done compactly with the matrix multiplication C = AB, where:

Matrix A contains the sales forecasts (in thousands of units). The three rows correspond to the three sales
regions; the four columns correspond to the four models.

Matrix B contains the prices (per unit). The four rows correspond to the four models; the two columns

correspond to the two price lists (old and new).

Matrix C will contain the total income in each sales region at the old and at the new prices. The three rows

will correspond to the three sales regions; the two columns will correspond to the two price lists.

Sales forecast for East region.
Midwest region.

West region.

Cost matrix.



Section 4. Array Operations 27

Income in East region.
Midwest region.
West region.

You can multiply the transpose of an array by an array using just one statement (as well as two):

‘operand array 1+ ¥ operand array 2

operand array 1 “operand array 2

The two operand arrays can be the same array.

Example: Since the manufacturing capacity of the Whackit Racket Company is limited this quarter, it can
produce only a percentage of the rackets demanded. The table below shows the percentage that will be supplied
to each region in the next two months. Using the forecast data in the first table on page 26, calculate and print a

matrix showing how many of each racket model will be produced each month.

Production Quota (Percentage)

Sales Region June July
East 80 90
Midwest 75 85
West 85 95

Solution: The quantity of each racket model that will be produced (during either month) can be determined by
multiplying the quantity by the percentage for each model, then adding the results. As in the preceding example,
these calculations can be done compactly with a matrix multiplication of the data in the sales forecast table and
the data in the production quota table. To do so, however, requires that the multiplication use the transpose
either of the matrix containing the forecasts or of the matrix containing the quotas. In the following program, we

multiply the transpose of the matrix containing the forecasts by a matrix containing the quotas.



28 Section 4: Array Operations

Sales forecast for East region.
Midwest region.

West region.

Production quota matrix.

Converts percentages to decimal values.

Model WRO1.
Model WRO2.
Model WRO03.
Model WRO04.

Cross Product

1 result vector = “operand vector 1 . operand vector 2

The !

vectors. Mathematically, the cross product of two vectors is expressed as A = B X C.

“ statement calculates the cross product (or vector product ) of two 3-element (3-component)

Each of the arrays named in the i % statement must be vectors; that is, they must have only one

dimension. Arrays dimensioned like i * are not allowed.



Section 4: Array Operations 29

Example: A leaning tree is guyed to the corner of a house as shown in the illustration. What is the moment of
the force exerted by the guy cable about the base of the tree, if the tension in the wire is 960 1b?

(8]

Solution: The moment is given by the cross product

M=RXF
where R is the position vector of the guy point (on the tree) with respect to the base of the tree, and F is the
960-1b force exerted by the guy cable. In the following program, vectors R, F, and S are expressed in terms of
their components in the x~, y-, and z—directions. S is the vector from the guy point on the tree to the guy point

on the house.

The components of R, as can be seen in the illustration, are:
R,=5 R, =14 R,=2
The components and lengths of F and of S are proportional; that is,

F, F, F, |F|

S S S sl

Therefore, each component of F can be calculated by multiplying the corresponding component of S by the ratio
of the length of F to the length of S. This is done simultaneously for all three components of F in statement
60 below. L, the length of S, can be calculated as in statement 50 below (but it can be calculated more efficiently
using the Matrix ROM’s ¥

illustration, are:

function; refer to section 6). The components of S, as can be seen in the

Sx=-9-5=-14 Sy=10—14=-4 S;,=—4-2=-6



30 Section 4: Array Operations

Reads components of R and S from
statement.

Calculates length of S.
Calculates components of F.

Calculates cross product.
Prints components of moment M.

x—component of M (in 1b-ft).
y—component of M.
z—component of M.

Inverting a Matrix

“operand matrix

" result matrix =

This statement finds the inverse of the operand matrix. The inverse of the operand matrix is the matrix that,
when matrix-multiplied by the operand matrix, results in an identity matrix.
The operand matrix must be square—that is, the number of rows must be the same as the number of

columns.

Example: Find the inverse of the matrix shown below. Check that when the inverse is multiplied by the matrix

itself, the result is an identity matrix.

2 3
4 5

Elements of matrix A.

Sets matrix B equal to inverse of A.

Checks that product is identity matrix.




Section 4: Array Operations 31

Matrix A.

Inverse of A.

Product of A and inverse of A is an
identity matrix.

When the determinant of a matrix is zero, the matrix does not have an inverse. Therefore, if you attempt to find

the inverse of such a matrix using the / statement, the result will be meaningless. You can use the

function after

(determinant) function to check the determinant before inverting a matrix, or use the

inverting. (Refer to page 49.)

You can multiply the inverse of a matrix by an array using just one statement (as well as two):

.operand array 1 :

£ operand array 2

Since this performs both an inversion and a matrix multiplication in one statement, the result is calculated with

somewhat more accuracy than if it were calculated in two separate statements.

Example: The following program calculates the inverse of the same matrix as the preceding program, but the

multiplication to check for the identity matrix is done in only one statement.

= Matrix A.

Product of A and inverse of A, calculated
using just one statement.

Calculating the inverse of a matrix is typically done in the process of solving the matrix equation AX = B.

However, a solution still more accurate than that provided by
the

% can be obtained using

statement (described next).



32 Section 4: Array Operations

Solving the Equation AX = B

T result array = ©_ coefficient matrix . constant array

Given any square matrix A and any other array B, this statement can be used to solve the matrix equation

AX = B for the unknown array X.

Most often, the need for this arises when solving a system of » linear equations in n unknowns. The system

an Xy + a1z X + ...+ aip Xy — b1
ds Xy + Aoy Xo + ...+ dop Xy — bg

can be expressed in matrix notation as

AX = B,
where
ay dp An Xy b,
dgy doo don X9 bg
A= , X = . ,and B =
anl anZ ann 'Xl’l bn

The solution to this system of equations is the set of elements of array X. A is the coefficient matrix; B is the

constant array.

Example: Solve the following system of equations:

2x+y—2z=20
x—y+z=6

x+2y+z=3

Solution: Expressing this system of equations in matrix notation, AX = B, where

2 1 -1 X 0
1 -1 1 , X=| v ,andB=1] 6
1 2 1 z 3

i

A




Section 4. Array Operations 33

x -value of solution.
y -value.
z-value.

As we mentioned earlier (page 31), the solution to the matrix equation AX = B can also be obtained using the

Statement

. The solution obtained using the statement !
is somewhat more accurate; but to achieve this accuracy the Matrix ROM uses two extra blocks of memory,

each the size of the array X.

Although in typlcal applications the result array X and constant array B are each vectors or one-column matrices,
the ¥ :

. statement does not restrict these arrays to only one column. This allows you, for example, to
simultaneously solve two different systems of n equations in n unknowns, provided that the coefficients in both

systems of equations are identical.

Example: Your company’s Publications Manager wants to determine
the cost factors used by her two outside printers. She knows that each
printer estimates jobs based on the number of pages and the number of
photographs, plus a fixed setup charge. Given the three estimates from
each printer shown below, write a program that calculates their cost per

page, cost per photograph, and setup charge.

Job Number of Number of Total Cost
Pages Photographs Printer A Printer B
1 273 35 $5835.00 $7362.50
2 150 8 $3240.00 $4085.00
3 124 19 $2775.00 $3517.50




34 Section 4: Array Operations

Solution: We need to solve the following system of equations for two sets of cost estimates:

273 x; + 35x, + 1 x5 = cost,
150 x; + 8 x, + 1 x5 = costs,

124 x, + 19 x, + 1 x3 = costy

These equations can be represented in matrix notation as AX = B, where:

A is the coefficient matrix, having the number of pages in its first column, the number of photographs in
its second column, and the number of setup charges (one for each job) in its third column. Each row

contains this data for a different job.

B is the constant array. Each row contains cost estimates for one job from the two printers; each column

contains one printer’s cost estimates for the three jobs.

X is the result array, having the unknown cost factors x,, x,, and x; in its rows. x; is the cost per page, x; is
the cost per photograph, and x; is the setup charge. Since we are solving two systems of equations, the
result array must be a matrix; that is, it should originally be declared with two dimensions. (Its size, if not

the same size as that of the constant array B, will automatically be redimensioned down to the size of B

before the 2 statement is executed. ) Each column will contain the cost factors for one printer.

Specifications for job 1.
Specifications for job 2.
Specifications for job 3.
Estimates for job 1.
Estimates for job 2.
Estimates for job 3.

Cost per page.
Cost per photograph.
Setup charge.




Section 4: Array Operations 35

Summing Rows and Columns

L operand array

“operand array

i adds the values of the elements in each row of the operand array, then assigns the sum to the
corresponding element of the result array (a vector or one-column matrix). If the result array is a vector, it is first
redimensioned (if necessary) to have as many elements as the number of rows in the operand array. If the result
array is a matrix, it is first redimensioned (if necessary) to have one column and as many rows as in the operand

array.

Likewise, 1 adds the values of the elements in each column of the operand array, then assigns the
sum to the corresponding element of the result array (a vector or one-row matrix). If the result array is a vector,
it is first redimensioned (if necessary) to have as many elements as the number of columns in the operand array.
If the result array is a matrix, it is first redimensioned (if necessary) to have one row and as many columns as in

the operand array.

Example: Using the Whackit Racket Company’s monthly forecast data from page 26, write a program that
calculates and prints the total forecast for all racket models in each region and the total forecast for each racket

model in all regions.

Solution: Since each row contains the forecasts for all models in a region, the total forecast for all models in

each region can be found using the | statement. Likewise, since each column contains the forecasts

for one model in all regions, the total forecast for each model in all regions can be found using the

statement.

Sales forecast for East region.
Midwest region.
West region.

Assigns row sums to vector R.

Assigns column sums to matrix C.




36

Section 4: Array Operations

Matrix of monthly sales forecast (in
thousands of units).

Total sales in East region.
Total sales in Midwest region.
Total sales in West region.

Total sales of model WRO1.
Total sales of model WRO02.
Total sales of model WRO3.
Total sales of model WRO04.



Notes

37






Section 5

Copying Arrays and Subarrays

Copying an Array

result array = operand array

This statement assigns the value of each element of the operand array to the corresponding element of the result

array.

The following rules apply to copying arrays:

e If the result array is a matrix and the operand array is a matrix, the result matrix is first redimensioned (if

necessary) to have the same number of rows and columns as the operand matrix.

e If the result array is a matrix and the operand array is a vector, the result matrix is first redimensioned (if

necessary) to have one column and as many rows as the number of elements in the operand vector.

e If the result array is a vector, the operand array must be a vector, a one-column matrix, or a one-row
matrix. The result vector is first redimensioned (if necessary) to have the same number of elements as the

operand array.

Examples:

Sets matrix A equal to matrix B.

Redimensions A from a5 X 5 matrix down
to a 3 X 4 matrix (the size of B), then sets

A equal to C.
Bo= B Redimensions B from a 5 X 5 matrix down
to a4 X 1 matrix (the size of E), then sets
B equal to E.
T4n HMAT o= kB Redimensions D from a 9-element vector

down to a 4-element vector (the size of E),
then sets D equal to E.

W7 E o= F Redimensions E from a 4-element vector
down to a 3-element vector (the size of F),
then sets E equal to F.

1
iy
I
H

39




40 Section 5: Copying Arrays and Subarrays

Copying From/Into a Subarray

row number
“result array[ £ [ or ]
first row number : last row number

column number

or ] K ]

first column number : last column number

row number
= operand array[ £ [ or ]
first row number : last row number

column number

or ] K ]

first column number : last column number

With this statement you can copy values from and/or into a subarray (such as a partitioned matrix). Values are

assigned from the specified elements of the operand array to the specified elements of the result array.

Row and column numbers, if specified after the name of the operand array or the result array, should conform to
the rules listed below. After each rule is one or more references to statements illustrating the rule; these statements
are shown in the examples following.

If row and/or column numbers are specified, they must be enclosed in parentheses. (Examples 2 through 9.)

e If all elements are to be copied or assigned values, do not specify row numbers, column numbers, or
parentheses after the array name. (Examples 1, 2, 6, 7, 9.) The array elements will be copied or assigned
values in order from left to right along each row from the first row to the last.

e If no row or column numbers are specified after the result array, the result array is redimensioned (if
necessary) before the values are assigned. (Example 2.) If row or column numbers are specified after the

result array, values are assigned to the specified elements, but no redimensioning is done.
e If the array is a vector, specify only the row number(s). (Example 3.)

e If the array is a matrix, specify the column number(s) after the row number(s), separated by a comma.
(Examples 2, 3,4, 5,8, 9.)

o If only one row is to be copied or assigned values, specify that one row number. (Examples 3, 4, 6.)

e If more than one row is to be copied or assigned values, specify the first row number and the last row

number, separated by a colon. (Examples 2, 5, 8, 9.)

e Ifonly one column is to be copied or assigned values, specify that one column number. (Examples 3, 5, 7.)



Section 5: Copying Arrays and Subarrays 41

e If more than one column is to be copied or assigned values, specify the first column number and the last

column number, separated by a colon. (Examples 2, 4, 8, 9.)

e If an entire row is to be copied or assigned values, you may omit the column numbers, but specify a comma

after the row number(s). (Example 6.)

e Ifan entire column is to be copied or assigned values, you may omit the row numbers, but specify a comma

before the column number(s). (Example 7.)

The following examples show, for each statement, the values in the operand array and the values in the result

array. Values in each array that are nor affected by the statement are shown in color. (Assume that

i is in effect and all values in the 5 X 5 array B are set to zero before each statement is executed.)



Section 5: Copying Arrays and Subarrays

42

0 00 0O [GS ¥S €5 25 LG ]
0 0 0 0 O Sy v¥ €V ¢v 1P
IS0 0 0 O SE v€ €€ ¢t |¢E ‘g Aelle JO G UWIN|OD Ul SMOJ PJIYL pue
Y0 0 0 0 5z vz €2 22 12 pU023S By} OUl 'V ABLIR JO | UWN|JOD Ul SMOJ
00 0 0 0 SLovkEr gl bl Ui} PUB YuNO} 8Y) WO} s8N[eA 8y} s81do) G
g - v
[0 0 0 0 O [cs 5 €5 25 16 ]
0 0 0 0 O SY vv € ¢v v q Aedle
0 0 ¥L €Lt GE vE €€ ¢E |¢ JO £ MOJ Ul SluBWald pAiy) ybnoayy 1say
00 0 0 0 6z vz €2 72 |2 8yl OJUI V AeWB JO | MOJ Ul SJUBWSI8 YUNo)
ybnoJyl puooas ay} wolj senjea sy saido) b
,Iooooo Imr._lm—NF_LL
g v
[0 0 0 0 0 g
0 0 0 0 O 14
0 00 €0 € 4 Aeire
000 0 0 z JO 2 UWN|OD Ul MOJ PIIY} &Y} Ol (I J0}0DA
0 000 0 X JO JUBWB[® PJIY} 8Y) WOl 8njeA ay) saidon w €
g a
— —
8§ ¥S €5 ¢S IS g Aelie pauoisuswIpal sy} ojul v Aele
Sy vv €V 2¥ v 40 £ ybnouayp | sSuWNjoo Ul SMod paiyl ybnouys
€€ 2€ 1€ | S€ € €€ 2€ IE 181} Y} WOy san[eA 8y} $81dod usy} ! (Xuew
0z 22 12 5z vz €2 22 12 -Qns puelado ay) JO 8ZIS du}) XLBW € X €
el zL Ll Sl bl el 2L bl B 0) UMOP XUleW G X G & Wol) g suoisuswipay u_“_ K4
g - v
GG ¥S €6 S 1S | 65 vS €5 25 1S
St vv €V ¢v b Sy v € cv b
GE vE€ €€ 2¢ 1€ GE€ PE €€ ¢ 1€
Sz vz €2 22 12 G2 vz 2 22 |2 ‘g Aele jo Juswale Buipuodsaliod ay) ol
SL vl EL 2L 1L SL bl el 21 L1 Vv Aeue jo Juswae yoes woJyy enea sy saidoy | owm g1
a - v
Aerly Aely RqunN
Jnsey puElado JuaWIWOY juswalels ejdwexg




43

Section 5: Copying Arrays and Subarrays

GS PG €5 ¢G IS
Sy vy €V ey ¥
GE P& €€ ¢2¢ |E
S¢ v¢ €¢ G2 P2 €2 ¢¢ ¢ ') Aesie ojul v Aelte jo G ybnoayl € suwnjod
SlL vI €1 SL L €L ZL L) Ul SMOJ pUODSS PUB IS11} BY} WOy san[eA sy} saido)
o) v
0 0 0 0O GG ¥S €5 25 1§
0 0 0 0 0 Sy vy €V 2v P
0 G2 t¢ €c ¢c GE vE €C cE IE ‘g Aeule JO p yBnoIyY) | SUWINJOD Ul SMOJ PlIY} pue
0 St ¥LELct 6c be €¢ 22 |¢ pu029s 8y} OJuI Y ABLIE JO G YyBnoJy} g suwnjoo ul
0 0 0 0 O SL vE €L 2t LI SMOJ PuUODSS pUB IS1l} BY} W0y san(ea 8y) s81do
g v
cs GG ¥S €5 25 IS
ey St vy v Sy b
A GE vE €t ¢ |IE
23 Ge ve £¢ ¢ ¢ " 10198A 8Y) Ol
2l SL vL €L 2k L) Vv Aelle Jo UWN|0O puooas aljua ay; saidon o
a v
0O 0 0 0 O S
0 0 0 0 O ¥
S v € ¢ | €
0 0 0 0 O c dq Aelse
0 0 0 0 O L JO MOJ PAIY} 84ijua ay) ojul [ 103084 a8y seido) a
g a




44 Section 5: Copying Arrays and Subarrays

The following additional rules apply to copying subarrays:

e Unless either the operand array or the result array is a vector, the number of rows specified after the result
array must be the same as the number of rows to be copied from the operand array. The same is true for the

number of columns in each array.

o Unless the operand array is a vector, a column from the operand array cannot be copied, using just one
statement, into a row in the result array. This copy can, however, be done using two statements, as shown

in the next example.

o Unless the result array is a vector, a row from the operand array cannot be copied, using just one statement,

into a column of the result array. Again, this copy can be done using two statements.

In the following example, row 1 of array A is copied into column 3 of array B, then column 3 of array A is

copied into row 2 of array B.

Reads values into array A.

Sets all elements of B equal to 0.
Copies row 1 of matrix A into vector C.
Copies vector C into column 3 of matrix B.

Sets all elements of B again equal to 0.
Copies column 3 of matrix A into vector C.
Copies vector C into row 2 of matrix B.

Matrix A.

Matrix B, with column 3 containing values
from row 1 of matrix A.

Matrix B, with row 2 containing values
from column 3 of matrix A.




Section 5: Copying Arrays and Subarrays 45

Example: The program for the example on page 35 prints a matrix of monthly sales forecasts followed by arrays
showing the row sums (the total sales in each region) and the column sums (the total sales of each model).
Modify that program so that it prints just one matrix containing (in addition to the monthly sales forecasts)
the row sums of the original matrix in the fifth column, and the column sums of the original matrix in the

fourth row.

Copies 3 X 4 matrix A into first through
third rows in columns 1 through 4 of
matrix D.

Assigns row sums of A to 3-element vector
R.

Copies R into first through third rows in
column 5 of D.

Assigns column sums of A to 1 X 4 matrix
C.

Copies C into fourth row in columns 1
through 4 of D.

Redimensions R down to one element (the
number of rows in C), then assigns row
sum of C (i.e., row sum of column sums
of A) to R.

Copies R into fourth row in column 5 of D.

East region.
Midwest region.
West region.

Column sums: total sales of each model.

Row sums: total sales in each region.



46 Section 5: Copying Arrays and Subarrays

The row and/or column number(s) can be specified not only as constants (like those in the preceding examples),
but also as variables or expressions. If you do this, this first row or column number specified may—depending

on the value of the variable or expression—be greater than the second number.

An important special case occurs when the first row number specified is just one greater than the second row
number, or when the first column number specified is just one greater than the second column number.* In such

cases, no elements will be copied or assigned values. Furthermore, if no row or column numbers are specified

after the result array—and i is in effect—the result array will be redimensioned to have
zero rows or zero columns.** The value of these features will become apparent after we discuss these arrays a

bit more.

Examples:

i is in effect.
Arrays A, B, and C are 4 X 4 matrices.

When K = 1, redimensions B down to a
0 X 1 matrix.
When K = 1, redimensions C down to a
4 X 0 matrix.

X s

Arrays with zero rows or zero columns can be considered to be ‘‘empty,’” since they contain no elements: the

current working size of the array is 0. Empty arrays should not be confused with arrays that have not been

initialized and therefore result in i error messages when displayed or printed. If you should display

or print an empty array, there will be no output since there are no elements in the array.

Empty arrays can be specified in subsequent statements and functions with meaningful results; the usual rules of
redimensioning (refer to page 9) and row/column matching (in statements with two operand arrays) apply. The

following situations are of particular interest:

e Statements specifying only one operand array will, if that array is empty, redimension the result array to be

empty. For example, if the operand array has been redimensioned to be 0 X 3, the statement

would redimension the result array to be 0 X 3, while the statement would

redimension the result array to be 3 X 0.

e The matrix multiplication statement, if both operand arrays are empty, can yield a result array that is not
empty. In such cases, furthermore, the statement assigns the value O to all elements of the result array.
For example, if matrix B has been redimensioned to be 3 X 0, and matrix C has been redimensioned to be

0 x 1, the statement ! redimensions matrix A to be (3 X 0) X (0 X 1) = 3 X 1 (in

accordance with the usual rules of matrix multiplication). The result array is nor empty, since neither the

number of rows nor the number of columns is zero; and the value 0 has been assigned to all three elements.

*If the first row number specified is more than one greater than the second row number, or if the first column number specified is more than
one greater than the second column number, elements will be copied or assigned values in reverse order. The row or column numbers specified
are one above and one below the numbers of the rows or columns that will be copied or assigned values. For example, the statement

‘—with 1 in effect—copies the values from the fifth through third

TOWS in lhe second through ﬁfth columns of array A into the second through fourth rows in the fourth through flrst Lolumns f array B. With

K in effect, the same thing is accomplished by the statement SRS L

**]f 1

£ is in effect, the result array is not redimensioned, and a error message is generated.



Section 5: Copying Arrays and Subarrays 47

The fact that no elements are copied or assigned values when the first row or column number is one greater
than the second, plus the characteristics described above for the resulting empty arrays, simplify HP-83/85

programs that do certain matrix manipulations.

Example: The program segment listed below forms an orthogonal matrix from a given 3 X 3 matrix.* The

procedure, an implementation of the Gram-Schmidt orthogonalization process, is frequently used in solutions of

“‘least squares’’ problems. Each pass through the T loop replaces one column of the matrix with a
vector that is orthogonal with respect to each of the previous columns and also normalized. Note that during the
first pass through the loop, there are no previous columns to process with the current (that is, the first) column.
The features described above eliminate the necessity for including additional program statements to handle this

first pass, in which statement 70 otherwise would illegally specify a nonexistent column number.

Copies K th column of A into X. When
K = 1, copies column 1 of A into X.
Copies columns 1 throughK — 1 of A into
P. When K = 1, no elements are copied
and P is redimensioned to be 3 X 0.
Multiplies X and transpose of P. When
K=1,7 Fris0OX 3and Xis3X 1,
s0 V is redimensioned to be (0 X 3) X
Bx 1)=0x1.

Multiplies P and V. When K = 1, P is
3% 0and Vis 0 X 1, so T is redimen-
sionedtobe (3 X 0) X (0 X 1)=3X 1.
Also, value 0 is assigned to all elements of
T.

Subtracts T from X. WhenK = 1, X is not
changed because T is a zero matrix.

Calculates norm of X.
Normalizes X.

Replaces column K of A by X. When
K = 1, net effect of loop is to normalize
column 1 of A.

*You need not be concerned if you are not familiar with the concepts or terminology in this example; this familiarity is not required to understand
the features illustrated in the program.






Section 6

Array Functions

The Matrix ROM provides 21 functions relating to arrays. Each of these array functions can be used just

like any other function on your HP-83/85. The following table lists these functions and their results.

Function

“array ¢

array

Larray

Larray ¢

“matrix :

“vector 1. vector 2

Larray

“array : expression :

array

Result
Sum of absolute values of elements in array.®

Value of largest element in array.®

Column number of largest element in array most recently specified in

function.! 26

Row number of largest element in array most recently specified in

function.' ¢

Value of smallest element in array.®

Column number of smallest element in array most recently named in i
function.' 2 ®

Row number of smallest element in array most recently specified in

function.!®

Largest sum of absolute values of elements in each column of array (column

norm).%

Column number with largest sum of absolute values in array most recently
236

specified in function.

Determinant of matrix.?

Determinant of last matrix inverted in ! statement, or specified

as first argument in 7 statement.”

Sum of products of corresponding elements of vectors (dot product or scalar

product .5 ®

Square root of sum of squares of elements in array (Frobenius norm or

Euclidean norm).®

Lower bound of array subscript (1 or 2) specified by rounded integer value of

expression. . is equal to ! in effect.

Largest absolute value of any element in array.®

Column number of element with largest absolute value in array most recently
126

specified in i function.

Row number of element with largest absolute value in array most recently

specified in function.' ©

49



50 Section 6. Array Fur

Carray Largest sum of absolute values of elements in each row of array (row norm).%

Row number with largest sum of absolute values in array most recently

function.*

specified in

Carray Sum of elements in array.®

iarray . expression : Upper bound of array subscript (1 or 2) specified by rounded integer value of

expression. 1

Examples:

! If more than one element has the largest or smallest value or absolute value, the element in the lowest-numbered row is chosen, and this number
is returned as the value of the function i/ , Fi PR, or MHE ‘{114, If both such elements are in the same row, the element in
the lowest-numbered column is chosen, and this number is returned as the value of the function :

2If the array specified in the most recent , or function is a vector, evaluating this function results in a

f error message, and the number O is returned as the value of the function.

3 If more than column has the largest sum of absolute values, the lowest-numbered column is chosen, and this number is returned as the

value of

*1f more than one row has the largest sum of absolute values, the lowest-numbered row is chosen, and this number is returned as the value
of

> The two vectors specified must have the same number of elements. One-column matrices are not allowed.

®If the array specified is empty (refer to page 46), the number O is returned as the value of the function.

"1f the array specified is empty (refer to page 46), the number 1 is returned as the value of the function.

%If the array specified is empty (refer to page 46), the number —9.99999999999E499 is returned as the value of the function.
91If the array specified is empty (refer to page 46), the number 9.99999999999E499 is returned as the value of the function.

19 If the array specified has been redimensioned to have zero rows (refer to page 46) and the value of the second subscript is 1, the number 0 is
returned as the value of the function. If the array specified has been redimensioned to have zero columns and the value of the second subscript

is 2, the number O is returned as the value of the function.



Section 6: Array Functions 51

Array A.

Vector V1.

Vector V2,

: the sum of the absolute values of the elements in A.

41 the value of the largest element in A.

: the lowest-numbered column containing

the lowest-numbered row containing |

: the value of the smallest element in A.

: the lowest-numbered column containing !

the lowest-numbered row containing

. the largest sum of the absolute values of the elements in each column

of A.

. the lowest-numbered column with the largest sum of absolute values.

+: Determinant of A.

statement.

: Determinant of matrix (A) inverted in preceding

: the sum of the products of corresponding elements of V1 and V2.

. the square root of the sum of the squares of the elements in A.




52

Section 6: Array Functions

- . 1 3 the lower bound of the first subscript of A.

21 the largest absolute value of any element in A.

: the lowest-numbered column containing the element with largest
absolute value.

: the lowest-numbered row containing the element with largest absolute

value.

#: the largest sum of the absolute values of the elements ineach row of A.

. the lowest-numbered row with the largest sum of absolute values.

31 the sum of the elements in A.

= 3: the upper bound of the second subscript of A.



Notes

53






Appendix A
Maintenance, Service, and Warranty

Maintenance

The Matrix ROM does not require maintenance. However, there are several areas of caution that you should be

aware of. They are:

WARNING: Do not place fingers, tools, or other foreign objects into the plug-in ports. Such actions may
result in minor electrical shock hazard and interference with some pacemaker devices. Damage to plug-in
port contacts and the computer’s internal circuitry may also result.

CAUTION: Always switch off the computer and any peripherals involved when inserting or removing
modules. Use only plug-in modules designed by Hewlett-Packard specifically for the HP-83/85. Failure

to do so could damage the module, the computer, or the peripherals.

CAUTION: If a module or ROM drawer jams when inserted into a port, it may be upside down or designed
for another port. Attempting to force it may damage the computer or the module. Remove the module
carefully and reinsert it.

CAUTION: Do not touch the spring-finger connectors in the ROM drawer with your fingers or other foreign
objects. Static discharge could damage electrical components.

CAUTION: Handle the plug-in ROMs very carefully while they are out of the ROM drawer. Do not insert any
objects in the contact holes on the ROM. Always keep the protective cap in place over the ROM contacts
while the ROM is not plugged into the ROM drawer. Failure to observe these cautions may result in damage
to the ROM or ROM drawer.

For instructions on how to insert and remove the ROM and ROM drawer, please refer to the instructions
accompanying the ROM drawer or to appendix B of the HP-83 or HP-85 owner’s manual.

Service

If at any time you suspect that the Matrix ROM or the ROM drawer may be malfunctioning, do the

following:

1. Turn the computer and all peripherals off. Disconnect all peripherals and remove the ROM drawer
from the computer port Turn the HP-83/85 back on. If the computer does not respond or displays

', the HP-83/85 requires service.

55



56

Appendix A: Maintenance. Service. and Warranty

Turn the HP-83/85 off. Install the ROM drawer, with the Matrix ROM installed, into any port. Turn

the computer on again.

BT 1 1s displayed, indicating that the ROM is not operating
properly, turn the HP- 83/85 off and try the ROM in another ROM drawer slot. This will help you
determine if particular slots in the ROM drawer are malfunctioning, or if the ROM itself is

malfunctioning.

If the cursor does not appear, the system is not operating properly. To help determine what is
causing the improper operation, repeat step 2 with the ROM drawer installed in a different port,
both with the Matrix ROM installed in the ROM drawer and with the Matrix ROM removed
from the ROM drawer.

Refer to How to Obtain Repair Service for information on how to obtain repair service for the

malfunctioning device.

Warranty Information

The complete warranty statement is included in the information packet shipped with your ROM.

Additional copies may be obtained from any authorized HP-83/85 dealer, or the HP sales and service office

where you purchased your system.

If you have questions concerning the warranty, and you are unable to contact the authorized HP-83/85

dealer or the HP sales and service office where you purchased your coniputer, please contact:

In the U.S.:

Hewlett-Packard

Corvallis Division Customer Support
1000 N.E. Circld Blvd.

Corvallis, OR 97330

Tel. (503) 758-1010

Toll Free Number: (800) 547-3400 (except

in Oregon, Hawaii and Alaska).

In Europe:

Hewlett-Packard S.A.
7, rue du Bois-du-lan
P. O. Box

CH-1217 Meyrin 2
Geneva

Switzerland



Appendix A: Maintenance. Service. and Warranty 57

Other Countries:
Hewlett-Packard Intercontinental
3495 Deer Creek Rd.
Palo Alto, California 94304
U.S.A.
Tel. (415) 857-1501

How to Obtain Repair Service

Not all Hewlett-Packard facilities offer service for the HP-83/85 and its peripherals. For information on
service in your area, contact your nearest authorized HP dealer or the nearest Hewlett-Packard sales and

service office.

If your system malfunctions and repair is required, you can help assure efficient service by providing the

following items with your unit(s):
1. A description of the configuration of the HP-83/85, exactly as it was at the time of malfunction,
including any plug-in modules, tape cartridges, or other accessories.
2. A brief description of the malfunction symptoms for service personnel.
3. Printouts or any other materials that illustrate the problem area.
4. A copy of the sales slip or other proof of purchase to establish the warranty coverage period.

Computer and peripheral design and circuitry are proprietary to Hewlett-Packard, and service manuals are

not available to customers.

Serial Number

Each HP-83/85 and peripheral carries an individual serial number. It is recommended that you keep a
separate record of this number. Should your unit be stolen or lost, the serial number is often necessary for
tracing and recovery, as well as for any insurance claims. Hewlett-Packard does not maintain records of

individual owner’s names and unit serial numbers.

General Shipping Instructions

Should you ever need to ship any portion of your HP-83/85 system, be sure that it is packed in a protective
package (use the original shipping case), to avoid in-transit damage. Hewlett-Packard suggests that the

customer always insure shipments.

If you happen to be outside of the country where you bought your computer or peripheral, contact the
nearest authorized HP-83/85 dealer or the local Hewlett-Packard office. All customs and duties are your

responsibility.







Syntax Summary

Syntax Guidelines

Items shown in dot matrix type must be entered exactly as shown (in either uppercase or
lowercase letters). If several items are shown stacked, one (but only one) of the items must

be specified.

[ ] Items shown between brackets are optional. If several items are stacked between brackets,

you can specify any one or none of the items.

Three dots (ellipsis) following a set of brackets indicate that the items between the brackets
may be repeated.

italics Items shown in italic type are numeric expressions or names of arrays that should be specified

in the statement or function.

Larray Page 49
“array Page 49
Page 49

Page 49

Carray Page 49
Page 49

Page 49

‘array Page 49
Page 49

L.matrix Page 49
Page 49

tvector 1 . vector 2 Page 49

Inside Back Cover

Carray Page 49

array . expression Page 49

59



60 Syntax Summary

T result array [ d

. numeric expression

first row number :

= operand array [ [

first row number :

1 result array = operand array

row number
or

]

last row number

column number

or
first column number :
row number
or ]

first column number :

last row number

column number

or

1 result array

1 result array

1 result vector

result array

T result array

1 result array

1 result matrix =

result array =

1 result array =

T result matrix ==

T result matrix ==

T result array =

.scalar

i.scalar

[

0

i, operand array

i #operand array 1 + iscalar: ¥ operand array 2

c.operand array :

[ redim subscripts |

“operand vector 1 : operand vector 2

“redim subscripts : |

Loperand matrix
noperand array 1

operand array :

¥ operand array 2

“coefficient matrix - constant array

“redim subscripts |

“operand array

“operand array 1 :

¥ operand array 2

last column number

last column number

Page 14

Page 39

Page 40

Page 22

Page 23

Page 25

Page 22

Page 24
Page 13
Page 28
Page 35
Page 14
Page 30
Page 31
Page 35
Page 32

Page 13

Page 21

Page 27



Syntax Summary 61

result array = operand array 1 Page 27
] array[ Page 17
format string
.......... or Page 18
statement number
LT array [ array] Page 11
] array [ [ i | array] ... [ .;'f ] Page 17
format string
: or Page 18
statement number
Liarray [ array] Page 12
array Page 49
Page 49
Page 49
1 array “redim subscripts [ . array +redim subscripts * ] Page 7
Carray Page 50
Page 50
array Page 50

“array : expression Page 50



62

Notes



Notes

63



64

Notes



Error Messages

A complete list of all HP-83/85 errors appear in appendix E of the HP-83 and HP-85 owner’s manuals. In

addition to those, there are seven error messages that may be generated by the Matrix ROM.

Error Message Error Condition

Incorrect number of dimensions.
Vector specified does not have three elements.
Incorrect number of elements.

Matrix ROM requires service.

e Total number of elements specified when redimensioning exceeds
the number originally dimensioned.

e Attempt to create empty array with i
effect. (Refer to page 46.)

e Statement specifies result array created with
in effect and empty operand array created with !
=1 in effect.

Array specified is not square. (The number of rows is not the same as
the number of columns.)

Array specified is not a vector.

The Matrix ROM provides a special function, i

¥ that returns a number designating the last plug-in
ROM to generate an error message. This is useful when you have more than one ROM plugged in, since
certain ROMs generate the same error number or error message. The number designating the Matrix ROM
is 176. If the error originated in the HP-83/85 itself (rather than in a plug-in ROM), or if no error has

i returns the value 0.

occurred




(ﬁﬁ HEWLETT

PACKARD

1000 N.E. Circle Blvd., Corvallis, OR 97330

00085-90144 Rev.B 12/80 Printed in |




