HP 9800 Computer Systems

Mass Storage ROM

For the HP 9835/HP 9845

(ﬁﬁ HEWLETT

PACKARD

HEWLETT
(ﬁlﬂl PACKARD
Warranty Statement

Hewlett-Packard products are warranted against defects in
materials and workmanship. For Hewlett-Packard Desktop
Computer Division products sold in the U.S.A. and Canada,
this warranty applies for ninety (90) days from date of
delivery.” Hewlett-Packard will, at its option, repair or replace
equipment which proves to be defective during the warranty
period. This warranty includes labor, parts, and surface
travel costs, if any. Equipment returned to Hewlett-Packard
for repair must be shipped freight prepaid. Repairs
necessitated by misuse of the equipment, or by hardware,
software, or interfacing not provided by Hewlett-Packard are
not covered by this warranty.

HP warrants that its software and firmware designated by HP
for use with a CPU will execute its programming instructions
when properly installed on that CPU. HP does not warrant
that the operation of the CPU, software, or firmware will be
uninterrupted or error free.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE. HEWLETT-PACKARD SHALL
NOT BE LIABLE FOR CONSEQUENTIAL DAMAGES.

* For other countries, contact your local Sales and Service
Office to determine warranty terms.

\\

Mass Storage ROM

Manual Part No. 09845-93070

© Copyright Hewlett-Packard Company, 1981
This document reters to proprietary computer software which is protected by
copyright. All rights are reserved. Copying or other reproduction of this program

except for archival purposes is prohibited without the prior written consent of
Hewlett-Packard Company.

Hewlett-Packard Desktop Computer Division
3404 East Harmony Road, Fort Collins, Colorado 80525

a\

ii

Printing History
This manual is for use with the HP 9835A/B or the HP 9845B/C. It is a slightly revised version of
the Mass Storage ROM manual, part number 09845-92070.

The changes which were incorporated into this latest edition are summarized in the System 45
Manual Revision Package (P/N 09845-93099). This package outlines the changes and additions
that have been made to HP 9845 manuals.

New editions of this manual will incorporate all material updated since the previous edition.
Update packages may be issued between editions and contain replacement and additional pages
to be merged into the manual by the user. Each updated page will be indicated by a revision date
at the bottom of the page. A vertical bar in the margin indicates the change on each page. Note

that pages which are rearranged due to changes on a previous page are not considered revised.

The manual printing date and part number indicate its current edition. The printing date changes
when a new edition is printed. (Minor corrections and updates which are incorporated at reprint
do not cause the date to change.) The manual part number changes when extensive technical

changes are incorporated.

April 1981...First Edition; Update Pages: ii, 1, 5, 6, 7, 11, 12, 13, 14, 15, 17, 19, 25, 26, 27,
28, 30, 41, 42, 50, 51, 70, 72, 73, 74, 77, 78, 82, 84,
85, 89, 91, 95, 96

December 1981...Second Edition; Update Pages: 5, 7, 12, 73, 84, 95, 95.1, 95.2, 96 through
116.

March 1982...Updated Pages: 5, 7, 73 and 95.2
July 1982... Third Edition: includes March 1982 Update.

January 1983...Fourth Edition

09845-93070, rev: 1/83

Table of Contents

Chapter 1: General Information

OVeIVIEW o oo e 1
Uses for Mass Storage 2
Buzzwords 4

Fundamental Syntax 5
Mass Storage Unit Specifier 5
MASS STORAGE IS Statement 8
File Names 8
File Specifier 10

Chapter 2: Getting Started

Initial Steps o 12
Mass Storage ROM 12
Initialization 12
Interleaving 13
Flexible Disk Master-Slave Systermn i 16
Hard Disk Systems 16
Data Compatibility with Other Systems 17

Storage Operations 19
Types and Methods of Storage 19
Records ... 19
Files . o 21
File Directory o 22
Cataloging to a String 25
Types of Files o 27
Types of Access ... oo 29

Serial ACCESS ...t 29

Random Access 32
Creating Files 34
Record 1/ 0 .. 36
Writing Records 39
Print Verification 40
Reading Records 42
Using Serial and Random Access Together 45
Rapid Transfer of Arrays 45
Previewing a Data Item 48
User-Controlled End-of-File 51

Chapter 3: Storage Management

Fundamentals 54
Selecting Record Size 54
Overflowing Files 55
Copying Files 56
Purging Files 57

Special Operations 59
Protectinga File 59
Renaming Files 60

Execution from the Keyboard 60

iv

Chapter 4: Data Transfers

Bufferingo 62
Device Buffering 62
Overriding the Device Buffer 64
Device Buffer Memory Requirements i, 65
RemovingtheMedia 65
Additional Buffering e 67
Conflict Between CHECK READ and BUFFER 68
Using Arrays as Buffers. 68

Advanced Techniques 70
Passing Data Between Programs i 70
Backup Files 72
Overlapped [/ O 74

Chapter 5: Non-Data Files

Normal Usages o 78
Storing Programs 78
Storing Key Definitions. 83

Special SHUAONSo 84
Loading Binary Programs 84
Memory Snapshots 84
Effect of CHECK READ e 85

Chapter 6: Errors and Error Processing

Hardware Exrors 88
Hardware-Related Exrors 88
What To Do About Hardware Errors. i 89
Anticipating Hardware Errors 90

Software Errors 91
Software-Related Errors 91
Anticipating Software Errors 91

Appendix A: Internal Tape Cartridge 93

Rewinding the Tape 93

File Directory oo 93

Tape Structure. e 94

| TIMINGS. . . . 94.1
Appendix B: Disk Drives 95

Interfacing e 95

Initializing e 96

TIMINGS ..o 96

| Disc Drive Operating Characteristics. i 117

09845-93070, rev: 1/83

Chapter

General Information

Note
Before attempting to use high-speed disks (HP 7905M,
7906M/H, 7910H, 7920M/H, or HP 7925M/H) with your
System 35 Desktop Computer, please contact your HP Cus-
tomer Engineer to determine whether your system has the up-

dated hardware that is necessary to support these disks.

Overview

This manual is intended for use by HP Series 9800 Desktop Computer users who are installing
or using mass storage devices with their desktop computers. Discussion in this manual focuses
upon effective use of the mass storage system, relying upon the Unified Mass Storage Concept
employed by your computer.

The objectives for the manual are —

e To provide all necessary information to allow you to utilize compatible mass storage

devices with your Series 9800 Desktop Computer.
e To outline effective techniques involving the Unified Mass Storage Concept.

¢ To isolate potential trouble areas involving mass storage devices and commands, and to

provide approaches for dealing with the problems arising from those areas.

To meet these objectives, this manual has been organized around an ‘‘objectives-oriented”
approach, as opposed to a strict syntactical or semantical treatment. Consequently, you may

¢

find this difficult to use as a ‘“‘quick reference’” for syntax and meaning for many of the mass
storage commands. It is recommended that quick reference be made primarily to the System
35 Operating and Programming Manual, or the System 45 BASIC Programming Manual and

the Quick Reference provided with your computer.

It is assumed throughout the treatment that you are familiar with the basic operation and
language used with Series 9800 Desktop Computers. It is not necessary, however, that you be
familiar with any aspect of mass storage operation or programming.

rev:4/81

MS-2 General Information

The Unified Mass Storage Concept is an approach which enables you, as a programmer, to rely
upon the device-independence of mass storage statements used in your programs. It is de-
signed so that writing a record to a disk, for example, is in all possible respects the same as
writing a record to a tape. The concept should enable you to be able to switch your application

from one type of device to another, with a minimum of disruption to your program’s logic.

Of course, there are still differences between devices which have an impact upon your pro-
gramming. These are pointed out to you. Where there are differences between whole classes of

devices — such as between tapes, flexible disks, and hard disks — they are also noted.

Particular operating, installation, and maintenance information for HP mass storage peripher-
als can be found in the operating or installation manual for that device. Even though you are
familiar with the material in the body of this text, if you have recently acquired a mass storage

peripheral, it is advisable to consult Appendix B, and the device’s operating manual.

Uses for Mass Storage

Mass storage is primarily a means of storing information. Most storage activities and operations
center upon this function. Working with mass storage is normally required in applications which
assume the retention of information in machine-readable form so that it might be used at a later
date, or where there is need for a repository of information which exceeds the internal memory

capabilities of your computer, or both.

Mass storage devices and media were developed for both of these reasons. Most computers,
Series 9800 included, do not have the capability of retaining information in their memories
once the power to the unit has been shut off. Since most people don’t leave the machine on
constantly, but still have information they would like to have available from turn-on to turn-on,
a means of saving that information becomes desirable. Mass storage is such a method of saving
information — be it program, data, or even the entire machine state — so that it can be retrieved

later and used by the machine again.

General Information MS-3

This capability also applies to those who might be interrupted by another user of the machine.
Rather than having to make a person wait until you are finished, and instead of having to
reconstruct what you were doing when you get ““bumped’’ by someone with a higher priority,
mass storage can be employed to save information and permit you to return later after they are
done. Still another use is in the situation where you have programs or data which will be used at

a future time — perhaps frequently.

Another inherent problem with every computer is the fact that its memory resources are not
infinite. It is quite possible — easy, in fact, with a machine of any size — to exhaust the entire
memory of the machine with a program and data and still have a need for more. In such
circumstances, mass storage devices can come to the rescue by offering a capability of storing
large amounts of information in an easily accessible form. A program can then access this data

as it requires it, instead of keeping it around gobbling up memory when it isn’t being used.

These are the primary reasons for considering mass storage in an application you might have in
mind. If any of these considerations, in some form or another, happens to pop up, you proba-

bly have a mass storage application. Some of the most common variations of these are —
e Saving programs.
e Saving the special function keys.
e Retaining the entire memory state of the machine.
e Storing parts of programs which, in their entirety, are too large to fit into memory.
e Creating data with one program to be used by another.
e Making provision for recovery in case something unpleasant and unexpected happens.

e Keeping activity logs and data from real-time acquisitions.

Selection of the type of mass storage device to use is important to the functioning of your
programs. some applications run better on some types of devices than they do on others. In
particular, for applications which involve heavy usage of mass storage files, such as non-
consecutive file sorts and data base management, flexible disks or hard disks are recommended

for optimum performance and reliability.

MS-4 General Information

Buzzwords

During the course of the discussion in this manual, phrases will be used which are in common
circulation in the data processing industry. While the meaning of most are either well-known or
deducible from the context, there are a few which may be new to the user not exposed to mass

storage before —

byte — a group of 8 binary digits (bits) operated upon as a unit.

data base —a set of data which is accessible by the computer and upon which a

program may perform operations.

file pointer — the current position within a file where data is about to be read or

written.

medium — the material on which data is actually being kept and stored (as distinct
from the device, which does the actual reading and writing). Tape cartridges and
disk packs are examples of ‘‘media”.

mnemonic — an abbreviation or acronym that is easy to remember.

module — in programming, a program segment which performs a specific, indepen-

dent program task.

naming convention — a pattern or system for assigning names to variables or files

so that some manner of consistency or predictability is maintained.
on-line — capable of being accessed by the computer; usually means a device which
is physically connected, functioning properly, and in communication with the

mainframe.

record I/ O — input/output operations concerned exclusively with the smallest

addressable unit of storage (records).
snapshot — current state at a particular time.

stack — a portion of memory used to temporarily hold information for processing in

a particular order.

system design — the specification and implementation of a program or set of pro-

grams to accomplish a given purpose.

Fundamental Syntax

Mass Storage Unit Specifier

General Information MS-5

Many commands use what is known as a ‘‘mass storage unit specifier’’, or msus. This specifier

tells your computer what type of peripheral it is addressing and where it can be “found’’. The

msus is a string which looks like this —

: device type [select code [, controller address 1 9885 unit code [, unit code]]]

The device type is a capital letter designating the type of peripheral. The permissible device

type codes are shown in this table:

M-Byte | Device| 9835 9835 9845
Storage | Type | 98331A | 98331B | 98413A/B/C | Required

Device Capacity | Code ROM ROM ROM Interface
Internal Tape 0.2 T yes yes yes n/a
7905M (Removable) 10 Y no yes yes 98041
7905M (Fixed) 5 Z no yes yes 98041
7906H (Removable) 10 C no yes no 98041
7906H (Fixed) 10 D no yes no 98041
7906M (Removable) 10 C no ves yes 98041
7906M (Fixed) 10 D no yes yes 98041
7908 (Fixed) 16 Q no no Hok 98034!
7910H (Fixed) 12 M no yes * 98034!
7911P (Fixed) 28.1 R no no ok 98034!
7912P (Removable) 65.6 S no no R 98034!
7920H (Removable 50 P no yes no 98041
7920M (Removable 50 p no yes yes 98041
7925H (Removable 120 X no ves no 98041
7925M (Removable 120 X no yes yes 98041
9885M/S (Flexible) 0.5 F yes yes yes 98032
9895A (Flexible) 2.3 H no yes yes 98034!

* 98413B/C ROM required.
** 98413C ROM required.

1No peripheral devices, other than mass storage devices may share this 98034 HP-IB interface. A maximum of two mass storage
devices may share this interface.

09845-93070, rev: 3/82

MS-6 General Information

The select code is an integer in the range of 1 through 12, 14, and 15. For the standard tape
cartridge unit (the one on the right-hand side) this code is 15. For the optional tape cartridge
unit (the one on the left-hand side), it is 14. These two codes are permanently reserved for
these units. Three other codes are also reserved — 0, for the keyboard (and optional printer);
13, for optional graphics; and 16, for the CRT. Thus, permissible select codes for external mass
storage devices are 1 through 12. This select code is the setting on the interface for the device
(consult Appendix B for the location of interfacing information for your particular device). Do

not choose a setting which is already in use by another device.

The controller address is the device address of the controller, if you are using a master-slave
system on the select code. It is used only for disk systems in the HP 79-series of drives. The
address may be any integer from 0 through 7. Consult the operating manual of the controller
involved for the location of the device address switch. The controller address may be omitted. If
omitted, the address defaults to 0, and the device address switch on the controller must also be

set to 0.

If you are using a flexible disk master-slave system, the 9885 unit code is used in place of the
controller address. It is the device address of the unit being referenced. The address may be
any integer from 0 through 3. Consult the HP 9885 Installation Manual for the location of the

drive-selection switch.

The unit code is the drive address (or drive number) associated with a particular drive in a
master-slave system on the select code. If omitted, the code defaults to O, and the address
switch on the drive must also be set to 0. It is ignored if included with an F device type or an M
device type.
Some examples of mass storage unit specifiers:
[f you want to specify the tape cartridge unit —

:T15
If you want to specify a flexible disk drive with an interface setting (select code) of 8, controller
0 _

:F8,0
If you want to specify the HP7905’s removable disk cartridge, on a master-slave system, select
code 4, controller O, drive 3 —

:Y4,0,3

rev:4/81

General Information MS-7

If you want to specify an HP7905 hard disk on select code 9, controller 0, drive 0 —

:29,0,0

If you want to specify a removable disk pack on select code 1, controller 0, drive 0 —

:P1,0,0

There are certain default select codes, and they are implied if omitted. They are —

:C implies :C12,0,40 :Q implies 07,0

:D implies :D124+0 40 1% implies $X12:0,0
:F implies :F8,0 :Y implies ¥ 12:0,0
:P implies :P12,0,:0 implies :Z212+0 0
:T implies :T15 implies :H7 2040

= L rd

implies M7 0,0
R implies :R7 0
S implies 187 +0

It was said that the msus is a string. Actually, it may be formed by any string expression which

creates a valid specifier. For example, if the following statements have been previously

executed —
AS$ = ‘“T15”
Typ€$ — HTH
Select = 15

then the following are all valid specifiers (in this case, all meaning ‘“T15”) —

‘*T15”

A$

“" & Type$ & VAL$(Select)
A$[1;2] & 157

Expressions may also represent the default forms, so —

A$[1;2]
“: & Type$

also represent the standard tape unit.

In the rest of the manual, you will see constant references to the msus. This notation through-

out will denote that any of the above forms may be used.

09845-93070, rev: 3/82

MS-8 General Information

MASS STORAGE IS Statement

Except for the INITIALIZE statement which is treated in Chapter 2, in all references below, the
msus may be omitted and the default mass storage device will be assumed. The default device
is ordinarily :T15 (this is the power-on value). It may be changed to any other device by

executing —

MASS STORAGE IS msus

After executing this statement, all future defaulted msus references automatically assume the
device indicated by this statement. The statement may be executed as may times as desired,

and may be executed from the keyboard or from a program.
A MASS STORAGE IS statement can be overridden and the standard msus (:T15) restored by
any of the following —

e Power-off, then power-on.

e Executing SCRATCH A.

e Executing MASS STORAGE IS “:T15” (or “:T").

File Names

Many references are made, throughout this manual, to a ‘“‘file’’ name. The concept of a file, and
the manipulation of it, will come later in the manual. However, it can be said in advance that all

files stored on a mass storage medium must have a name.

A file name is a string, just like an msus. It may be anywhere from 1 to 6 characters long and

may contain any character except —

NULL ASCII decimal value 0
Quote-mark () ASCII decimal value 34
Colon (:) ASCII decimal value 58

(unnamed) ASCII decimal value 255

General Information

These names must be unique on a given medium, but files bearing the same name can be
stored on different media. Uppercase letters are different characters than lowercase, thus the
file name “GEORGE"” is different from ‘‘george’’, which is different still from “‘George” and

“geORge”’, and so on. Some examples of file names —

Test
TEMP
FILE2
Backup
—KEEP
333%

Blanks (ASCII decimal value 32) in a file name, whether leading, trailing, or imbedded, are
ignored. Thus “ A B " as afile name would be treated as ‘‘AB”’. Non-printing characters may
be included, and comprise part of the character-count for the string, but their existence may not

be noticeable in any listing of the file name.

Since a file name is a string, as with the msus, any string expression may be used to create it.
Thus -

File$ = “TEMP” & VAL$(Counter)

would create a string which, as long as the length of File$ was less than {or equal to) 6, can be
used as a file name where a file name is required. For example, if Counter were 3, using File$
would be referencing a file called *“TEMP3”.

Attempts to create or access a file with a file name greater than six characters (ignoring blanks),
or containing any of the prohibited characters, will result in an ‘‘improper file name’ error
(error number 53).

MS-9

MS-10 General Information

File Specifier

A ‘“‘file specifier” is defined as a file name, or a file name followed by an msus —
file name [msus]
The inclusion of an msus is used to direct particular files to (or from) selected devices which are

on line at a given time. Thus, if you want to reference a file called ‘‘Backup’ on a flexible disk

with select code 10, you say —

Backup:F10

or the same file on the standard tape cartridge unit —

Backup:T

Since both the file name and the msus are strings, they may be stored separately and concate-

nated together when needed. For example —

File$ = “Volts”
Device$ = “:F”
and hence —

File$ & Device$

produces a reference to —

Volts:F

i.e., the “‘Volts” file on the flexible disk (select code defaulted to 8).

NOTE
When a file specifier is referenced without an msus, your
computer defaults the reference to the standard mass storage
device as designated by the last MASS STORAGE IS state-
ment (if one has been executed since power-on, or since the
most recent SCRATCH A command), or to the power-on

default device (the tape cartridge unit).

Wherever reference to a file specifier is required, with or without an msus, the notation file

specifier is used.

Chapter
Getting Started

Page 13 INITIALIZE — enables a mass storage medium to have information recorded on it.

Page 22 CAT — generates a listing of the medium’s directory.

Page 25 CAT TO — generates a listing of the medium’s directory into a string array or R/W
memory.

Page 35 CREATE — opens a file for data storage.

Page36 ASSIGN - references a file by number.

Page 39 PRINT# — writes the data into the file on the medium.

Page 41 CHECK READ - verifies the data being read from a file.

Page 41 CHECK READ OFF - disables the CHECK READ statement.

Page 42 READ# — reads the data from the file on the medium.

Page 45 FCREATE - allows creation of data files for DMA-like array transfers.

Page 46 FPRINT — writes arrays at DMA speeds to files which are FCREATEd.

Page 46 FREAD — reads arrays at DMA speeds from files which were FCREATEd.

Page 49 TYP — identifies a data file as to its type.

Data File Type Codes

0 Error — ROM missing or file pointer lost
Full-precision number
String
End-of-file mark
End-of-record mark

1
2
3
4 . .
5 Integer File Directory Types

6 Short-precision number Type Directory Abbreviation
7

8

9

10

Not used Program PROG
Partial string — beginning part Data DATA
Partial string — middle part Storeall ALL
Partial string — last part Keys KEYS
Binary Program BPRG
Binary Data BDAT
Option ROM OPRM
Assembly ASMB
Data Base — Root ROOT
Data Base — Backup BKUP
Data Base — Data Set DSET

rev:4/81

MS-12 Getting Started

Initial Steps

Mass Storage ROM

With the exception of the internal tape cartridge unit, no mass storage device can be used
unless the Mass Storage ROM has been installed in your computer. The ROM required for your
Series 9800 Computer is shown in this table.

System ROM Required
9835 98331A or 98331B Mass Storage 1 and
98331B Mass Storage 2
9845B 98413A or 98413B or 98413C
9845C 98413A or 98413B or 98413C

There are two ROMs to be installed if you have the 98331B ROM with your System 35. They are
called “98331B Mass Storage 17’ and “98331B Mass Storage 2. Both of these ROMs must be

installed for your system to operate properly.

If you already have a 98331A ROM, remove it from your computer before installing the 98331B
ROMs. Your computer will not operate properly if both A and B versions of the Mass Storage
ROM are installed.

Refer to your System 35 Owner's Manual or the System 45 Installation, Operation and Test

Manual for ROM installation procedures.

Initialization

Before any particular mass storage device can be used with your computer, the device must be

connected and the medium it uses (tape, flexible disk, or hard disk) must be initialized.

The details on how a device is connected, how media are inserted, and other items peculiar to a
particular device are treated by the operating manual for the device itself. Please consult the
manual(s) that affect you before going on. The proper operation of your mass storage unit is of

critical importance to the effective use of the information contained in this manual.

A mass storage medium can be provided by a number of vendors. A list of approved media
manufacturers is available through your HP Sales and Service Office. It is highly advisable that
you use only HP-approved media on your mass storage devices. Loss of data, damage to the

heads, and high maintenance costs may result from the use of non-approved media.

Once a mass storage device is properly connected, a medium inserted, and the system is tested,
then you must “‘initialize’’ the medium itself.

09845-93070, rev: 11/81

Getting Started MS-13

Initialization is a process whereby your computer sets up the systems table, directory, and
availability table on an individual medium and checks out the records and tracks to assure itself
of the recording areas that are available. All of this is so the system can find things when it wants
them in the future. It is required that every medium used by your computer be initialized first.
Each tape, flexible disk, and hard disk must first go through this process.

With tapes, the initialization process causes each physical record and inter-record gap to be
created. With a flexible disk, each physical record has a write-check performed upon it and
tracks with any defective records are rejected and ignored in future processing. With hard disks,
the check-out procedure was accomplished at the factory and the initialization only checks

each track to see if it has been flagged as defective and replaced by a spare track.

From your point of view, the initialization process is a simple one and quite device-
independent. From your computer’s point of view, however, the effects of an initialization are
quite diverse and are dependent upon the device and medium involved. All of your computer’s

concerns are bookkeeping, though, and your computer is the bookkeeper — not you.

To initialize a medium, first insert it into the mass storage device. Next, execute the statement —

msus

(A select code must be specified in the msus parameter.)

Wait for the run light to go out, indicating that the initialization process is complete. This should
take about three minutes for a tape, between 6 and 21 minutes for a flexible disk, and about
two minutes for hard disks. The processing time required is determined by the fact that every

physical record on every track on the medium (tracks only for hard disks) will be accessed and
checked.
Interleaving

When initializing a flexible disk® only, there is an additional parameter called the ‘‘interleave
factor’’. It can be added as follows —

msus , interleave factor

The purpose of this factor is to allow you to control the 1/O efficiency of your disk. The
interleave factor is a numeric expression which must round to an integer in the range of 1
through 10 when using the HP 9885 and in the range of 1 through 29 when using the HP 9895
If you omit it when initializing a flexible disk, it defaults to 7. If an interleave factor is used when

initializing a tape or hard disk, the factor is ignored.

1 For specific details on these drives, see Appendix B.

rev:4/81

MS-14

Getting Started

Interleaving is a process whereby the system effectively renumbers record numbers on a track
(so they are no longer consecutively numbered). The records may be numbered consecutively,
or by every other one, or by every third one, and so on, up to every tenth one. Because it takes
a finite amount of time to read a record, to transfer data to your computer, and to prepare for
the next record, and because the disk is spinning for all that time, it is possible for the drive to

require a fuli revolution to read two successive records on the same track.

To speed up this process and enable successive records to be read on the same revolution, the
interleave factor causes the numbering of records to be altered so that there is physical separa-
tion between them, enabling a minimum number of revolutions to be sufficient to read all the
records on a track, whereas 30 revolutions might be necessary if they were successively num-

bered. This can result in access speed improvements of up to 5-to-1.

The following charts detail the 9885 disk performance under various interleave factors —

Time Required for Initialization Writing 1000 Random Records

50 4
45 |
40 b
35 +
39
25

20

Time (in minutes)
Time (in minutes)
n
T

[\

Interleave Factor Interleave Factor

———— Enhanced Processor

Standard Processor

NOTE
When using the HP 9895A, the interleave factor should be set
to 11 for increased speed in the transfers for strings, integers,

and full-precision numbers.

rev:4/81

Getting Started MS-15

Data are stored in concentric tracks on the disk. Each 9885 disk has 67 circular tracks, num-
bered 0 through 66. Each disk is also subdivided into 30 pie-shaped sectors. Each sector

contains a number of records equal to the number of tracks (1 record = 256 bytes).

rev:4/81

9885 Disk Structure

NOTE
Disks to be used with the HP 9885M/S Disk Drive should not
be initialized on the HP 9895A Disk Drive. Because the HP
9895A initializes 77 tracks instead of 67, attempts to read data
from the ten additional inner tracks (using an HP 9885M/S)

may be unsuccessful. You may, however, use the HP 9885M/S
Disk Drive to initialize disks that will be used with the HP 9895A.

MS-16 Getting Started

A diagram of disk tracks and records with an alternating numbering system caused by an
interleaving of 2 is shown next. The shaded area shows the location of record 0, track 1, as an

example.

9885 Flexible Disk Records

In addition to an alternating numbering system, the location of the beginning record (record 0)
of each track is skewed to avoid a revolution when the drive accesses a new track. For example,
after record 29, track O is accessed, then record O, track 1 is accessed without an extra revolu-

tion.

Flexible Disk Master-Slave System

Whenever using a flexible disk master-slave system, be sure that all units on the same select
code are turned on. All must be turned on in order for any of the units to be accessed with the

statements and commands discussed in this manual.

Hard Disk Systems

There are special considerations when initializing and using hard disk systems. Consult Appen-
dix B before using a hard disk with the System 45.

Getting Started MS-17

Data Compatibility with Other Systems

Disks initialized for use on your Series 9800 desktop computer, and written under Series 9800
computer control can be used by other HP computers, such as the System 35 A/ B, System
45A /B / C and even the HP 9831A. Data files are totally transferrable between the System 35
and System 45. Defining data files for transferrence with the 9831A requires that the record
lengths must be 256 bytes (default length). Attempting to use files of different record lengths
causes the 9831A to become lost on the disk. Series 9800 initialized disks cannot be used by
the 9825A because of the lack of bootstraps required by the 9825. Disks initialized on the
9825A can be used on the System 45B / C, since the System 45B / C ignores the bootstraps.

Key files can be used between the System 35A /B and System 45B / C. Binary data files can be
used with the System 35A /B and the System 45A /B /C.

Disks initialized for use on the 9825A, 9831A, 9835A /B, and System 45A /B / C may be used
on your computer. Data files created by those machines may be used in every fashion the same

as if they were created by your computer.

If you are using 9825- or 9831 -initialized disks on your Series 9800 Desktop Computers, there

are some precautions which should be observed —

e Both the 9825A and the 9831A may store values in a disk file which are outside the
permissible floating poinf range of the System 35/45 (i.e., the absolute value is less than
10100 or is greater than 109?). Such numbers are ready by the System 34/45 without
error and may be used in intermediate calculations and stored in variables. But the
numbers themselves, and the results of calculations which are out of range, may not be

displayed, printed, or written to mass storage. Thus the lines —

are acceptable and work correctly, but the subsequent lines —

rev:4/81

MS-18 Getting Started

do not permit a value out of range to be printed. Instead, if the absolute value is less than
107%° then 107°° would be printed; if the absolute value is greater than 10'°° then the

printed exponent is unpredictable.

e Re-packing the file on the 9825A or the 9831A should not be done if the disk contains files
of defined records which are less than 256 bytes. Files created by Series 9800 Desktop
Computers should not be purged with the 9825A or 9831A if the record length is not 256

bytes. (See the following section for an explanation of defined and physical records.)

Getting Started MS-19

Storage Operations
Types and Methods of Storage

Mass storage operates through the use of records. Records are the smallest addressable unit of
storage. There are fundamentally three types of records — physical, defined, and logical.
Records are stored, or grouped, into files. There are eleven kinds of files — program, data,
storeall, keys, binary program, binary data, option ROM, assembly, and data base root,
backup, and data set files.

Records

A physical record is the unit of storage dealt with by the mass storage devices themselves. They
consist of 256 bytes each on Series 9800 Desktop Computers. As a user, you do not address
physical records as such; the bookkeeping and manipulations involving these storage units are

handled by the hardware and the operating system.

Defined records are the smallest units of storage which you, as the user, can access individu-
ally. The actual length of this record, in bytes, is determined by you in the CREATE statement.
This statement is discussed later in the ‘‘Files” section. A defined record may be any size
between 4 and 32 767 bytes, but if you select an odd number for the record size, it will be
rounded up to the next even number. All records in a file are necessarily of the same defined

size as the one you specify. If you don’t specify it, it defaults to a physical record (256 bytes).

It is advisable, whenever possible, to set the defined-record size to the physical-record length,
in order to achieve maximum efficiency. If there is no program necessity for a different length to
be established, selecting 256 bytes over another length can result in 1/0O performance im-
provements of as much as 2:1 or 3:1.

rev:4/81

MS-20

Getting Started

Logical records are a structured data concept and have no direct implementation in either the
hardware or software of your computer. These are records in which you conceive the data to
be organized. In short, it is a collection of individual data items which are conceptually
grouped. For example, if you had a personnel application, you might, in the course of prog-
ramming it, plan a logical record for each employee which contains the employee’s number,
name, address, department, etc. You might want to deal with this record (like reading it from a
data base) as a single record, at least logically. To assist in this application, you might want to
define your defined records to be large enough to hold all the data in a single logical record. Of
course, you could assign the individual components of the logical record to various defined
records and keep track of where things are stored. That’s up to you. Remember, though, that in

dealing with logical records, it is defined records which you read and write from storage.

In calculating the length of a part of a record with combinations of numeric variables and
strings, it may be helpful to know how much space each of the various types of items take up.
To make these calculations, and to also help in determining if the length of a defined record is

sufficient, the following numbers apply —

Full-precision numbers 8 bytes each
Short-precision numbers 4 bytes each
Integers 4 bytes each

Strings are a little more complicated to calculate —

1 byte for each character

1 more byte if the string length is odd

4 more bytes (‘‘overhead’’) for each defined record in which it resides (it must be in at least one
— some stored strings cut across defined-record boundaries)

When you are dealing with arrays, you are dealing with individual elements, the number of
which is equal to the current working dimensions (according to the current OPTION BASE
selected). Each element is of the length indicated by the array’s type (full, short, integer, or

string).

No extra bytes are stored to identify information as having been written from an array; rather,
the arrays are written so that they appear in storage as a sequence of individual elements. Thus
it is possible to write something as an array and later read back the information as individual
elements into non-array variables. Conversely, it is also possible to read a compatible sequence

of individual items into an array, even if they were originally written as non-array items.

Getting Started MS-21

To give some examples of this accounting, suppose the following items are being stored or
retrieved; also suppose F is a full-precision variable, S is a short-precision variable, | is an

integer variable, and S$ is a string variable (with a current length of ten characters) —

F requires 8 bytes
LS requires 8 bytes
S$ requires 14 bytes!?
S$,1 requires 18 bytes?
F,S$,S requires 26 bytes!

Files

Mass storage is organized around the concept of a file. A file is a common collection of records.
As such, it is a contiguous grouping of storage locations on the storage medium. There is a
“directory’ at the beginning of each medium which gives the name, length, and type of each
file on it.? Each file is in one particular location on the medium and all of its records are in
order.® The directory also contains the location of the first record in each file. In addition to the

¢

directory, there is an ‘‘availability’’ table and systems table. Each medium, then, is organized

something like this —

SYSTEMS TABLE

DIRECTORY
AVAILABILITY TABLE
FILE #1 FILE #2 FILE #3
1st record 1st record
2nd record 2nd record
3rd record 3rd record)
LAST FILE
La;s,t Record La.st Record

Since files may be created and ‘‘purged” with some frequency, gaps may develop in this
scheme so that there are a number of unused physical records between files. The problem of

“wasted’’ space of this type is dealt with in Chapter 3.

1 Provided the string doesn’t cross a defined-record boundary.

2 The internal tape cartridge directory is used in a slightly different fashion than other media’s directories. See Appendix A for
details.

3 A flexible disk with an interleave different from 1 spreads out the actual physical location, but the system still takes records
and files in (interleave) order.

MS-22 Getting Started

Where each record is physically located is highly dependent upon the device itself. However,
accessing the file itself is totally independent of the type of device. To get a particular file on a
device takes only its file name and an msus as discussed above. To find the file, the System 45B
goes to the device indicated by the msus part of the file specifier and looks at the directory of
the medium on that device for a stored file with the same file name. If such a file exists, then it
takes note of the location (track and physical record) of the first record of the file with that
name. All other records in the file are displaced from the first record. For example, the eighth

record in such a file will be seven records past the first record, and so on.

File Directory

A directory, as mentioned above, is present on each medium (not the device). Replacing the
medium in a device changes the directory (and, of course, the files) available to you. The
information in the directory may be listed on the system printer. The statement to use to do this

is —

[selective catalog specifier / msus] [, heading suppression]

The following is an example of a directory listing using the CAT statement on a tape —

RIS FREO TYPE EECSFILE EVTEZ-EELT ADLEESS
(D O~
© Number of Defined-record Physical-record Address
Select Tracks Size of First Record in File
Device Code Avaitable
Type

\F"e \

Name Type Records Used

File Defined

Getting Started

The heading suppression parameter is a numeric expression. If it evaluates to 1, the heading is
suppressed. If it contains any other value, then the headings will remain. This enables you to

print selective catalogs one after another, but to have only one heading.

The selective catalog specifier is a string expression which gives you the capability of selec-
tively listing parts of the catalog. If the parameter is present, the catalog routine only lists those
files whose names begin with the same string value as the parameter. For example, if the above

directory had been listed with the statement —

the following is the listing —

and the statement —

produces —

The statements —

produce —

MS-23

MS-24 Getting Started

A catalog normally prints on the standard system printer, whatever that happens to be at the

time the CAT statement is executed. But it is possible to divert the listing to another printing

device which is on-line at the time. This is done by adding the device’s select code (and its

HP-IB address, if applicable), so that the syntax of the statement now appears as —

[. heading suppression]]

where select code and HP-IB device address are numeric expressions.

For example, if the statement in the above example had been —

select code [. HP-IB device address] [i selective catalog specifier / msus

the same listing as the above would have been produced, but on the CRT (which is select code

16).

Another example, using a flexible disk —

EYTERC-REC AL

Record
Address

Track

Protection Address

In this example, the address indicates the track position, as well as the record position, of the

first physical record of the file. Also, it demonstrates that an asterisk will appear in the column

after the file name for any file which is protected.

Getting Started MS-25

Cataloging to a String — System 45 Only!

Often a need arises necessitating the ability to treat a medium’s directory as data. This can be
accomplished by sending a catalog’s output to a string array instead of to a printer. By selecting
a string array which has been dimensioned to at least 41 characters per element, you can

execute the statement —

and have the resulting catalog output go to the string array specified.

For example —

causes the individual file entries to be written to the individual elements in the array. They are
written to the array starting with the first element in the array. Each entry appears in the

element as it would if it were printed.

You can skip over a specified number of entries by including a skip value —

Tiistring array specifier, skip value

skip value is a numeric expression representing the number of entries to be ignored before
transferring entries to the array. Thus, if you were to say —

then the first element in the array would contain the third file entry in the catalog. Skip values

which are negative or zero have no effect.

Obviously, there can be no more file entries transferred to the array than there are elements in
the array. If there are more entries than there are elements, then the additional entries are
ignored after the array has been filled. If there are excess entries, then the entry number of the

last entry actually transferred to the array can be returned in a numeric variable which you

provide —

11string array specifier, skip value, return variable

If return variable is zero, then the last entry in the catalog has been transferred.

1 The CAT TO statement described here is provided by the Advanced Programming ROM for the System 35.

rev:4/81

MS-26

Getting Started

This capability is particularly useful on media with large numbers of files. For example, suppose
you are searching for three particular files on a medium with a considerable number of

similarly-named files, then you could use the return variable to advantage —

You may specify any of the usual catalog items described in the sections above —
e selective catalog specifier
® msus

e heading suppression

This is done in the same fashion as above, by making the statement appear as —

1 string array specifier [, skip variable [, return variable]]]

[i selective catalog specifier / msus [, heading suppression]]

The selective catalog specifier and msus work the same as above. heading suppression
works in somewhat the opposite fashion from the above; it is a numeric expression, but if it
evaluates to any other value than 1, then it transfers the “‘heading’’ of the catalog to the first
element of the array and the entries begin with the second element. This ‘‘heading’’ consists of
the msus and the number of valid tracks on the medium. If the expression evaluates to 1, then
this heading is suppressed and the first element in the array is a catalog entry, as described

above.

rev:4/81

Getting Started MS-27

Finally, if a selective catalog specifier is included, only those entries which conform to the
specifier are transferred to the array, as might be expected. It should be noted that the return
variable contains the actual entry number of the last entry transferred, regardless of the entries
rejected because they don’t conform to the specifier. Note, then, the effect on the efficiency of

the above example if you changed the example as follows —

Of course, this only works if all the files being searched for start with the same four characters.

Types of Files

You may have noticed in the file directory that there may be more than one type of file. In

actuality, there are many types of files —

Directory

Type Abbreviation
Program PROG
Data DATA
Storeall ALL
Keys KEYS
Binary Program BPRG
Binary Data BDAT
Option ROM OPRM
Assembly ASMB
Data Base — Root ROOT
Data Base — Backup BKUP
Data Base — Data Set DSET

Each is created in a different manner, and each serves a different function. Since each of these
can be used in some applications and notin others, selection of a file type will depend upon the

application. In general, these files have the following characteristics —

PROGRAM - Created by a STORE or RE-STORE instruction; retrieved by a LOAD
instruction. Stores a program in its internal representation (compiled form), along with its

cross-reference tables.

DATA — Created by a SAVE, RE-SAVE, or CREATE instruction; retrieved as a file by a
GET or LINK instruction, or by individual records with READ # instructions. Used to store

programs in ‘‘source’ form or data written by PRINT# instructions.

STOREALL — Created by a STORE ALL command; retrieved by a LOAD ALL com-

mand. Stores the entire machine state — memory, keys, etc.

rev:4/81

MS-28 Getting Started

KEYS — Created by a STORE KEY instruction; retrieved by a LOAD KEY instruction.
Used to keep the definitions of the special function keys so that they may be reloaded (and

hence restored to some previous form).

BINARY PROGRAM - Created by a STORE BIN instruction; retrieved by a LOAD BIN
instruction. Used to store special HP-supplied routines which implement special en-

hancements to the standard BASIC language.

BINARY DATA — Created by an FCREATE instruction; individual records are created by
FPRINT instructions and retrieved by FREAD instructions. Used by DMA mass storage
devices (but not the internal tape cartridge) to do fast data transfer at DMA speeds.

OPTION ROM, ASSEMBLY, DATA BASE — Created by the option ROMs available on
your computer. These files are used by the option ROM creating them. For details on their

use, consult the manual for the ROM involved.

If you are cataloging a medium which was initialized on a 9825A or a 983 1A, the computer may
not be able to determine accurately the file type. In such files where it is not positive about the
type, your computer attempts a determination and the catalog output contains that determina-
tion, along with a question mark. In some cases, particularly with the program file type (due to
different operating systems), your computer may not be able to use the file as originally
intended. For example, here is a directory of a tape cartridge showing non-compatible prog-

rams.

Loaic
+. ‘.*.. ..!.. ..P.. ..!,. ..i.‘
THI [

rev:4/81

Getting Started MS-29

Types of Access

There are two methods (or ‘‘modes’’) of data access with your computer — serial and random.
DATA files — and DATA files only — may be written and read using either access method. Most
applications reference a particular file using one mode or the other exclusively, but it is entirely

possible to write a file in one mode and read it back in another.

Each mode of access has advantages and disadvantages over the other depending upon the

application and mass storage device being used.

Serial Access

Serial access is a mode which relies upon the sequential nature of the data in the file. Data
items are read or written one after another. With serial access, logical records may be of varying
lengths. The last data item written by a serial PRINT# statement (discussed below), is followed
by a one-byte end-of-record (EOR) mark. After the EOR is written, the file pointer is positioned

at this mark.

When writing in the serial mode, you begin writing immediately at the file pointer. This has the
effect of writing over the EOR mark which may be there. Each item, then, immediately follows
the one before it and has no mark separating the two. Thus, a serially-written file is merely a
sequence of data items, with no way to tell where one record ends and the one after it begins.

This is where the concept of a logical record helps to keep straight the location of things.

Serial access, therefore, is a compact method of data storage. There is a minimum of wasted
space. The succession of data items, one after another, is called the ‘‘accessing sequence’. The

storage structure for ‘‘'n’”’ data items in serial-access looks like this —

Data Data Data Data Data Data Data (7

item item item item item item item O

#1 #2 #3 #n-3 |#n-2 #n-1 #n w
7

— —

— Accessing Sequence ————

MS-30 Getting Started

As data is written in a serial file, previous end-of-file (EOF) marks which may have existed there
are written over as they are encountered. An exception to this is made when the EOF mark at
the beginning of a defined record would be written over by an EOR. Instead of doing this, the
EOF mark is allowed to remain. The file pointer is still positioned there, however, and the next

serial write treats the EOF as an EOR and writes over it.

The variable-length nature of the records means that serial access ignores defined-record

boundaries as well as physical-record boundaries.

If you are going to be using a serially-written file strictly as a serial file, then there is no need for
you, as a programmer, to have to be concerned about such boundaries. No boundaries (except

the physical end of the file), have any program effects.

For example, if you write a serial access record of 85 bytes to a file which has defined records of
80 bytes each, then obviously it takes more than one defined record to hold the information.
Therefore, you must pass over at least one defined-record boundary. The following diagram

demonstrates what this might mean —

[-——— defined record |

T T T
i +—85 bytes :
i ! i
1] 1
: 256 bytes ! 256 bytes .
; | !
h 1
h f 80 bytes —————————
Data item Defined Physical Defined data item
begins record record record ends
boundary boundary boundary

You do not notice the physical, or even the defined, record boundaries. If you later read back
those 85 bytes in serial mode, you do not have to account for the presence of the boundaries

— only the original 85 bytes are returned to you.

Serial access is sequential in nature. When you write a logical record, as noted earlier, it is
written to a location which immediately follows the previous logical record written to the file
(provided there remains sufficient room in the file to hold it). Thus, records in a serial access file
appear in a certain order, namely the accessing sequence, i.e., the order in which they were

written.

rev:4/81

Getting Started MS-31

Sometimes an EOR mark written after a data item is permitted to remain in the file. This occurs
whenever the next item written in a serial mode is too long to fit in the remainder of the defined
record (strings are excepted). For example, if six bytes remain in a defined record after the last
write operation (including the EOR mark), and you try to write a full-precision number (which
takes eight bytes), the EOR mark is left there and the number is written at the beginning of the
next defined record. This is so the system won’t try to divide indivisible numeric data (i.e.,

full-precision, short-precision, and integer) between records.

For strings, which can easily be longer than a defined record, the rule above is modified
somewhat. If four bytes or less remain in a record and you try to write a string, the EOR remains
and the string begins with the next record.! If more than four bytes remain, it puts as many
characters as it can in the record (there is an overhead of four bytes), and continues the string

in the next record, if necessary.

You must be careful in the selection of defined-record sizes. Making a poor selection of record
size can significantly waste storage space. For example, if you chose a defined-record size of 14
and write serially a number of full-precision numbers (8 bytes each), with nothing in between,
you are wasting 6 bytes per record. This effectively wastes 43% of the storage space in the file.
Thus, it is a highly advisable that shorter defined-record lengths be selected very carefully to
match the data to be written, or the wasted space can be devastating.

In a file used strictly in serial access, there is no reason to have defined records of any length
other than physical-record size (256 bytes). There are very significant speed improvements

when records are of that length.

Data in a serial-access file must be read in the accessing sequence. If you are interested in
reading the data in the nu data item written, you must first read the preceding n—1 data items in
that file. Serial reading ignores EOR marks left in the file, so you do not, as a programmer, have

to take them into account in your serial reading.

1a null-string will fit in four bytes, since there are no actual characters to write. The four-byte overhead will be written, though,
to indicate the presence of the null-string.

MS-32 Getting Started

Serial access is the ideal method for use with tape cartridges since they are essentially sequen-

tial media.

Serial Access Summary

Random Access

Random access is a method which relies upon the fixed-length nature of all records in a file.
Defined records may be written and read in any order. With random access, data read or
written must be of a certain maximum length. Each defined record is assigned a ‘‘record

number’’ for access purposes.

Random access files utilize the defined-record feature of the file’s creation to advantage. Rec-
ords in random-access are precisely equivalent to the defined records of the file. A normal data
file is a random access file, just as it is also a serial access file. Thus, by creating a file of 100

80-byte defined-records, you are creating a file of 100 80-byte random access records as well.

Getting Started MS-33

These records are accessed by a ‘‘record number”’. This may be any numeric expression which,
when evaluated and rounded to an integer, arrives at a positive number less than or equal to

the number of records in the file (you can’t access a record which doesn’t exist).

For example, if A=10 and B=4, and there is a file of 100 defined records, the following would

be proper as a record number —

33

A+1
100-B
A*9+B+1

but the following would be improper —

101 (greater than the number of defined records in the file)
A—(3*B) (a negative number)
A/10-1 (zero)

Each random access record is exactly the length of a defined record in the file. Hence, it is not
possible to write anything in random access unless it has the same number of bytes (or less)
than a single defined record. It is this which allows the random access method to work as it
does.

The method implies that each record is accessed in the same manner as every other record and
that you need not access all preceding records in order to get to the one you desire, as you must

do when the access method is serial.

There is no “‘accessing sequence’’ as there is with serial access. You may access records in any
order. But in order to achieve this property, the random mode requires each record to be of a
fixed length, whether you use all of it or not. You may end up (possibly) wasting some space
within a file if you do not use all the available space in each record. Of course, it is possible to
select a record size upon creation of the file with an eye toward minimizing (or perhaps even

eliminating) potential waste of this type.

Random access is a good method for use with disks (both flexible and hard), which are not
sequential media, but it is not a particularly good method for longer files on tape.

MS-34 Getting Started

For disks, each record takes approximately the same amount of time to access, thus widely
separated records take no longer to access than do records which are closer together. With
tapes, however, if records are physically far apart, it may take significant time to access them
both, but if closer together, the records can be accessed relatively rapidly. For this reason, it is
recommended that if you are accessing random records with widely separated numbers, that

you avoid the use of tapes.

Random Access Summary

Creating Files

As was pointed out earlier {page 27), there are a number of statements which create files. In all
except the DATA and BINARY DATA types of file, the contents of the file are created when the
file is created. Only with the DATA or BINARY DATA file types can the file be created sepa-

<6

rately and remain “‘empty” until needed for storage purposes.

BINARY DATA files, and their creation, are treated in ‘‘Rapid Transfer of Arrays’.

Storage space on a medium can be reserved for a DATA file through the CREATE statement.
The statement can be used only to create DATA files and can be programmed or entered from
the keyboard. It is used to establish the length and number of the defined records in the file. It is
only through this statement that you have control over the defined records. With all other
statements which require creation of a file, the defined records become equal to physical

records.

Getting Started MS-35

The CREATE statement appears as follows —

file specifier , number of defined records [, record length]

number of defined records and record length are both numeric expressions, which, when
evaluated and rounded to an integer, become the number and length, respectively, of the
defined records in the file. Consequently, in order not to be nonsense, these values must be
positive numbers. They may not extend beyond the capacity of the medium, however. The
maximum number of records which may be specified in any file is 32 767. The maximum length
is 32 768 bytes. The minimum length of a record is four bytes. The maximum number of

physical records which may be used by a file is 32 767.
If you give an odd number of bytes for record length, it is rounded up to an even number. If
record length is omitted, the defined-record length for the file defaults to 256 (same as the

physical-record length).

Some examples —

Creating a file causes two things to happen. First, it is entered in the directory. All associated
information — defined-record size, number of records, physical-track and -record location of
the first record, file type, and protect code — are all stored in the directory. Every file starts at
the beginning of a physical record, so there may be some wasted space between files (though
not more than 254 bytes each time).

Second, the system causes an EOF mark to be placed at the beginning of every defined record
in the file. Later on, when you are using the file, you will write over some of these marks (if not
all). By having initially written one of them to every record, you are guaranteed of having an
end-of-file indicator somewhere in the file, regardless of whether you write to it in serial or
random fashion. In addition, this procedure effectively clears each defined record so that no old

data remains from any previous use of the record.

MS-36 Getting Started

Record 1/ 0

During several points in the discussion in this chapter, there has been mention of “‘writing”” and
“‘reading’’ records to files. This is also called “‘record I/ O’". Record 1/ 0O is available only on

DATA-type files. All other types of files must be manipulated as a whole.

Before record 1/ O can take place on a file, you must assign a ‘“‘file number” to it. There are 10
file numbers available for your use, 1 through 10. To assign a file number to a file, you may say

either —

- file number 7

file specifier " file number [. return variable [, protect code]]

file number may be any numeric expression which rounds to an integer between 1 and 10.
return variable may be any numeric variable. After execution of the ASSIGN, the return

variable contains a value indicative of the status of the file, thus indicating if an error occcurred
during the ASSIGN. The values which may be returned are —

Value Meaning
0 File exists and is available for your use
1 File could not be found
2 File was protected, or was of the wrong type
or protect code included when file does not require it.

protect code is a string expression, which is necessary only if the file had previously been
protected by a PROTECT statement. See Chapter 3 for details. If the return variable and
protect code are omitted and the file is protected, there is an error. There is also an error if you

omit the return variable and the protect code is present, but the file is not protected.

Getting Started MS-37

This assignment must be done to any data file before you can read from it or write to it. Of
course, the file must have already been created. A file number may be used any number of
times in a program and may be re-assigned to another file at any time by simply executing

another ASSIGN. For example, in this program -

file #1 is first assigned to Keepl, then to Keep2, and finally to Keep3. Each reassignment
cancels out the one before it. This happens upon execution of the ASSIGN statement. Thus, if
after line 1000, the program loops back to 100 (say by a GOTO 100), #1 is reassigned to
Keepl again.

This file number is used in the PRINT# and READ# statements which are the ones used to
effectrecord 1./ O in mass storage. Once a file number has been assigned in this fashion to a file,
then referring to the file number is the same as referring to the file, though it does not take the
place of a file specifier in a syntax.

Executing the ASSIGN statement also flushes any file buffer allocated to the file number (by the
BUFFER statement). For further details on this effect, and on buffers in general, see Chapter 4.
The statement also sets the data pointer to the first byte of the first defined record in the file.

More than one file number may be assigned to a single file. This permits more than one file
pointer in the same file and references to the separate file numbers are the same as references
to different files. Thus, with this facility, you can read and print in different modes without
disturbing the file pointer in each with operations using the other. This facility can also improve

buffer performances.

Using the ASSIGN statement as above causes a data file to be ‘‘opened’’, that is, available for
use by PRINT# and READ# statements. When you want to “‘close” a file, that is to make it

unavailable for use by [/ O statements, you also use the ASSIGN statement.

MS-38 Getting Started

There are two ways to use the ASSIGN statement to close a file. The first is to re-assign the file
number to another file. Thus, in the example above, execution of line 500 not only re-assigned

the file number (#1) to Keep2, but it closed the file to which #1 had been previously assigned.

file specifier causes the file assigned to the file number to be closed. For example —

execution of line 100 causes file #1 to be associated with George. Thus George is opened. But
subsequent execution of line 500 will cause #1 to become unassigned and George to be
closed. Further attempts after execution of line 500 to do a PRINT#1 or READ#1 will cause an
error {error number 51) unless there is another ASSIGN #1 executed.

If a file is opened in a subprogram (either a SUB or a multi-line function), then upon returning
from the subprogram, the file is closed, the same as if ASSIGN * had been executed for that file

number.
Executing a STOP or END statement causes all open files to be automatically closed.
ASSIGN is always performed in the SERIAL (non-overlapped) processing mode, regardless of

whether overlapped processing is currently in effect. Overlapped processing for other state-

ments is not affected by the presence of an ASSIGN statement.

Getting Started

Writing Records

To write a record in the serial mode, the statement to use is —

file number [; data list]

Upon execution of such a statement, the data list (which consists of variables, constants,
arrays, etc., the same as in PRINT statements to a printing device, except that all items are
separated by commas only — not semicolons — and none of the output functions TAB, SPA,
LIN, and PAGE may appear) is moved to the file indicated by the file number and written,
starting at the place indicated by the data pointer. There are only three errors you can make

with this statement —
e Using a file number not assigned to an existing file.
e Running out of room on the file.

e Hardware not working, or medium not present.

To write a record in the random mode, the statement to use is —

file number . record number [; data list]

Notice that this form of the statement is quite similar to the serial form. The only difference is
the addition of the record number. In this case, the data confined in the data list move to the
file specified by the file number and to the particular record specified by the record number.
There are a number of ways one can err using this form. The rules involving random access

prints are —
e The file number must be assigned to an existing file.
e The record indicated by record number must exist on the file.
e The data in the data list must not exceed the size of the defined record (it may be less,

however).

Omitting the data list will cause an EOR to be written at the current position of the file pointer.

This causes any data in the remainder of the defined record to become inaccessible.

MS-39

MS-40 Getting Started

Print Verification

In many applications it is critical that the data written to a mass storage device be as accurate as
possible. The CHECK READ statement is a way to increase significantly the reliability of data

written to mass storage.

Using the CHECK READ statement for a particular file instructs your computer to check every
item it writes to that file. It does this by immediately following each PRINT# operation to the
file with a read in the same area of the medium which it has just written (called a ‘‘read-after-
write’’ operation, or ‘‘verification’’). The results of this read are compared with the contents of
memory for the data written. If they compare identically, the PRINT # is considered successful.
If they are not identical (implying there has been some sort of failure, either on the write or the
read-after-write operation), it tries writing and verifying the physical record three more times

before giving you an error message indicating that you have encountered a problem.

The error generated by a CHECK READ is a fatal error (number 89) and will cause your
program to stop unless trapped by an ON ERROR statement. The ERRL, ERRN, and ERRM$
functions will also work with this error. (More information on these functions and on the ON
ERROR statement can be found in the BASIC Programming Manual.) The ON ERROR trap
does not work on CHECK READ if you are processing in the OVERLAP mode {see ‘‘Overlap-
ped /O, pages 73-74).

Check reading significantly slows the PRINT# operation. For tapes, the verification process
causes three passes to be made over the tape (the original PRINT# operation, backing up the
tape over the record, then the reading operation). For flexible disks there must be a full
revolution of the disk after each PRINT# in order to make the read — in contrast to writing

many records per revolution. The consequent decrease in access speeds can be as much as
5-to-1.

In addition to a decrease in operating speed, there can be an increase in wear of the medium
itself with tapes and flexible disks, in those spots where the heads come into actual contact with

the medium.

NOTE
With tapes and flexible disks, because of the combined prob-
lems of decreased speeds of operation and increased wear
on the media, it is recommended that CHECK READ be used
only when data correctness is of paramount concern. On
hard disks, these problems are not significant, and the
CHECK READ can be used without worrisome side-effects.

Getting Started MS-41

The CHECK READ statement has the following form —

[# file number]
where file number is a numeric expression representing the assigned number of the file in-
volved. If no file number is provided, CHECK READ is in effect for all printing operations to

every mass storage device.

Some examples of enabling CHECK READ —

An enabled CHECK READ for any file number can be turned off by closing the file (see page
38), or by using the CHECK READ OFF statement for that file number, which has the form —

file number

Again, if the file number is omitted —

then executing the statement has the effect of turning off CHECK READ for all files.

In addition to the verification of data written with a PRINT# statement, by omitting a file
number from the CHECK READ statement, you also permit all file operations (except FPRINT)
to be verified. After executing a CHECK READ, any SAVE, RE-SAVE, STORE, RE-STORE,
STORE BIN, or STORE ALL statement will be verified. Directory updates (caused by COPY,
STORE KEY, CREATE, FCREATE, PURGE, PROTECT or RENAME) are also checked when
the CHECK READ is in effect. Executinga CHECK READ OFF statement cancels this facility.

CHECK READ also has the effect of causing an immediate-write for a file on a device, flushing

the device buffer. For further details on buffers and on this effect, consult Chapter 3.

Executing CHECK READ without a file number necessarily enables CHECK READ for all files,

and they cannot be turned off separately in this instance.
Upon power-on, and SCRATCH A, all CHECK READs are turned off.

rev:4/81

MS-42 Getting Started

Reading Records

Reading a record from mass storage is a little more complex than writing one, but not by much.

To read a datum in a serial mode, you must have read all data which precedes it in the
accessing sequence. Upon assigning a file number to a file, you reposition the accessing sequ-
ence pointer (also called the file pointer) to the first datum in the file. Data may then be read by

a statement in the following form —

file number : wvariable list

The variable list is of the same type as variable lists used in the non-mass storage READ and

INPUT statements (see the BASIC Programming Manual).

The special rules relating to mass storage reads are —
o The file number must be assigned to an existing file.

e Variables in the variable list must agree as to data type with the information it tries to
read in the record (a string may not be read into a numeric variable, and vice-versa).
Disagreements between numeric data types (full-precision, short-precision, and integer)
are automatically converted, but there is a possibility of precision losses or overflowing

the range in such cases.

e There must not be more variables in the list than there are data items in the record.

In reading a file serially, you are reading data items, and not records. You take the data as it
comes, and may do so in any order consistent with the data types. An example will alleviate the
confusion regarding this process. Suppose a serial file was created by executing the following
PRINT# statements in order —

Then the file would have the following structure —

numeric
numeric
numeric
numeric
string
numeric
string
string
numeric

rev:4/81

Getting Started MS-43

Later, if you were to “‘rewind’’ the file (reposition the pointer back to the beginning, either by
re-assigning the file number or by running another program, or by executing a random READ #
to record #1; see page 44), and tried to read the data in this file, the following would be a
perfectly valid sequence of READ# statements for that purpose -

still another valid way might be —

To read a record in a random mode, you must provide a record number to indicate which

record you are reading. The form of the READ# statement in this case is —

file number , record number ; wvariable list

The rules for this form are the same as with serial reading, with the addition of —
e The record indicated by record number must exist on the file.
In this form, you read data starting at the first item in the record. And you may not read more

data items than there are present in that defined record. Thus, if a defined record in a random

file is written with the following —

then it is only possible to read a maximum of four data items from record #10: a full-precision

number, a string, then another full-precision number, and then another string. Thereby —

is perfectly valid for this record, but —

does not work at all.

MS-44

Getting Started

By way of example of the CREATE, ASSIGN, PRINT#, and READ# statements just presented,
the following programs demonstrate how you might use these statements to copy certain files

from tape to disk:

A serial access file containing string variables only, each up to 252 characterslong —

A random access file where each record is a single string and the original file is 100 80-byte

records —

You can also position the file pointer to the beginning of a defined record without actually
doing any I/ O operation. This is done with a READ# statement with the data list omitted. For

example —

has the effect of placing the file pointer for file #1 at the beginning of defined record 10. Later
accesses to the file begin at this point. An application using this capability can be found in the

next section.

Getting Started

Using Serial and Random Access Together

It is entirely possible for you to access a file in one mode and then switch to another mode for
later accesses. For example, here is an application where random access is applied to position

the file pointer in the file, then a logical record is read and printed with serial access —

Rapid Transfer of Arrays

In addition to the above methods of data transfers, all of which are equally valid and approp-
riate for arrays, there is an additional method for the transfer of data stored in arrays to
non-tape mass storage devices. It permits data transfer to occur at direct memory access {(DMA)
rates — i.e., at the maximum speeds permissible by the operating specifications of the
hardware. To help accomplish these speeds, the device buffer is ignored in the transfer and

data is transmitted directly between the device and the memory.

Such transfers are only possible with arrays transferring to and from a special data file called the
Binary Data file (called BDAT in the directory listings). This file must be created before it can be

used. The statement needed to create it is —

file specifier , number of physical records

where number of physical records is a numeric expression for the number of physical records
desired in the file. Note that there can only be physical records, and no defined-record size

parameter is present. It is a feature which permits the statement to work as fast as it does.

MS-46 Getting Started

To calculate the number of physical records needed in the file, the following formulae are used:

e For string arrays —

INT(array length /256) + INT(array length /65536) + 3

where array length=number of elements X (bytes per element + 2) when the bytes
per element is the dimensioned length of each element (not the current string length
of the individual elements). Add one additional byte per element if the dimensioned
length is odd.

e For numeric arrays,

INT(array length /256) + INT(array length/65536) + 3

where array length = number of elements X k with:

k=2 if an integer array
k=4 if a short-precision array

k=8 if a full-precision array

Don’t forget in such calculations to take into account the OPTION BASE you are currently

using when counting the number of elements.

The first record of the file is an ‘‘overhead’ used to store information needed by the system.
The maximum useful size of BDAT files is 257 physical records. The minimum size is 2.
Individual arrays may be written to, or read from, a Binary Data file. Only entire arrays can be
written or read. No simple variables, or constants, are allowed in the reads and prints to such a

file, and only one array may be read or written to a file.

To write an array to such a file, the statement to vse is —

file specifier , array identifier

and to read such an array the statementis —

file specifier , array identifier

Getting Started MS-47

file specifier is the file specifier for the BDAT file being used. You do not *‘assign’ BDAT files
to a file number as you do usual data files. The array identifier assures that you are writing or
reading only an entire array. Individual elements are not allowed. The array being used must be
of the same data type (integer, full-precision, short-precision, or string) as the original array

written to the file.

When storing an array with FPRINT, the current dimensions of the array are stored along with
the data. When reading the data back with FREAD, the array being used to receive the data
must have the same number of dimensions (e.g., a two-dimensional, a three-dimensional,
etc.), but not necessarily the same number of elements in each dimension as the original array
used in FPRINT. Upon reading the data, the receiving array is re-dimensioned to the current
dimensions of the original array. It is important, then, that the receiving array be large enough
in number of elements, as well as the number of dimensions, to allow the re-dimensioning to

take place. See the example for a demonstration of this effect.

String arrays are also re-dimensioned with FREAD as above, but the string length of each
element must be identical to the original used in the FPRINT. Thus, if you FPRINT a string array
where the elements are dimensioned to 80 characters, then you must FREAD the array into a

string array which has elements dimensioned to 80 characters.

Since both FPRINT and FREAD make a reference to the file each time they are executed, the
file pointer with such statements always begins with the first record in the file. Consequently,
you are only able to read and write a single array to a BDAT file. Subsequent FPRINTSs, for

example, to the same file simply writes over the data which was there previously.

Speed improvements (as much as 25:1) over the ordinary PRINT# and READ # statements are
dependent upon the type of mass storage device being used. This technique cannot be used
with the internal tape cartridges (T14 and T15).

Since the object of an FPRINT is rapid transfer, data are not verified via the CHECK READ
which may be in general effect (see page 40). The execution of an FPRINT should not affect the

verification for subsequent executions of PRINT# statements.

MS-48 Getting Started

Here is an example of the use of all three statements —

[f you are printing or reading arrays to a protected BDAT file, then you must include a protect

code (see “‘Protecting a File™’).

FPRINT and FREAD are always performed in the SERIAL (non-overlapped) processing mode,
regardless of whether overlapped processing is currently in effect. Overlapped processing for
other statements is not affected by the presence of FPRINT or FREAD statements.

BDAT files created by System 35A /B or Systern 45A may be FREAD by a System 45B / C, but
they may not be FPRINTed.

Previewing a Data Item

One requirement for any READ#, be it serial or random, is that the data types of stored data
and the variables into which they are being read correspond. On some occasions, you may not
know in advance what the data type of an item is. In such cases, you should find out the data

type before doing the READ# and then select the variable, or variables, accordingly.

This situation can be met with the TYP function, which is a numeric function that tests a data
type of an item without moving the file pointer from that item. Hence, it is possible to use the
TYP function to determine the data type of an item, and then immediately do a READ # to get

the item itself.

Getting Started MS-49

The function has the form —

“file number :

where file number is a numeric expression. The absolute value of this expression is the

number assigned to the file being read, and must be in the range 1 through 10.

If file number is positive, then the function causes the file pointer to remain set to the next data
item in the file ignoring all EORs. [t returns the type of this next item, and this is the datum

which is read upon the next serial READ #,

If file number is negative, then the function allows the file pointer to remain where it is but it
returns the type of the item, even if it is an EOR (type 4). If the type returned is an EOR (4) and
then a serial READ# is attempted, be wary that the next data item to be read is not an EOR,
but is the next datum following the EOR.

The following values correspond to the data types —

Value Data Type

Error — ROM missing or file pointer lost
Full-precision number

String

End-of-file mark
End-of-record mark

Integer

Short-precision number
(unused)

Partial string — beginning part
Partial string — middle part
Partial string — last part

SVXNOURWN R~ O

The TYP function is a numeric function returning a numeric result. Therefore, it can be used in
numeric expressions the same as may any other numeric function. It is an unusual function,
though, in that it requires an access to the [/ O system. If you do use it in an expression, and
should something go wrong in its attempt to get a value (say, the file was inadvertently not

assigned), then you get an error causing the entire numeric expression to abort.

Since the TYP function requires an access to the [/ O system, it cannot be used in output
statements, such as PRINT# or MAT PRINT#. This is to prevent a possible ‘‘deadlock’ situa-
tion where the system would be trying to read (to fulfill the TYP) and write (to fulfill the
PRINT#) at the same time.

MS-50

Getting Started

As an example of the use of the TYP function, suppose you have a serial-access file (assigned to
#1), which was written as logical records, each beginning with an integer data item. Suppose
further that this item is the only integer in each record and the records otherwise are composed
of any number of types of data items. The following program sequence would position the file

pointer at the tenth logical record —

rev:4/81

Getting Started MS-51

User-Controlled End-of-File

Upon the creation of any data file, every defined record has an EOF mark placed into it at the
beginning of the record. These marks are written over as you print to the defined records. Thus,
when you are using a file for the first time, after you complete your serial print statements, there
is always at least one EOF mark following your data to indicate the file is complete, until you

actually fill the entire file with data.

However, if you are re-using a file (one that has been previously written to in either a serial or
random fashion) then where you finish printing your data, there may be some “‘old” data
remaining and no EOF. This could cause difficulties with future uses of the file — trying to

determine where the new data leaves off and the old data begins.

To overcome this difficulty, the END data-type was established. By placing the word “END”
following the data list in a PRINT# statement (or all by itself), you will write a single EOF mark
to the file at this point in the file, writing over the EOR mark which is usually written by the
CREATE statement, and thus you can use it to detect the end of your data with ON END

statements.

Use of the END data type might look like this —

or, it might be all alone —

In the first instance, the END must be the last item, following all other data items in the list.

There can be more than one EOF mark in a file, but there cannot be more than one EOF mark in
each logical record. This allows random access to create and detect records with less data than

the maximum allowable for each logical record.

rev:4/81

MS-52 Getting Started

Notes

Chapter

Storage Management

ON END — used to branch the program when an End-of-file is encountered.
OFF END - disables the ON END statement.

COPY — copies a file to a mass storage medium.

PURGE - removes the file from the mass storage device.

PROTECT - adds a password to the file name.

RENAME - changes a file name.

MS-54 Storage Management

This chapter deals with the efficient utilization of the storage capacity of your mass storage
media. The creation, elimination, compaction, and selection of files is discussed along with
considerations involving the choice of random and serial access modes for a particular applica-

tion.

Fundamentals

Storage management involves the usage of certain techniques and tools to control the waste
and overhead involved with the storage and retrieval of data in mass storage. Most of the ideas
here can be used in many of the applications discussed in later chapters. None of the applica-
tions, as will be seen, are mutually exclusive of the others, and you may use them in combina-

tion to custom-tailor your mass storage program to a particular need.

Selecting Record Size

You have already been introduced to one statement which can be used in Storage Management
— the CREATE statement (pages 35-36). In it, you select a size for a file and define the size of
the records in it. The actual size of a defined record which you select should be one which
meets the needs of your application. If you are going to use a file as the target of serial access
prints and reads, then the size of the defined record is not important. For that reason, it is best
to let the record size default (by omitting the record size option from the statement). This
maximizes the efficiency of the system’s mass storage routines. However, while the defined-
record size may not be so important in such cases, the file size is. It is necessary that your file be
large enough to hold the data you are writing to it in toto (plus any bytes which may have been

wasted in the records).

When you are planning your record, you may also consider the size of the individual items
going into them. Occasionally it is possible to save storage by selecting a different data type.
For example, if you are storing 1 000 full-precision numbers, it will take 8 000 bytes of storage.
But if you know in advance that the actual values are whole numbers within range of the
INTEGER data type, then you could reasonably change the type to INTEGER and the total

storage requirement would be cut in half to 4 000 bytes.

Storage Management

Overflowing Files

If a file size is selected that is too small to handle all of your data, you must create another file to
handle the overflow. Then you have to use a method of switching from the full file to the new
one. For example, here is one method which utilizes ‘‘naming conventions’ for files to ac-

complish this purpose for a particular file —

In this example, a file called “DATA1" is initially created and then printed serially by repeti-
tions of statement 500. Finally, should the file become full, the ON END causes ‘‘Newfile’’ to be
performed which creates a file called “DATAZ2", assigns it to #1, and prints the information to
it instead of to the first file. This continues until the program is finished, creating files each time
the previous one is filled. Upon completion, there is stored on device ‘:F’" (the flexible disk
drive), one or more files called “‘DATA....”" After the program is finished a CAT “DATA:F”

reveals the directory data on the files created.

MS-55

MS-56 Storage Management

The ON END statement that is used here is one of the tools of both storage management and
mass storage processing in general. It is used to indicate an action to be taken whenever an
end-of-file (EOF) condition is encountered during record I/ O on the file number indicated, or
an end-of-record (EOR) condition is encountered during random access record [/0. The

statement may take any of three forms —

file number ¢ subprogram name

file number ! line identifier

file number : line identifier

line identifier may be a line number in the program, or a label.

subprogram name is the name of a currently existing subprogram.

ON END statements are executable statements. There may be any number of ON END state-
ments in a program. Some may be for different file numbers; some may be for the same file
number. Should an EOF (or an EOR in random access) be encountered on such a file, the
action taken will be that indicated by the last ON END statement executed for that file number.
Executing an ON END statement overrides a previous ON END for the same file number; it also
cancels OVERLAP for that file (see ‘‘Overlapped I/O in Chapter 4°’).

In production applications, where efficient performance is desirable, the OVERLAP-cancelling
effect of ON END can be detrimental. To avoid a loss of efficiency in such cases, it is better to
avoid the ON END statement and use programming methods which enable you to keep track of
where you are in the data (and in the file). Record-counting (or data item-counting) is among

the best of such methods.

You can turn off this END-testing condition with the OFF END statement. It has the form —

file number

Until an ON END declaration is overridden with another one for the same file number, or an
OFF END is executed for that file number, it remains in effect — thus it only needs to be

executed once.

Copying Files

Sometimes there is a need for an exact duplicate of a file. This often occurs when you might
need (or want) a backup for a critical file, or to transfer a file from one medium to another. The

statement to use for this purpose is —

source-file specifier 7{} destination-file specifier

Storage Management

Execution of this statement creates the destination file (so there must not already be a file with
this name on the destination medium) and copies the records of the first file to the newly-
created one. After the copy is complete, the second file is identical to the first — same file type,

record size, number of records, and contents. Both files then exist; the old one is not purged.

Any kind of file may be copied with this statement, not just those of the DATA-type. See also
“Protecting a File” (page 59) when copying a file which has a protect code.

Purging Files
Occasionally it is desirable to remove a file from the mass storage medium. Obsolete files,
temporary backup files, and erroneous data files are some of the types of files that can ‘“‘col-

lect”” on a medium, cluttering the directory and wasting useful storage space. To get rid of the

unwanted ones, the statement to use is —

file specifier

and the file is permanently removed from the directory.

As an example of the utility of the COPY and PURGE statements, the following catalog of a

tape shows a rather full storage medium —

MS-57

MS-58 Storage Management

While quite a few gaps exist, amounting to considerable storage space on the entire tape, there
is not enough contiguous space on the tape to be able to add another file 100 records long (256

bytes each). To add such a file, there is a need for 100 records in one location on the tape.

Since that doesn’t exist, the tape should be “‘repacked’ —

This example relies upon a naming convention {i.e., DATA...) for the files. Successively, start-
ing with the first file on the tape, each file is read, temporarily stored on another device, and
then purged. This frees up the space it previously occupied, along with any ““gaps” in storage
available before or after where it was stored. Since each file is stored at the first available spot
where it can fit, the files are written one immediately following the other. Progressively, then,
the gaps between files collect together so that, by the end, all the available storage area is at the

end of the tape — and all in one spot.

In this example, this would mean that there will be sufficient room to write the new 100-record

file. The re-organized catalog would look like —

Storage Management

Special Operations

Protecting a File

The purging capability is a strong one. An inadvertent use of the PURGE statement can be

disastrous under some circumstances, since purging a file is permanent and the file is irretrieva-
ble.

If you do not have backup files for your critical data, accidental erasure can lose that data
permanently. Backup files, of course, are one solution, but they double your storage require-
ments. Whether or not you employ backup files, there are additional methods to protect a file

which you do not want accidentally purged.

One method is to “‘protect” it with a protect code. This code, which is similar to a password,
enables you to establish write-protection to an individual file without having to protect the

entire medium. To assign a protect code to a file, use the statement —

file specifier , protect code

protect code is any string expression containing any character except the quote-mark and the
blank. It may have any length, except O (i.e., it can’t be a null-string'), but only the first six
characters will actually be saved as the code. For tape cartridges, the directory does not retain
the protect code itself, and only notes the fact that you have protected the file. For all other

mass storage devices, the protect code itself is kept with the file description in the directory.

To purge a protected file, it is necessary to add its protect code to the PURGE statement. This is
the same protect code which was used in the PROTECT statement for the file (except with tape
cartridges, where any protect code will do). Thus the PURGE statement for a protected file

must be —

file specifier , protect code

A protected file is also protected against all potential attempts to write-access the file without
the protect code. Thus, PRINT# statements to the file do not work unless the ASSIGN to the
file has been made with the proper protect code (see page 36). However, a GET statement, all

other things being equal, is permitted, since it only reads the file.

' A null-string will be interpreted as ‘‘no protection’”.

MS-59

MS-60 Storage Management

It is also necessary to add a protect code when attempting to copy a protected file. The COPY

statement would then look like —

source-file specifier 7¢} destination-file specifier . protect code

The new file created by the COPY has the same protect code as the old file.

If you are copying a file from a tape unit to a non-tape unit, you may inadvertently create a
protect code for the new file. While a protected file on a tape can be copied using any protect
code in the COPY statement, the new file is protected with the protect code which you used in
the COPY. Be certain, in such instances, that you make note of the protect code or you will not

be able to access the new file in the future. For example, with —

PROTECT “Employ:T15", “Pay”
COPY “Employ:T15" TO “Empbak:F8" “Temp”

the file “Employ” on T15 can be accessed with any protect code (the COPY was an example),

but the ““Empbak’ file on F8 can only be accessed with the protect code “Temp”’.

If you have protected a BDAT file, then all FPRINT and FREAD statements must have a protect

code included. The statements in this case would appear as —

file specifier . protectcode . array identiier

file specifier , protect code . array identifier

Renaming Files
Should you want only to change the name of a file as it is kept in the directory, the statement to
use is —

old-file specifier i

new-file name [. protect code]

old-file specifier is a file specifier, but new-file name is a file name only. The protect code, of
course is a string expression for the proper protect code for the file. The protect code does not
add protection to a file if it does not already have it; it merely allows you to access the file for

renaming if it is protected.

Execution from the Keyboard

The COPY, PURGE, PROTECT, and RENAME statements may all be executed from the
keyboard.

Chapter

Data Transfers

Page 67 BUFFER — allocates a buffer for an assigned file.
Page 74 OVERLAP - allows simultaneous I/ O and processing.
Page 75 SERIAL — disables simultaneous I/ O and processing.

Device Buffers Summary

Maximum Buffer Size 256 bytes
Maximum Number of Buffers 4 (one per each select code)

Special Considerations

o Data transfer can only be through the buffer.

o Currently unused buffers are de-allocated when storage space is needed for other system
requirements.

e Flushing of the buffer occurs whenever —

Buffer is full (on a PRINT #)
Buffer is empty (on a READ#)
Access is made to a different file on the same device
Access is made to a different device on the same select code
READ # follows a PRINT #
PRINT # follows a READ#
e PRINT # to a file with CHECK READ
Program executes a STOP, END or PAUSE
Keyboard execution of PAUSE or STOP
Buffer has been de-allocated for storage reasons

MS-62 Data Transfers

Along with the capabilities that mass storage gives you, there is the problem of how to make
data operations as efficient and reliable as possible. Associated with this is finding ways to
improve the overall reliability and security of your data base, and finding efficient methods for

passing data from one program to another.

Among the techniques available to you on your computer are: buffering; using arrays, backup

files, and consistent formatting; and employing the overlapped processing capability.

Buffering

Device Buffering

Doing many PRINT# and READ # operations to mass storage can cause the speed of program

execution to slow noticeably.

To minimize the impact of mass storage operations on processing speed, the concept of device
“buffering” is employed by your computer. For every mass storage select code used by a
program, there is a 256-byte buffer used in I/ O operations to a device on that select code. If
there is more than one device on a select code, then they all share the same buffer. Use of these
buffers reduces the number of physical accesses necessary to transfer information between a
mass storage device and memory. This in turn reduces the time spent by an executing program

waiting for an [/ O operation to a file to be completed.

The following example demonstrates the capability —

Each time the PRINT# statement in the above is executed, the value contained in A(I) is written
to the buffer for the device, and not directly to the device itself. Since A(I) is a full-precision
number, eight bytes are written to this buffer each time PRINT# is executed. After 32 iterations
all 256 bytes of the buffer are filled. Then the entire contents of the buffer are physically written
to the device, the bufferis erased, and it starts to fill all over again. This is called ‘‘flushing’’ the
buffer. Each time the buffer fills, it automatically flushes to the device. Thus, instead of making
32 physical accesses to the file in this case, the program needs to make only one — a significant

saving.

Data Transfers MS-63

Buffer flushing also occurs whenever a STOP or END statement is encountered, and whenever
PAUSE or STOP is entered from the keyboard. The buffer for a particular file is also flushed

whenever access is made to —
e a different physical record within the same file;
e a different file on the same device;

e a different device on the same select code.

In addition to a savings in execution time with the use of buffers, there is also a reduction in

wear of the medium when used with tapes and flexible disks.

With a READ# operation, the effect is similar. A full buffer’'s worth of information is read into
the device buffer first, then successive read statements take information from the buffer instead
of directly from the device itself. When the information in the buffer is exhausted and more
READ# statements are executed, another 256 bytes are physically read into the buffer and

information is then taken from the newly-buffered data.

The device buffers are an integral part of the I/ O system of your system. Each mass storage
device accesses data through its buffer. If you are both reading and writing files to the same
device in the same program, the buffer advantages could be lost, depending upon how you

organize the program’s mass storage operations. For example, a program segment such as —
prog

has a vastly improved execution performance if the statements are reorganized so that accessis

made to only one file at a time —

MS-64 Data Transfers

Since READ# operations use the device buffer in a different way than do PRINT# operations,
the buffer for the device containing “‘DATA” and “NEW” must be flushed whenever there is a
change from reading to printing, and vice versa. Also, since there is reading from one file and

writing to another, there are different parts of the medium to be accessed.

Therefore, in the first program segment, the buffer is flushed each time there is a PRINT#2
followinga READ#1 — which is every time the loop is executed. Also, the buffer is flushed each
time there is a READ#1 following a PRINT#2 — again, every time the loop is executed. Thus

the value of having a buffer is lost.

Alternatively, in the second program segment, all of the reads (and accesses) to file#1 take
place together — allowing a full utilization of the buffering capability. After all the reads are

done, then all the prints take place to file#2, and again it takes full advantage of the device
buffer.

In addition, the first program segment requires considerable motion on the part of the mass
storage device as it continually has to reposition itself between the two files. If the files are
physically far apart, there could be considerable time spent just moving from one part of the
medium to another. The second program segment minimizes this difficulty by causing all
accesses to each file to be performed one after another, rather than alternating between the

files. The result, in this instance, is that the system repositions the medium only once.

Overriding the Device Buffer

The presence of a buffer on every device is highly valuable in applications where a great deal of
reading and writing is being done to mass storage devices. However, when a program is more
“‘compute-bound” than “I/0 bound’” and only occasionally writes a value out to a mass

storage device, the buffering capability can have a pitfall.

In cases of power failure, device malfunction, etc., data which has been accumulating in a
buffer may be lost, though they theoretically have been ‘‘written’’ to the device. At most, only
256 bytes could be so jeopardized per device, but in some applications, the risk may not be an
acceptable one. For example, in a data acquisition application, data being recorded every 30
minutes might take up to 16 hours to fill a buffer. The risk of something going wrong and losing
all of the data during a long period of time is proportional to the time that the data is being held
in the buffer. In such applications it may be best to force what is called an ‘‘immediate-write’’

on a file.

Data Transfers M$-65

An immediate-write for a file flushes the buffer on its mass storage device after every PRINT #
operation. This capability is a consequence of a CHECK READ being in effect for the file (see
pages 40-41).

Thus, to override the internal buffering on a device, use the CHECK READ statement for the

file concerned to force an immediate-write after every PRINT#.

There is no need to override the buffering with regards to READ# operations.

Device Buffer Memory Requirements

Buffers come out of the system’s own memory space. The system has room for four buffers and

for each buffer employed there are 256 bytes of memory allocated to it.

Buffers are allocated by your computer’s operating system to select codes as the devices are
needed. If there is no further room for a buffer in available system memory because of other
system needs, then the system will flush and de-allocate a buffer not currently in use. It
determines this by ascertaining whether or not a PRINT# or READ# is currently active for the

device.

If there are more select codes active than there are available buffer areas, then a buffer is
re-allocated each time reference is made to a device on a select code without an active buffer.
Since this kind of juggling can affect program performance in the OVERLAP mode (see “‘Over-
lapped I/0”’, in this chapter), if you have more than four select codes active at one time, then
you would be wise to arrange the execution of your I/O statements to minimize the switching of
execution between files on different select codes. Try instead to execute as many 1/O opera-

tions as possible to a given file before switching operations to another.

Removing the Media

Removing a tape cartridge or disk before an open file has been closed can cause some data to
be lost. This is because the device buffer may not have been flushed. To avoid this cir-
cumstance, a medium with open file should remain undisturbed in the device until one of the

following occurs —

o The open files are explicitly closed with ASSIGN * statements.
e A STOP statement is executed.
o An END statement is executed.

o A PAUSE statement is executed.

MS-66 Data Transfers

Device Buffers Summary

Data Transfers MS-67

Additional Buffering

As a user, you have little control over the device buffers. There are many imaginable cir-
cumstances where the suggested kind of efficient program modification is not possible. For

example, a program segment such as —

is not amenable to rearrangement as was the example on page 63, at least not without using
significant additional memory space. Thus, it might not be reasonable even to try to do so. But
if you still want to gain the advantages of buffering, you can get them by employing the
BUFFER statement.

The BUFFER statement sets up an additional [/ O buffer associated with a file number and not
with the device the file happens to be on. It works in a similar fashion to the device buffer, but it
is not subject to some of the same limitations as is the device buffer. Primarily, it is not flushed

when operations take place to other files on the same device.

When you allocate a file buffer to an assigned file, with the following statement —

file number

you set up a separate 256-byte buffer for all READ# and PRINT# operations to that file
number. It acts, in this regard, the same for the file as the device buffer does for the device.
When it becomes full, and is ready to be flushed, it flushes to the device, only then causing the
device to take notice that READ# and PRINT# operations to its files have been going on.
Hence, you can be reading and printing to many different files, but you involve the device only

when a file buffer is flushed.

If the following two statements are added to the example above —

you achieve the same kind of savings you would expect to achieve if the device buffers could

have been used effectively.

MS-68 Data Transfers

A file buffer is flushed whenever its file number is reassigned through an ASSIGN statement
(see pages 36-37). The buffer is flushed before the actual reassignment is made so that buf-

fered information is transferred to the old file and not the new.

Every file which is assigned a file number through an ASSIGN statement may have a buffer
allocated to it through the BUFFER statement. The space required in memory to create these
buffers (256 bytes for the buffer plus a 13-byte overhead) is taken from your usable memory.
Thus, if you have an application which is tight on usable memory, you may want to be selective

on the use of buffers.

As with the device buffer, a file buffer is flushed if a PAUSE, STOP, or END statement is

executed (from a program), or if PAUSE is entered from the keyboard.

File buffering is only really effective when such buffers are established for every file on a

particular device.

Conflict Between CHECK READ and BUFFER
The individual missions of the CHECK READ and BUFFER statements are in conflict over the

role of “‘immediate-write”’.

If CHECK READ isin effect for a file, one of its effects is supposed to be to force an immediate
device buffer flush after every PRINT#. But if BUFFER is also in effect for a file, the intent is
that device buffer flushing be suppressed until a file buffer is filled. To reconcile this conflict, the
BUFFER statement is presumed to predominate over the CHECK READ. If a BUFFER state-
ment for a particular file is in effect, a CHECK READ to that file still performs its ‘‘read-after-
write’” function, but only after the file buffer has been filled and is flushed. It does not flush the

device buffer immediately as it would if the BUFFER statement were not in effect.

Using Arrays as Buffers

Still another way to get a “‘buffering’ effect is through the use of arrays. By reading or printing
arrays as a unit rather than as individual elements, you get the maximum utilization of your

device buffers, without the need of a file buffer.

The PRINT# and READ# statements using an array identifier (see the BASIC Programming
Manual), or MAT PRINT#, can be used to transfer data in an array. For example, with an array

of 1,000 elements, the following program segment —

Data Transfers

is faster {with or without a BUFFER statement), than is —

and because of the way the language is structured, faster still are the FPRINT and FREAD

statements for non-tape media. For details on these statements, see pages 45-48.

Using an array as a buffer (this only works for data which are all of the same data type), you can
achieve buffers of greater lengths than 256 bytes (which is all that the BUFFER statement will
give you), and you can avoid the conflict between CHECK READ and BUFFER. This approach
permits you to get the immediate-write facility of the CHECK READ, but avoid the cancelling
effect of a BUFFER. You can still get the buffering capability by storing things in an array then

writing the array out all at once. For example —

In this example, you get the immediate-write facility for Z, thus assuring that its values are
physically written to the device. You could have printed each C individually as well, but by
doing so, given there are so many of them, you would slow down the execution speed because
of the CHECK READ. Instead, by storing them in an array and executing just one PRINT#, you
speed up the execution appreciably. Of course, you also get the verifying ‘‘read-after-write”
effect for both PRINT# statements.

MS-69

MS-70 Data Transfers

Advanced Techniques

Passing Data Between Programs

With the advent of modularized and structured programming, the use of mass storage as a
medium for passing data between modules and programs is increasing. Also, as data base
management increases in popularity and necessity, this use as a data-passer should increase. In

all such applications, the by-words are ‘‘consistent formatting’’.

When passing data between programs, it is necessary that the program which prints the data,

and the program which reads the data agree on three things —
e Data type of each data item.
o Number of data items per logical record.

e Application, or ‘‘meaning’’, of each data item.

Data transfers between programs rely primarily upon the system design that calls for them.
Hence, consistent system designs, thorough program and system documentation, and well-
checked programs (modules), are the best tools for reliably passing data. There are any number
of particular implementations, however, which can ease the difficulty of achieving a consistent

format for passed data —
1. Use the TYP function (pages 48-49) to assure that items are of the proper data type.

2. Use random access mode whenever feasible. This permits you to better control your position
within your data. When using serial files, also use the TYP function to ensure that you start
reading a logical record from its beginning. Make your logical records and defined records the

same length.

3. Use mnemonic variable names and, if at all possible, make them consistent from module to
module. When you print something to a file, you only print the data and not the variable name
where the data was being held, so you may print something using one variable name and read it

with another variable name.

It is most wise during any attempt at consistent formatting that each data type exactly corres-
pond between variable and datum being read. This is strictly true when strings are involved. It
is not possible to read a string datum into a non-string (i.e., numeric) variable. Similarly, it is
not possible to read a numeric value into a string variable. Thus, you must be constantly aware

whether a string or non-string is involved in your 1/ O operation or else an error may occur.

rev:4/81

Data Transfers

While it is advisable that the data types correspond among the numeric data types as well (full,
short, and integer), it is not as strictly necessary that there be a correspondence between the
variable types and the data. In the numeric case only, a difference in data type between datum
and variable causes the data to be converted to the type of the variable. This can alleviate some
of the headaches involved in consistent formatting, but by no means all. You will have to watch
out for potential “‘overflows™ and “‘underflows’ in the data, and the potential loss of precision

due to truncation.

For example, trying to store either of the following numbers —

5.555E-70
3.143 E85

into a short-precision variable causes an underflow and overflow respectively as the system

tries to convert them to the proper storage representation.

In a READ# statement, conversion of a data item which is a full-or a short-precision value into
an integer variable involves truncation of the non-integer portion of the value. This is different
from the usual assignment (LET) operations. Whereas the assignment of the value 1.8 to an

integer-type variable, such as —
Integer=1.8

would result in 2 being stored, the reading of the value 1.8 into an integer-type variable, such

as —
READ#1;Integer

would result in the value 1 actually being stored.

The same kind of truncation occurs in the low-order digits in the conversion of a full-precision

data item into a short-precision variable.

As a demonstration of data passing, suppose you had an order-generating program, which said

in part —

MS-71

MS-72 Data Transfers

then you could use the file created by this program in another shipping program which says in

part —

Backup Files

It is extremely important to have backup copies of the programs and data files which are on your
disks. If read data errors should occur on one of your disks (or if a hardware failure should
occur), information can be lost. Therefore, a duplicate copy of each of your files decreases the

chances of your data becoming permanently lost.

Your backup files should always be on a different medium, so if anything happens to one
medium you still have the other to use. If you have only one disk drive and the disk is removable,
you can create a backup using the program below. The procedure is quite time-consuming,
however. If you have large amounts of valuable information that should be backed up frequently,

the use of a second disk drive is strongly recommended.

Backups are easy to create through the COPY statement (see page 56 for details). If you are
trying to copy a different medium of the same type, but have only one drive of that type, you
may have to use two COPY statements — one to an intermediate file on the tape cartridge unit
(provided the file isn’t too large for it to hold), and another to copy the intermediate file back to
the original drive after you've switched media. For example, the following creates a copy in

such a fashion using a single flexible disk drive —

Don’t forget, in such an application, to purge the temporary file to avoid cluttering up your

media with unneeded copies.

rev:4/81

Data Transfers MS-73

There are two methods for backing up your data: selective backup and media backup. Selective
backup involves copying only a portion of your files, since some files may be more valuable to
you than others. Copying all of the files from your disk to another medium is called media
backup. Whether you do selective or media backup, you should do it periodically (depending on
the value of your data), and especially after making changes to your data.

Some media may be more suitable for backing up your particular disk. The following table shows

which media are appropriate (*) and most appropriate (**) for media backup.

BACKUP MEDIA
M-byte | inter- 7905 7906 7908 7970E
ORIGINAL | storage nal 9885 9895 rmvbl rmvbl cart. 7910 7920 7925 Opt. 826
MEDIA capacity | tape disk disk disk disk tape disk disk disk mag. tape
internal tape 0.2 *x * * * * * * * *
9895 disk 1.2 * ok * * * * * *
7905 fixed disk 5 ok * * * * *k
7906 fixed disk 10 o * * * o
7908 disk 16 ok
7910 disk 12 * i * * * ok
7911 disk| 28.1 ok
7912 disk| 65.8 **
7920 disk 50 o * ok
7925 diskl 120 o o

The appropriate backup media for the HP 7908 is the built-in cartridge tape. With extra effort
you may also backup a 7908 disk to a 7920 disk, a 7925 disk or the HP 7970E (Opt. 826)

magnetic tape.

For selective (single file) backup, any medium is appropriate as long as it is large enough for the

file you want to copy. You should use the COPY statement for this type of backup.

HP’s Hard Disc Utilities Package is available to facilitate media or selective backup from one disk
drive to another of the same type. If you want to back up a disk {all unprotected files) to another

type of media, use the following program:

09845-93070, rev: 3/82

MS-74 Data Transfers

10 { Use this program for media backup between like or unlike devices. It
20 ! copies all unprotected files from your original media in groups of five.
30 !

40 Original _msus$=":"

S0 Backup _msuss=":"

60 !

70 !

80 EDIT "What is the msus for your original disc or tape?",Original_msuss

?0 MASS STORAGE IS Original _msus$
100 EDIT "What is the msvus for your backup disc or tape?",Backup_msus$
!

110 !

120 OPTION RASE {4

130 DIM Catalog$(5)[(80] IDivension Catalog$ to hold five
140 | entries of a cataleg listing.

150 Ret_var=0

160 [

170 Copy_loop: Next_file=Ret_var IRet_var identifies next file entry
180 ! in catalog listing.

190 CAT TO Catalog$(Xx),Next_file,Ret_var tCatalog$ contains five entries of
200 ! catalog listing.

210 FOR I=f TO S 1Copy files in groups of five.

220 IF Cataloge$(I)="" THEN Check 11f there are no more files ta

230 ! copy, then check Ret_var.

240 IF Catalogs(I){8;1)="%" THEN GOTO Next_entry !Protected files are not
250 ! copied.

260 COPY Catalog$<Id[i;6] TO Catalog$(I){1;61&Backup_msuss 1Copy one file.
270 !

280 Next_entry: NEXT I

296 !

300 Check: IF Ret_var<{>0 THEN Copy_loop twhen Ret_var=0, there are no more
340 ! filas to copy.

320 DISP "Backup is complete.”

330 STOP

340 END
Overlapped 1/0

Another way to speed up the throughput of your programs is to take advantage of the

overlapped-processing capability of your computer.

It is quite possible for your computer to be working on transferring data even as it is busy

calculating and making decisions.

In the following program —

the normal execution sequence (called the ‘‘serial”’ mode), is to calculate A, then B, then C,
and then print all three and loop back and do it all again. But in an ‘‘overlapped’ mode, the
three calculations are done and the results turned over for outputting. Then, even while your
computer outputs these values, it goes back and does the next three calculations, and so on. So

actually, your computer is doing two things at once.
rev:4/81

Data Transfers

This feature can be used to advantage in mass storage applications by placing as many non-
[/ O statements between your PRINT# and READ# statements as the logic of your program
will permit. In general, a greater separation between I/ O statements maximizes the value of

this feature.

You may enable this characteristic by executing the statement —

from either the keyboard or a program. To go back to the normal mode of doing things, the

statement —

should be used. OVERLAP can also be cancelled by SCRATCH A and reset. SERIAL is the

power-on mode.

Another situation also disables the OVERLAP mode. If an ON END statement is in effect,
OVERLAP necessarily is disabled for that file. This effect occurs because of the intended
purpose of the ON END statement. The ON END assumes that some branch — and alternate
execution sequence — takes place when the END condition is encountered on a file. If you are
in the overlapped mode, however, other statements than are intended might be executed
before the end condition is recognized. Thus, enabling an ON END partially cancels the effect
of an OVERLAP. After executing an OFF END for a file, you automatically go back to overlap-
ped processing. For a discussion of the effects on programming methods, see “Overflowing
Files”” in Chapter 3 (page 55).

The ASSIGN, FPRINT, and FREAD statement are always executed in a non-overlapped (SE-
RIAL) mode, regardless of the OVERLAP status. The OVERLAP mode also cancels any ON
ERROR trapping for CHECK READ.

MS-75

MS-76 Data Transfers

Notes

Page 78
Page 78
Page 78
Page 79

Page 79

Page 80
Page 83
Page 83
Page 84
Page 84
Page 84
Page 84

Chapter
Non-Data Files

STORE - records a semi-compiled program and binary program(s) from R/W
memory the first time the file name is used.

RE-STORE - replaces a semi-compiled program and binary program(s) from
R/W memory with another version having the same file name.

LOAD - enters the semi-compiled program and binary program(s) into R/W
memory.

SAVE - records the source code program from R/ W memory the first time a file
name is used.

RE-SAVE - replaces the source code program from R/W memory with another
version having the same file name.

GET — enters the source code program into R/W memory.

STORE KEY - records the SFK definitions into a special file.

LOAD KEY - enters the SFK definitions from a special file.

LOAD BIN - enters the binary program(s) from a file.

STORE BIN - records the binary program(s) into a file.

STORE ALL records a memory snapshot into a file.

LOAD ALL - enters the memory snapshot from a file.

Most mass storage operations focus upon data files. However, there are five other types of files

available for your use. They each have particular attributes which make them useful in certain

applications.

rev:4/81

MS-78 Non-Data Files

Normal Usages

Storing Programs

Obviously one of the primary uses of mass storage is to store programs, as well as data. It does
you little good to be writing general application programs if you have to enter them from the

keyboard every time you want to use them.

There are three ways to store a program on mass storage — store it in its quasi-compiled form,

save it in its source-code form, or create it by another program.

To store a program in its quasi-compiled form, it is first necessary to have the program in

memory. Then the statement —

file specifier

will take the program along with all binary routines in memory (i.e., the compiled version), plus
all of the necessary symbol tables, and store the lot of it in the file specified. This statement is

best used from the keyboard, but can be executed from a program as well.

If you want to replace a version which already exists on the medium with the same name, then

the statement to use is —

- file specifier[+protect code]
A file used in the STORE or RE-STORE commands is known as a “PROGRAM-type’” file.

To get back from storage a program which has been stored by a STORE or RE-STORE state-

ment, the statement to use is

i file specifier *

This statement will load the file into memory, and it is then available for your use as would be

the same program entered from the keyboard.

NOTE
A program which includes enhanced or color graphics
keywords and has been STOREd on a 9845B Model ZXX or a
9845C cannot be LOADed on a 9845B Model 1XX.

If you want to immediately execute a program after loading it, you can either use the LOAD
statement as above and then press the key after it is loaded, or.you may add an execution

line as a parameter to the LOAD statement, such as —

ile specifier , execution-line identifier

* | OAD should not be executed when TOPEN is active. Refer to the /O ROM Manual for information about TOPEN.
rev:.4/81

Non-Data Files

The execution-line identifier is a line identifier for where you want the program to begin
executing. Normally, this line would be the first line in the program, but there is no requirement

that this be chosen. You may want to start it somewhere else.

When a program is loaded, it destroys the previous program, variables and binary programs
stored in the memory (except for variables stored in common — COM) and replaces them with

the version stored in the indicated file.

Another way to keep a program on mass storage is to save its source-code version. By using the

statement —

file specifier

you take the current program (which is stored in memory in quasi-compiled form) and
reverse-compile it into strings, one for each line of code — the same as if you were listing the
program. Then these strings are stored, in order, in the file indicated (in serial fashion) into a
DATA-type file. You can use this file as a data file if you want. Itis a serial-access file with up to

160-byte strings forming the logical records — one logical record for each program line.

You don’t have to store the entire program if you don’t want to. You can select the lines you

want to save by using one of the following versions of the statement —

file specifier . first-line identifier

tile specifier . first-line identifier , final-line identifier

In the first case, only that part of the program starting with the first-line identifier will be saved.
In the second case, only that part of the program between and including the two lines indicated
will be saved. Final-line identifier must be greater than first-line identifier, if both are pre-
sent. If the line(s) indicated do not exist, the line with the next-highest line number will be used

in each case.

You may also replace a previous version of a program with the same file name on the medium
with the RE-SAVE statement. This statement has the same properties and parameters as the

SAVE statement (except that a protect code may be included when necessary) -

- file specifier [, protect code] [. first-line identifier [, final-line identifier]]

Execution of the RE-SAVE statement first purges the old copy and then saves the new one. If
the new one is larger then the old it is possible to get a ‘‘medium overflow” error (number 64)
when the new copy is attempted. The result of this is that the old copy is gone, but the new copy

is not saved. Another medium must be used in such cases.

MS-79

MS-80 Non-Data Files

The way to get a saved source version of a file from a medium is to execute the statement

file specifier

This statement reads the DATA-type file indicated and compiles the strings (lines) as it finds
them. If any of them (for some reason) do not compile correctly, it makes comment lines out of
them by placing an exclamation point { !) after their line numbers. The program, after this is
finished, is compiled and ready for your use, the same as if it had been entered from the

keyboard.

Unlike LOAD, the GET statement does not necessarily erase all of the program which is already

in memory. Rather, by adding a parameter to the statement —

file specifier . line identifier

it keeps all line numbers which are less than the line identifier in the original program. For

example, if there were a file which started with the following lines —

and you execute a GET on this file with a line identifier of 40, then a program already in the

memory with the lines —

becomes —

The remainder of the program is that from the file. All lines of the original program after line 30

were replaced or deleted by lines in the file program.

This feature accomplishes two purposes. First, it preserves all lines of the program in memory
which have line numbers less than line identifier. All program lines in memory which have line
numbers greater than line identifier are deleted. If line identifier is a label, then this effect uses

the line number of the program line which contains that label.

Non-Data Files

Second, it renumbers the file it retrieves, starting with line identifier and preserving the
line-number spacing between lines. For example, if you GET a file which is numbered 10, 11,
12, 20, and 30, but the line identifier is 50, then the lines will be stored in memory numbered
as b0, 51, 52, 60, and 70. If line identifier is a label, then this effect uses the line number of the

program line previously in memory which contained that label.

If you had executed the GET in the previous example with a line identifier of 50 on the above

file, the result would have been —

You can also select a line at which you might wish to begin execution of the newly-arranged

program by adding still another parameter —

“file specifier , line identifier , execution-line identifier

Immediately upon loading the program, execution of the program will commence with
execution-line identifier. In general, if this parameter is omitted, execution begins with the

line identifier (exact rules can be found on the next page).

Using a GET also causes all values stored in variables to be destroyed, except for those
variables in common (COM statement). If this is an undesirable effect, the LINK command

should be used instead. This statement has the same parameters as the GET —

file specifier , [line identifier [., [execution-line identifier]]

and has the same effects as GET, except that the value of all variables are retained.

This means the GET statement is a way for passing information (via the COM statement)
between the programs. (Using LINK instead of GET will allow information to be passed outside
of common.)} Since the LOAD statement (as with GET) does not reset the value of variables in
common, it is also possible to pass information using the LOAD statement. In fact, using the
LOAD in preference to GET causes significant savings in execution time associated with retriev-
ing the program. Improvements in performance using LOAD over LINK can be as much as 3:1
with tapes, 5:1 with flexible disks, and 14:1 with hard disks, depending upon the relative

transfer rates of the device involved.

MS-81

MS-82 Non-Data Files

Using a GET statement in a program without an execution-line identifier has a different effect
than the same statement executed from the keyboard. When executing such a GET from the
keyboard, after the program is retrieved, control returns to you. But, when executing it from a
program, a GET automatically begins execution. If you specify an execution line, then execu-
tion commences at the line indicated. If you do not specify an execution line, then execution

proceeds according to the following rules —

o If the line identifier is less than or equal to the current line which originally contained the

GET (as stored in memory), then execution proceeds with line identifier. For example —

execution immediately begins with 40 (since it is less than 50) after ‘‘Backup” is retrieved.

e If the line identifier is greater than the current line which originally contained the GET (as
stored in memory), then execution proceeds with the first line of the program which
follows the GET. This next line may be one of the first lines of the retrieved program, or a

line remaining from the original program. For example —

“Backup”’ will be loaded beginning at 100, and then execution continues with line 60.

NOTE
When using whole programs without the need to renumber,
etc., use STORE and LOAD instead of SAVE and GET. The
former commands execute with greater speeds than do the

latter.

A third way to get a program onto mass storage is to create it from a program, create a
DATA-type file, and store the program lines as strings into the file. Such a program can then be

the object of a GET statement as above.

As an example of creating a program, try the following —

rev:4/81

Non-Data Files

This program creates the file and stores in it 100 generated strings which themselves make up
another program. The GET statement will fetch this program. When a GET is executed from a
program, the new program just retrieved is automatically executed, so this program, in the end,
prints 100 random numbers as well as changes the original program to 100 lines of “PRINT
RND™’.

If you use this feature to get and run a number of programs in succession, or to add a number of
subprograms, you should be aware that any errors associated with the GET (such as error 80 or
81, for example), cannot be trapped with an ON ERROR. Thus, this operation can represent a
potential area where your ON ERROR planning will not work.

Storing Key Definitions

If you have a program stored on mass storage which makes use of certain special function key
definitions, you can gain better control over your user’s operating environment by storing the
special function key definitions (not to be confused with the ON KEY declarations which you

may have in your program) and retrieving them from the program.

To keep the current set of key definitions and put them in a file for later use, the statement to

use is —

¥ file specifier

The file created by this statement will be a KEYS-type file.

Then to retrieve the definitions, execute the statement —

i file specifier
and the current key definitions will be destroyed and the ones stored in file specifier will be

loaded in their stead.

This operation can be done from the keyboard, but is most usefully employed in a program. For

example, if the program —

were executed, and the file “Select’” had key definitions in it which appropriately set the value

for “‘Selection”’, then the appropriate subroutine would have been chosen for execution.

MS-83

MS-84 Non-Data Files

Special Situations
Loading Binary Programs

If you have acquired a number of binary programs, they can be loaded with the statement —

i file specifier
The routines in file specifier are loaded in addition to any other binary routines, and a

program, which may be present.

If you want to store the binary routines presently held in memory, the statement to use is —

file specifier
The statement causes all of the binary routines currently in memory to be stored together in file
specifier as a BPRG-type file.

Memory Snapshots
The entire contents of memory — stacks, buffers, display, program, variables — can be stored in

one file as a ‘“‘machine state’’ file, or “‘memory’’ file. The statement to accomplish this is —

1. file specifier
When this statement is executed, the current contents of memory are transferred to the file
indicated. Such an “ALL-type’’ file can only be retrieved with a LOAD ALL command, which

has the form —

... file specifier

When LOAD ALL is executed, the contents of the file are dumped bit-for-bit into the memory
and the ‘‘machine state’” or ‘“‘snapshot’’ which the file contains then becomes the machine

state.

Note
In order to LOAD ALL a STORE ALL file, your computer

must be identical (options and memory size) to the one used
when the STORE ALL was executed.

There is an exception to this which modifies the actual machine state somewhat. All file and
device buffers are flushed and the file tables are erased. This means that all assignments to file
numbers {ASSIGN statement) are cancelled, and must be re-done. Similarly, ON ENDs are
cancelled, as well as CHECK READ for all files. These things must also be restored, if desired.

Note

If your 9845 is equipped with a light pen, execute GRAPHICS
INPUT IS OFF before attempting a LOAD ALL or STORE
ALL operation.

09845-93070, rev: 11/81

Non-Data Files MS-85

This type of file can be used for those larger applications where periodic checkpoints are
desired in case they are needed to recover from an error which occurs after the snapshot is
taken. By using the STORE ALL file, you can return yourself essentially to some point before
the error and proceed from there, either to re-duplicate the error, or just to recover and get the

desired results by closer monitoring. Here is just such an example —

Should anything happen during the execution of this program, consult the catalog for the mass
storage device being used and find the last BCKUP file. By Executing a LOAD ALL on that file,
and re-ASSIGNing file #1 to “EMDATA”, you would either duplicate the error under your su-

pervision or just recover and get the results you wanted all along.

NOTE
STOREALL and LOADALL are not permitted when a sub-

program (SUB or multi-line function) is executing.

Effect of CHECK READ

If you have executed a CHECK READ without a file number (see Print Verification), then all
writing operations to every device are verified. This includes the STORE, RE-STORE, SAVE,
RE-SAVE, STORE KEY, STORE BIN, and STORE ALL operations. Since verification slows the
[/ O process and some of these statements are used for their speed and efficiency, it may be
undesirable to leave the CHECK READ in effect while executing these operations. Verification
can be disabled with the CHECK READ OFF statement.

rev:4/81

MS-86 Non-Data Files

Notes

Chapter

Errors and Error Processing

Overview

This chapter discusses the following materials and techniques:
e Hardware errors, and how to deal with them.

e Software errors, and how to deal with them.

Errors which occur in the use of mass storage can generally be classified into two groups —
errors which are hardware-related and those which are software-related. Actually, there may
be some overlap between these two groups in a given situation. What distinguishes them is the

action which must be taken to correct a problem and to allow processing to proceed.

It is intended that this chapter give some guidance as to how certain errors can be handied. It is
not a definitive checklist of what can go wrong, nor is it a thorough treatment of the means to
correct the difficulties which are listed. Rather, it is a reference on some of the things which can
go wrong, what might cause them, and how to deal with them. Each programmer has a unique
method of approaching the problem of error processing, and there is no way to anticipate all of

them. Even so, the following should offer some assistance in identifying the source of an error.

MS-88 Errors and Error Processing

Hardware Errors

Hardware-Related Errors

There are four hardware conditions which can create errors: power loss, equipment failure,
cable separation, and media wear. Since some of these conditions can create software errors,

check to see that one of the following is not at fault before pursuing a software error.

e Power loss. Either because of power cord separation, or general power interruption, your
computer, or the mass storage units, or both, may lose power. Should it be the computer,
all information in the memory is lost and when power returns, the initial power-on condi-
tions (and defaults) prevail. You lose both your program and your data. If you have an
unmonitored program running and you return to find the unit with the power on, but with

no program, then you probably experienced a temporary power interruption.

If power is lost to an mass storage unit and the unit is not needed by the system, then the loss
will not affect operation. If the unit is needed, however, for a PRINT# or READ# operation
(including the TYP function), the message —

is displayed and the system pauses and periodically queries (“‘polls”) the missing (or malfunc-
tioning) unit (*‘nn’’ is the number of the select code where the problem exists). It continues this

way until the unit is brought on-line, at which time the command —

should be executed from the keyboard. The system polls the unit one more time and then

allows the program to continue.

e Equipment failure. Occasionally, because of a failing component, or electrical noise, the
computer or one of its mass storage units gets itself into a state from which it can neither
operate nor recover. If it is the computer, the most obvious symptom is the ‘‘system
lockup” (where the machine does not seem to respond to any reasonable keyboard
input). lf it is one of the devices, the “TIMEOUT"’ message may be returned, or perhaps

one of the system error messages (between 69 and 89) may appear.

e Cable separation. The desktop computer may lose communication with external mass
storage devices should the cable connecting them malfunction. It definitely loses contact
should the cable become physically separated from either the computer or the device.

Errors and Error Processing MS-89

e Media wear. Because of frequent contact with the read/write mechanisms of a mass
storage unit, a medium begins to wear, causing unreliability for data storage. Since the
directory is usually the most frequently accessed area on a medium, it is the most likely to
wear out first. When this happens, the alternate directory is accessed and you are given

the warning —

Should you ever receive this message, it is a sign that the medium is beginning to wear

out, or that the data on the main directory has become garbled and unreliable.

What To Do About Hardware Errors

Should you experience a power loss to any of the units and you are present before power
returns, switch off the affected units before power returns. Check power cords and fuses before
switching on again.

If a power surge was experienced (or is suspected) before the loss, it would be wise to conduct
a system test of all units (see the 9835 System Exerciser Manual or the System 45 Installation,

Operation and Test Manual).

If equipment failure is suspected, perform the system test on the device concerned. If the test
comes out indicating a problem, or if the device does not work sufficiently to even allow the test

to be performed, then call an HP Sales and Service Office.

Should the interfacing cable become separated, re-insert and attempt to proceed. Should a
system test show it to be malfunctioning, replace it with an identical one (and set the same

select code), or call for service.

Any device or cable failure, except the computer itself, can be corrected by replacing the
malfunctioning unit with one in proper operating order. The medium should be placed into the
new unit and processing should be able to proceed where interrupted. It is possible, however,
in such circumstances, that failure may have occurred during I/ O transfer. If such is the case,

you probably have lost data.

With medium wear, it is highly advisable to copy all files to another medium. Whenever you
receive a ‘‘spare directory access’’ message, the files should be copied immediately. To con-
tinue to use the old medium with spare directory accesses is to risk the loss of all data on the
medium. Not only may the data read and written to such a medium be potentially unreliable,
but should the spare directory itself ever wear out, you will be without a backup and will no

longer have any means of accessing any of the files on the medium.

Hardware-related mass storage errors; 19, 57, 65, 66, 69-76, 80-90.

rev:4/81

MS-90 Errors and Error Processing

Anticipating Hardware Errors

Hardware difficulties are part of the external environment which a program cannot control, but

that a programmer can anticipate.

In the case of power outages to the external units, as well as equipment failures involving those
devices and cable separations, program control can be retained through the anticipatory use of
the ON ERROR facility, with clever use of the ERRL and ERRN functions (see the BASIC
Programming Manual for details on the functions themselves). Making software provisions for
attempting to use alternative drives, or for just “‘dying gracefully’’, is the best manner of

dealing with the unanticipated nature of these problems.

In the case of failure of the desktop computer itself, the problems of recovery can be nearly
insurmountable under program control. The best insurance against computer failure of all
types is to be liberal in the use of backup files and memory snapshots. The use of manageable
checkpoints in your programs, wherein you require human intervention, is another tool particu-

larly useful in spotting the more subtle forms of processor failure, when and if they occur.

In some applications, the particular use of memory snapshots (STORE ALL) for recovery
purposes is preferable over alternative methods. This is particularly true when an ON END
statement is in effect. Because it is possible for other processing to continue while an /O
operation takes place, precise recovery characteristics may be confusing. But memory snap-

shots can give an exact picture for recovery purposes.

Errors and Error Processing MS-91

Software Errors

Software-Related Errors

If you have ruled out a hardware problem as the source of an error, then the problem you have
encountered is a software difficulty. As such, you should be able to handle the problem through

your program’s control.

Software-related mass storage errors; 16, 20, 38, 39, 46, 50-56, 58-64, 67, 68.

Anticipating Software Errors

Software errors are ones which you, as the programmer, should be able to anticipate and
control. The best way to handle such errors is to check things in advance before attempting an
operation. For example, make sure data types are correct before attempting [/ O operations.
The TYP function can help you in that regard. And make sure parameters are within range if the
parameters use variables. It may take an extra line or two to check such things, but they can

avoid crippling errors during production runs.

If errors do slip past your checks in spite of your best efforts, then attempt to control their
effects with the ON ERROR statement. Coupling this trapping facility with the ERRL and ERRN
functions is an effective means of clearing up difficulties and allowing the program to retain
control and decide whether to proceed or halt. The BASIC Programming Manual contains the

information you need to use these statements.

When attempting to process after an error, there are two procedures recommended to ensure
the integrity of your mass storage files. First, it is suggested that you get the file pointer to a
known position. An error could possibly have misplaced the pointer in the file and you may not
be reading or writing where you actually intend if you simply continue on. Instead, reposition
the pointer to some known point, such as the beginning of the file (by reassigning it), or by

executing a random READ# to some definite defined record.
Second, it is quite possible that your current buffered physical record (device buffer) may have

been lost because of an error, particularly those which are hardware-caused. Thus, it is recom-

mended that you try to re-generate the contents of the buffer when an error occurs.

rev:4/81

MS-92 Errors and Error Processing

Notes

Appendix A
Internal Tape Cartridge

Rewinding the Tape

The tape cartridge may be rewound to its starting point by using the REWIND statement. The

form of the statement is —

i [msus]

Operation of the desktop computer can take place while the tape is rewinding, provided it does

not require use of the tape unit being rewound.

As a power-on definition, two special function keys have been allocated to REWIND com-
mands. If the optional tape unit has been installed, key has been assigned RE-
WIND:T14”". Key has been assigned REWIND ‘“:T15”. Pressing either of those keys
rewinds the appropriate cartridge.

To stop a cartridge while it is rewinding, press reset (). But be careful in using this
method - reset will halt operations on every device connected to the system, not just the

cartridge concerned!

File Directory

In order to save potential wear on a tape, and to permit high-speed directory access, the file
directory for a tape cartridge is copied into R/ W memory. Whenever access is first made to the
cartridge, the information is physically read from the tape. After that, all accesses to the car-
tridge’s files utilize this copy of the directory. The copy is kept updated and current. You will
lose (erase) the copy if you —

o Execute RESET (o) (s,

e Execute SCRATCH A.

e Remove the tape from the drive.

The next time the cartridge is accessed after one of these events, the process of copying the

directory into memory is repeated.

MS-93

MS-94 Appendix A

Each time a change in the directory contents occurs (i.e., with a PROTECT, PURGE, RENAME,
RE-SAVE, RE-STORE, SAVE, STORE ALL, STORE BIN, or STORE KEY instruction) the
contents of the memory version of the directory are written to the tape to assure that the written

version accurately reflects the current tape contents.

While the directory is being copied onto the tape, the directory is vulnerable should a RESET
(\((ONL“‘?} E"E)) occur. If RESET should be pressed during the copying operation, that operation is
aborted and it is probable that the directory will be left in disarray. In such a case it is necessary
to re-initialize the cartridge. Similar problems can arise if RESET occurs during other writing
operations. To avoid them all, avoid pressing RESET during execution of any mass storage

operation.

Tape Structure

The tape is organized with 2 tracks of 426 records each. The first five records are reserved for

the directory, system, and availability tables.

The records are numbered consecutively from track to track. Thus record #426 is actually the

first record on track 2. Diagramatically, the tape appears this way —

Record
Directory, System and Record #5 - #425

Record #0 Availability Tables First Usable Storage
“~

o -
b

Track #2/
/ /

Record Record
#426 #851

It is recommended that when recording files on the tape you avoid overlapping the file on both
tracks, such as starting a four-record file with record #424. To avoid this happening inadver-
tently, it is recommended that you create a file one record long at record #425. This could be

done right after initialization with a process something like this —

Of course, it is possible to do something similar to this at any time after initialization and before
using record 425. After this file is created, however, it is not possible to create files of more than

426 physical records until the file is purged.

Appendix A MS-94.1

Timings
The following graphs present the transfer rates in various situations. They are included as an aid in
designing those applications where efficiency or speed is a major consideration.
STRING TRANSFER RATES
2608
©
c
8 1950
D
»n
5 1300 f _-———- ;
8 e TAPE-READ
;ﬁ 650 [— —— —— TAPE-WRITE
)
B 1 i L 1 1 1 1] 1]
©® ®]) ®) @ ® Q) @
®] Q]]) Q Q ®)
Q) Q] S o) Q Q)
S)) e |]] ® o ® Q
™ w (03] o Tp] 00} — < S Q
— — — o V] [gV] m
Total Bytes Transferred
FULL-PRECISION TRANSFER RATES
2600 r
hel
c
3 1950
3]
»n
g, 1309 | —~--——-——- TAPE-READ
(]
2 650 —— —— —— TAPE-WRITE
)
0 i 1 1 1 L 1 1 1 1 1
® © @ ®] ® ® © |) ®
® S| ®] ® Q o Q] ®
® ® ® Q) ® ® Q Q Q
® ® ® ® ® e ®] ®)
™ w =)} o n @ — < NS [\
-— — — o (41] 4V} ™
Total Bytes Transferred

09845-93070, rev: 1/83

MS-94.2 Appendix A

SHORT AND INTEGER PRECISION TRANSFER RATES
2400
©
s
8 8@ _ __ __ __ __ _ FLOPPY-WRITE
(7] —_ —
v —_— — —— —— —— — —— ~ FLOPPY-READ
5 1200 - _~.——-——- TAPE-READ
,‘é; 608 [~ ——— —— TAPE-WRITE
m
@ L i 1 L L i H 1 L J
Q 0] S [\ \N] Q Q [\ o o
W] o [\~] [\ Q [\N] Q [\ o o
o Q [\] AN} [\] [\ (W) [\ Q [\
[\ [\N) Q [\ [\ [\ [\ Q (W) [\
m [¥s] (o] 4 V] Tp] o] — < n (\]
— — — o [V} 3V} ™
Total Bytes Transferred
TAPE PROGRAM OPERATIONS
1250
1150 | LOAD
1850 |
950 |
©
c
8 850 |
73
wn
5 750 |
a
o 650 |
>
@ [N — STORE
550 | I
-
458 - — - — — — — — — - SAVE
/ ~ - —— —_—
350 > —_ - — — — GET
25@ i L 1 1 1 L 1 1 1 J
[\ (W] o] o W] [\ Q [\ Q [\
[\ o Q Q [\ (] [\ [wy) Q Q
n [\ n [\ n [\ n [\) n [\
w ™ =2} w o (22} wn o @ n
— - o m m < g} wn w
Total Bytes Transferred

09845-93070, rev: 1/83

Bytes Per Second

09845-93070, rev: 1/83

330

327

324

321

318

315

312

309

306

3@3

300

Appendix A
WRITING TAPE WITH CHECK READ

_ FULL

i S

i /

I /

/
i /
STRING

I /

I e INTEGER
- V
S [\N] Q Q \N] Q \N] W] [\N] Q S
Q \N] (W] [aN] [\ \N] S [\ \y] W) [Av)
[\ \V] S Q Q [\8) S Q [\ Q [\V}
n AN} n \N] n [\ n [\N] wn (\N] wn

— — [qV} [aV] m [e2] < bl [Tp] Vp]

Total Bytes Transferred

MS-94.3

MS-94.4 Appendix A

Notes

09845-93070, rev: 1/83

Appendix A MS-95

Appendix B

Disc Drives

Hewlett-Packard manufactures a number of disk drives, in a wide variety of potential con-
figurations, which may be used with the computer. No program changes (except msus) or
special considerations need be taken to transfer data from one device to another under the

System 45’s Unified Mass Storage Concept.

Page MS-5 contains a table showing the devices accessible by your Mass Storage ROM. Each drive
is supplied with an operating or installation manual to which reference can be made for any

information regarding installation, operation, and maintenance of the drive.

Interfacing

Physical connection between your computer and many of the the hard disks discussed in this
Appendix is accomplished with the 9804 1A Disc Interface. Installation, connection, and opera-
tion of the interface are discussed in the 98041A Disk Interface Installation Manual. Once
properly connected, the disk interface is invisible to you, and your commands and statements

are made to the disk drives without concern for the interfacing unit.

Physical connection between your desktop computer and the HP 9895A Flexible Disk Drive is
accomplished with the HP 98034 HP-IB Interface. Only an HP 7910H, HP 7908, HP 7911, HP
7912, or another HP 9895A may share that HP-IB line. Installation and connection of the drive
are discussed in the 9895A Flexible Disk User’s Manual (HP part number 09895-90000). The
98034 Installation and Service Manual {HP part number 98034-90000) covers installation of the
HP 98034 Interface.

Physical connection between your desktop computer and the HP 7910H Fixed Disk Drive is
accomplished with the HP 98034 HP-IB Interface. Only an HP 9895A, HP 7908, HP 7911, HP
7912, or another HP 7910H may share that HP-IB line. Installation and connection of the drive
are discussed in the 7910 Disc Drive Installation Manual (HP part number 07910-90902). The
98034 Installation and Service Manual (HP part number 98034-90000) covers installation of the
HP 98034 Interface.

Physical connection between your desktop computer and the HP 7908, HP 7911, or HP 7912
Disc Drive is accomplished with the HP 98034 HP-IB interface. Only an HP 7908, HP 7911, HP
7912, HP 7910, or HP 9895A may share that HP-IB line. Installation and connection of the disk
is discussed in the disk’s installation manual. The 98034 Installation & Service Manual (HP part
number 98034-90000) covers installation of the HP 98034 Interface.

09845-93070, rev: 1/83

MS-96 Appendix B

Initializing
Executing any mass storage command to an uninitialized (or improperly initialized) hard disk

drive or platter will cause your computer to hang. Reset (@) returns control when this

occurs.

Hard disk platters can be initialized individually. To do so, the INITIALIZE statement is used,
setting the msus to the location of the platter. This location should always be on a disk drive
with a unit number of 0. Any other unit number will cause incomplete initialization of the

platter.

If there is more than one hard disk connected to your computer, all attempts to initialize a drive
or a platter must be done on units with the drive numbers set to 0. To ensure that no data is

inadvertently lost, drives should be set to 0, 1, 3, or 7 when disk initializations are made.

Timings
When designing a program, you are often concerned with the amount of time needed to ex-
change programs/data between the computer and an external mass storage device. If this was a
function of only one factor, such as the BASIC statement initiating the transfer, it would be a
simple matter to choose the statement that would yield the transfer rate needed for your applica-
tion. Unfortunately, the transfer rate of data and programs between a mass storage device and

your desktop computer is a complex intermingling of many different factors.

For example, the transfer rate between an HP7925 disc drive and an HP9845 B/C desktop
computer is higher than that of the HP7908 disc drive for most BASIC statements. However,
when using the MAT READ# statement, the transfer rate for the HP7908 disc drive is nearly
equal to that of the HP7925.

Some of the more important factors affecting the transfer rate are listed below:

® Mass Storage Hardware- The transfer rate is dependant upon the mass storage device used
(such as the HP9895A flexible disc drive versus the HP9885M flexible disc drive).

® Computer Hardware- The transfer rates also depend upon the computer hardware used.
With the 9845 desktop computer, the transfer rate depends upon whether the computer is
equipped with the standard language processor or the faster bit slice language processor.
Transfer rates for the faster bit slice processor should be equal or faster in almost all cases.
Data taken for the graphs that follow was obtained from a 9845 with the standard language

processor.

Transfer rates for the HP 9835 desktop computer are nearly identical to those of the HP
9845 with the standard langauge processor. Note that the mass storage devices supported
by the 9845 desktop computer are not necessarily the same as those supported by the 9835
desktop computer.

09845-93070, rev: 11/81

Appendix B MS-97

® BASIC statement/command- The transfer rate depends on which BASIC language com-

mand/statement initiates the transfer.

o data type- The transfer rate varies with the type of data (such as integers, reals, or strings)
transferred.

® program type- The rate of transferring a program between an external mass storage device
and your desktop computer depends on the BASIC statement used to place the program on
disc. For example, programs that are placed on the mass storage device with the STORE

statement as opposed to the SAVE statement transfer much more quickly.

o directory size- The number of files in the directory can affect the apparent transfer rate.
Before a transfer can take place, the computer must first search through the directory and
locate the file involved in the transfer. While the time required for this search is independant
of the actual transfer rate, it does effect the total time required to execute the statement. For
example, it takes more time to search through a directory containing 1000 files than one
containing 10 files.

e record size- The number of bytes per defined record is also a major factor in determining

the transfer rate between an external mass storage device and your desktop computer.

e type of access- The transfer rate for serial access to an external mass storage device is

different than the transfer rate for a random access to the same device.

e interleave factor- The transfer rate between your desktop computer and flexible disc drives
(such as the HP9895A or the HP9885M) is dependent upon the interleave factor used

when initializing the disc.

The table below summarizes the differences in transfer rate due to two major factors: the mass

storage hardware and the BASIC statement initiating the transfer.

3
02’0& b°&\
< D N &
Mass \?s}l\) Qf" Q & 4:\(’@ é& Q%\ éﬂ ?9

& <N
| S S S

k bytes/ | k bytes/ | k bytes/ | k bytes/ | k bytes/ | k bytes/ | k bytes/ | k bytes/

Min. Sec. Sec. Sec. Sec. Sec. Sec. Sec. Sec.
7908 11 7.2 6.8 1.5 4 51 3.9 33.2 31.3
7906 7 13.3 6.6 1.4 4 7.5 5.0 301.9 307.7
7925 8.1 10.6 95 1.4 4 57 54 297.3 457.1
9885! 11 55 56 1.0 3 6.3 6.4 6.4 6.4
9895! 58 49 5.0 1.0 4 4.5 1.2 5.7 5.7
182 records transferred 1000 records transferred
256 bytes/record

1 interleave factor = 7.

09845-93070, rev: 11/81

MS-98 Appendix B

To help you design your application programs, we have provided several graphs demonstrating
the effect of the more important factors. Since it is extremely difficult to represent the relationship
between all factors affecting the transfer rate, we have chosen to show the effect of varying one

factor while the other factors are held constant.

All data for the graphs was taken with a 9845B desktop computer equipped with the standard
language processor. Most of the transfer times shown in the graph were acquired using a single
BASIC statement to transfer the data. For example, in Graph 1 the transfer rate for transferring
100k bytes of data with the FREAD statement from an HP7925 disc to the 9845 was the result of
a single FREAD statement. When the transfer times/rates represented on the graph are not the

result of a single statement transfer, partial program listings are provided with the graphs.

The title for each graph indicates the computer and mass storage hardware used, the type of data
that was transferred (such as string data, real data, etc), the number of bytes per defined record
on the mass storage device, the BASIC statement initiating the transfer, and the number of files in

the directory.

The first group of graphs (graphs 1, 2, and 3) show how the transfer rates is effected by the mass
storage device used in the transfer. Data is transferred between an HP9845 B/C desktop compu-
ter equipped with the standard language processor and a variety of mass storage devices
(HP7906, HP7908, HP7925, HP9885M, and HP9895A). All data was acquired using single

statement transfers.

Several different mass storage commands were used to produce the graphs, thus showing that
individual devices provide faster or slower transfer rates, depending on the BASIC language
statement initiating the transfer. For example, in graph 1 you can see that the transfer rate for the
HP7925 disc is higher than that of the HP7908 when the transfer has been initiated with the
FREAD or FPRINT statement. However, in graph 3 you can see that when the transfer is initiated
by the MAT READ# statement, the transfer rates of the two devices are almost identical.

Notice that graphs 2 and 3 show definite peaks in the transfer rate. These peaks occur at 256

total bytes transferred and integer multiples of 256 total bytes transferred.

09845-93070, rev: 11/81

Appendix B MS-99

MASS STORAGE DEVICES
9845B/C-7906,7908,7925,9885,9895
Single File in Directory,FPRINT/FREAD String, 256 Bytes/Rec

100 000

10 000

Bytes per Second

1000

100

100
1000
10 000
100 000

Total Bytes Transfered

FPRINT/FREAD 7925, FPRINT/FREAD 7906
— — FPRINT/FREAD 7908
FPRINT/FREAD 9885,FPRINT/FREAD 9895

Graph 1

09845-93070, rev: 11/81

MS-100 Appendix B

MASS STORAGE DEVICES
9845B/C-7906,7908,7925,9885,9895
Single File in Directory, MAT PRINT# Real, 256 Bytes/Rec

10 000

5000 - -~

Bytes per Second

1000

o g g 2
~— o o
-~ o
Total Bytes Transfered T
7906
7925,7908
— — 9885,9895

Graph 2

09845-93070, rev: 11/81

Appendix B MS-101

MASS STORAGE DEVICES
9845B/C-7906,7908,7925,9885,9895
Single File in Directory, MAT READ#, REAL, 256 Bytes/Rec

10 000

5000 ~ -

Bytes per Second

1000

500

2 8 8 g
-~ o o
- O
Total Bytes Transfered
7906
— — 9885
7925,7908
- - 9895

Graph 3

09845-93070, rev: 11/81

MS-102 Appendix B

Graph 4 shows the transfer rate between an HP9845B/C desktop computer equipped with the
standard language processor and an HP7908 disc drive for transferring programs. Mass storage
staternents showing the diffences between the two methods of placing programs on a mass stor-
age device (STORE vs SAVE) and the methods of retrieving programs from a mass storage
device (LOAD vs GET) were used to create the graph. The data for this graph was generated
with only one file in the directory of the 7908. As the number of files in the directory increases,

the time required to search for the file increases, thus increasing the apparent transfer rate.

STORING and RETREIVING PROGRAMS
9845B/C-7908
Single File in Directory

10 000
5000
©
c
o
(&)
Q
n
@
Q
[%2]
e
>
2]
1 000 .
o o o o
o (=] Q o
o o o o
wn o o o
- n o
Total Bytes Transfered
LOAD
— — STORE
———— RE-STORE
SAVE/RE-SAVE
— — GET/LINK

Graph 4

09845-93070, rev: 11/81

Appendix B MS-103

Graph 5 shows the differences in the transfer rate caused by the different BASIC language state-
ments used to transfer data between a desktop computer and a mass storage device. In this case
an HP9845B/C desktop computer equipped with the standard language processor and an
HP7908 disc drive are used to show the diffences between using: FREAD/FPRINT, MAT
READ#/MAT PRINT#, READ#/PRINT#, and MAT READ#/MAT PRINT# (with CHECK
READ).

Note that the type of data transferred is real data for all BASIC statements except FPRINT and
FREAD. For these statements, a 12 character string (16 bytes) was used to measure the transfer

rate. With these statements, little difference in the transfer rate is expected for the two data types.

The data for this graph was taken using a disc that had a single file in the directory. The file
written to and read from had 256 bytes/record. Again, the graph shows that mass storage state-
ments utilizing the computer’s internal buffer have marked peaks in their transfer rates at integer

multiples of 256 total bytes transferred.

The transfer rate curves for PRINT # and READ # were obtained with the following group of

basic staternents:

SO FOR I= 1 to Lendth IWhere Levigth is the total number of bvtes
B0 ltransferred divided by B (since each real
70 lvalue reauires B bytes of storade).

8o PRINT #13iR IWhere R is a real variable.

80 NEXT I

The same block of statements applies to the transfer rate curves developed for the READ #
statement. As you can see, a transfer that is not performed with a single statement, such as
FREAD or MAT READ #, requires the execution of other BASIC statements. The execution of
these statements decreases the transfer rate since it takes time for these extra statements to

execute each time through the loop.

09845-93070, rev: 11/81

MS-104 Appendix B

STORING and RETRIEVING DATA
9845B/C-7908
Single File in Directory, 256 Bytes/Rec, Real

e i o——

B 3 - H

10 000

Bytes per Second

1000

100

100

1 000
10 000
100 000

Total Bytes Transfered

- — FPRINT,FREAD
MAT PRINT#, MAT READ#
MAT PRINT# (CHECK READ)

— = —— PRINT # RBEAN#

Graph 5

More often than not, we are concerned with the number of data items that can be transferred,
and not the number of bytes that can be transferred. For example, in an application where the
desktop computer is being used to take 300 readings per second from a particular test device, the
programmer is concerned with the quickest method to place the 300 data items on the mass
storage device. If he were concerned with only the fastest transfer rate, looking at graph 5 he
would choose to represent the data as string data and use the FPRINT and FREAD statements to
transfer his data to and from the disc. However, if the number of bytes per data type is taken into

affect, an entirely different approach is suggested.

09845-93070, rev: 11/81

Appendix B MS-105

Graph 6 shows the affect of considering the number of items (where an item is a real number, an
integer, a short precision real number, or a string of characters) transferred instead of the number
of bytes transferred. From this graph it can be seen that for the MAT PRINT # and MAT READ #
statements, the highest number of data items transferred per second occurs if the data that is
being written or read is either integer data or short precision real data. The string data type

transfers shown in the graph represent transfers of 4 character strings (8 bytes of disc storage).

The data for this graph was generated using the HP9845B/C desktop computer with standard
language processor and the HP7908 disc drive. The 7908 had a single file in the directory with
256 bytes per record. The BASIC language mass storage statements, MAT READ and MAT
PRINT, were used to generate the data for the graph.

DATA TYPES
9845B/C-7908
Single File in Directory, Using MAT PRINT, MAT READ, 256 Bytes/Rec

~1
1000
2 500
o
[&]
O
w
o
o
2]
>
i¥]
=
100
50

100
1 000

Total ITEMS Transfered

W=MAT PRINT# — — W INTEGER, W SHORT
R=MAT READ# R INTEGER, R SHORT
—— W REAL, R REAL,W STRING [4]
=—— — R STRING [4]

Graph 6

09845-93070, rev: 11/81

MS-106 Appendix B

Graph 7 shows you the effect of the number of files in the directory on the time required to
access the last file in that directory. The data for this graph was generated using an HP9845B/C
desktop computer with standard language processor and an HP7908 disc drive. The graph shows
the time required to access the 7908 disc drive with a particular BASIC language mass storage
statement as the number of files in the directory increases. Notice that the amount of time re-
quired for the RENAME function is exactly double that of the other types of access. This is
because two disc accesses are required for the RENAME statement, as opposed to one disc

access for each of the other commands represented.

The graph shows that fewer files per disc requires less amount of search time to find the file, thus

increasing the apparent transfer rate.

DIRECTORY LENGTH
9845B/C-7908
256 Bytes/File

Time in Seconds

500
1000
1 500
2 500
3 000
3 500

Number of Files in the Directory

RENAME
CREATE, PURGE, PROTECT, ASSIGN,FCREATE, FPRINT,FREAD

Graph 7

09845-93070, rev: 11/81

Appendix B MS-107

The next two graphs show the effect of record size on the transfer rate for hard disc drives
(represented by the HP7908 disc drive in graph 8) and flexible disc drives (represented by the
HP9895A disc drive in graph 9). Graph 8 shows the effect of the record size when creating a file
on a 7908 disc drive with an empty directory and then writing to and reading from that file with
the MAT PRINT# and MAT READ# statements. An array of 128 reals is used with the MAT
PRINT# and MAT READ# statements.

Graph 9 shows the effect of the record size when creating a file on a 9895A flexible disc drive
with an empty directory and then writing to and reading from that file with the MAT PRINT# and
MAT READ# statements. An array of 128 reals is used with the MAT PRINT# and MAT READ#

statements.

Notice in both graphs that peaks are generated at multiples of (and factors of) 256 bytes. This is
due to the 9845’s internal 256 byte buffer and the number of bytes per defined record. When the
size of each record is a factor of 256 (such as 16, 32, 64, and 128), transferring the internal
buffer results in completely filled records. For example, if the record size of a file is 64, then
transferring the buffer exactly fills 4 records. Extra time is required for transfers that do not

exactly fill a record. A new file always begins at the beginning of a new physical record.

Additionally, you can see that on each graph a large peak occurs for transfers to 256 byte records
with the MAT PRINT # statement. This is caused by the fact that for transters other than 256
bytes, the system performs a read before each write with the MAT PRINT # (and PRINT #)

statements. Only for transfers of 256 bytes does the system not perform a read before a write.

09845-93070, rev: 11/81

MS-108 Appendix B

Bytes per Second

5000 -

1000

RECORD SIZE
9845B/C-7908

Single File in Directory, Arrary of 128 Reals

I
I
A] A . 4 A
I
' \ | \/ o
(o __/Z\L/ —_
o o [}
~— o o
-~— o
Record Size
— MAT READ#
CREATE
— — MAT PRINT#
Graph 8

09845-93070, rev: 11/81

Appendix B MS-109

RECORD SIZE
9845B/C-9895A
Single File in Directory, Arrary of 128 Reals

5000 - i
|
|
1
!
|
|
|
o [
c |
[@]
o |
[¢h] | i
%)
—] H
g i
» | { o
e ‘ 1 ~i
@ 4 [/
, | & \ ! . ﬁ
1Y i]
N ' | /o
— — — L—«f--———-‘ ——--_IL-——- AR | R4S T
1000 i 4
u R
s | /
\,/;" =

10
100
1 000

Record Size

MAT READ#
CREATE
— — MAT PRINT#

Graph 9

09845-93070, rev: 11/81

MS-110 Appendix B

Graph 10 shows the effect on initialization time that the interleave factor has when initializing
flexible discs. Graph 11 shows the effect of the interleave factor on the transfer rate when acces-
sing flexible discs. These graphs were generated with the HP9845B/C desktop computer with
standard language processor and the HP9885M flexible disc drive. Graphs 12 and 13 show the
identical information for the HP9895A flexible disc drive.

Notice that while graph 10 shows that the quickest intialization of a 9885 flexible disc occurs
when using the interleave factor 2, graph 11 shows that interleave factor producing the highest
transfer rate depends on the BASIC language statement used to access the disc. Taking all mass
storage accesses into account, the interleave factor 7 (the default interleave factor when initializ-

ing a 9885 disc) provides the best overall access time.

INTERLEAVE FACTOR
9845B/C-9885M
Initalization Time

50

;;;;;

Time in Minutes

o - aV] [s2] <t [Ye] © ~ @© (o]

10

Interleave Factor

Graph 10

09845-93070, rev: 11/81

Appendix B MS-111

INTERLEAVE FACTOR
9845B/C-9885M

512 Records, 256 Bytes/Rec
100 000

10 000

Bytes per Second

1000

- o (s < n © N~ w (o]

10

Interleave Factor

FPRINT,FREAD
CREATE
— — MAT PRINT#, MAT READ#

Graph 11

09845-93070, rev: 11/81

MS-112 Appendix B

Graph 12 shows the effect on initialization time that the interleave factor has when initializing
flexible discs. Graph 13 shows the effect of the interleave factor on the transfer rate when acces-
sing flexible discs. These graphs were generated with the HP9845B/C desktop computer with
standard langauge processor and the HP9895A flexible disc drive. Graphs 10 and 11 show the
identical information for the HP9885M flexible disc drive.

Notice graph 12 shows that the quickest initialization of a 9895 flexible disc occurs when using
the interleave factor 1. However, graph 13 shows that the interleave factor producing the highest
transfer rate depends on the BASIC language statement used to access the disc. Taking all mass

storage accesses into account, the interleave factor 11 provides the best overall access time for
the 9895 flexible disc drive.

INTERLEAVE FACTOR
9845B/C-9895A
Initilization Time

12
9 s
)
o]
5
£
=
£
O e
£
'_
B b g L L
3

20

o o] o 0
- ~

Interleave Factor

Graph 12

09845-93070, rev: 11/81

Appendix B MS-113

INTERLEAVE FACTOR
9845B/C-9895A
512 Records, 256 Bytes/Rec

10 000

5000 ~
©
c
o
o
Q
(4]
o
Q.
7]
o]
=
[09]

h
° o ° o S 2

Interleave Factor

CREATE,FPRINT,FREAD
— — MAT READ#
MAT PRINT#

Graph 13

09845-93070, rev: 11/81

MS-114 Appendix B

Graph 14 shows the difference between random access and serial access to an external mass
storage device. The data for this graph is taken from an HP9845B/C desktop computer with
standard language processor and an HP7908 disc drive. A single file was present in the directory
of the 7908, and that file was created with 256 bytes per record. A string data type is transferred
serially or randomly between the disc and the desktop. The size of this string is varied to show the

effect of differing numbers of bytes being transferred.

The difference between random and serial transfers can be attributed to the way that the desktop
handles each type of transfer. A serial transfer first fills the desktop’s internal 256 byte buffer and
then performs a physical transfer to/from the disc. However, a random transfer performs a
physical transfer each time the random transfer statement occurs, regardless of whether the de-

sktop’s internal 256 byte bulffer is filled or not.
For the two types of transfers, the following block of statements was used to generate the graphs:

Random transfer

30 FOR I = 1 TO 32
60O PRINT#1.:, I3 A%
70 NEXT I

Serial transfer

50 FOR I = 1 TO 32
B0 PRINT#13 A%
70 NEXT I

By changing the size of the string variable A$, data was obtained for strings variables of size 0
bytes (null string) to 256 bytes.

09845-93070, rev: 11/81

Appendix B MS-115

RANDOM vs SERIAL

9845B/C-7908

Single File in Directory, 256 Bytes/Rec

iy

© 1000
C
S
o
s
[72]
@
a
2]
@
=
[an]
100

09845-93070, rev: 11/81

10

50 -
100

Bytes per ltem

SERIAL PRINT, SERIAL READ
RANDOM PRINT, RANDOM READ

Graph 14

MS-116 Appendix B

Notes

Disc Drive Opera

7905A 7906 7908 7911 :

Type of Disk Hard Hard Hard hard |
User Storage Capacity:

Bytes 4 866 048 Fixed 9 732 096 Fixed 16 432 640 27820032 | 64 ¢

9 732 096 Removable 9 732 096 Removable
Physical records 19 008 Fixed 38 016 Fixed 64 190 108 672 25
38 016 Removable 38 016 Removable
Tracks 396 Fixed 792 Fixed 1834 1698 3
792 Removable 792 Removable
Files (maximum) 1 136 Fixed 2 288 Fixed 3552 6112 1:
2 288 Removable 2 288 Removable

Device Capacity: B

Bytes per record 256 256 256 256

Records per track 48 48 35 64

Tracks per surface 400 800 Fixed 370 582

400 Removable

Accessing:

Rate of spin 3 600 rpm 3 600 rpm 3 600 rpm 3 600 3

Access mode Surface Surface Cylinder cylinder cy

Number of heads (surfaces) 1 Fixed 1 Fixed 5 3

2 Removable 2 Removable

Average seek time 25 ms* 25 ms* 42 ms 35 ms

Average rotational delay 83 ms 8.3 ms 8.3 ms 8.3 ms 8

Head settling time —— -— - = —

Step time 5 ms* 5 ms* 5ms 5ms R

* Includes head settling time.

09845-93070, rev: 1/83

ing Characteristics

MS-117

9895A Opt 010
9895A Dual Drive Single Drive Master
Master or Opt 012 or Opt 011 Single
F912 7920 7925 9885 Dual Drive Slave Drive Slave 7910H
hard Hard Hard Flexible Flexible Flexible Hard
h78 944 48 758 784 117 014 528 499 200 2273 280 1136 640 11943936
}8 824 190 464 457 088 1 950 8 830 4 440 46 656
} 962 3968 7 142 65 296 148 1458
P 944 8 000 19 024 352 704 352 2288
256 256 256 256 256 256 256
64 48 64 30 30 30 32
582 800 800 67 77 77 735
600 3 600 rpm 2700 rpm 360 rpm 360 rpm 360 rpm 3 000 rpm
L'linder Cylinder Cylinder —-— Cylinder Cylinder Cylinder
7 5 9 1 4 2 2
35 ms 25 ms* 25ms 267 ms 77 ms 77 ms 70 ms
.3 ms 8.3 ms 11.1 ms 83 ms 83 ms 83 ms 10 ms
—_ - — -— 8 ms 20 ms 20 ms -
> ms 5 ms* 5 ms 8 ms* 3 ms 3 ms 10 ms

