HP 9800 Computer Systems

BASIC Programming

For the HP 9845

() JoRtre

(ﬁﬁ HEWLETT

PACKARD
Warranty Statement

Hewlett-Packard products are warranted against defects in
materials and workmanship. For Hewlett-Packard Desktop
Computer Division products sold in the U.S.A. and Canada,
this warranty applies for ninety (90) days from date of
delivery.” Hewlett-Packard will, atits option, repair or replace
equipment which proves to be defective during the warranty
period. This warranty includes labor, parts, and surface
travel costs, if any. Equipment returned to Hewlett-Packard
for repair must be shipped freight prepaid. Repairs
necessitated by misuse of the equipment, or by hardware,
software, or interfacing not provided by Hewlett-Packard are
not covered by this warranty.

HP warrants that its software and firmware designated by HP
for use with a CPU will execute its programming instructions
when properly installed on that CPU. HP does not warrant
that the operation of the CPU, software, or firmware will be
uninterrupted or error free.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE. HEWLETT-PACKARD SHALL
NOT BE LIABLE FOR CONSEQUENTIAL DAMAGES.

* For other countries, contact your local Sales and Service
Office to determine warranty terms.

BASIC Programming

Part No. 09845-93000
Microfiche No. 09845-96000

Hewlett-Packard Desktop Computer Division
3404 East Harmony Road, Fort Collins, Colorado 80525

Copyright by Hewlett-Packard Company 1981

a\

ii

Printing History
This manual is for use with the HP 9845B/C. It is a revised version of the Operating and Prog-
ramming manual, part number 09845-92000. Chapters 1 and 2 have been replaced by a shorter
version of the Beginner’s Guide, part number 09845-92001. {The Beginner’s Guide will no lon-

ger be available.)

New editions of this manual will incorporate all material updated since the previous edition.
Update packages may be issued between editions and contain replacement and additional pages
to be merged into the manual by the user. Each updated page will be indicated by a revision date
at the bottom of the page. A vertical bar in the margin indicates the change on each page. Note

that pages which are rearranged due to changes on a previous page are not considered revised.

The manual printing date and part number indicate its current edition. The printing date changes
when a new edition is printed. (Minor corrections and updates which are incorporated at reprint
do not cause the date to change.) The manual part number changes when extensive technical

changes are incorporated.

April 1981.. First Edition. Updated pages: 34, 51, 58. 68. 75, 76. 78, 80. 82. 83. 85. 90. 96,
119,127, 130. 131. 140. 166, 171. 173, 176. 178,
180, 183,186,204, 210, 217, 239, 240. 242. 246,
249

August 1981...Second Edition. Updated pages: ii, 1, 14, 191, RT-21

September 1981 ... Third Edition. Updated pages: BP-98, BP-171, BP-189, RT-4, EM-4, EM-5

09845-93000, rev: 9/81

Preface

The BASIC Programming Manual is one of the manuals provided with your 9845 Computer. It is
designed to be used by all 9845 users, from those who have never programmed to those who

have programmed extensively using the BASIC language.

If you are a beginning programmer, you should read the Programming Tutorial in Chapter 2.
You can also use the Introductory Training Tape and Workbook to become familiar with your

computer.

When you are comfortable with BASIC and programming, you can find all of the 9845 main-
frame statements discussed in detail in this manual. You can also use the pocket-sized Quick

Reference as a handy guide to the language syntax.

In general, this manual groups the various BASIC statements, functions and commands together
by topic. For example, all output statements and functions are found in Chapter 10. As much as
possible, major topics are self-contained so you don’t need to read an entire chapter to extract
one idea. However, in some instances, statements that haven’t been introduced are used to help
illustrate the topic being discussed; the PRINT statement is used frequently this way. It is recom-
mended that you read Chapter 1 of the Installation, Operation and Test Manual and Chapter 1 of
this manual to get acquainted with the computer. After that, you need only read about the topics

you want.

The coverage of each statement, function and command is restricted to its syntax, rules for its
usage and some ways to use it (shown in text or in an example). The example programs are not
intended to be comprehensive, but to illustrate syntax and a typical usage. In some cases, certain

lines are emphasized by a bullet (®) placed next to them.

iii

iv

Table of Contents

Printing History i

Preface

Chapter 1: General Information

The Keyboard 1
Alphanumeric and Numeric Keys. 1
General Purpose Keys. 1
Typing. Line Editing and CRT Display Keys, 1
Special Function Keys 1

Resetting the Computer. 2

Logging Keyboard Operations 2
The PRINT ALL IS Statement. o, 2

Using the Keyboard While a Program is Running 3
The SUSPEND INTERACTIVE Statement. 3
The RESUME INTERACTIVE Statement. 4

Error Messages and Warnings 4

9845A vs. 9845B/C .. 4

Chapter 2: Programming Tutorial

Where Do You Go From Here?. 5

Problem Solving: Defining the Problem 6

Problem Solving: Developing a Solution. 6
Program Outlines. 6
Flowcharts 7

Problem Solving: Writing the Program 8

More Examples. 10

Chapter 3: Programming

Syntax Conventions 16

Programming Terms 16

Program Fundamentals 18

Entering Program Lines 19
The EDIT LINE Command i, 19
IncrementValue 20
Automatic Indent 20
Inserting Lines 20
Deleting Lines 21

The DEL Command i 21

vi

Exiting the Edit Line Mode 22
The AUTO Command 22
The REN Command 22
SPaCINgG ... oo 23
Space DependentMode 23
Remarks 25
The REM Statement 25
Comment Delimiter e 25
The LIST Command 26
Available Memory e 26
Alternate Printing Devices (LIST#) 26
The RUN Command and (m) ... 27
THE STEP Key ... 27
The PAUSE Statement and | € | e 28
The CONTINUE Command and | § | e 28
Terminating Execution 00 . . 28
The STOP Key ... 28
The STOP Statement e 29
The END Statement 29
Reset . o 29
The SCRATCH Command e e e 30
The SECURE Statementot e e 30
Miscellaneous Statements i 31
The WAIT Statement e e 31
The TYPEWRITER ON Statement i 31
The TYPEWRITER OFF Statement e 31
Chapter 4: Mathematics

OPETALOTS . . o 34
Arithmetic Operatorsot 34
Relational Operators oot 34
Logical Operatorsiie it 35
AND Operator 35

OR Operator 35

EXOR Operator e e e 36

NOT Operator e 36

DIV Operator e 37
MOD Operator 37
RaNGe o e 38
Number Formats 38
The STANDARD Statemento 39
The FIXED Statement e e 39
The FLOAT Statement e e 40
Rounding 41
Significant Digits 41
Math Functions and Statements 42
General Functions e 42
Logarithmic and Exponential Functions, 46

Trigonometric Functions and Statements 46

Math Hierarchy 48

Parentheses 49
Math Errors-Recovery 50
The DEFAULT ON Statement 50
The DEFAULT OFF Statement........... 51
Chapter 5: Using Variables
TS oo 54
Forms .. 54
Names ... 55
Variable Breakdown 55
Using Variables at the Keyboard 56
The LET Statement 56
Implied LET . . 56
Array Variables 57
Defining the size of anarray 58
Implicit Definition 58
Array Elements 58
Array Identifier 58
Declaring and Dimensioning Variables .. 59
SUDSCHIPES ..o 59
The OPTION BASE Statement e 60
The DIM Statement 60
The INTEGER Statement. 61
The SHORT Statement i 62
The REAL Statement 62
The COM Statement 63
Redimensioning an Array 64
The REDIM Statement i 64
More Ways to Assign Values to Variables 65
The READ and DATA Statementsouuuiiiiein . 66
The MAT READ Statement 66
DATA Pointer 67
The RESTORE Statement 68
The INPUT Statement i 69
The MAT INPUT Statement 71
Storage of Variables 73
Chapter 6: Array Operations
Assigning a ConstantValue 76
1. MAT...CON 76
2. MAT.ZER .. 76
3. MAT-Initlalize 77
The MAT - Copy Statement i 78
Mathematical Operations 79
Scalar Operations 79
Arithmetic Operations 80
Functions 81
Matrices and Vectors 82
MAT . DN e 82
Matrix Multiplication 83

MAT . INV 85

viii

MAT . TRN 87
MAT .. CSUM 87
MAT . RSUM . 88
Array FUNCHONS 89
SUM FUNCHON . . .o e e e 89
ROW FUunction e e 89
COL FUNCHON . . oo 89
DOT FUNCHON .. oo e 90
DET FUNCHON ..o 90
Chapter 7: String Operations
OV eIV OW . oo 94
Dimensioning a String 94
Explicit Dimensioning 94
Implicit Dimensioning 95
SHANG ATTAYS ... oottt ettt 95
String EXPressions 96
SUDBSIIINGS .. .ttt 96
String Concatenation (&) 97
Assigning a Value to a Stringo 98
The LINPUT Statement e 98
The EDIT Statement 99
String Variable Modification 100
No Substring Specifers. 101
One Substring Specifier 101
Two Substring Specifiers 102
The Null String 103
String Functions 103
The LEN Function e e 103
The POS Function e 104
The VAL Function e 105
The VAL Function. 105
The CHRS$ Function e 106
The NUM Function e 107
The UPCS Function e 107
The LWCS Function 108
The RPTS FUNCHON e 108
The REVS Function. 109
The TRIMS Function e 109
Relational Operations e 110
Variable Diagram 111
Memory Usaget 111
Chapter 8: Branching and Subroutines
Unconditional Branching 114
The GOTO Statement e 114
The ON...GOTO Statement ittt 114
SUMIMATY . o oottt e e e e e e e 115
The IF... THEN Statement e 115
The FOR and NEXT Statements i 117
Nesting ..o 120

FOR-NEXT Loop Considerations, 121

The GOSUB Statement 122
The ON...GOSUB Statement 0. 123
SUMMArY ... 124
The DEF FN Staternent 125
SUMMATIY ... 126

Chapter 9: Subprograms

Why Use Subprograms? 128
Types of Subprograms 128
Terms . o 129
Parameters 129
Formal Parameters 129
Pass Parameters............ .. 130
Passing the Parameters 130
SUMMATIY ... 133
Multiple-Line Function Subprograms (DEF FN) 134
Subroutine Subprograms (SUB and CALL) 136
Subprogram Considerations 138
What Happens ... 138
Using the COM Statement......... 138
Variable Allocation Statements 140
Local Variables. 140
Speed Considerations 140
Filles o 141
Editing Subprograms 142
Chapter 10: Output

The BEEP Statement 144
The DISP Statement 144
Printed Qutput. 146
The PRINTER IS Statement i, 146
The PRINT Statement ... 147
Output FUNCHONSo 149
The TAB Function ... 149
The SPA Function 150
The LIN Function 151
The PAGE Function 152
The MAT PRINT Statement 153
The PRINT USING and IMAGE Statementsc....... 155
Format String 155
Reusing the Format String 155
Delimiters 156
Blank Spaces 156
String Specification 156
Numeric Specification 157
Digit Symbols 157

Radix Symbols ... 159

Sign Symbols. ... 160

Digit Separator Symbols 161
Exponent Symbol. 162
Floating Symbols 162

Replication 163

Compacted Specifier 164

Carriage Control 164
Field Overflow i 165
SUIMITIAIY . . . o ettt e e e e e e e e e 166
Considerations e 166
Advanced Printing Techniques i e 166
Overlapped Processingt 166
The OVERLAP Statement e e 167
The SERIAL Statement e 167
Accessing Coloronthe CRT 167
Color Using CONTROL e s 167
ColorUsing CHRS 167
Color Using the Escape Code Sequence i .. 168
Chapter 11: Mass Storage Operations

T OIINIS . ot 170
The MASS STORAGE IS Statement e 172
S TUCIUTE .« . oottt 173
FIles . o 173
Records ... 173
EOF’s and EOR s 174
Physical Records 174
End-of-File and End-of-RecordMarks 174

The DIteCtory 175
Tape Cartridge Directoryt 175

The INITIALIZE Statement. e e e 176
The CAT Statement e e e 177
The CAT TO Statement e e 179
Storing and Retrieving Programs 181
The SAVE Statement 182
The GET Statement ... e 182
The LINK Statement e e e 184
The RE-SAVE Statement e e 184
The STORE Statementt e e e 185
The LOAD Statement e e e e e 186
The RE-STORE Statement i i e 186
Storing and Retrieving Data 187
Considerationso 187
The CREATE Statement e e e e 187
The ASSIGN Statement e 188
Serial File ACCeSS ... oot 189
The PRINT# Statement-Serial 189
The READ# Statement - Serial e 191
Random File ACCess i e 193
The PRINT# Statement- Random 193
The READ# Statement - Random i 194
Repositioning the Pointer 194
The MAT PRINT# and MAT READ# Statements 194
Random vs. Serial Method 195
Closinga File — ASSIGN 196
Other Data File Operationsiiiniitr it 196
TY P FUNCHON . .o 196

The ON END# Statement e e e 197

The OFF END# Statement e 198

EOR EIIOrs ... 198
Data Storage 198
The BUFFER Statement i 199
The CHECK READ Statement i 200
The CHECK READ OFF Statement 201
The PROTECT Statement 201
The PURGE Statement 202
The COPY Statement e 202
The RENAME Statement e 203
STORE KEY and LOAD KEY 203
STOREBIN and LOAD BIN e 204
STORE ALL and LOAD ALL 204
The Tape Cartridge i e e 205
Recordingonthe Tape........ ... i 205
Write Protection 205
Inserting and Removing the Tape Cartridge 206
General Tape Cartridge Information 206
The REWIND Statement e 207
Mass Storage Errors 207
Optimizing Tape Use 207
Chapter 12: Editing and Debugging
Debugging a Program 210
The TRACE Statement. e 210
The TRACE WAIT Statemeno i e 211
The TRACE PAUSE Statement e 211
The TRACE VARIABLES Statement i 212
The TRACE ALL VARIABLES Statement 212
The TRACE ALL Statement e 213
The NORMAL Statement i 213
Error Testing and Recovery 213
The ON ERROR Statement i 213
Error Functions 214
The OFF ERROR Statement 215
Chapter 13: Special Function Keys
Pre-defined definitions 218
Special Features 218
Typing Aids .. .o 220
The EDITKEY Command 220
The SCRATCH KEY Command 225
The LISTKEY Command i 225
Chapter 14: Program Interrupts
Introduction 227
Priority . . 227
Changing the System Priority 228
Scope of Interrupt Statements 228
How Interrupts Interact e 228
ONKEY, ONKBD, and ON INT e 228

ONERRORand ONEND 229

xii

BrrOrs . 229
When are Interrupts Active? 230
The DISABLE Statement 230
The ENABLE Statement 230
The ON KBD Statement 230
Priority 231
AL 231
ON KBD Buffer 231
Considerations 231
KBDS$ Function 232
The OFF KBD Statement 234
The ON KEY# Statement e 234
Priority ... 234
Considerations 237
The OFF KEY Statement 237
SUMMATY .. oo 238
SOftReYS « oo 238

Appendix A: Advanced Printing Techniques

Introduction 239
CRT Memory ... 239
CRT Special Features 239
Using Control Codes 241
CRTwvs. Printer 242
Considerations. 242
Disabling Control Codes. 243
CRT Selective Addressing. 243
Introduction 243
The Cursor. 244
Adressing Schemes 244
Setting the Cursor Position. 245
Absolute Addressing. 245
Relative Addressing 246
Combining Absolute and Relative Addressing 246
Moving the Cursor. 247
Using Tabs 247
Clearing. Inserting and Deleting Lines. 258
Inserting and Deleting Characters 248
Rolling the Display. 248
Selective Scrolling (Memory Lock) 249
The Internal Printer 250
Structure. 250
Rows Per Line 250
Margins. 251
Setting Tabs 251
New Characters 252
String Replacement 255
150% Size Characters. 256
Underlining. o 256
Plotting Mode. 257
Summary of Escape Codes 258

Examples. ... 258

xiii

Appendix B: Programming Exercises 263

Reference Tables

Glossary. 1
ASCII Character Codes 10
Roman Extension Character Codes 11
Metric Conversion Table 12
Reset Conditions 13
Memory . .. 14
System 45 Compatibility 19
Graphics Firmware Differences. 24

Error Messages

Subject Index

BP-1

Chapter 1

General Information

Your 9845 Desktop Computer is a high speed. versatile computing tool. You can use it to per-
form calculations and to enter and run programs written in BASIC (Beginner's All-purpose Sym-
bolic Instruction Code). The 9845 is designed for both the programmer and the system operator
since it can be used for interactive writing and debugging of programs and for entering data into a

running program.

If you have just received your computer, please refer to the Installation, Operation and Test
Manual for information about initial set-up and operation procedures. Otherwise, you can begin
using the computer by setting the power switch on the right-hand side of the machine to the 17
position and waiting for 9845 READY FOR USE to be displayed.

The Keyboard

The keyboard is the primary means for entering programs and data into the computer. This
section provides information about the functions of many of the keys. For more information

about a specific key, refer to the index.

Display Keys
Edit/'System Command Keys Special Function Keys

e Keye e N ——
STER [nz; <J[”'S“‘JB”"M | - — < INVVIDEO BLINKING UNDERLN RE;\:\ANG Rgmw

e TYPING FUNCTIONS ——

CTSS BTN | TN | T TS| ST | ST NS
[os e J[eca][Dorern] | | e | T | | o+ J] GeT LOAD SAVE STORE EDIT EDITLME UST SCRATGH

SPACE NEP wHITE RED YELOW GREEN cvaN BLUE MAGENTA BLACK

a — G
EJ

Alphanumeric Keys Program Control Keys Numeric Keys

BP-2 General Information

Resetting the Computer

If the computer becomes inoperative due to a system or [/O malfunction, you may need to reset
it to return it to a ready state. This is done by holding down CONTROL, then pressing STOP.
This is the reset operation. (Notice that RESET is indicated on the front of the STOP key.)

Reset immediately aborts all machine activity. It is a hardware-oriented operation and returns the
computer as well as all peripherals and HP-IB interfaces to a ready state. If a program is running,
any pending or executing /O operation is terminated and data may be lost. You may also lose

data if a mass storage device is being accessed.

NOTE
There is a slight possibility that the reset operation will cause

the entire memory to be scratched as if you had executed
SCRATCH A. Use reset only if nothing else, such as pressing
STOP, brings the machine to a ready state.

Refer to the Reset Table in the Reference Tables section for a list of conditions affected by reset.

Logging Keyboard Operations

Use print all mode, to obtain a printed log of all operations that are executed from the keyboard,
including computations, displayed results, trace messages and error messages. This provides a
useful audit trail of previous operations for later reference — to duplicate a procedure for exam-
ple. It is also useful for displays that are longer that 80 characters, like executing five computa-

tions separated by commas. Otherwise, only the last line is displayed.

Print all mode is set by pressing and latching the PRT ALL key, which is with the EDIT/SYSTEM
FUNCTION keys. Print all mode is turned off by unlatching PRT ALL.

The PRINT ALL IS Statement

The log of keyboard operations is printed on the print all printer. This printer is the CRT when
the computer is turned on and after SCRATCH A is executed. You can change it by executing
the PRINT ALL IS statement, which can be done either in a program or from the keyboard.

i % select code[: HP-IB device address]

The select code is a number used to access an internal or external device. 16 is the select code of
the CRT; O is the select code of the internal printer. The select code of an external device is set
on the interface card that connects the device to the computer. The HP-IB device address is set

on a device that is connected to the computer with an HP-IB interface card.

Alphanumeric and Numeric Keys

Use these keys to enter letters, numbers and other characters. The alphanumeric keys work like

those on a typewriter except that, normally, pressing a key gives you an uppercase letter, while

holding down SHIFT and pressing a key gives you a lowercase letter. To reverse this and make

the keys work like a typewriter, press the TYPWTR key. The E key in either the numeric or

alphanumeric section can be used to enter an E in a number. The E indicates that an exponent

follows, when expressing a number in scientific notation.

General Purpose Keys

Key

Function

EXECUTE

RECALL

RESULT

PRT ALL

AUTOST

CONTROL

Perform the operation (numeric computation, command or statement without a line num-
ber) that has been entered.

Return any keyboard entry that was followed by STORE, CONTINUE, or EXECUTE to
the keyboard entry area. Entries are stored into a 1296-byte (character) buffer on a last-in,
first-out basis. Press RECALL to recall a previous keyboard entry. To move the other
direction through the recall buffer (recalling more-recent entries) press RECALL while
holding down SHIFT. When the recall buffer is full, each new entry causes one or more of
the oldest entries, depending on size, to be lost.

By pressing RESULT, the answer of the most-recently executed keyboard calculation can
be used in another calculation. You can also type in RES to use this result function .

When this key is latched, keyboard operations and system messages are logged. There is
more information later in this chapter about logging keyboard entries.

If this key is latched when the computer is switched on, the computer attempts the follow-
ing operation on the right-hand tape drive: LOAD “AUTOST”,1. This allows the comput-
er to automatically load and run a program.

This key is used with several other keys, such as TYPWTR, to provide special functions.
These functions are discussed in this manual when appropriate.

Typing, Line Editing and CRT Display Keys

Key

Function

REPEAT

TAB SET
TAB CLR

TAB

TYPWTR

Pressing REPEAT simultaneously with another key causes that key to be rapidly repe-
ated.

Sets a tab at the current position of the cursor, like on a typewriter.

Clears a tab at the position of the cursor. All tabs are cleared at power-on, reset and
SCRATCH A.

Moves the cursor to the next tab setting without changing any characters it moves
across. lf no characters have been keyed in, intervening character positions are filled
with spaces (blanks). If there are no further tab settings and TAB is pressed, the cursor
moves to the last (160th) character position in the keyboard entry area; a beep occurs
if the cursor was to the left of position 148 prior to the tab. Tabs can be useful for
inserting comments at the end of program lines. You can easily line up all of your
comments by setting a tab somewhere between columns 40 and 60.

Sets the keyboard to typewriter mode to make the keyboard identical to a typewriter
in that uppercase letters are obtained when the SHIFT key is pressed and lower case is
obtained without shifting. When this key is pressed, TYPWTR is displayed on the
right-hand side of the system comments line. To exit typewriter mode, press TYPWTR
again. Typewriter mode is programmable.

rev:8/81

CLEAR LINE

CLEAR

BACKSPACE
HOME
SHIFT/HOME

INS CHR

DEL CHR

CLR—END

ROLL 1
ROLL |

Clears the keyboard entry area and the system comments line of everything except
any indicators for typewriter or space dependent mode and the run light.

Clears the entire CRT of everything except any mode indicators, the run light and any
INPUT, LINPUT, or EDIT prompt.

Moves the cursor one character position to the right. If the cursor is one position to the
right of the last character in the line, pressing this key one more time moves it to the
first position in the line. Pressing down firmly causes rapid repetition of cursor move-
ment.

Moves the cursor one character position to the left. If the cursor is at the beginning of
the line, pressing this key one more time moves the cursor to the character position
after the last character in the line. Pressing down firmly causes rapid repetition of
cursor movement.

Moves the cursor one position to the left, circling around to the end of the line when
the cursor is at the beginning of the line.

Moves the cursor to the home position which is the first position in the keyboard entry
area.

Moves the cursor to the character position immediately following the last character in
the line.

Lets you insert characters to the left of the cursor and causes the insert cursor (an
inverse video block) to appear over the character at the position of the cursor. The rest
of the line moves to the right. The insert mode is exited by pressing INS CHR again,
moving the cursor, or by pressing STORE, CONTINUE, or EXECUTE.

Deletes the character at the position of the cursor. The cursor remains in the same
position and the rest of the line moves one position to the left as each character is
deleted.

Clears the keyboard entry area from the position of the cursor to the end. It also clears
the system comments line of everything except any indicators for typewriter or space
dependent mode and the run light.

Moves (“'scrolls’’) the lines in the printout area up one line. If any lines are below the
displayed lines, pressing this key brings one line up into the bottom line of the printout
area. Pressing down firmly causes rapid repetition.

Pressing this key causes one line, if any, above the top line in the printout area to move
into the top line; the lines all scroll down. Pressing down firmly causes rapid repetition.

Performs the same operation as up arrow except that the next 10 lines are scrolled.

Performs the same operation as down arrow except that the next 10 lines are scrolled.

Special Function Keys

The Special Function Keys (SFK’s), marked kO through k15, provide a variety of functions such

as entering frequently used statements and variable names with one keystroke. Many of them

have pre-defined definitions when the computer is turned on which are printed below the keys.

These keys are covered in Chapter 13.

General Information

Here are some examples of the PRINT ALL IS statement —

Using the Keyboard
While a Program is Running

Live keyboard mode allows computations and most statements and commands to be executed

from the keyboard while a program is running. You can even change a line of the running
program by typing the new line and pressing STORE. You can check the value of a variable by
typing its name and pressing EXECUTE. (However, if execution is currently in a subprogram,

you may get an unexpected result if the variable isn’t defined in that subprogram.)

To see how live keyboard mode works, key in the following program lines, press STORE after

each one, then press RUN.
SRR RURHFHTHGY

i DOHE"

While the program is running, you can use the numeric keys for computations, like balancing

your checkbook. Now change the program while it is running by typing and storing this line —

The SUSPEND INTERACTIVE Statement
Live keyboard can be disabled by executing the SUSPEND INTERACTIVE statement —

While a program is running, any attempt to execute a keyboard operation or alter the program

by storing a line or executing a program control command such as CONT causes a PROGRAM
EXECUTING or SYSTEM BUSY message to appear. When live keyboard is disabled, and
are disabled as well.

Execute SUSPEND INTERACTIVE and change line 20 of the previous program back to

i. Now run the program and try to add 2+2 or store a program line.

BP-3

BP-4 General Information

The RESUME INTERACTIVE Statement
Live keyboard can be re-enabled by executing the RESUME INTERACTIVE statement —

—=Z00

To do this while a program is running, you should press first, then press after you
re-enable live keyboard.

Error Messages and Warnings

When an error occurs, the machine beeps and displays an error number or a warning message.

The error number references a description that helps you pinpoint the cause of the error. For
E

£ | causes

zero, an operation the computer can’t perform. A warning message can also appear which

example, typing : ‘1 to be displayed. %1 indicates division by

describes the error. Executing = 7 causes {to be displayed with
the expression in the keyboard entry area with the cursor indicating where the parenthesis

should be.

If an error occurs within a running program, the machine halts and the line number in which the

error occurred is displayed. For example, when

% occurs, indicating TAN(n*@/ 2) where n is odd.

is executed

A complete list of the error numbers and their meanings is given in the Reference Tables, in the

Quick Reference supplied with the computer, and also on the pull-out cards under the CRT.

9845A vs. 9845B / C

The HP 9845A/B/C are known as the System 45. Information concerning the differences

between these mainframes is found in the Reference Tables.

Chapter

Programming Tutorial

The 9845 is designed to help you solve problems. You can solve simple problems by performing
calculations from the keyboard. You can use one or more software programs provided by HP. Or

you can write your own programs.

Programs can involve computations. output of results, user interaction, decision making and
other tasks. They can be as simple or as complex as you need them to be. You tell the computer
how to solve your problem: the computer performs the complex calculations, makes the output

look good and reduces the time needed to solve the problem.

Programming a computer is a straightforward task with three basic steps:

1. Define the problem.
2. Plan the solution.
3. Translate the plan into a program.

This chapter is designed to familiarize you with these steps. It also provides an overview of many
simple programming statements. If you already understand programming concepts, you can find
information about the 9845’s mainframe statements in the remaining chapters of this manual. If
you need more information about programming. there are many good text books that teach
programming and BASIC (Beginner's All-purpose Symbolic Instruction Code, the language that
you use to program your 9845). Additionally, Hewlett-Packard offers a course in BASIC on

desktop computers.

Before you read this chapter. you should be familiar with how to operate the 9845. If you are

not. read Chapter 1 of the Installation, Operation and Test Manual and Chapter 1 of this manual.

Where Do You Go From Here?

This chapter is limited to the rudiments of programming. Once you feel comfortable with the

ideas and statements, you can explore the rest of the chapters in this manual.

BP-6 Programming Tutorial

Problem Solving: Defining the Problem

The first step in using your computer to solve your problem is to define the problem thoroughly.
Otherwise, you may not know if you have reached the solution. Here are some questions to ask

yourself:

e What exactly do | want to achieve?

e What output do I want? some tables? a series of conclusions? some data computed, printed
and stored away for later use?

e What data is necessary to produce the output? Is the data fixed or might it vary each time
you run the program?

e What computations are needed?
e When the program makes a decision, what are all the alternatives?

e How should the program identify and handle potential errors?

Another factor to remember in problem definition is the fact that the computer is a machine. A

computer does only what it is told, so you must tell it everything that you want it to do.

Example

Here is a simple problem that we will solve: convert a Fahrenheit temperature to a Celsius

temperature and print both temperatures.

This is the same example used in Chapter 1 of the Installation, Operation and Test Manual. In

this chapter, subsequent examples expand on this first one.

Problem Solving: Developing a Solution

Once your problem is defined, the next step in problem solving is to develop a solution to serve
as a guide for writing your program. One way to develop a solution is to construct a program
outline. Another method is to develop a flowchart, which is useful for picturing the flow of a

complex program. As you program, you will find the method that works best for you.

Program Outlines

A program outline is written in plain English and is similar to a topical outline for writing. Once
you have a precise problem definition, you begin by dividing your task into smaller tasks. Then
divide these tasks into even smaller tasks. Continue this breakdown until each task is as simple as
possible; these simplest tasks can even be close to BASIC statements. It may seem unnecessary
to write all these simple steps, but simple details are essential to make the computer do what you
want it to do. Additionally, defining the simplest tasks may point out a higher-level step that
should be modified.

Programming Tutorial

Program Qutline Example

Our sample problem has a simple outline:

1. Generate a Fahrenheit temperature.
2. Calculate the Celsius temperature.
3. Print the values.
a. Print text identifying the values.
b. Print the values.

Note that steps 3a and 3b are the two steps needed to accomplish step 3; they aren’t done in

addition to step 3.

Flowcharts

A flowchart is a graphic representation of the steps for the program to take. It consists of various
symbols with instructions in them and serves as a map to the solution. However, a flowchart
normally doesn’t include details such as output or variable names. The instructions are not pro-

gram statements; they are general descriptions of the steps. Here are the basic flowchart symbols.

Symbol Meaning

Terminator: signifies the beginning or end of the program.

Action Symbol: signifies processing, such as an arithmetic operation, that isn’t rep-
resented by any other flowchart symbol.

Decision: signifies alternate branches to two or more points in the flowchart based
on the result of a decision.

Input/Output: signifies any operation to an input or output device such as a printer.

R Flowline: shows the direction of the flow between symbols in the flowchart. If the
arrowhead is omitted, flow is assumed to be from left to right and top to bottom.

O Connector: signifies an exit to or entry from some other part of the flowchart. It
substitutes for a flowline when the direction of flow is broken.

BP-7

BP-8 Programming Tutorial

Flowchart Example

Here is the flowchart for our sample problem.

Generate the
Fahrenheit
Temperature

|

Calculate the
Celsius Value

Print the
Two Values

Problem Solving: Writing the Program

Once you have planned a solution for your problem, your last task is to translate this plan into
the computer’s language. Each step in the plan becomes one or more statements. You put one
statement on each line with a line number at the beginning of the line and press the STORE key
to place the line in memory. When all the lines in the program are stored, press the RUN key to
run the program. The computer then executes each statement in the program sequentially, unless

the program specifies a change in program flow.

Programming statements fall into several general categories. The following list covers some sim-
ple BASIC statements. The 9845 uses an expanded version of this list in the mainframe and
option ROMs.

For assigning values to variables, use LET, INPUT, LINPUT, READ and DATA. The LET state-

ment is valuable; you can use it to perform calculations and use functions like SIN or TAN.

For outputting results, use DISP, PRINT, PRINT USING and IMAGE. Use PRINTER IS to spe-
cify where you want results printed. STANDARD, FIXED and FLOAT help you format

numbers.

For decision-making and controlling the line-to-line flow of the program, use IF.. THEN,
FOR/NEXT, GOTO and GOSUB.

Programming Tutorial BP-9

Of course, there are many other statements and built-in functions. They are covered in the re-

maining chapters of this manual.

Example

Our sample program is simple, requiring only five lines.

Here are some things to note:

1. Each statement has a line number. Type and execute EDIT to enable you to enter a
program with line numbers automatically provided and incremented by 10.

2. Lines 10 and 20 are both LET statements {LET need not be included). LET assigns values
to variables. A variable is a location in memory that you access with a unique name, such
as F_temp. Rather than using simple names like X, Y and Z, you can use up to 15 charac-
ters to create meaningful names. Chapter 5 provides more information about variables.

3. Formulas and calculations must be put into linear form for the computer to solve. For

example,
7 49
6+5 11
81.35 + 72.66

would be entered as: (7/(6+5) — (4%9)/11)/(81.35 + 72.66). Parentheses and mathematic-
al priority help determine the form; they are covered in Chapter 4.

4. The PRINTER IS 16 statement specifies that the data in the PRINT statement be printed
on the CRT. PRINTER IS 0 specifies the internal printer. A PRINTER IS statement is not
needed before every PRINT statement; include one only when you need to set or change
the printer.

An END statement should be included to indicate the end of the program.

You can put a comment on the line by putting an exclamation mark (!) after the state-
ment. Anything after that is considered a comment and is ignored when when the program
is running. You can also put just the exclamation mark and comment after the line num-
ber. Comments enable you to put documentation with the program. Documentation is
essential if others use your program or if you set your program aside for a time, then go
back to it.

BP-10 Programming Tutorial

More Examples
Example Two

Let’s expand the first problem to print a table of Fahrenheit to Celsius conversions from 0 ° to
212 ° Fahrenheit on the internal printer. Additionally, modify the output so that there are only
two decimal places. (You find you don’t need the accuracy of 10 decimal places.) The program

outline and flowchart are:

1. Generate the Fahrenheit temperature, starting with 0. .smn
2.
3.

Calculate the Celsius value.
Print the two values.
a. Print a heading for the table.
b. Set two-decimal-place accuracy.
¢. Print the two values.
4. Generate the next value.
5. If there is another conversion to make, go back to step 2.

Print a
Heading

Set Two
Decimal Places

As this outline is developed, we find one lower-level task that

makes us modify a higher level. Steps 3a and 3b (print a l

heading and set the accuracy) will be repeated for every Start with a
i X Temperature of 0
value. Since we only want one heading on the table and need

set the accuracy only once, we modify the plan to be: 1'—
. . Calculate the
1. Generate the Fahrenheit temperature, starting with 0. Celsius Value
2. Prepare the table.
a. Print the heading. l

b. Set two-decimal-place accuracy.
Print the

3. Calculate the Celsius value. Two Values
4. Print the two values.
5. Generate the next value.
6. If there is another conversion to make, go back to step 2.
Generate the
Next Value

The flowchart is shown on the right-hand side of the page.

z
=}

Yes

Stop

Programming Tutorial BP-11

The program now looks like:

Here is part of the output.

Here are some things to note about this new program.

1. To enter this new program, execute EDIT, then edit the first program. Use the INS LN and
DEL LN keys to insert and delete lines. Execute REN to renumber the lines by 10.

2. FOR and NEXT keep you from having to type the calculation 213 times. You specify initial
and final values (First_temp and Last._temp) for the loop counter, which is Temp in this
case. The computer automatically increments Temp and repeats the loop the proper num-
ber of times.

3. The TAB function used in lines 40 and 80 moves the printed output over so that the
heading and the columns align nicely.

BP-12 Programming Tutorial

Example Three

This example has three things added to the problem definition:

® Omit the two decimal places on the Fahrenheit temperature; they aren’t needed.

® Allow the program user to specify how many values are converted — every one, every other
one, every third one, etc.

e Store all the Fahrenheit and Celsius values onto a tape cartridge for later use. Use an array

to hold the values until all the conversions are done. (An array is a collection of variables
with one name.)

The new program and part of the output are shown below.

Programming Tutorial

Here are some things to note about this new program.

1.

Lines 10 and 20 reserve space in memory for an array and a string variable. A string
variable differs from a numeric variable in that its value consists of characters. You must
dimension a string if you want to put more than 18 characters in it. Chapter 7 contains
information about strings.

The array is a two-dimensional array with 213 rows and two columns, specified in the DIM
statement by (212,1:2). 212 specifies the upper bound of the first dimension. The lower
bound is zero unless OPTION BASE 1 is specified. 1:2 specifies both the lower and upper
bounds of the second dimension.

Line 40 defines a user-defined function that is used like built-in system functions such as
SIN. Line 90 shows the function being called. The value for Temp in line 90 is substituted
for X in the formula in line 40. Built-in functions are covered in Chapter 4. User-defined
functions are covered in Chapters 8 and 9.

The INPUT statement in line 70 allows the program user to specify the value for a variable
— Skip in this case. The text specified in quotes is displayed to prompt the user for the
value he should enter.

In line 80, Skip is used to specify a step or increment value for the FOR/NEXT loop to use
instead of 1.

Lines 100 and 110 store the Fahrenheit and Celsius values into the array for storage later
onto a tape.

The semicolon after Temp in line 130 suppresses the normal linefeed so that the Celsius
value printed with two decimal places (line 150) is on the same line as the Fahrenheit
value printed by line 130. Try removing the semicolon and running the program.

Lines 220 through 260 store the table onto a tape cartridge. MASS STORAGE IS specifies
that subsequent mass storage operations be directed to the right-hand tape drive. It is wise
to specify this in case previous programs or users have specified a different mass storage
device. The CREATE statement sets up a file with 15 256-byte records. Note: If you run
this program more than once, use a different tape cartridge, change the file name or delete
line 230; the tape cannot have the same file name used more than once. ASSIGN# opens
and lets you access a file: it can also close the file. PRINT# copies the values in the array
into the file.

Example Four

This example has a slightly different purpose: Given four values, have the program user specify

either a Fahrenheit-to-Celsius or a Celsius-to-Fahrenheit conversion, then perform the conver-

sions and print the original and converted values.

The program outline is:

ook

Specify the four values to be converted.

Ask the user which conversion he wants to perform.

Check for a proper response; if the response is improper, go to step 2.
Perform the desired conversion.

Print the original and converted values.

If there is another conversion, go to step 4.

BP-13

BP-14 Programming Tutorial

The flowchart is:

Celsius

Convert
CtoF

Output

Results

No Decide

Start

Set the

Four Values

O

Incorrect
Answer

Fahrenheit

Convert
FtoC

if done

The program and output are:

Stop

Output
Results

Decide
if done

No

rev: 8/81

Chapter

Programming

page 19 e EDIT LINE (lets the program be entered and edited)

page 21 e DEL (deletes selected program lines)

page 22 ¢ AUTO (numbers lines automatically as they are entered and stored)
page 22 e REN (renumbers the program)

page 25 o REM (inserts non-executable remarks into the program)
page 26 o LIST (lists all or part of the program)

page 27 e RUN (starts execution of the program)

page 28 ¢ PAUSE (suspends program execution)

page 28 ¢ CONT (resumes program execution)

page 29 e STOP (stops the program — a logical end)

page 29 ¢ END (stops the program — the physical end)

page 30 ¢ SCRATCH (erases all or part of memory)

page 30 ¢ SECURE (prevents selected program lines from being listed)
page 31 ¢ WAIT (delays the program for a specified time)

page 31 « TYPEWRITER ON/ OFF (sets/unsets typewriter mode)

Terms

e Program — a set of statements that lets your computer perform a task for you. Statements are
preceded by a line number between 1 and 32 766 and can be up to 160 characters long.
o Edit line mode — used to enter and edit programs.

e Space dependent mode — makes program entering easier because variables and labels can
be typed in all capital letters. Access with _ [

e Comment delimiter — i; for inserting remarks at the end of a program line.

e Run light — #; displayed on the righthand end of the system comments line when a program
or operation is executing.

Keys

siore | — onters a program line into memory.

— runs the program.

— insert and delete lines while in edit line mode.
runs the program one line at a time.

suspends program execution.

resumes execution where it was halted.

-aﬁ

aborts the program and any 1/ O.

)

BP-16 Programming

Syntax Conventions

The following conventions are used in the statement and command descriptions found in the
9845 manuals.

13 — All items in dot matrix must appear exactly as shown.

[] — ltems within solid square brackets are optional. Brackets in dot matrix are part of
the statement.

... — Three dots indicate that the previous item can be repeated.

| — A vertical line between two parameters means ‘‘or”’; only one of the two parameters can
be included.

/ — A slash between two parameters means ‘‘and /or”’; either or both of the parameters can

be included.

Programming Terms

The following terms are used throughout the manual in the descriptions of the language.

Statement — A statement is an instruction to the computer that is assigned a unique line
number, stored, and executed from a program. Most statements can also be executed
from the keyboard without a line number. A statement is made up of one or more
keywords and expressions.

Keyword — A keyword is a word that has a special meaning in BASIC, like and

)

IF, and specifies an operation to be performed or the type of information in the

statement. A secondary keyword is a keyword which isn’t the first item in a statement

such as inan !

i statement. Functions and logical operators are second-

ary keywords.

Command — A command is an instruction to the computer which is executed from the
keyboard. Commands are executed immediately, do not have line numbers and can’t
be used in a program. They are used to manipulate programs and for utility purposes,
such as listing key definitions.

Constant — A fixed numeric value within the range of the computer; for example, 29.5
or2E12.

Programming BP-17

Character — A letter, number, symbol or ASCII control code; any arbitrary 8-bit byte defined
by the i

¥ function.

Text — Any combination of characters, for example *

Name — A capital letter followed by O through 14 lowercase letters, digits or the underscore
character. Names are used for variable names, labels, function names, and subpro-

grams.

Line number — An integer from 1 through 32 766. Line numbers are arranged in ascending
order, but you can type main program lines in any order because they are sorted as
they are stored. In most cases, when a line number is specified, but is not in memory,

the next highest line is accessed.

Label — A unique name that can be given to a program line. It follows the line number and is

followed by a colon. In this example, = % is the label —

Line Identifier — A program line can be identified either by its line number or its label, if any.

Line 50 above could be accessed with either —

or

Main Program — The central part of a program from which subprograms can be called is
known as the main program. When you press , you access the main program. The

main program can’t be called by a subprogram.

Subprogram — A set of statements, separate from and after the main program, that performs a
task under the control of the program segment that called it. Subprograms are covered
in Chapter 9.

Program Segment — The main program and each subprogram are known as program seg-

ments.

Numeric Expression — A numeric expression is a logical combination of variables, constants,
operators, functions, including user-defined functions, grouped within parentheses if

needed. It has a single value.

BP-18 Programming

Select Code — An expression (rounded to an integer) in the range zero through sixteen which
specifies a setting on an interface card to an [/ O device. The following select codes are

reserved and can’t be set on an interface —
e 0 Optional internal thermal printer and keyboard
e 13 Graphics option
e 14 Optional tape drive
e 15 Standard tape drive

16 CRT

HP-IB Device Address — An expression which specifies the HP-IB address that is set on a
device. Its range is 0 through 30.

Program Fundamentals

A program is a set of instructions to the computer — an ordered set of statements. Each state-

ment in a program must be preceded by a unique line number in the range 1 through 32 766.

Program lines can be up to 160 characters long including the line number and any label. After

each line is typed in, you enter it into memory by pressing .

Pressing also causes the line to be checked for syntax errors before it is stored. If there is a
syntax error, the computer beeps and displays a message explaining the error. When the line is
checked for syntax, parentheses may be added into expressions. This may cause the line to
exceed 160 characters. It runs properly, but when listed, an asterisk appears after the line

number and before the truncated line.

Normal program execution proceeds from the lowest-numbered line to the highest-numbered
line. While a program is running (or any keyboard operation is being performed), the run
light — % — is displayed on the righthand end of the system comments line and an internal

program pointer monitors which line is being executed.

Programming BP-19

Entering Program Lines

There are three methods that can be used to enter line numbers and program lines. The first is
to type the line number in manually before the statement. A second method is to use edit line

mode to generate numbers as lines are stored. In the edit line mode, you can also insert, delete

and change lines easily. The third way is to use the i command to generate line numbers.

The EDIT LINE Command

The edit line mode lets you enter a new program or edit an existing one. It is entered by

executing the command —

] [line identifier [, increment value]]

Examples

When the

one is not specified, is displayed in line 12 of the CRT with the cursor after all the characters.

- command is executed, the specified line, or the first line in memory if

Line 13 is also reserved for that program line. If you go into the edit line mode while a program
is running, the program is paused. It is resumed automatically when you leave edit line mode.

Here is a diagram of how the CRT looks in the edit line mode —

Vs

Lines 1-10 10 previous program lines (first 80 characters)
Line 11 blank

Lines 12 and 13 line being edited (keyboard entry area)

Line 14 System comments line

Line 15 blank

Lines 16-25 10 following program lines (first 80 characters)

\. J/

1 There is a Special Function Key which is defined as ““ELIT L.I+E". This key can be used to enter ELIT LIMNE.

BP-20 Programming

The cursor can then be moved in the line and the line edited. When the line is the way you want
it, press . The next highest numbered line is then displayed in line 12.

To edit a different line, (20, (33| &9 and can be used to move the program lines up or
down. 30 brings the next highest line into the editing line, while (33 brings the previous line

into the editing line. and cause the program to roll 10 lines in the specified direction.

Increment Value

After the end of the program is reached, the next line number is automatically generated. It is
greater than the previous line number by the increment value or by 10 if the increment value
isn’t specified. The increment value must be a positive integer.

Automatic Indent

Using the edit line mode allows you to indent program lines automatically. This is possible
when you are adding lines at the end of the program or inserting lines (discussed next). If you
indent a line and store it, when the next line is generated, the cursor is indented as many spaces

as it was in the previous line. The minimum automatic indent is six spaces from the left side.

Inserting Lines

Lines can easily be inserted between existing program lines.

One way is to type in the line number and line, then press . Another way is to use the insert

line mode while you are in edit line mode. It is accessed by pressing B8,

Lines can then be inserted before the line which was in the keyboard entry area. A line number
which is 1 greater than the previous line is generated and appears in line 12. For example, say
the CRT looks like —

Ve

line 12

Programming BP-21

Pressing causes it to look like —

line 12 E _ .4——flashing cursor

1868 PRINT =

When line 91 is stored, line number 92 is generated. This continues until the insert line mode is

exited by one of the following —
e Pressing again
e Pressing
¢ Rolling the program with &3, 50
e Changing the line number

e There is no more room between lines to insert another line. When this happens, the

machine beeps and a warning appears —

Deleting Lines

In the edit line mode, the line currently in line 12 is deleted from memory by pressing @®, The

next line is then displayed in line 12, and the rest of the lines scroll up.
The DEL Command

The

line mode.

- (delete) command is used to delete a line or section of a program when not in the edit

. first line identifier [, last line identifier]

BP-22 Programming

If only one line identifier is specified, then only that line is deleted. Specifying two line iden-
tifiers causes that block of lines to be deleted. For example, to delete lines 40, and 100 through

150 from a program, execute —

and

Exiting the Edit Line Mode

e c E
. A
The edit line mode is exited by pressing . or can also be used.

The AUTO Command

The ¥
This saves you from having to type the line number each time you key in a statement.

" command allows lines to be numbered automatically as they are entered and stored.

11 [beginning line number [, increment value]]

If neither parameter is specified, executing #LIT{} causes line numbering to begin with 10 and to
be incremented by 10 as lines are stored. If only the beginning line number is specified, the
increment between line numbers is 10. Both the line number and the increment values must be

positive integers. Automatic numbering halts when the keyboard entry area is cleared.

The REN Command

i [beginning line number [, increment value]]

The renumber command causes the program in memory to be renumbered. This allows you to
insert lines or to add more lines at the end. If no parameters are specified, the program is
renumbered so that line numbering begins with 10 and is incremented by 10. If only the

beginning line number is specified, the increment is 10.

Programming

Examples

When a program is renumbered, all line references (i for example) in the program are

adjusted automatically to reflect the new line numbers, except for a reference to a non-existent

line.

Spacing

In general, spacing between characters is arbitrary; the computer automatically sets proper

spacing into each line as it is stored into memory. Only in text, 1 statements, comments, and
blanks after line numbers and labels does spacing remain exactly as input. These blanks allow

lines to be indented.

Space Dependent Mode

The space dependent mode is useful for keying in a program that has long variable names. It
causes spaces, or lack of them, between parts of a statement to become significant when
entering program lines. In space dependent mode, variables, subprogram names and labels can
be typed in all capital letters or in any combination of upper and lower case, as long as the first
letter is upper case. Keywords must be separated from other parts of the statement by one or
more blanks or by a delimiter like a comma or a #.

Space dependent mode is entered by holding down then pressing @8 ! This causes the

to appear on the right hand side of the system comments line.

words

1 Notice that SPACE DEP is indicated on the front of the TYPWTR key to show you that space dependent mode is accessed with

commar]
) .

BP-23

BP-24 Programming

Example

Here is an example of how a program line may be typed in normal and space dependent

modes —

Normal Mode —

Space Dependent Mode —

Both list identically —

Here are some rules to follow when entering programs in space dependent mode —

e Any variable name that is the same as a secondary keyword cannot be entered in all

capital letters.

e The label of a line that is the same as any keyword cannot be entered in ail capital letters.

However, when referenced, asina | statement, it can be entered in all capital letters,

except after

e The first variable in an implied .1 statement cannot be entered in all capital letters if it is

the same as a keyword. This is also the case if the implied follows -

Example

For example, in space dependent mode, trying to store —

gives an

 message with the flashing cursor under the . The com-

When a program is listed after it was typed in space dependent mode, all names are converted

to their normal format: capital letter followed by lower case.

Programming BP-25

To exit the space dependent mode, hold down and then press again.

Space dependent and typewriter modes are mutually exclusive — if one is entered while the

other is in effect, the new one cancels the old.

Remarks

Many times you may want to insert comments in order to make your program logic easier to

follow. This can be done by using the (remark) statement or the comment delimiter

The REM Statement

[any combination of characters]

Remarks can be used to explain program lines or set off program segments.

Examples

Comment Delimiter

!, the comment delimiter, can be anywhere in a program line after the line number. If it comes

immediately following the line number, it is just like a statement. All characters following a

! are considered part of a comment unless the | is within quotes. The comment delimiter can
also follow a command.

Using the comment delimiter, program lines and commands can contain comments.

Examples

BP-26 Programming

The LIST Command

The i command is used to obtain a printed listing of the program or section of the program

in memory. The listing is output on the CRT unless another device was specified as the stan-

dard printer with PRINTER IS. An asterisk between the line number and the line signifies that

the line is longer than 160 characters and isn’t listed completely.

I [beginning line identifier [, ending line identifier]]

If no parameters are specified, the entire program is listed. If one line identifier is specified, the
program is listed from that line to the end. If two line identifiers are specified, that segment of
the program, including beginning and ending lines, is listed.

Examples
LIsT Plists the entire peogran
LIST 56 Plists program beglimmdng with Tine 58
LIST 2o, 258 Plizts lipes 200 through 258

Available Memory

When the listing is complete, the amount of unused memory available for use is displayed in the
< then i

is the total memory available for your use. This memory is expressed in bytes.

system comments line. So if you execute I, the number that is displayed

Alternate Printing Devices (LIST#)
The i

the select code of the alternate device.

 command can be directed to a device other than the standard printer by specifying

select code [, HP-IB device address] [beginning line identifier [, ending line iden-
tifier]]

=

o
H

Fegls,!

1
|
5501
g . i
#7, 2 H

Programming BP-27

The RUN Command and

Program execution can be started at the lowest-numbered line by pressing .

It can also be started by executing the + command —

[line identifier]

The line identifier must be in the main program and specifies that execution is to begin at that

line; if no line is specified, execution begins with the first line in memory.

Examples
RELIM P Begin at Towsst-runbered Tins
Bl 158 DBegin at Tine 156
FUM Fout ine P Begin at Vine labeled Fouting

causes a short pre-run initialization to occur which sets radian mode and the random
number seed and also dimensions variables and initializes them to 0 or the null string. See the
Reset Table in the Reference Tables for a complete list of items affected by RUN.

During the pre-run initialization, doubly defined labels and statements defined in ROMs which
aren’t present are detected and a warning message is given. However, functions defined in

ROMs which aren’t present are not detected.

After the pre-run phase, the program is executed.

The STEP Key

A program can also be run or continued by pressing G,

When is used, the program is executed one line at a time as is pressed. The next line
to be executed is displayed in the system comments line. When using to run a program
from the beginning, a pre-run initialization takes place the first time it is pressed. Pressing G&) a

second time executes the first program line.

BP-28 Programming

Mo 2|

The PAUSE Statement and

Execution can be suspended by pressing . The current line is completed and the program is
halted at the next line to be executed; this line is displayed in the system comments line. Any

current I/ O operation is completed.

A pause can also be programmed using the ¢ statement.

A useful application is to program a pause so that intermediate results can be checked and

execution resumed. The !
PAUSE key instead.

statement can’t be executed from the keyboard. Press the

—Z00

The Continue Command and

C
Program execution can be resumed where it was halted by pressing .

It can also be resumed by executing the ! i {continue) command —

[[line identifier]

The line identifier causes execution to resume at the specified line. If it is a line number that is

not in memory, execution resumes with the next highest numbered line. : can also be used

to start a program that was just run. No pre-run initialization takes place.

Execution of a paused program can also be restarted at the beginning with . or

Terminating Execution

All programs have a logical as well as a physical end. The logical end is that point where all
statements have been executed the desired number of times and the program has completed

the task for which it was designed. The physical end (highest-numbered line) of a program is
the last (highest-numbered) line.

The STOP Key
Program execution can be halted before it is done by pressing .

When is pressed, all 1/O operations are aborted and data may be lost. The program

pointer is reset to the first line of the main program. Don’t use to temporarily halt a
3

program you’ll want to resume. Use instead.

Programming BP-29

The STOP Statement
The :

program —

statement can be used to indicate the logical, rather than the physical end of a

Its purpose is to tell the computer to terminate execution of the program and reset the program

pointer. It may appear at any point in the program. Some programs have several logical ends

statements. The : i statement can’t be executed from the

keyboard. Press the STOP key instead.

and so require several :

The END Statement

The physical end (highest-numbered line) of a main program is indicated by the

statement —

also terminates program execution and resets the program pointer to the lowest-numbered

line. It is not mandatory to have an statement as it is in other BASIC systems; however, it is

good programming practice.

Reset
The reset operation (CONTROL-STOP) can also be used to stop a running program. All [/ 0O

operations are aborted and data may be lost.

4 had been

executed. Therefore reset should not be used for stopping a program unless pressing fails

[t is also possible that the program and data can be destroyed just as if =

to halt the program.

BP-30 Programming

The SCRATCH Command

The 4+ command is used to erase all or parts of memory; it can be used to erase

programs, variables, keys, or the entire memory. is defined as a typing aid for =

power on and

Foriort

" [key number] or k) or]

Command Operation

Erases program including DATA pointers.
Erases the entire memory. See the Reset table in Reference Tables.

Erases the values of all variables, including those in common.

Erases the program, variables, binary routines, DATA pointer
and the files table.

[key number] Erases one or all SFK typing-aid definitions (but not control

features).

Erases the values of all variables except those in common.

Erases the typing aid definition of the specified SFK.

The SECURE Statement

. statement is used to prevent selected program lines from being listed; instead, an

The =

asterisk appears after the line number. The secured lines execute normally, however.

[line identifier [, line identifier]]

If no line identifiers are specified, the entire program is secured. If one line identifier is
specified, only that line is secured. Two line identifiers secure that block of lines, including the

beginning and ending lines.

Programming BP-31

There is no provision made for ‘‘unsecuring” a program, so be sure to specify the line iden-
tifiers accurately. However, a secured line can be deleted or replaced, and can be listed after
that.

A program protected with : - can be reproduced onto a mass storage medium using

, but not using

Miscellaneous Statements

The WAIT Statement
The

statements —

T statement is used to program a delay between the execution of two program

number of milliseconds

The number of milliseconds is a numeric expression rounded to an integer in the range
—32 768 through 32 767. A negative number defaults to a wait of zero. The delay specified by
WAIT is only approximate.

The i

program.

I operation can only be interrupted by reset (CONTROL-STOP), which also stops the

The TYPEWRITER ON Statement

can be “pressed” from within a program to set the keyboard to typewriter mode, thus

making input easier. This is done by executing the - statement —

When this statement is executed, the keyboard behaves just as if had been pressed.

The TYPEWRITER OFF Statement

Typewriter mode can be turned off from within a program by executing the 7

statement —

BP-32 Programming

Chapter
Mathematics

page 39 ¢« STANDARD (sets standard format for output of numbers)

page 39 e FIXED (sets fixed-point format for output of numbers)

page 40 ¢ FLOAT (sets floating point format (scientific notation) for output of numbers)

page 44 ¢« RANDOMIZE (modifies the random number seed)

page 46 ¢ DEG (sets degree mode for trigonometric operations)

page 46 ¢ RAD (sets radian mode for trigonometric operations)

page 46 ¢ GRAD (sets grad mode for trigonometric operations)

page 50 ¢« DEFAULT ON/ OFF (circumvents math errors with improper arguments by supply-
ing default values. DEFAULT OFF cancels this process).

Functions

ABS (absolute value) SQR (square root)
DROUND (digit round) EXP (Napierian e to a power)
FRACT (fractional part) LGT (common logarithm)
INT (integer part) LOG {natural logarithm)
MAX (maximum value) ACS (arccosine)

MIN (minimum value) ASN (arcsine)

PI (7) ATN (arctangent)
PROUND (power-of-10 round) COS (cosine)

RES (result of keyboard calculation) TAN (tangent)

RND (random number) SIN (sine)

SGN (sign: +, —, 0)

Operators

+ AND DIV (divide, return integer portion)
OR MOD (modulo)
NOT
EXOR (exclusive or)

Terms
e Range — the range of numbers that can be entered into your computer is =107°° through
+9.99999999999x10°° and 0.

e Number format — the mode — STANDARD, FIXED or FLOAT — for output of numbers.
STANDARD is set at power on and SCRATCH A. Internal form isn’t affected.

¢ Angular units — the mode — DEG, RAD or GRAD — used for results and arguments of
trigonometric functions. RAD is set at power on, SCRATCH A, RUN or reset.

e Hierarchy — determines the order in which multiple operations in an expression are per-
formed.

e Parentheses — used to give a higher priority to lower-priority operations.

BP-34 Mathematics

Operators

Arithmetic Operators

division (11 1%), and modulo (i),

Relational Operators

Relational operators are used to determine the value relationship between two expressions.

This can be especially useful for program branching if a specified condition is true.

Operator Meaning

= Equal to
Less than
Greater than

o Less than or equal to

o Greater than or equal to

or Not equal to (either form is acceptable; it is listed < >)

The result of a relational operation is either a 1 (if the relation is true) or a O (if the relation is
false).

rev:4/81

Mathematics BP-35

Here are some examples of relational operations.

THEEE WHLUES R, B S0, R,8,0

Entering the values 3, 4, 5 results in —

THERICY s FRLSE; i

i

i
-
i

R

The equals sign is also used in the assignment statement, as shown earlier in the chapter. In an
assignment statement, the variable is to the left of the equals sign, the value is to the right. If the
equals sign is used in such a way that it might be either an assignment or relational operation,

the computer assumes that it is an assignment operation. For example, #=%=7 assigns the

value of Zto X and Y. =1"'=Z ! assigns the result of the operation ‘== to X.

Logical Operators

The logical operators

~ (exclusive or) and

expressions. The expressions used with logical operators can be either relational or non-
relational. If an expression is relational (like A<B), its true or false designation is determined by
the particular relational value. If an expression is non-relational (like A), it is true if its arithmetic

value is any value other than 0, and false if its arithmetic value equals O.

The result of a logical operation is either O (false) or 1 (true). Logical operators are especially

useful in determining whether or not certain sets of conditions are true.

Programming Hint

If you want to use a variable called T as the first operand in

or il operation, put parentheses around the T when

entering the line. This is to avoid confusion with the

keywords Tiiand T4 The computer takes out the paren-

theses after the line is stored.

AND Operator

numeric expression FHI numeric expression

FHI compares two expressions. If both expressions are true, the result is true (1). If one or both

of the expressions is false, the result is false (0).

BP-36 Mathematics

OR Operator

(I compares two expressions. If one or both of the expressions is true, the result is true (1). If
neither expression is true, the result is false (0).

EXOR Operator

is true (1). If both are true, or both are false, the result is false (0).

NOT Operator
FHT numeric expression

HIT returns the opposite of the logical value of an expression. If the expression is true (non-

zero), the result is false. If the expression is false (zero), the result is true (1).

Examples

Here are some examples of logical operations. For these examples, assume A=0, B=2, C=4,
and D=4.

True. Both relational expression A<B and C=D are true.
M ARD =1 False. The arithmetic value of A equals 0 (false).

HOOR R True. The arithmetic value of B is not O {so B is true).

True. One value is true and one value is false.
MOT # True. Ais O (false).

MOT B OOR MOT O False. NOT B is false and NOT C is false.

Mathematics

Here’s a truth table summarizing logical operations —

A | B | AANDB | AORB | AEXORB | NOTA | NOTB
T | T 1 1 0 0 0
T | F 0 1 1 0 1
F | T 0 1 1 1 0
F | F 0 0 0 1 1

DIV Operator

The 111/ (integer division) operator returns the integer portion of the quotient. I: I is useful for

roundmg, extracting multiples of a number and checking orders of magmtude.

Example

For example, if a test needs to run for 451 minutes, [iI% can be used to find the number of
whole hours the test will run —

The following formula illustrates how Ii 1% is calculated —

MOD Operator
The *

for testing divisibility, grouping serial data, and print control (prmt every Nth calculation, for

it (modulo) operator returns the integer remainder resulting from a division. It is useful

A

example). Given two values X and Y, & MLl %is equal to i ~ % % IHT x4 3

Example

Referring to the 451-minute test in the previous example, [ili can be used to find the minutes

remaining when 7 hours have passed —

E
451 MO <8 R
C

1 z6H (sign) and IHMT (integer) are functions which are covered later is this chapter.

BP-37

BP-38 Mathematics

Range

The range of values which can be entered, stored, or output on your computer is
—9.99999999999 x 10°° through —1 x =%, 0, and 1 x 107%° through 9.99999999999 x 19%°.

However, the range of numbers the computer can operate on during intermediate calculations
is —9.99999999999 x 10°'!, 0, and 1 x 105! through 9.99999999999 x 105'!.

Storage Range Calculating Range

Within Range Out of Range

- 277
69995599969 x 109 —9.99999999999 x 105
—-1x10°% —1x10-5"
0 NI, =l
1x 109 = x0T
99
9.99999999999 x 10 R 9.99999999999 x 105'"

Number Formats

Three formats are available to you for displaying and printing numbers: standard, fixed
point, and floating point (scientific notation). No matter what the format, all numbers are
output with a trailing blank and a leading blank or minus sign. It is always a good idea to set the

desired format at the beginning of a program to avoid unexpected results from a previously set
format.

Mathematics

The STANDARD Statement

The standard format is convenient for most computations since results appear in an easy-to-
read form. Standard format is set at power on, reset, =:FEATCH H, and when the S THMNIART

statement is executed —

STAHDART

In standard format, all significant digits of a number are output up to a maximum of twelve.

Excess zeros to the right of the decimal point are suppressed; for example, 32.100000 would be

output as 2. 1. Leading zeros are truncated; for example 00223 is output ==,

In standard format, all numbers whose absolute values are between 1 and 10'? are output in
fixed format showing all significant digits. Numbers between —1 and 1 are also output in fixed
format if they can be represented precisely in twelve or fewer digits to the right of the decimal
point. All other numbers are output in scientific notation as FLOAT 11.

The FIXED Statement

With fixed point, you specify the number of digits you want to appear to the right of the decimal
point. For example, specifying two digits to the right of the decimal point would be useful for

output of dollar and cent values. The F I =Ell statement sets fixed point format —

F I<ED number of digits

The number-of-digits parameter is a numeric expression and is rounded to an integer to specify

the number of digits to the right of the decimal point. Its range is 0 through 12.

Example

zhowz the F

ERF R

0 00

Notice that the number is rounded to the specified format. Also notice that the decimal point is
suppressed in FF I =ED &L

BP-39

BP-40 Mathematics

When fixed point is set and the absolute value of the number is greater than or equal to 1E12 or
would require more than 17 digits to represent it, the format temporarily reverts to floating
point. For example, in FIXED 12, 100 000 is output as not 100000.000000000000.

The FLOAT Statement

When working with very large or very small numbers, the floating point format is most con-

venient. This format is set using the statement —

number of digits

The number-of-digits parameter is a numeric expression and is rounded to an integer to specify
the number of digits to the right of the decimal point. Its range is O through 11.
A number output in floating point format follows this format —

e The leftmost non-zero digit of the number is the first digit output. If the number is nega-

tive, a minus sign precedes this digit; if the number is positive or zero, a space precedes

@ this digit.

e A decimal point follows the first digit, except in
e The specified number of digits follows the decimal point.

e Then the character E appears followed by a plus sign or minus sign and a two-digit
exponent, representing a positive or negative power of ten. The exponent specifies the
power of 10 by which the mantissa should be multiplied in order to express the number in

fixed point format.

Examples

Here are some numbers and how they are output in various modes —

Mathematics BP-41

Rounding

A number is rounded before being displayed or printed if there are more digits to the right of
the decimal point than the number format allows. In either case, the rounding is performed as
follows: The first excess digit on the right is checked. If its value is 5 or greater, the digit to the
left is incremented (rounded up) by one; otherwise it is unchanged. In either case, the number

remains unchanged internally.

Example

Significant Digits
Significant digits are those which determine the internal accuracy with which a numeric variable

is represented. The number format for output has no effect on this.

BP-42 Mathematics

Math Functions and Statements

Math functions available on your computer are explained in this section. Parentheses must

enclose the numeric expression used as the argument of the function if it contains any
operators. For example, SINA+B does not equal SIN(A+B), but equals (SIN(A))+B. Parenth-

eses enclose the expression when listed. Examples of two functions are combined in some

cases.

General Functions

HES numeric expression

DEOUHD

sion, number of significant rounded to the specified number of significant

digits -

Returns the absolute value of the expression.

FEM This
T ”F ?r 1 z

L= THEH
ECT CODE CAMTT RE

HEGATIWE "
YALUE-~ “;RESCRI; " -~MILL BE USED®

ﬁ[fﬂ
FF..IH! |
FRINTER It
EMD

CORE CANYT BE HEGATIVE
VYHALUE- & —WILL BE USED

"numeric expres- The digit round function returns the numeric

expression
digits. The

number-of-significant-digits parameter is rounded to an in-

teger. If the specified number of digits is greater than 12, no

rounding takes place. If it is less than 1, 0 is returned.

of digits, or standardizing internal value accuracy.

i‘“’ﬁ.”%(u{_;_..n ‘H
FRINT “E=";E,
=STOF

"-';-.Ih{ "HOFRMD
R TIURM

EHI

-
-
h
[
b
iy

BOARE EGURL TO 4 SIGHIFICANT DIGITE
5 DROUMD (A, 4=
5 DROUND (R, 4 0=

is useful for checking equality to a specified number

Mathematics

FEFCT numeric expression Returns the fractional part of the evaluated expression. (It is
defined by this formula: expression — IiHT expression.)

Th
E

4T numeric expression The integer function returns the greatest integer which is less

than or equal to the evaluated expression.

‘list of numeric expres- The maximum function returns the greatest value in the list.
sions

MIt ‘list of numeric expres- The minimum function returns the smallest value in the list.
sions

BP-43

BP-44 Mathematics

Returns an approximate value of . It is represented inter-
nally as 3.1415926536.

P

tnumeric expres- The power-of-ten round function returns the numeric expres-
sion, power-of-ten position sion rounded to the specified power-of-ten position. Specify-

ing —2 is useful for output of money values.

Returns the result of the last numeric computation which was

executed from the keyboard.

The random number function returns a pseudo random

[numeric ex- number greater than or equal to 0 and less than 1. The ran-

pression] dorn number is based on a seed set to w/ 180 at power on,

reset, and Each succeeding use of

returns a random number which uses the previous one as a

seed.

Mathematics BP-45

The seed can be modified by executing the
statement. If the value of the expression is an integer, the
value of the seed is set to O causing RND to return O each time
it is used. To obtain a good seed, the expression should have
as many digits to the right of decimal point as possible. A 1, 3,
7 or 9 is the most effective final digit. If no expression is
specified, the computer arbitrarily resets the seed to one of

116 possible points; this is a more random selection.

{ numeric expression The sign function returns a 1 if the expression is positive, O if

itis O and —1 if it is negative.

‘numeric expression The square root function returns the square root of a non-

negative expression.

BP-46 Mathematics

Logarithmic and Exponential Functions

- numeric expression The exponential function returns the value of the constant
Napierian e (= 2.71828182846 to twelve place accuracy)

raised to the power of the computed expression.

The common log function returns the logarithm (base 10) of a

positive-valued expression.

The natural log function returns the logarithm (base e) of a

positive-valued expression.

P aEm SrhidE

Trigonometric Functions and Statements

The trigonometric functions use the angular unit mode: degrees, radians, or grads, which is
currently set. A trigonometric statement is used to set the angular unit mode.
Radian mode is automatically set at power on, or when SZEATIH H) ELIM, or reset is executed

or when a subprogram is entered.

Mathematics BP-47

Degree Mode

To set degree mode, execute —

LEG

A degree is 1/360th of a circle

Grad Mode

To set grad mode, execute —

GRAT
A grad is 1/400th of a circle and is commonly used in Europe.

Radian Mode

To reset radian mode, execute —

R

There are 27 radians in a circle.

Functions
Returns the principal value of the arccosine of the expression

in current angular units. The expression must be in the range

% numeric expression

—1 through +1.
Returns the principal value of the arcsine of the expression in

current angular units. The expression must be in the range

4 numeric expression

—1 through +1.
Returns the principal value of the arctangent of the expres-

{ numeric expression
sion in current angular units.
* numeric expression Returns the cosine of the angle represented by the expression
in current angular units.
Returns the sine of the angle represented by the expression in

current angular units.

{ numeric expression
Returns the tangent of the angle represented by the expres-

{ numeric expression
sion in current angular units.

BP-48 Mathematics

Math Hierarchy

The order of execution for all mathematical operations is shown here.

When an expression has more than one operation, the order in which the computer performs

the operations depends on the following hierarchy —

Highest Priority & rparentheses
Functions

~ (exponentiation)

y

Lowest Priority

Mathematics BP-49

An expression is scanned from left to right. Each operator is compared to the operator on its
right. If the operator to the right has a higher priority, then that operator is compared to the next
operator on its right. This continues until an operator of equal or lower priority is encoun-
tered: the highest priority operation, or the first of the two equal operations, is performed.
Then any lower priority operations on the left are compared to the next operator to the right.

This comparison continues until the entire expression is evaluated.

Parentheses

Parentheses allow lower priority operations to be performed before higher priority operations.

When parentheses are used, they take highest priority. When parentheses are nested, like

‘1 is evaluated first.

2, the innermost quantity «+

Example

Here’s the order of execution in solving an expression —

multiplication
evaluate parentheses
exponentiation
division

addition

4 result

Whenever you are in doubt as to the order of execution for any expression, use parentheses to

indicate the order.

Using parentheses for “implied” multiplication is not allowed. So 4(5—2) must appear as

BP-50 Mathematics

Math Errors-Recovery

Many math errors occur due to an improper argument or overflow; if a program is running,
execution halts. It is possible to make some of these errors non-fatal so that execution doesn’t
halt by providing a default value for the number which is out of range. Using default values may

alter the results of computations; be aware of this when using them.

The DEFAULT ON Statement

The default values are enabled by executing the DEFHLULT [IH statement —

DEFAULT OH

The errors and default values are —

Error (Number) Default Value
Integer-precision overflow (20) 32767 or —32768
Short-precision overflow (21) + or — 9.99999E63
Full-precision overflow (22) + or — 9.99999999999E99
Intermediate result overflow (23) + or —9.99999999999E511*
TAN(N * P1/2), N:odd integer (24) 9.99999999999E511!
Zero to negative power (26) 9.99999999999E511!
LGT or LOG of zero (29) —9.99999999999E511!
Division by zero (31) + or — 9.99999999999E511!
XMODY, Y=0(31) 0

1 These values are used for intermediate results only. 99 is the greatest exponent for final results.

Mathematics BP-51

The DEFAULT OFF Statement

Default values are disabled by executing the

i statement —

" is set at power on, reset,

~ and

Example

Here is an example that uses !

Try changing line 20 to

and running the program again.

rev:4/81

BP-52 Mathematics

Chapter

Using Variables

A variable is a location in the memory of your computer that is assigned a value and accessed

with a name. Algebraic formulas and other operations usually contain variables. The formula
for the area of a circle, A=7R2, uses two variables, A and R. You solve for A by assigning a

value to R.

There are three types of numeric variables on your computer: full (12-digit), short (6-digit) and
integer precisions. There is a fourth type of variable known as a string which is used to manipu-

late characters. Chapter 7 is devoted to strings.

page 56 e LET (assigns a value to one or more variables)

page 60 « OPTION BASE (declares 1 rather than 0 as the lower bound of array dimensions)

page 60 e DIM (dimensions and reserves memory for full-precision arrays and for strings)

page 61 ¢ INTEGER (dimensions and reserves memory for integer-precision variables — sim-
ple and array)

page 62 ¢ SHORT (dimensions and reserves memory for short-precision variables — simple
and array)

page 62 ¢ REAL (dimensions and reserves memory for real-precision variable — simple and
array)

page 63 ¢ COM (reserves space in a common memory area for numeric and string variables)

page 64 ¢ REDIM (redimensions arrays)

page 66 ¢ DATA (supplies values that are assigned by READ and MAT READ)

page 66 ¢ READ, MAT READ (assigns values from a DATA statement to variables)

page 68 ¢ RESTORE (repositions the DATA pointer)

page 71 ¢ INPUT, MAT INPUT (lets values be assigned to variables from the keyboard)

Terms

e Name — a capital letter followed by 0 through 14 lowercase letters, numbers, or underscore
characters.

e Array — a collection of up to 32 767 data items of the same type, with 1 to 6 dimensions.

e Dimensioning — defining the number of dimensions, elements per dimension and type of an
array.

e Maximum size — the number of elements in an array when it is dimensioned.

e Working size — the total amount of elements being used currently.

e Array element — a single item of an array.

e Array identifier — ¢ following the array name, used to specify all elements of the array
collectively in an input or output operation.

e Subscripts — integers separated by commas and enclosed in parentheses for accessing an
array element or dimensioning an array.

e Implicit definition — using an array element without dimensioning the array dimensions the
array implicitly with 10 as the upper bound of each dimension.

e Redim subscripts — used to redimension an array and can be a numeric expression.

e DATA pointer — an internal mechanism that indicates which value in a DATA statement is

BP-54 Using Variables

Types

There are three types of numeric variables available with your computer.

o Full-precision (real) variables are represented internally with twelve significant digits and
an exponent in the range —99 through 99. Full-precision variables don’t need to be

declared, but the FEFL. statement can be used for documentation purposes.

e Short-precision variables are represented internally with six significant digits and an ex-
ponent in the range —63 through 63. A short-precision number is declared in a ZHUFT or

10 statement.

e Integer-precision variables have no digits following the decimal point. The range of
integer-precision numbers is —32 768 through 32 767. An integer is declared in an
IHTE

= or i statement.

All numbers are full precision unless otherwise specified using a ZHIRT, IHTEGER or O
statement. Any excess digits input for a number are truncated when the number is stored in
memory. For example, if you input 12345678912365 for a full-precision number, it is rep-
resented internally with 123456789123 in the mantissa.

Short and integer-precision variables are useful for conserving memory. All calculations are
performed with full-precision accuracy, so short and integer precision numbers are converted

before and after an operation, which can cause operations to take more time.

Forms

There are two forms that any type of variable may have.
e Simple (Nonsubscripted)

e Array — a collection of single data items.

Using Variables BP-55

Names

All variables must have a name. The name can be useful for describing what the variable is used

for. Names must follow these rules —
e A name has between 1 and 15 characters.
o The first character must be a capital letter.

e The remaining characters must be lowercase letters, digits, or the underscore character

obtained by pressing @

o String names must be followed by # (dollar sign).

Examples

Here are some examples of variable names —

Any name can be used simultaneously for a simple numeric, simple string, numeric array and

string array.

Variable Breakdown

Variables can be classified into various categories and subsets of the categories as shown in the
diagram below. For example, any reference to a single numeric variable includes simple

numerics and elements of numeric arrays. —

variable
single variable array variable
numeric variable tring variable numeric array tring array
simple numeric simple string matrix matrix
array element substring vector vector

Ting array element
substring

BP-56 Using Variables

Using Variables at the Keyboard

Variables can be assigned values using an equals sign to create an assignment statement. For
example, to assign 150 to Owed and 25 to payment, enter —

Oomxm

ﬂ

Now that some variables have assigned values, they can be used in place of numbers in math
calculations —

ﬁﬂ

The LET Statement

A simple numeric variable can be assigned a value in a program using the |_ET statement —

[L.ET] simple variable [= simple variable...] = numeric expression
Implied LET
Omitting LET is an implied L.E7T or implied assignment.

Examples

If a numeric variable is used in a computation and hasn’t been assigned a value, 0 is used as its
value.

E
To check the current value of a variable, you can type in its name, then press . This can also

be done while a program is running in live keyboard mode. You may get an unexpected result if
a subprogram is currently executing and the variable isn’t defined in the subprogram.

The values of variables are erased by executing : “H % (except those in common),

HTICH O HOH or s

Using Variables

Array Variables

An array variable (array) is a collection of data items of the same type. An array can have one to
six dimensions and up to 32 767 elements. It is a convenient tool for handling related data
items within a program. Use arrays when you have related values and need to access any of
them at any time, when you need to sort many values, when you need to keep track of a table
of values or when you have interrelationships between data items (a person’s age, height,

weight, phone number, and Social Security number for example).

A one-dimensional array (also known as a vector') can be thought of as a column of items. The

following represents a vector having three items; X represents one item.

>

The structure of a two-dimensional array (also known as a matrix’) is rows and columns. Here

is a representation of a 2 by 4 (2x4) array.

The structure of a three-dimensional array can be thought of as a series of two-dimensional
arrays. Here is a representation of a 3x2x4 array. Your computer interprets it as three 2 by 4

arrays.

A four-dimensional array can be thought of is a series of three-dimensional arrays. Here is a

representation of a 2x3x2x4 array.

X X X X

X X XX X X X X
X X X x[X X X x x X
X X X X X X X X

A five-dimensional array is a series of four-dimensional arrays and a six-dimensional array as a

series of five-dimensional arrays. Your arrays can be structured according to your needs.

1 Vectors and matrices are special types of arrays. Any reference in this manual to an array also includes matrices and vectors.

BP-57

BP-58 Using Variables

Defining the Size of an Array

To use an array, your computer must know its size. An array can be initially defined in a

variable declarative statement (I . There, its maximum
size is indicated by specifying the number of dimensions and size of each dimension. This is
known as dimensioning the array. An array is limited by memory size to no more than 32 767

items.

When an array is dimensioned, its physical or maximum size is defined. The working size of

an array is the total amount of elements being used. A new working size can be specified in a

statement or in certain array operation statements.

Implicit Definition

If an array element (discussed next) is used in a program or keyboard computation, but the
array has not been defined in a variable declarative statement, the array is then implicitly
dimensioned. This means that an array is dimensioned having the number of dimensions

indicated by the array element. The upper bound of each dimension is 10: the lower bound is 0
or 1, depending on the current [k- setting. OPTION BASE is covered later in this

chapter.

Array Elements

Each element in an array can be accessed by using subscripts, then used like a simple variable.
An array element is a type of single variable. In a 2x4 array called M, M(1,2) refers to the
element in array M which is in row 1, column 2. It can be assigned a value and used in

calculations and other programming operations.

Example

Array Identifier

All elements of an array (in its working size) can be specified collectively in an input or output

operation by using the array identifier: % after the name. For example —
FRIMT Mo
prints the entire array M.

rev:4/81

Using Variables

Declaring and Dimensioning Variables

SHORET and REAL — are used to

Five variable declarative statements — 0, T I, THTE!
dimension arrays and strings and declare the precision of numeric variables. These statements
also reserve space in memory for the specified variables when the program is run.

Subscripts

When you dimension an array, you declare the number and size of dimensions with subscripts.

The rightmost subscript represents the length of a row and varies fastest.

Subscripts are integers separated by commas and enclosed in parentheses. In addition, sub-
scripts can be numeric expressions when used in a subprogram to dimension an array. The
range of each subscript is —32 767 through 32 767, but the size of an array is limited to no

more than 32 767 elements by memory size.

Subscripts can specify just the upper bound for each dimension. The lower bound for each

dimension is then 0. The ¢ " statement can be used to change it to 1;

"is covered next.

Subscripts can also be used to specify the lower as well as upper bound of each dimension. This
is done by separating the upper and lower bounds with a colon. This allows you to have more

meaningful indexes, specifying 1967-1978 rather than 1-12, for example.

Example

Here are some ways to dimension a 2x4 array —

BP-59

BP-60 Using Variables

The OPTION BASE Statement

When dimensioning arrays, you may want to specify that the default lower bound for dimen-

o~
H
i

sions be 1 rather than 0. This can be done using the [

<F statement —

This statement must come before any of the variable declarative statements used in a program.

Then, any lower bound not specified is 1.

-k statement can’t be executed from the keyboard.

The DIM Statement

The IiIi (dimension) statement is used to dimension and reserve memory for full-precision
numeric arrays and initialize each element to 0. It is also used to dimension and reserve storage
space for simple strings and string arrays and initialize all strings to the null string.

DiiMitem [, item...]
The item can be —

numeric array <“subscripts

simple string Inumber of characters
string array isubscripts : [inumber of characters }]

Example

Using Variables BP-61

Remember these things when using [11 —

¢ The maximum number of dimensions that can be specified is six. The range of subscripts
is —32 767 to 32 767. No array can have more than 32 767 elements. No simple string
can be longer than 32 767 characters. The size of arrays or strings may be limited by

available memory, however.

e The maximum length of a string (number of characters) can be specified with any numeric

expression except one containing a multiple-line user-defined function.

o The [i1}1 statement must be executed via a program, not from the keyboard. Its location in

a program is arbitrary, though it must be after any {F7T 10 - statement. At pre-run

initialization, the variables are dimensioned and initialized.

e Ii11 need not be used to assign space for strings with 18 characters or less or for arrays
having upper bounds of 10 or less. These can be dimensioned implicitly. This, however,

may use memory inefficiently by creating arrays or strings which are larger than needed.

e A program can have more than one @i Ii{ statement, but the same variable name can be
declared only once in a program segment. Therefore, arrays of differing dimensions can’t

have the same name.

The INTEGER Statement

The

bles — simple and array. Integer-precision variables can be used to conserve memory; all

: statement is used to dimension and reserve memory for integer precision varia-

calculations are performed with full-precision accuracy however, so a conversion is made

before and after an operation, which takes more time.

R numeric variable: [“subscripts *][, numeric variablez [“subscripts *], ...]

Example
3 OPTION BRSE 1
48 INTEGER =,4Y0iZ,20

declares X to be an integer and Y to be an integer array of four elements.

BP-62 Using Variables

The SHORT Statement

The

ables — simple and array. Short-precision variables can be used to save memory. All calcula-

statement is used to dimension and reserve storage for short-precision vari-

tions are performed with full-precision accuracy, however, so a conversion is made before and

after an operation, which takes more time.
=HOFET numeric variable: [“subscripts *][, numeric variablez [©subscripts 1....]
Example
S OZSHORT Add, 40, BOZ, 3, 20,0

declares A and B as short-precision arrays and D as a simple, short-precision variable.

The REAL Statement

The FEHL statement is used to dimension and reserve memory for full-precision (real) vari-

ables — simple and array.

-

REAL numeric variable: [¢subscripts] [, numeric variable:z [#subscripts Ta-r]

Example
1& FEAL Moz, 2, 2,20, H

dimensions the array M and declares the simple variable N.

Since the I!I1 statement can also be used to dimension full-precison variables, the FEFL

statement can be used for documentation purposes to specify which variables are full precision.

Using Variables

The COM Statement
The

This includes strings and all three numeric precisions. i

statement is used to dimension and reserve memory for simple and array variables.

is unique because it reserves mem-

ory space in a special “‘common’ area which allows data to be transferred to and from subpro-

grams or to other programs when each program or subprogram has corresponding i state-
ments.
Z00 item [, item, ...]
The item can be —
simple numeric
numeric array subscripts
simple string [Lnumber of characters 1]
string array “subscripts ' [[number of characters |]
In addition, any one of the type-words — [HTEGER, SHORT, RERAL — can precede one or more

numeric variables. All variables following a numeric type word have that precision until another

type is specified or a string is declared.

Example

The variables A,B(2,4), D and G are all full precision. Full precision is assumed at the beginning
of the (i list and for numeric variables which are declared after any string. Since all variables
following a numeric type word have that precision until another type is specified or a string is

declared, both H(5) and J are short precision.

The items declared in corresponding 2} statements in separate programs and subprograms
must correspond to preserve values. Each item must be of the same type — integer, short,
full-precision and string — as the corresponding item in other (il statements. Arrays must
have the same upper and lower bounds for each dimension. Strings must have the same
number of characters dimensioned. Names need not match, however.

-1 statements in separate programs need not have the same number of items. A shorter il
statement in a succeeding main program causes the extra data from the first Z{il statement to
be lost. A longer i list in a succeeding program causes the new elements of the second i

statement to be initialized to 0 or the null string.

BP-63

BP-64 Using Variables

Redimensioning an Array

Redimensioning an array allows you to reorganize it into a more useful configuration. When an
array is redimensioned, it is given a new working size. Any elements not included in the new
working size are ignored, but are still part of the array. Thus, when new values are assigned to

elements of a redimensioned array, the values of the unused elements are not changed.

A redimensioned array must retain the same number of dimensions as orginally specified. Also,

the total number of elements can’t exceed the number originally specified.

Redimensioning of an array can be explicitly specified in many of the array statements.

MAT INFUT and MAT... 11 are two examples.

Redimensioning can also be implicitly specified in many of the array operation statements. For
example, adding the elements of two 3x3 arrays and storing the sums in a 5x5 array causes the

result array to be redimensioned to 3 x 3.
The REDIM Statement
A new working size for an array can be established by using the FEI 11 statement,

mELD I array variable ‘redim subscripts " [, array variable ‘redim subscripts *, ...]
Redim subscripts have the same characteristics as dimensioning subscripts. In addition, they
can be any numeric expression, not just an integer. If you redimension a string array, you can’t

change the string (element) length.

Examples

Here are some example REI I statements —

Using Variables BP-65

The following program illustrates

what happens when an array is redimensioned —

+
{
+

More Ways to Assign Values to Variables

Values can be assigned to variables during a program, either from within the program or input
directly from the keyboard. Besides LET, you can use —

BP-66 Using Variables

The READ and DATA Statements

To assign values to variables from within a program, the [iFTH statement is used with =EHT

FEAD and DATAH allow you to store values in a program. The [IFHTH statement(s) provides
values that are assigned to the variables. The REFII statement specifies the variables for which
values are to be obtained from LIFTH statements. FEFTI and IIHTH are programmable only; they

can’t be executed from the keyboard.

LiHTH constant or text [, constant or text, ...]

Il variable name [, variable name,...]

In the [IFMTH statement, text for strings can be quoted or unquoted. A constant could thus be
interpreted as either a numeric value or as unquoted text. The location of the LiFi T statements
within a program segment is unimportant. If there are multiple IiFfi T+ statements, make sure
they are in the order you want, since the program accesses them in order.

The variables specified in the FEAL statement can be any single variable or an array identifier

©.# 1 following the array name.

Example

cdE READ arnd DATHR state

1e8

Notice that an unquoted value in the Ii¥TFi statement (77) can correspond to a string variable in

the FERL statement (A$). It is interpreted as unquoted text in this case.

The MAT READ Statement

The MAT RERID statement specifies entire arrays for which values are to be read from LiFTH

statements.

array variable [“redim subscripts *][, array variable [“redim

subscripts], ...]

Using Variables BP-67

The working size of the array can be altered by including the redim subscripts. When redimen-
sioning, the total number of elements can’t be greater than the number originally dimensioned.
The number of dimensions can’t change. The subscripts can be any numeric expression except

one containing a multiple-line user-defined function (FN) reference.

The ¥

ili statement is programmable only; it can’t be executed from the keyboard.

Array elements are read in order with the rightmost subscript varying fastest.

Example

Values are read in the following order —

A(1,11), A(1,1,2), A(1,2,1), A(1,2,2), A(2,1,1), A(2,1,2), A(2,2,1), A(2,2,2)

DATA Pointer

The computer uses an internal mechanism called a DATA pointer to locate the next data

element that is to be read. The leftmost element of the lowest-numbered 1 statement in the

current environment is read first. After this element is read and another value is required by

the DATA pointer repositions itself one element to the right, and continues to do so each

time another data element is read. After the last element in a [fTE statement is read and

another value is required by # the DATA pointer locates the next higher numbered

statement and repositions itself at the first element in that statement. If there are no higher-

numbered statements, the data pointer remains at the end of the previous | state-

ment; any effort to read additional data results in

BP-68 Using Variables

The RESTORE Statement

The DATA pointer can be repositioned to the beginning of any I

i statement in the same

program segment, so that values can be reused, by using the statement —

‘F [line identifier]

If no line identifier is specified, the pointer is repositioned to the beginning of the lowest-

numbered ! statement in the same program segment.

If the specified line is not a [i<T# statement, the first IiFiTH statement following the specified

line is accessed.

Examples

Here are some examples of IiFTH, § +and F

4 statement. It

This example shows that several i statements can apply to the same !
also shows that string values can be quoted or unquoted, though quotes are not part of the

string; notice that 7.31 is a string value assigned to A$.

rev:4/81

Using Variables

This example illustrates use of REZT{RE and FMET BEAD. The values in line 30 are used as the

values of five simple variables, then re-used as the values in array B.

The INPUT Statement
The IHFi

T statement allows the user of a program to interact with the program and input
varying data. Values in the form of expressions can be assigned to variables from the keyboard

at the request of the program —

e
IER I R

["prompt",] variable name [, ["prompt",] variable name,...]

When the

is any combination of characters; it can be used to show the user for what variable a value is

I statement is executed, a * or the prompt, if present, is displayed. The prompt

being requested. Each prompt applies only to the variable to its right. If no characters are
present between the quotes, nothing is displayed. Any variable not preceded by a prompt uses
a question mark by default. A value can then be input for each variable designated in the

- C
statement. Values are entered into the computer by pressing or &)

T

BP-69

BP-70

Using Variables

Example

For instance, in the statement —

three values are requested.

Values can be assigned individually or separated by commas in groups. Values input for strings
can be quoted or unquoted. Quotation marks can’t be input as part of the string’s value. An
unquoted value for a string can’t contain a comma or exclamation point and all leading and

trailing blanks are deleted.

Example

For example, the values 24, 2592 and 350 can be assigned to the variables in the example

o i

above in many ways; here are two —

-“-200
~Z00

is]

with the statement following the i}
or the i

T command can also be used. Variables not assigned values retain their previ-

ous value.

Example

Using Variables

The output is as shown. Notice X retains the value 5.

The variable list can also include array identifiers.

Example

LEE IHFUT A B

requests values for the simple variable A and the array B.

The IHFLIT statement is programmable only; it can’t be executed from the keyboard.

The MAT INPUT Statement

Entire arrays can be given values from the keyboard and optionally redimensioned using the

MET T

iT statement —

T array variable [“redim subscripts *] [, array variable

[“redim subscripts #],...]

When ¥

string expressions can be entered separately, or in groups. As with the 1}
c

values are stored by pressing or or using the

T

[is executed, a 7 appearsin the display line. Values in the form of numeric or

i statement,

" command.

BP-71

BP-72

Using Variables

The first array with redim subscripts is always redimensioned. Redimensioning of any but the

first array takes place only if a value is input for at least one element in the array.

Example

When this is executed, 29 separate values are requested. If

4 o oo
Ly omly Wlrg - a by BD

are entered, the only values that would change are the elements of «+ with subscripts
(1,1,1), (1,1,2), (1,1,3), (1,1,4), (1,1,5), (1,2,1). Array B is not redimensioned because no
elements were input for it.

—=Z00
—“Z00

The MAT IHFLT statement can’t be executed from the keyboard.

Using Variables

Storage of Variables

To determine how many bytes a variable requires when stored in memory (storage on a mass

storage medium is different; see Chapter 11}, use the following tables.

Simple Variable

Amount of Memory Used

Full precision
Short precision
Integer

String

Array Variable

10 bytes
6 bytes
4 bytes

6 bytes + length (1 byte per character, rounded up to an

even integer)

Amount of Memory Used?

Full precision
Short precision
Integer

String

10 bytes + 4 bytes per dimension + 8 bytes per element
10 bytes + 4 bytes per dimension + 4 bytes per element
10 bytes + 4 bytes per dimension + 2 bytes per element

12 bytes + 4 bytes per dimension + 2 bytes per
element + length of each string (1 byte per character,

rounded up to an even integer)

1 See the “Memory’’ section of the Reference Tables.

BP-73

(X

BP-74 Using Variables

Chapter

Array Operations

page 76 « MAT...CON (assigns 1 to every element in an array)

page 76 ¢ MAT...ZER (assigns O to every element in an array)

page 77 ¢« MAT-Initialize (assigns a constant value to every element in an array)

page 78 e« MAT-Copy (copies all the values of one array into another)

page 79 ¢ MAT-Scalar operation (performs an operation on every element in an array with a
constant scalar)

page 80 ¢ MAT-arithmetic operation (performs an operation on corresponding elements of
two arrays)

page 81 ¢ MAT -function (operates on every element in an array with a system function)

page 82 @ MAT...IDN (establishes an identity matrix)

page 83 ¢ MAT-matrix multiplication (performs multiplication on two matrices)

page 85 ¢ MAT...INV (finds the inverse of a matrix)

page 87 « MAT...TRN (finds the transpose of a matrix)

page 87 ¢ MAT...CSUM (finds all the column sums of a matrix)

page 88 ¢ MAT...RSUM (finds all the row sums of a matrix)

Functions

SUM (sum of all the elements)
ROW (number of rows)

COL (number of columns)
DOT (dot product)

DET (determinant)

Terms

o [dentity matrix — a square matrix with all elements equal to 0 except the main diagonal,
which all equal 1.

e Scalar — a numeric expression used as a constant in mathematic operations.

rev:4/81

BP-76

Array Operations

Assigning a Constant Value

Three statements allow a constant value to be assigned to every element in a previously dimen-

sioned array.

1. MAT...CON
The i

"l statement assigns the value 1 to every element —

4 [“redim subscripts *]

"array variable =

When executed, all elements in the current size of the array are assigned the value 1. The
current size can also be redimensioned by including the redim subscripts. The redimensioning

is done before the assignment takes place.

Example

In this example the value 1 is assigned to 9 elements of the array # —

2. MAT...ZER

The < statement sets all elements in a numeric array to 0. You can also redimension

the array.

“redim subscripts]

array variable = :
Again, the optional redimensioning takes place before the assignment.

Example

15 elements of the array *: are assigned the value 0.
rev:4/81

Array Operations BP-77

3. MAT-Initialize

The MAT — Initialize statement assigns the value of the numeric expression to every element in
a numeric array.

MHT array variable = {numeric expression

Example

This assigns the value of 2*PI to every element in fir

The numeric expression is evaluated once; it is converted to the numeric type (INTEGER,
SHORT, REAL) of the array, if necessary.

Line 20 causes the value 3 to be assigned to every element in .

BP-78 Array Operations

The MAT-Copy Statement

The T — Copy statement copies the value of each element of a numeric array into the

corresponding element of the result array.

iT result array = operand array

The two arrays must have the same number of dimensions. The number of elements in the
result array must be greater than or equal to the number of elements in the current size of the

operand array.

Example

o

[

ot

an

The working size of array C is redimensioned to be a 2 by 2 array, then the values of array D are

copied into the elements of array C.

rev:4/81

Array Operations

Mathematical Operations

There are various mathematical operations that can be performed with arrays. These are

covered next.

Scalar Operations

The scalar operation statement allows an arithmetic or relational operation to be performed
with each element of an array using a constant scalar (any numeric expression). The result of
the operation becomes the value of the corresponding element of the result array. The

operators that can be used are —

"result array = operand array operator iscalar :

IT result array = iscalar * operator operand array

Example

In this example, each element in array i is multiplied by 4 and the result is stored in the

corresponding element of array

i
Py
+

BP-79

BP-80 Array Operations

The two arrays must have the same number of dimensions. The result array can’t be smaller
than the operand array. The array is redimensioned before the operation so that it has the same

working size as the operand array.

Arithmetic Operations

The arithmetic operation statement allows an arithmetic or relational operation to be per-
formed with corresponding elements of two numeric arrays; the result becomes the value of the
corresponding element in the result array.

I result array = operand array operator operand array

Examples

In this example, corresponding elements of arrays ¥ and ¥ are added.

rev:4/81

Array Operations

In this example, corresponding elements of arrays Moz and Fat ¢ are multiplied together

and the result stored in array Fa:..

THE FREODUCT OF

OF AMD Eate

The following operators are allowed —

L ror B

Notice that multiplication is indicated by a period. An asterisk indicates matrix multiplication

which is different and is covered later in this chapter.

The result and operand arrays must have the same number of dimensions. The operand arrays

must have the same number of elements in each dimension; the result array can’t be smaller.

Functions

The function statement allows each element in the operand array to be evaluated by the

specified function. The result becomes the corresponding element of the result array.

MHT result array = function operand array

The function must be a single-argument system function like Z1H, HES

BP-81

(1

BP-82 Array Operations

Example

In this example, the square root of each element in array #i is assigned to the corresponding

element in array

e

Matrices and Vectors

Many array operations can only be performed using matrices or vectors. These are covered

next.

MAT...IDN

The i statement establishes the specified matrix as an identity matrix: all elements in
the matrix equal 0 except those in the main diagonal (upper left to lower right), which all equal
1.

matrix name = [“redim subscripts *]

An identity matrix must be square {two dimensions; each dimension has the same number of
elements); when the subscripts are included, this enables the matrix to be redimensioned
before the identity matrix is established.

rev:4/81

Array Operations

Example

Matrix Multiplication

The matrix multiplication statement multiplies two matrices together. This is different from

the multiplication of corresponding elements which was discussed previously.

The number of columns of the first operand matrix must equal the number of rows of the
second operand matrix. The result matrix has the same number of rows as the first operand
matrix and the same number of columns as the second operand matrix. The result matrix can’t

be named the same as either of the operands. Here is an example —

Biaxa) * Ciaxay = Aax2)

Either or both of the operand matrices can also be vectors. The result matrix must also be a

vector in this case. Here is an example —

X6 * Yo = Zis)

If you have not been introduced to matrix multiplication, you might assume that corresponding
elements are multiplied together; however, this is not the case. Assume you are multiplying
matrix B by matrix C and storing the result into matrix A (MAT A=B*C). To determine the
value of any element of matrix A, call it Ai.), corresponding elements of the xth row of B and
the yth column of C are multiplied together. The sum of the resultant products is the value for
Ay

rev:4/81

BP-83

BP-84 Array Operations

Mathematically speaking —

MATA=B*C

N
A(LK) = 2 B(1,J) * C(J,K)
d=1

where N = the number of columns in B and rows in C

Example

Here’s an example that uses matrix multiplication to find total sales for four bus routes using old

and new prices —

Matrix A — Ticket Revenue by Route

Route Single Trip Round Trip Commuter
1 143 200 18
2 49 97 24
3 314 77 22
4 82 65 16

Matrix B — Ticket Prices

E Old Price New Price

Single Trip .25 .30
Round Trip .45 .50
Commuter 18.00 17.00

Matrix A, a 4 by 3 matrix, is multiplied by Matrix B, a 3 by 2 matrix, resulting in Matrix C, a 4 by

2 matrix.

Matrix C — Total Sales by Route

Route Oid New
1 449.75 448.90
2 487.90 471.20
3 509.15 506.70
4 337.75 329.10

Array Operations BP-85

Here is the program used to perform the multiplication —

Here are some things to remember when using the matrix multiply statement —
e The result matrix can’t be named the same as either of the two operand matrices.

¢ The number of columns of the first operand matrix must equal the number of rows of the

second operand matrix.

e Either or both of the operand matrices can be a vector. In this case, the result matrix must

also be a vector.

MAT...INV

The inverse of a square matrix can be found by using the I

/' statement —

- result matrix = operand matrix

" function) is 0, the matrix doesn’t have an

If the determinant of the operand matrix (see the
inverse. No warning is given to indicate this condition and a meaningless inverse is calculated.
The best way to check the inverse is to multiply the original matrix by the inverse using matrix

multiplication. The result should be close to an identity matrix.

The inverse of a matrix is useful for solving systems of equations.

rev.4/81

BP-86 Array Operations

Example

3X +4Y =47

2X +2Y =28

These two equations can be represented as matrices —
A B C
B 3 4 X 47

o= 3

2 2 Y 28

The solution (the values of X and Y) is determined by multiplying both sides of the equation by

the inverse of A. The following program was used to solve the system of equations —

Array Operations BP-87

MAT...TRN

The transpose of a matrix can be found by using the MAT... TR statement —

MHT result matrix = TR operand matrix

The transpose of a matrix has the same elements as the original, but columns become rows,

and rows become columns.

Example

The result matrix is redimensioned, if necessary. The result and operand matrices must be

separate matrices.

MAT...CSUM

The sums of all the columns of a matrix can be found by using the [F7... [5Lil statement —

AT result vector = (21111 operand matrix

Each element in the result vector is the sum of the corresponding column of the operand

matrix.

BP-88 Array Operations

The result is redimensioned, if necessary.

MAT...RSUM

The sums of all the rows of a matrix can be found by using the

result vector = operand matrix

Each element in the result vector is the sum of the corresponding row of the operand matrix.

Example

Array Operations

The result vector is redimensioned, if necessary.

Array Functions

There are five array functions which each return a number that provides information about an
array. These are covered next. Examples showing the array functions follow the descriptions of

all the functions.

SUM Function

The =L function returns the sum of all the elements in an array.

=L operand array

ROW Function

number of rows corresponds to the subscript which is second from the right.

Eild operand array

COL Function

The L. (column) function returns the number of columns in the array according to its current

size. The number of columns corresponds to the rightmost subscript.

0L operand array

A vector as the operand array always has one column.

BP-89

BP-90 Array Operations

DOT Function
The Ii

“function returns the inner (dot) product of two vectors.

Lvector name, vector name *

The two vectors must have the same working size. The inner product is the sum of the products

of corresponding elements.

Example

PN
BN

DOT (AB) = (2*1) + (4*2) + (6*4) = 34

The DET Function

The DET (determinant) function returns the determinant of the specified square matrix or of the
last matrix which was inverted using the MAT...INV statement. If DET(operand matrix) results in

zero, then the matrix doesn’t have an inverse. No error is given if an inverse doesn’t exist.

T operand array

If a matrix is not specified, the determinant of the last inverted matrix is returned. This method

uses less memory because the determinant is a by-product of the inversion operation.

Examples

Here are some examples of array functions —

rev:4/81

BP-91

Array Operations

-]

et

BP-92 Array Operations

Chapter 7

String Operations

A string is a series of ASCII characters such as ‘vAB12?&’, ‘Mr. Smith’, or ‘12 Oak Drive’. A
string can be stored in a string variable like a number is stored in a numeric variable. Strings can
be used for friendly, conversational programs and for text processing applications.

page 94 ¢ LET (assigns a value to one or more strings)

page 94 ¢ DIM (dimensions and reserves memory for strings — simple and array)

page 94 ¢ COM (reserves space in a common memory area for strings - simple and array)

page 98 ¢ READ, MAT READ, DATA, INPUT, MAT INPUT (used for assigning values to
strings, just as for numeric variables)

page 98 e LINPUT (assigns any characters to a string from the keyboard)

page 99 ¢ EDIT (lets the current value of a string be viewed and edited)

String Functions

LEN (current length) UPCS$ (convert all lowercase to uppercase)

POS (position of one string in another) LWCS$ (convert all uppercase to lowercase)

VAL (numeric value of a string of digits) RPT$ (repeat a string)

VALS$ (put a numeric value into a string) REVS$ (reverse the characters in a string)

CHR$ (convert numeric value to an ASCi! NUM (return the number which corresponds to a
character) character)

TRIMS$ (remove all leading and trailing blanks)

Terms
e String name — a variable name followed by a dollar sign — #.

e Dimensioning — specifying the maximum number of characters of a string, within brack-
ets — L
Implicit dimensioning — if a string is used, but not dimensioned, it is implicitly uimensioned to
a maximum length of 18 characters.

String array — a collection of strings, with each string being one element.

String expression — text in quotes, string name substring, string concatenation, string func-
tion, user-defined string function or any combination of these.

Substring — a part of a string made of zero or more contiguous characters, specified by
placing substring specifiers in brackets after the string name. The three substring specifiers
are —
i.character position ! (the character and all following)
Lbeginning character position, ending character position ! (between and including the two
characters)
ibeginning character position ; number of characters (the specified length, starting with the
character)

e String concatenation — joining one string to the end of another using #

o Null string — a string that contains no characters

e Literal — text within quotes

BP-94 String Operations

Overview

Like a numeric variable, each string must have a name which is followed by a dollar sign ($) to

differentiate it from a numeric variable. Some examples of string names are —

The simplest way to assign characters to a string variable is with the LET statement —

Any ASCII characters except quote marks can be assigned to a string this way. The quote marks

which enclose the characters are not part of the string.

Example

Dimensioning a String

A string variable needs to be dimensioned before you use it. This can be done either implicitly

or explicitly.

Explicit Dimensioning

The DIM and COM statements are used to dimension a string variable, specifying the
maximum number of characters for the string. The value of a string can have any number of
characters up to its maximum length. 32 767 is the longest any string can be. When a DIM or
COM is executed, all strings are initialized to the null string, meaning they contain no charac-

ters.

See “‘Variables in Chapter 5 for the amount of memory used.

String Operations

When you dimension a string, you specify its maximum length in brackets®. Here are some
examples —

ot B

ChEran L er

Implicit Dimensioning

If you use a string variable without having dimensioned it in a DIM or COM statement, it is

implicitly dimensioned. The length of an implicitly dimensioned string is 18 characters.

String Arrays

A numeric array is a collection of numbers; similarly a string array is a collection of strings. Each
string is one element in the array like a number is one element in a numeric array. [t can be
dimensioned in a i

1 or LM statement. Every string in the array has the same maximum

length. Like a numeric array, a string array can be implicitly dimensioned with 10 as the upper
bound of each dimension.

In all string operations, an element of a string array can be used just like a simple string.

Example

1 Brackets can also be obtained by shifting @ and @ in the numeric keypad.

BP-95

BP-96 String Operations

String Expressions

Like you can with numbers, you can manipulate strings, creating a string expression. Text
within quotes (a literal) is the simplest form of a string expression. The other forms that a string
expression can have are discussed throughout this chapter. The kinds of string expressions

are —
e Text within quotes
e String variable name
e Substring
¢ String concatenation operation
e String function

e User-defined string function

As with a numeric expression, a string expression can be enclosed in parentheses, if necessary.

Substrings

A substring lets you use any part of a string which is made up of zero or more contiguous
characters. A substring is specified by placing substring specifiers in brackets after the string

name. There are three forms a substring can have —

¢ String variable name fcharacter position

The character position is a numeric expression which is rounded to an integer. The

substring is made up of that character and all following it.

e String variable name [beginning character position, ending character position !

This type of substring includes the beginning and ending characters and all in between.
The character positions must be within the dimensioned number of characters. The end-
ing character position must be greater than or equal to (beginning character position —1).

For example. A$[10.9] results in no output. but A$[10.8] results in an error.
e String variable name [beginning character position ; number of characters 1

This type of substring begins with the specified character in the string and is the specified
length. The number of characters specified can’t exceed the dimensioned length, minus

the beginning character position.
rev:4/81

String Operations BP-97

Example

String Concatenation

The string concatenation operator joins (concatenates) one string to the back end of another.

string expression i string expression [& string expression...]

BP-98 String Operations

Assigning a Value to a String

LET, READ, MAT READ, ENTER, INPUT and MAT INPUT are used to assign value to string
variables. If the string to be assigned is longer than the string variable’s dimensioned length, error
18 (string too long) occurs. With the INPUT and LINPUT statements, error 18 causes the input

routine to be repeated (the error cannot be trapped using ON ERROR).

Example

£ e
P

H

-1

1o
P-4

-
£
oy

The LINPUT Statement

" statement is used to assign any combination of characters to a string variable or

The i.1
substring —
F'[“prompt" ,] string variable or substring
When | is executed, either a ? or the optional prompt is displayed. Characters typed in

o3
become the value of the string when or is pressed.

09845-93000, rev: 9/81

String Operations

If the response is —

The output is —

Mren azked. .. "Conputs, thern print', ke

1ol

i
by

—~Z00

Pressing or without entering a value erases the current value of the string and sets it to
the null string.

Note that the L IHFLIT statement allows an exclamation point or quotation mark to be included

in the value of a string variable; this isn’t possible with the IHFLIT statement.

The L IHFLIT statement can’t be executed from the keyboard.

The EDIT Statement

EDIT["prompt",] string variable or substring

When the F

current value of the specified string appears in the keyboard entry area.

i statement is executed, a 7, or the prompt if present, is displayed and the

Rl .
can be used to clear the line,

. However, the original value can’t

This value can then be edited like any keyboard entry.

allowing a totally new value to be entered, like with i. I F§

7

be recalled. Pressing stores the characters displayed in the keyboard entry area for the

value of the string.

Example

I could be used to alter the names in printed output —

DI GF0ed

“
H
HE I

HEM HRME®, 0%

When line 50 is executed, HEW HAME is displayed. Ei Stk sperit. appears in the keyboard

entry area. Then the character editing keys can be used to change the name.

BP-99

BP-100 String Operations

The limit on the length of the string being edited is 160 characters (the length of the keyboard
entry area). So, if a longer string is specified, ERROR 37 occurs. This can be avoided by using
substrings.

Example

The EDIT statement can’t be executed from the keyboard.

String Variable Modification

A string or substring can be modified with a string expression. For example, a part of a string
can be changed or characters can be added or deleted. The string containing the modification is
called the modifying string; the string being modified is the destination string. The destina-

tion string can be a string or substring. The modifying string can be any string expression.

Example

If a modifying string is to be stored into a string or substring which is too short to hold it, the

result is truncated on the right.

Each string of a string array can be modified in the same way as a simple string by the inclusion
of subscripts.

String Operations BP-101

No Substring Specifiers

When the destination string has no substring specifiers, the entire destination string is replaced

by the modifying string or substring. Its characteristics after modification are the same as those
of the modifying string or substring.

Example

One Substring Specifier

When the destination string has one substring specifier, the indicated substring is replaced by

the modifying string or substring. The destination string can be shortened or lengthened.

Example

BP-102 String Operations

Characters added to those of a string must be contiguous; that is, they must immediately follow
the destination string without any unassigned character spaces. If they are non-contiguous,

ERREORE 12 occurs.

Example

s caused because character positions 5, 6 and 7 aren’t assigned any

characters.

Two Substring Specifiers

When the destination string has two substring specifiers, with either a comma or semicolon, the
indicated substring in the destination string is replaced by the modifying string expression. The
left-most character of the modifying string expression replaces the left-most character of the
indicated destination substring. The next adjacent character is replaced, and so forth, until the
indicated destination substring is filled. If the modifying string is shorter than the indicated
destination substring, the remainder of the destination substring is filled with blanks. If the
modifying string is longer than the indicated destination string, the remainder of the modifying

string is truncated.

Example

18 AfF="Louve land!
&4 FRINT Af
e i AED L, ad="Home"
48 FRIMT A%
e =i AEL1,41="Up" ! e
S FRINT Af
e i AEll,4i="Tomorrow" PoModifueireg steing
’ truncate o
k) Pg‘ i H$
25 BT

i x|
U Tand
T Y arnd

String Operations

The length of the destination string after modification either is unchanged, or is greater. When
the value of the second substring specifier is greater than the current length of the destination

string, the modification results in a lengthened string (within its maximum length).

Example
16
e I8 VDE s Yengihened
Grmt L

oot tmes

The Null String

The null string is a string which contains no characters or blanks. It can be used to erase the
value of a string, or to check to see if a string has a value. The following examples each specify

the null string —

18 LET H§ = "
28 ME = A¥E04, 3]

All strings are initialized to the null string by a ' I or initial 0/ statement or when
SZEATOH Yor SCRATOH s executed. The null string can be used to clear a string.

String Functions

String functions let you manipulate a string. They are especially useful in text processing

applications.

The LEN Function

The length (L.EH) function returns the number of characters in a string expression —

L.EH string expression

The current length of the string expression is returned.

BP-103

BP-104 String Operations

il

The POS Function

The position (i) function determines the position of a substring within a string —

win string expression, of string expression

If the second string expression is contained within the first, the value returned is the position of
the first character of the second string expression within the first string expression. If the second
string expression is not contained within the first string expression, or if the second string
expression is the null string, the value returned by the function is 0. If the second string
expression occurs in more than one place within the first string expression, only the first

occurrence is used by the function.

String Operations

The VAL Function

With the value (*/FiL) function, a string or a substring containing digits, including any exponent,
can be used in calculations. (Normally the characters in a string are not recognized as numeric
data and can’t be used in numeric calculations.)

“HL Cstring expression

The first character to be converted in a string using the /il function must be a digit, a plus or
minus sign, a decimal point or a space. A leading plus sign or space is ignored; a leading minus
sign is taken into account. All following characters must be digits, a decimal point or an E. An E
character after a numeric and followed by digits or a plus or minus sign and digits is interpreted

as exponent of base 10. A decimal point following digits after an E terminates the exponent.

Numeric data entries can be combined logically with input text. All contiguous numerics are
considered a part of the number until a non-numeric is reached in the string. This means that a
string can contain more than one number. The first character of the string expression after
leading spaces, plus signs or minus signs must be a digit or a decimal point. If the leading part of
the string is not a valid number, EFFDIF 33 occurs.

Example

The VALS Function

The *HL.# function is (nearly) the inverse of the i function and returns a string representing
the number, in the current number format (STANDARD, FIXED or FLOAT) without leading or
trailing blanks —

i.¥ ‘numeric expression

BP-105

BP-106 String Operations

The CHR$ Function

The character (

function converts a numeric value in the range —32 768 through 32 767
into a string character. Any number out of the range 0 through 255 is converted MOD 256 to
that range. Any 8-bit character code can be stored in a string using the character function which

is especially useful for accessing control codes and putting quotes into a string.

_numeric expression

Example

See the Reference Tables for the ASCII table of correspondence between characters and
numbers in the range O through 127. Using this function with numbers in the range 128
through 159 is useful for output of CRT special features (inverse video, blinking, underline);
see Appendix A. Numbers in the range 160 through 255 are used to access national and

drawing characters; see the Reference Tables.

BP-107

String Operations

s
Q
ﬁ
Q
<
=
09
2
-
Z
©
=
b=

) function converts an individual string character to its corresponding value,

The numeric (4

cimally.

represented de

Istring expression

The decimal equivalent of the first character of the expression is returned.

Example

The UPCS$ Function

function returns a string with all lowercase ASCII letters converted to

Q
(2]
@
o
~
V
Q.
o)
3
©
<
=

uppercase.

Istring expression

Example

T Ty
B T D

-~
L

£

Hed

O 5y i
0 T et

The uppercase function allows strings to be compared without regard to upper and lowercase.

This is useful for standardizing input responses.

BP-108 String Operations

The LWC$ Function

The lowercase (.

- ¥) function returns a string with all uppercase ASCII letters converted to

lowercase —

HIF string expression

THE RPT$ Function

The repeat (=

{'#) function allows a string of characters to be repeatedly concatenated —

¥ <string expression, number of repetitions

The number of repetitions can be any numeric expression in the range 0 through 32 767 when

rounded. If O is specified, the result is the null string. The length of the result can’t exceed
32 767 characters.

String Operations BP-109

The REV$ Function

The reverse (%

function reverses the order of the characters in a string —

tstring expression

The TRIM$ Function

The trim

#) function deletes leading and trailing blanks from a string —

Zstring expression

Example

BP-110 String Operations

Relational Operations — Comparing Strings

String variables may be compared using the relational operators —

Each character in a string is represented by a standard equivalent decimal code, as shown in
the ASCII Table in the Reference Tables. When two string characters are compared, the lesser
of the two characters is the one whose decimal code is smaller. For example, 2 (decimal code
50) is smaller than R (decimal code 82).

Strings are compared, character by character, from left to right until a difference is found. If one
string ends before a difference is found, the shorter string is considered the lesser. For example,
“STEVE” is smaller than both “STEVEA” and ““STEVEN".

Examples

Here is an example which could be used to allow communication between the computer and

the user —

In some cases, such as in alphabetic sequencing problems, it is useful to compare strings for
conditions other than “equal to’” and ‘‘not equal to”’. For example, to arrange several different
strings in alphabetical order, the following type of string comparison could be included in a

program.

String Operations BP-111

Variable Diagram

The variable diagram below shows how string variables are related to each other and to
numeric variables.

variable
single variable array variable
numeric variable tring variable numeric array tring array
simple numeric simple string matrix matrix
array element substring vector vector

string array element

substring

Memory Usage

In memory, a simple string uses 6 bytes + 1 byte per character in the current length (rounded

up to an even integer).

A string array uses 12 bytes + 4 bytes per dimension + 2 bytes per element + 1 byte per

character (rounded up to an even integer) in each string of the array.

BP-112 String Operations

BP-113

Chapter 8

Branching and Subroutines

page 114 ¢ GOTO (transfers execution to the specified line)

page 114 ¢ ON... GOTO (transfers execution to one of one or more lines, depending on the
value of the numeric expression)

page 115 e IF... THEN (causes branching or execution of a statement if a condition is true)

page 117 ¢ FOR,NEXT (form a loop of the statements between them, which is executed a
specified number of times)

page 122 ¢« GOSUB (transfers execution to the subroutine that starts at the specified line)

page 123 ¢ ON...GOSUB (transfers execution to one of one or more subroutines, depending
on the value of the numeric expression)

page 122 ¢ RETURN (last line of a subroutine; transfers execution to the line after the
GOSUB)

page 125 ¢ DEF FN (defines a numeric or string user-defined function)
page 125 o FN (accesses a user-defined function)

Terms

e Loop — the statements enclosed by FOR and NEXT that are executed repeatedly
FOR

NEXT
e Nesting — placing one loop completely within another

FORI
FORJ

NEXT J
NEXTI

e Subroutine — a group of statements that performs a task, is accessed with GOSUB and ends
with RETURN

e User-defined function — a function you define with an expression and give a name. It returns
a value.

BP-114 Branching and Subroutines

Unconditional Branching

The G0TO and OH... GOT statements provide unconditional branching by transferring control
to a specified line.

The GOTO Statement

The 20711 statement specifies a higher or lower-numbered line in the same program segment,
where execution is to be transferred —

L0070 line identifier

Example

FRIWNT "THIS IS LIHE 1@°

The ON...GOTO Statement

The OH...GOTD (computed GOTO) statement allows control to be transferred to one of one or

more statements in the same program segment based on the value of a numeric expression —

1F numeric expression GOT line identifier list

The numeric expression is evaluated and rounded to an integer. A value of 1 causes control to
be transferred to the first line identifier in the list; a value of 2 causes control to be transferred to
the second line identifier in the list, and so on.

Example
18 THPUT "FULL, LOH

O Feport GOTO
FPRINMT "FULL STOCE

OF QUT-OF -STOCK?01, & OF Jar

e, Frablsem

[BRI

bR

S LOWy IT HMEED:S T EBE WATCHED®

ot

ek] e s FRIMT "HO STOOE LEFT--RE-ORDER!D LY

EMI

OO g T G g
b
=

LT T
TR T i
e

Branching and Subroutines BP-115

If the value of the numeric expression is less than 1 or greater than the number of line identifiers

in the list, ERFOF 13 (improper value) occurs.

Summary

Here are some facts to remember concerning the (31T statements —

o All lines specified by ::7{i statements must be in the same program segment. Otherwise,

ERROR 3 occurs.

o If the line specified as the destination of a branch is not an executable statement’, pro-
gram control is transferred to the first executable statement following the specified line.

However, execution pauses at the specified line if is being used.

‘I statements are programmable only; they can’t be executed from the keyboard.

The IF...THEN Statement

The IF...THEHM statement is used to provide branching which is dependent on a specified
condition —

{line identifier

Branching occurs if the expression evaluates logically as true. If the numeric expression has a

value other than 0, it is considered true and branching to the specified line occurs. If it has a
statement.

Examples
15 IHMPUT A
® 23 IF ® THEH 5@ PBranching only if A iz rot @
ey "y
46
=g Bo—- A="iA
£

1 The following statements are declaratory, non-executable statements: COM, DATA, DEF FN, DIM, END, EN END, IMAGE,
INTEGER, OPTION BASE, REAL, REM, SHORT, SUB, SUBEND.

BP-116 Branching and Subroutines

Another form of the I

.. THEH statement provides conditional execution of a statement with-

out necessarily branching —

IF THE statement

When the value of the numeric expression is not equal to O (true) the statement is executed.
When the value of the numeric expression is O (false), execution continues with the following

line.

Example

Branching and Subroutines

All BASIC statements are allowed after THEH with the following exceptions —

The FOR and NEXT Statements

Repeatedly executing a series of statements is known as looping. The F

i state-

= and HE
ments are used to enclose a series of statements in a FOR-NEXT loop, allowing them to be
repeated a specified number of times.

- increment value]

"loop counter

The F i statement defines the beginning of the loop and specifies the number of times the loop

is to be executed. The loop counter must be a simple numeric variable.

The initial, final, and increment values can each be any numeric expression. If the increment

value is not specified, the default value is 1.

Examples

Here’s an example of a FOR-NEXT loop —

FOR-NEXT
loop
range

fou

o o

P

.

BP-117

BP-118 Branching and Subroutines

In this example, [is established as the loop counter and is set to 1 when the FOR statement is
executed. The FOR-NEXT loop is executed 5 times — whenl = 1, 2, 3, 4 and 5. Each time the
HE“T statement is executed, the value of [is incremented by 1, the default increment value.
When the value of I exceeds the final value {when I = 6) the loop is finished and execution

continues with the statement following the HE=T statement.

The following examples show that differing I (i statements can perform the same task. In each

example, the FOR-NEXT loop is executed ten times. Notice the value of the loop counter while

the loop is executing and after it is complete.

g]

=

b

fux]

A Ul e
fxn

L8 T =
e

fns}

e
a3

STEF 18
H= 118
® i FioE A=1ig TO 1 STER -1 !
B HEXT A
B35 FRIMNT "H="3H
i EHD
[aE-I

Branching and Subroutines BP-119

Programming Hint
An often overlooked aspect of FOR-NEXT looping is that the
actual value of the counter when the loop is complete does

not equal the final value.

The advantages of using FOR-NEXT looping instead of an statement are shown in
the following examples where the numbers 1 through 1000 are printed in succession. The

program that uses the FOR-NEXT loop is easier to key in and uses less memory.

rev:4/81

BP-120 Branching and Subroutines

The initial, final and increment values are calculated upon entry into the loop; the calculated
values are used throughout execution of the loop. The following example illustrates that the

initial, final and increment values can be changed without affecting the number of times the

loop is repeated.

wee T3 3

LR

-

H
fnte

Nesting

FOR-NEXT loops can be nested. When one loop is contained within another, the inner loop is
said to be nested. The following example illustrates assigning values to an array using a nested
FOR-NEXT loop.

i -

By

Branching and Subroutines

A FOR-NEXT loop can not overlap another.

Correct Nesting

In the incorrect nesting example, the I loop is activated and then the J loop is activated. The J
loop is cancelled when HE®T I is executed because it’s an inner loop. When the I loop is

completed and HE=T .Tis accessed, ERFIRE & IH LIME S is displayed. This is because the

J loop was cancelled and was not reactivated after the last I loop.

FOR-NEXT Loop Considerations

Execution of FOR-NEXT loops should always start with the
middle of a loop produces

I statement. Branching into the

HERT is executed, because no corresponding ¥

statement was executed.

Execution of a loop normally ends with the HE
out of the loop using a statement within the loop. After an exit is made through this method, the
current value of the counter is retained and is available for later use in the program. After
leaving a FOR-NEXT loop, it is permissible to re-enter the loop either at a statement within the

loop, or at the F{if statement, thereby reinitializing the counter.

The FOR and NEXT statements execute faster if the loop counter is an integer.

BP-122 Branching and Subroutines

Subroutines

Many times, the same sequence of statements is executed in many places within a program. A
subroutine allows the group of statements to be keyed in only once and to be accessed from

different places in a program. A subroutine return pointer is kept by the system in the execution

stack to indicate where execution is to return to when the subroutine is complete. The G=LUE

and OH... G0SUE statements are used to access subroutines.

The GOSUB Statement

The =01ZLIE statement transfers control to the subroutine which begins at the specified line in
the same program segment —

G0=UE line identifier

A subroutine ends logically with the RE TiRr statement —

RETURM

which transfers control back to the statement immediately following the 2%k statement.

Example

Here is an example of accessing a subroutine from different places in a program —

HETTY,

IHPUT

Subroutine

i

R 1Y

i,

Branching and Subroutines BP-123

The ON...GOSUB Statement
The ©iH...0

same program segment to be accessed based on the value of a numeric expression —

'E (computed GOSUB) statement allows any of one or more subroutines in the

ik numeric expression GilSUE line identifier list
The numeric expression is evaluated and rounded to an integer. A value of 1 causes the
subroutine specified by the first identifier in the list to be accessed; a value of 2 causes the

subroutine specified by the second identifier in the list to be accessed, and so on.

Example

BP-124 Branching and Subroutines

If the value of the numeric expression is less than 1 or greater than the number of line identifiers

in the list, i 1% occurs.

A second subroutine can be entered before the ¥ i of the first is executed.

Example

The subroutine at line 70 is accessed before the one at line 40 is completed.

Subroutines can be accessed in this manner as much as available memory allows. Doing it too

many times can cause the execution stack to become too large, thus causing a memory over-

flow. See Appendix F for more information. When a § is executed, control returns to the

line following the most recently executed

Summary

Here are some facts to remember concerning subroutines and the . statements —

{ statement.

e A subroutine should always end with a !

o statements are programmable only; they can’t be executed from the keyboard.

e All subroutines specified must be in the same program segment.

Branching and Subroutines

THE DEF FN Statement

If a numeric or string operation has to be evaluated several times, it is convenient to define it as

a function. This is done using the IIEF i statement which specifies a user-defined function,

returns a single value as the value of the function and can be used like a system function.

The simplest form is the single-line function which can be used to define a numeric or string

function (there is also a multiple-line function; see Chapter 9).

These two statements are used for defining a numeric (first syntax) and a string (second syntax)

function —

The function name must follow the rules of a valid name. The expression can include both

parameters! and variables.

Once the function is defined, you reference it and supply values by using the following syntax.

The first syntax references a numeric function, the second a string function.
e i function name [“pass parameter list 1!]

e Fii function name # [“pass parameter list]

When the function reference, 14, is encountered, control is transferred to the corresponding
HEF FH. The values of the pass parameters are substituted for the formal parameters and the
expression is evaluated. Its value is returned as the value for the referencing syntax. See

Chapter 9 for a more detailed explanation of parameters.

NOTE
Single-line functions are local to the program segment in
which they are defined. The I statement can’t contain
a reference to itself. Otherwise ERROR 48 occurs.

1 Parameters, formal and pass parameter lists are discussed in Chapter 9.

BP-125

BP-126 Branching and Subroutines

Example

Here’s an example use of a single-line function. Say that a program contains these lines —

variables

function name formal parameters

lines 30, 80, and 200 can be simplified —

\referencing syntax

Summary

Here are some facts to remember when using single-line functions —
e The name of the function must be in the form of a valid name.
e The expression used to define the function can contain both variables and formal
parameters.
¢ A single-line function can’t be recursive; that is, it can’t contain a reference to itself.

¢ Single-line functions are local to the program segment in which they are defined. That

9 means that they can’t be accessed from any other program segment.

Chapter 9

Subprograms

page 133 e DEF FN (the first line of a multiple-line user-defined function)

page 133 e FN END (the last line of a multiple-line user-defined function)

page 133 ¢ RETURN (specifies the value to be returned for a function and transfers execution
back)

page 133 o FN (accesses a user-defined function)

page 136 o SUB (the first line of a subroutine subprogram)

page 136 ¢« SUBEND (the last line of a subroutine subprogram and transfers execution back)

page 136 ¢ SUBEXIT (transfers execution back from a subroutine subprogram)

page 136 ¢ CALL (accesses a subroutine subprogram)

Terms

e Subroutine subprogram — a separate program segment that performs a task under the con-
trol of the calling program segment.

o Multiple-line user-defined function subprogram — a separate program segment that returns
a single numeric or string value to the calling program segment and is used like a system
function such as SIN.

e Main program — the central part of a program which is accessed when you press RUN

o Program segment — The main program and each subprogram are all known as program
segments.

e Formal parameters — used to define subprogram variables; can be simple variables, array
identifiers and #file number.

e Pass parameters — used to pass values from the calling program segment to the subprogram;

e Pass by reference — letting the formal and pass parameters share memory which lets the
value of the calling program variable be changed within the subprogram.

e Pass by value — letting the subprogram variables have their own temporary memory so that
calling program variables can’t be changed. Enclosing a pass parameter in parentheses lets it
be passed by value.

e Local variable — a variable in a subprogram that isn’t in the formal parameter list or subpro-
gram COM statement.

BP-128 Subprograms

Why Use Subprograms?

Many programs include various routines that require a long series of statements (such as
routines for sorting or computing compound interest) that must sometimes be repeated many
times using different values in one program. To avoid rewriting a routine each time it is needed,

a subprogram can be used.

A subprogram is a set of statements that performs a certain task under the control of the calling
program segment. It differs from a subroutine in that it is a separate segment, coming after the

main program.

A subprogram enables you to repeat an operation many times, substituting different values
each time the subprogram is called. Subprograms can be called at almost any point in a
program, and are convenient and easy to use. They can give greater structure and indepen-
dence to a program. They can also be used to save memory through the use of local variables.
A main program may be a sort of “skeleton’ program which calls many subprograms, which, in

turn, can call other subprograms.

Types of Subprograms

There are two types of subprograms.

® The function subprogram (or multiple-line user-defined function) is designed to return a
single numeric or string value to the calling program and is used like system functions
such as SIN or CHR$. It is defined using the DEF FN statement.

® A subroutine subprogram is designed to perform a specific task under the control of the
calling program segment. It is defined using the SUB statement. A subroutine subprogram
is similar to a subroutine subprogram in FORTRAN.

Subprograms

Terms

There are a few terms which are important to know when dealing with subprograms.

Main program — The central part of a program from which subprograms can be called is
known as the main program. When you press , you access the main program. The
main program can’t be called by a subprogram.

Program segment — The main program and each subprogram are known as program seg-
ments. Every program segment is independent of every other program segment. Sub-
programs come after the main program; that is, they have higher line numbers.
Subprograms are called by the main program or another subprogram. See ‘‘Memory”
in the Reference Tables for the relationship between memory allocation and subpro-

grams.

Calling program — When a subprogram is being executed, the program segment (main pro-
gram or subprogram) which called the subprogram is known as the calling program.

Control returns to the calling program when the subprogram is completed.

Current environment — The program segment which is being executed is known as the current

environment.

Parameters

Values are passed between a subprogram and the calling program using parameters. There are
two kinds of parameters. Formal parameters are used in defining the subprogram. Pass

parameters are used to pass values from the calling program to the subprogram. Each pass
parameter corresponds to a formal parameter.

Formal Parameters

The formal parameter list is used in a “+i statement to define the subprogram

variables, and to relate them to calling program variables. It can include non-subscripted

number. Parameters must be separated by commas and the parameter list must be enclosed in

parentheses.

Numeric type —

— can be declared in a formal parameter list by

placing the type word before a parameter or group of parameters.

BP-129

BP-130 Subprograms

Example

Here are examples of some formal parameter lists —

Type words are cumulative like in a statement. For example, if is specified, all
variables following it are declared as being integers until a string, a file number or another type

word is specified.

Pass Parameters

The pass parameter list is used in calling the subprogram (using ! or 1) and includes
numeric and string variable names, array identifiers, numeric expressions and file numbers in
the form: i file number. Parameters must be separated by commas. The pass parameter list

must also be enclosed in parentheses.

All array variables in the pass parameter list must be defined within the calling program. That is,

arrays must have been dimensioned, either implicitly or explicitly.

Passing the Parameters

assigned the value of the pass parameter which is in the corresponding position in the pass

When a subprogram is called, (with I or 1) each formal parameter is associated with and

parameter list. The parameter lists must have the same number of parameters; the parameters

must match in type — numeric or string, simple or array.

Example

line 300) and two corresponding

The following example shows a formal parameter list, (:
, lines 70 and 150).

pass parameter lists (&

rev:4/81

Subprograms

Notice the correspondence between pass and formal parameters. Notice also that the arrays C

and D are dimensioned (line 20) before being passed.

Parameters are passed either by reference or by value. When a parameter is passed by refer-
ence, the corresponding formal parameter shares the same memory area with the pass parame-
ter. Thus, changing the value of the corresponding variable in the subprogram changes the

corresponding value of the variable in the calling program.

When a parameter is passed by value, the variable defined by the corresponding formal
parameter is assigned the value of the pass parameter and given its own temporary storage
space in memory. Numeric and string expressions are necessarily passed by value. However,
arrays can’'t be passed by value. Enclosing a pass parameter in parentheses causes it to be
considered an expression and thus passed by value, rather than by reference. Passing by value

prevents the value of a calling program variable from being changed within a subprogram.

Examples

In the following example all parameters in line 80 are passed by value; those in line 130 are

passed by reference.

rev:4/81

BP-131

BP-132 Subprograms

Here is an example of similar program segments. Notice the value of X in each case.

Pass by value

P
FRINT "A beior

.,.,..A
=
e
Ly

gy
i
4

W 4r g
S

i1

Any parameters passed by value are converted, if necessary, to the numeric type —

— of the corresponding parameter in the formal parameter list. For exam-

’

ple, say that 1 is passed by value to an formal parameter. Its value would be

rounded to 3 when the subprogram is called.

occurs and no conversion

Those passed by reference must match exactly, otherwise

is made.

Subprograms

Summary

Here are some facts to remember concerning parameters.

e Formal parameters are used in defining the subprogram (in the

ment) and can be simple variables, array identifiers or file numbers.

e Pass parameters are used in the calling program (FH or statement) to pass values to

the subprogram and can be single variables, array identifiers, expressions or file numbers.

e The parameter list must be enclosed in parentheses and all parameters must be separated

by commas.

. — can be declared in the formal parameter

o Numeric type —
list.

e Parameters can be passed by reference or by value. Enclosing a pass parameter in
parentheses causes it to be passed by value. Parameters passed by reference must match
in numeric type. Numeric and string expressions are always passed by value, while arrays

are always passed by reference.

133

BP-134 Subprograms

Multiple-Line Function Subprograms — DEF FN

The multiple-line function subprogram is used to define a numeric or string function which
returns a value (numeric or string) to the calling program. There are four syntax which are used

with multiple-line function subprograms —

ti subprogram name [“formal parameter list :]

subprogram name # [“formal parameter list]

The

gram. The second syntax is used for defining a string function. The subprogram name

statement is the first line of a user-defined multiple-line function subpro-

must be a valid name.

statement is the last statement in a multiple-line function subprogram.

i numeric expression

string expression

The

the calling program for the value of the function.

statement specifies the value (numeric or string) which is to be returned to

also transfers control back to

the calling program.

i{ subprogram name [‘pass parameter list:]

subprogram name ¥ [“pass parameter list *]

is used to reference the subprogram. When it is encountered, values are passed and

control is transferred to the subprogram. references to multiple-line functions can’t

appear in an input or output statement or in redim subscripts.

Examples

Here’s an example of a numeric function —

-
-
in
s
i
ot
ot
]
P
ot
i
a
P
§if
e
[
s
i
-
e
i
i
15y
i
poric

i 1 .T. i:; ..g..

BP-135

Subprograms

Here’s an example of a string function —

statement in a subprogram, but only one is executed

There can be more than one

each time the subprogram is executed.

Example

If a single-line and multiple-line function are defined with the same name and that name is

referenced, the single-line function is accessed if it is defined within that program segment.

BP-136 Subprograms

Subroutine Subprograms — SUB and CALL

Subroutine subprograms allow you to repeat a series of operations many times using different
values or to break a large problem down into a series of smaller ones. A subroutine subprogram

performs a specific task.

There are four statements which are used with subroutine subprograms —

subprogram name [<formal parameter list :]

The

name must be a valid name.

statement is the first statement of a subroutine subprogram. The subprogram

The

back to the calling program.

statement is the last line of a subroutine subprogram and transfers control

The:
back to the calling program before

T statement can be used within the body of a subprogram to transfer control

is executed.

.. subprogram name [ipass parameter list #]

The

- statement is used to transfer control and pass values to the subprogram.

Examples

Here is a simple example of a subroutine used to write a heading for data output. Notice that no

parameters are passed.

: o g e e o
TAPNE B OOrSm

MAME HPOUT

BP-137

Subprograms

Here is another example which manipulates the parameters and could be used to output a

readable table supplied with a value for N (line 30) —

&
—
3
mux.m.]
] >
d E
T
L = 0
(] ot
ML S O
- i et e el e
= A8 W
T.... o
[} e
TN e
] .
SR

I statement is used to transfer control back to the calling program before

is executed.

°
°
.

The

BP-138 Subprograms

Subprogram Considerations

Entering a Subprogram

When a subprogram is entered the following occur —

e The DATA pointer is reset to the first ! statement in subprogram.

o Any file assignments that are not passed are cleared.

i and | - #1 are the modes defaulted to.

associated with a tor

* is no longer active; however one iiF Y interrupt per key and up to 80 &
keystrokes are logged for processing upon return to the calling program. Interrupts as-

sociated with remain active.

Upon return to the calling program, all of these conditions are restored to their previous state.

Using the COM Statement

Values can also be passed to a subprogram with a i

statement. The list of items in the

subprogram 2 may be a subset of the main program i statement; that is, it must match up

to some point in the main program i A variable can’t be an item in a subprogram

statement if it is also in the formal parameter list.

Example
DETION BASE 1
o4, 4, B, THTEGER O, 005,30
R

SZUBERND
] IEF FiHEardom
® 1l CopoTolia logl i

EETUREM I02,21#REHD
FHEMID

Subprograms

fong fasd = Fd
] bt ") 3
SO05 0% 5
i - B -
e f‘:& d E b
F= ny - -
) o !':r Es
hed e
¢ i
“n s o
wt "] t
el -t Sl
T o) e

Arrays can be specified in a subprogram statement using an array identifier. This method is

useful for editing in that if you change the dimensions of an array in a main program

statement, you won’t have to edit each subprogram ! to make the dimensionality match.

Using an array identifier also avoids an error if an array declared with i was redimensioned

in the calling program segment.

Example

b,
o]

OPTION

PR
s

L e SO Hers -
21 Yailuesn
46 MAT A
® =i RE
8O
vE o El
e 18§ § identifier iz a oo
L The F"Eﬁzf‘i . -

rory
R

ke
e
XA

o

S

o
i
pics)

BP-139

BP-140 Subprograms

Variable Allocation Statements

Subprograms may also have any variable allocation statements: and

However, the variables declared may not be in the subprogram ¢ statement or

the formal parameter list.

Example

Within subprogram variable allocation statements, array subscripts and maximum string
lengths can be specified with numeric expressions that can contain both constants and formal

parameters.

Local Variables

All variables in a subprogram that are not part of the formal parameter list or the £ statement
are known as “local” variables and cannot be accessed from any other program segment.
Storage of local variables is temporary, and is returned to main user Read / Write Memory upon

return to the calling program. This is known as dynamic memory allocation.

All variable names in a subprogram are independent of variables with the same name in other
program segments. Thus, if you check the value of a variable using live keyboard while a
program is running, you may get an unexpected result if the variable is defined differently in the

program segment which is executing currently.

Speed Considerations

CALLs to subprograms cause program execution to be slower than if GOSUBs are used. Thus, in
situations where the separate environment of a subprogram is not needed, it is advantageous to
use GOSUB and a subroutine instead.

rev:4/81

Subprograms BP-141

Files

File numbers of files opened in the calling program can be passed to a subprogram in the

parameter list.

Example

ot
X I

[J
o
[
X

Any operations, such as | , which involve file #3 in the subprogram will affect file #1,

Data, in the calling program.

File numbers can also be implicitly assigned within the calling program from within a subpro-

gram.

Example

When control returns to the calling program, #4 is still assigned to the file Pay.

BP-142 Subprograms

A file can also be implicity buffered in this manner.

Example

CRLL Tmta#d)

When control returns to the calling program, #4 is still assigned to Pay and it is still buffered.

If afile is actually opened in a subprogram and wasn’t passed as a parameter, it is automatically

closed upon return to the calling program.

Editing Subprograms

There are two ways to add a new subprogram to a main program and any subprograms. [t must
either replace an existing subprogram or it must come after all other subprograms. You can’t
insert a subprogram between the last line of one subprogram and the first line of the next. Using
a mass storage device and storing parts of a program can allow you to get around this and insert

a subprogram.

In order to delete the first line of a subprogram (the statement), the entire

subprogram must be deleted. You can’t combine two subprograms by deleting the

.. of the second one.

The : statement or is changed to a

: statement can be edited as long as it remains a

BP-143

Chapter 1 O

Output

page 144 ¢ BEEP (outputs an audible tone)

page 144 ¢ DISP (outputs text and variables to the display line of the CRT)

page 146 ¢ PRINTER IS (defines the standard printer for PRINT, PRINT USING, LIST and
CAT operations)

page 147 ¢ PRINT (outputs text and variables to the standard printer)

page 153 ¢ MAT PRINT (prints entire arrays on the standard printer)

page 156 ¢ PRINT USING, IMAGE (let you format printed output exactly like you want it)

page 167 ¢ OVERLAP (sets overlapped processing mode)

page 167 o SERIAL (sets serial processing mode)

Output Functions

TAB (tab to column — DISP and PRINT)
SPA (skip spaces — DISP and PRINT)
LIN (output linefeeds — PRINT)

PAGE (go to the next page — PRINT)

Terms

e Standard printer — the printing device to which output from PRINT, PRINT USING, LIST
and CAT is directed. At power on and SCRATCH A, it is the CRT.

e Select code — an expression in the range O through 16 used to access an input or output
device. The following select codes are reserved —
0 — Internal printer and keyboard
13 — Graphics option
14 — Optional tape drive
15 — Standard tape drive
16 — CRT

e Format string — specifies the format for PRINT USING output
e Overlapped processing mode — allows computation and [/ O to run simultaneously.

e Serial processing mode — computation and /O statements do not run simultaneously, but
are executed one at a time.

Spacing

. — causes the item it follows in a PRINT or DISP list to be cutputin a 20-character field.

: — causes the item it follows in a PRINT or DISP list to be output with no additional blanks.

BP-144 Output

The BEEP Statement

The BEEF statement is used to create a brief audible tone which can be used in a number of
ways.

EBEEF can signal that a particular computation or program segment is complete. It can also be

used to indicate audibly that the computer is ready for input, so that the operator does not have
to remain at the keyboard.

Example

Here’s an example use for EEEF —

BEEP

IHFUT “DATH
HEXT 1
FPRIMT Mox
¢kl EHD

= oarn input 13 reguired

In this case, a beep signals the operator when the program is ready for input.

The DISP Statement

= (display) statement allows text and variables to be output in the display line.

The I

F [display list]

The display list can contain the following —

variable names
array identifiers
numeric expressions
string expressions
THE function?!

H function?

Multiple-line user-defined functions aren’t allowed in the display list, alone or in an expression.
Items in the display list must be separated by commas or semicolons. The list may end with a

comma or semicolon, which causes the next display to be appended to the display line. Other-
wise, one display replaces the previous one.

1 The output functions are discussed later in this chapter.

Output

Notice the difference in spacing between the numbers caused by the use of a comma or a
semicolon. When an item is followed by a comma, it is left justified in a field that is 20
characters wide. Two or more commas after an item cause one or more character fields to be
skipped. When an item is followed by a semicolon, no additional blanks are output after the

item. Remember that every number has a leading blank or minus sign and a trailing blank.

Examples

® 1 Pa 1S E
® i DIsr 188 -2@:77.3
s ErD
1EE 28 FEL3

nise !
WATT i EEEN
ITEF 5
EHI
The following lines are displayed two seconds apart.
18 28 28 46

BP-145

BP-146

Qutput

The following is displayed —
Todaw iz
and then changes to —

Todaw 12 June 1

If the information being displayed is longer than 80 characters, a carriage return/linefeed
(CR-LF) is automatically output after every 80th character causing a new line to overwrite the
previous one. Only the last line of the displayed information is visible. You can see all of the
displayed information by setting the print all mode (press and latch ®49), This causes every
display to be printed on the print all printer.

Printed Output

Five statements are used to control printed output: FREIMTER IS FRIMT, MAT FEINT,
FRINT USIHG, and THAGE,

The PRINTER IS Statement

The FRIMTEER 1% statement defines the standard print device for the system. The CRT, select

code 16, is standard at power on, and SCEEATOH H.

% select code [, HP-IB device address] [, - number of characters per

line]

All output from FREIHT, FEINT USTHG LIST and DAT, and syntax error messages from GET

or L. IHK are directed to the standard printer.

The specified device must be an acceptable printing device, like a printer or tape punch; it may

be any device which can accept strings of ASCII characters.

The WIIITH parameter is a numeric expression and specifies the number of characters per line
of the standard printer. This determines when a carriage return-linefeed will be output. One is
output when the number of characters printed equals the width of the line. Its range is 16

through 260; 80 is the power on and default value when one isn’t specified.

Output BP-147

The PRINT Statement

{7 statement causes text and variables to be output on the standard printer.

The FRIHT

#THT [print list]

The print list can contain the following items —

variable names
array identifiers
numeric expressions
string expressions

THE function

ZF#H function

L. IMfunction

Multiple-line user-defined functions aren’t allowed, alone or in an expression
separated by commas or semicolons.

. All items must be

Examples

g
I
P

W

g

T
- g

o

T e T e R SO I S

BP-148

Output

e i L I P Tight

e Ip Hagga i “:I b 28 -chars: Fields
T
wxx bl " (B E E
#EE L S wliEE

Notice in the previous example that commas and semicolons cause the same spacing in the
FEIHT statement as they do in the I I 5F statement. A comma after an item causes it to be left
justified within a 20-character field. A semicolon after an item suppresses any additional blanks
other than the leading blank or sign and the trailing blank. A comma or semicolon after the last
item in the list allows a future print list to be appended by suppressing the CR-LF. A CR-LF is
automatically output when the IIiTH is exceeded.

The current numeric output form (STANDARD, FIXED or FLOAT) determines how a number is
output with both [T ZF and FRE IHT.

Example
LEREy 2.9
da2HEE4al

The variable width of the standard printer can be especially useful when outputting non-
printable characters such as escape codes. Although you can’t see a non-printable character,
the computer counts it in when it is keeping track of how many characters it has printed to a line
and you may get a carriage return-linefeed before the line is filled with printed characters.

Output
Example
Here is an example to try which uses the CRT as the output device —
£ 1 g
i widih s 28
SRR Ry
2 = DET B LTES

In this example, CHR$(129) and CHR$(128) are non-printable characters used to turn inverse

video mode on and off. Please refer to Appendix A for more explanation of this use of CHR$.

Output Functions

Four output functions are available to increase formatting capabilities. THE and SFF can be
used with both TIT%F and FRIHT; LI and FFIGE can be used only with PR IHT. They must be
separated from the next item in the display or print list with either a comma or a semicolon.
However, both the comma and semicolon function identically after an output function; they
merely serve to separate it from the next item.

The TAB Function

The THE function causes the next item in the list to be output beginning in the specified

column.

THE character position

The character position can be specified by any numeric expression, except one containing a

multiple-line function, and it is rounded to an integer. If it is less than 1, it defaults to 1.

Example
STARTS I THE 16TH COLUMM®
after 147

BP-149

BP-150

Output

If the specified column has already been filled, a CR-LF is output, and then the TAB is com-
pleted.

Example
If the PR IHT statement in the previous example is changed to —

FRINT

Poobovice

& EHT

a CR-LF would be output after 147, since the comma causes 147 to be output in a 20-column

field, then the tab occurs.

When the character position specified is greater than the number of columns in the standard

printer, it is reduced by this formula —

{character position—1) MOIIN + 1
N is the number of columns specified as standard printer width.

Example

For example, with printer width 80 —

18 PRIMT By TRE <182, 13 TRE 0980, 2:TRE <178, 3

[

If you are printing non-printable characters and using TAB, you may get unexpected results if

you haven’t taken the non-printable characters into consideration.

The SPA Function

The =FF (space) function is used with I'1%F and FREIMT to output the specified number of

blank spaces up to the end of the current line.

ZFA number of spaces

Output BP-151

Example

DISF 1; SPA (1)

it
mu
vl
=
[Ey]
i
I
sy
fn
-

L

The number of spaces can be specified by any non-negative numeric expression, except one
containing multiple-line function, and it is rounded to an integer. If it specifies more blanks than

remain in the line, the next item begins the next line.
Example
1 PRINT "=="; TRE 70, "x"; SPA 26, "z
is printed —

&% o

The LIN Function

The L.IH function is used with FEIMT and causes the specified number of linefeeds to be

output.
LI number of linefeeds

The number of linefeeds can be specified by any numeric expression, except one containing a

multiple-line function, and it is rounded to an integer. Its range is —32 768 through 32 767.

Example
1@ FEF="RUGLIET Zav
® i PRINT "TODAY I3 "3A 2, NDATA COMPLETEY
a8 ! A carriage re PTineteeds ars
outoplit Detus
i EMD
TODRY IS RUGUET 28

BP-152 Output

When the number of linefeeds is positive, a carriage return precedes the linefeeds. When zero
linefeeds are specified, only a carriage return is output. This can cause some interesting printing
on the internal thermal printer because the paper is backed up and the second line is printed on
top of the first. When the number of linefeeds is negative, no carriage return is output; the
number of linefeeds output equals the absolute value of the expression. Some external printers

can’t suppress the carriage return.

Example

rs:}sj,:
Satuarcday
The PAGE Function
The FHEE function can be used with Fi [HT and causes a form feed character to be output, so

further printing can begin on a new page or at the top of the next form on devices that can
understand ASCII form feed (CHR$(12)). The formfeed action varies from device to device.
When the standard printer is the CRT,

FAGE

]

Example

In this example, ‘RESULT’ and B(*) are printed on a new page.

188 FRIMTODATA" jLINCE y, Ads 2, PRGE, "RESULT" s LIMCZ23BOe

The MAT PRINT Statement

The MAT FRIMT statement is used to print arrays on the standard printer.

MHAT FRIMNT array variable [, or ; [array variable, or ;...

The comma or semicolon following an item specifies open or close spacing between the ele-

ments.

[RS B B R R R B un]

0 el s R e D3 o
%]

[
)
e

Lx}
e
kX

o

ZE-CHARACTER FIELDS

£
1

=
e}

R,
ol Ui

P
o

£

When an array is printed, every printed row is followed by a blank line. The last row is followed

Example

OFPTION
oI A B
MAT HF=05:

PREINT "28-0HARACTER FIELDS®
FIAT PRINT R

FRINT

PRIMNT "CLOSE SPACIHGY
MAT FREINT Ay i

1]

HI

= s
d =]
= =y
g -
i

SPACTHG

1]

by two blank lines.

When an array has more than two dimensions, the last subscript varies fastest and defines the

length of a row.

Output

BP-153

BP-154 Output

Example

OFTION
LM RdE,

Fom e

BENT
FRINT IREE
MAT FRIHT Aj

Er

G B OE T
Sooame a1
ESIRE S B 1 TS B

SRS R 3 B B
SE Bl gE 23

In this example, array A(2,3,4) is interpreted as two matrices, each 3 by 4, for output or input
purposes.

Arrays can also be printed by the FFIMT statement using an array identifier, <% In the
previous example, line 120 could be changed to —

L.

H
HX
fxd

FRIMT A%

Output

The PRINT USING and IMAGE Statements

Two statements, FRIMNT USIMG and IMAGE, provide the capability of generating printed
output with complete control of the format. This is done by referencing a list of specifiers called

a format string. The format string can be listed in an IIIFiiE statement, then used by referenc-

string expression which is used in place of the line identifier in the FF I}

iz line identifier[5 print using list]

ITMAGE format string

The print using list can contain the following items —

variable names
array identifiers
numeric expressions

string expressions

No multiple-line user-defined functions can be specified in the print using list. The items in the
list are separated by commas or semicolons. However, the commas and semicolons have no
effect on the printout, as in PR IHT or Il [5F; they are used only to separate items. The output is

totally controlled by the format string.

The string expression in the first syntax must be a valid format string at the time of execution. It

can be any string expression. The line identifier in the second syntax must refer to an IFMAGE

statement that contains the format string corresponding to the particular Ff IHT |
ment.

Format String

The format string is a list of field specifiers separated by delimiters. It is used to specify numeric
and string fields, blanks, and carriage control. Each numeric or string field specifier must
correspond to an appropriate item in the print using list. Each field specifier is made up of

various symbols and determines how a single item in the print using list is to be output.

Reusing the Format String

A format string is reused from the beginning if it is exhausted before the print using list. This is

also a way to replicate fields.

BP-155

BP-156

Output

Example

Delimiters

Three delimiters are used to separate field specifiers —

. A comma is used only to separate two specifiers.
A slash can be used to separate two specifiers. It also causes output of a CR-LF.

The commercial-at sign can be used to separate two specifiers. It also causes output of a

formfeed character, starting a new page of output on devices that have this capability.

The - and & symbols can also be used as field specifiers by themselves; that is, they may be
separated from other specifiers by a comma. Only the - can be directly replicated. You could
output three CR-LF’s with " or Z.7

Blank Spaces
A blank space is specified with —

N specifies N blanks. Any i specifier can be embedded within any other field specifier
without delimiters.

String Specification
Text can be specified in two ways —

A literal specifier is text enclosed in quotes. This specifier may be embedded without

delimiters within any other field specifier.

H # is used to specify a single string character. N#i specifies N characters. The length of
the string specifier is determined by the number of #’s that are specified between

delimiters; this corresponds to one item in the print using list.

Output

Example
THAGE "', 4 Rezultz "4k, tean P Blanks and literals output
FREINT USIHNG 16
EME
This example can also be written —
Pldteral, b F

If the string item in the print using list is longer than the number of characters specified, the

string is truncated.

Example
ig FRINT USIHG "SR "RESULTS®
gt EHE
FESLIL

If the item is shorter, the item is left justified and the rest of the field is filled with blanks.

Numeric Specification

Numeric field specifiers can be made up of various types of symbols: digit symbols, sign

symbols, radix symbols, separator symbols and an exponent symbol. These are covered next.
Digit Symbols

I Specifies a digit position. NIi specifies N digit positions. Leading zeros are replaced with

a blank space as a fill character.

BP-157

BP-158 Output

Example
28 figiad,
EHD
2 Specifies a digit position. N.Z specifies N digit positions. Leading zeros are replaced with

0 as a fill character.

Example

* Specifies a digit position. N# specifies N digit positions. Leading zeros are replaced with
as a fill character.
Example

el

Output BP-159

Only the symbol Ii is allowed to the right of any radix indicator symbol (discussed next). Any
digit symbol can be used to specify the integer portion of any number but, with one exception,
they can not be mixed. That is, for example, if I is used they must all be II. The exception is that

oy

the digit symbol specifying the one’s place can be a i regardless of the other symbols.

Example

o e

oL &

£ e
N

s
-
o

Radix Symbols

A radix indicator is used to separate the integer part of a number from the fractional part. In the
United States for example, this is customarily the decimal point, as in 34.7. In Europe, this is
frequently the comma as in 34,7. Only one symbol for a radix indicator, at most, can appear in

a numeric specifier.

. Specifies a decimal point radix indicator in that position.

=51

Specifies a comma radix indicator in that position.

Examples

fonts
1
i

]

Ag="lnite
o W

IMAGE DD, D, 23

oy

5
)
i

IMAGE DODRDD, 2 !
35 FRINT U HE
i FREINT USIH W B P Radi= mdst i

Y

the print using

160 Output

If the number to be output contains more digits to the right of the radix indicator than are

specified, the number is rounded.
Example

IMAGE B, DD !
FEINT UZIHG 18325, 25: !

3@ EHD

ST b

Sign Symbols

Two sign symbols are used to control the output of the sign characters + and —. Only one sign
symbol at most can appear in a numeric specifier.

= Specifies output of a sign: + if the number is positive, — if the number is negative.

i Specifies output of a sign: — if the number is negative, a blank if it is positive.

If the sign symbol appears before all digit symbols in a numeric specifier, it floats (see the
section on Floating Symbols which is later in this chapter) to the left of the leftmost significant

digit output.

When no sign symbol is specified and the number to be output is negative, the minus sign

occupies a digit position.

16 ITMAGE STMD, 3%, MDD
28 PRINT U Y 2]
IH FRIMT U

48 IHAGE

=

6 PRINMT

T EMD

+25.015 0 Momthile profit

25 Homthiy profit

QOutput

Digit Separator Symbols

Digit separators are used to break large numbers into groups of digits (generally three digits per
group) for greater readability. In the United States, the comma is customarily used; in Europe,
the period is commonly used. The X symbol can also be used to cause digits to be separated
with a blank space.

[Specifies a comma as a separator in the specified position.

F Specifies a period as a separator in the specified position.

The digit separator is output in an item only if a digit in that item has already been output; the

separator must appear between two digits. When leading zeroes are generated by the = symbol,

they are considered digits and will contain separators if specified.

Example

FRINT *DIGIT EEFHHHTDE HOT GUTFUT IN Znd MHUMBERD®

IHMAGE ZiE‘IiL I BDDCTDD
PEINT USING "r;‘mi 5E Vb comma oubput in second number
|
FRINT "EUROPERH Y

i IMAGE DDDPDODFRLDDD, Hambagrg®

IMAGE DnDonbono I!ND Loveland® s

1 FREINT USIHG 8852

S FRINT USING Fag 19

!
FRINT "USIHG BLAMHKES EFRRATE DIGITIIN
FRINT UZIHG "2, G sn il P Blanks zeparate digiss
T

ul

OF HOT

=EE

FMERTCHAM:

Houwses irn Hamburg
Houwses inm Louveland

161

BP-162 Output

Exponent Symbol

E Specifies that the number is to be output in scientific notation. E causes the output of an
E, sign of the exponent and two digit exponent. At least one digit symbol must precede

the E symbol in a numeric specifier.

Example

Floating Symbols

Floating symbols — I, i1, i, or text in quotes — that precede all digit symbols (without a comma
for separation) in a numeric specifier “‘float”’ past blanks to the leftmost digit of the number, or
to the radix indicator. This is useful for output of monetary values so that the dollar sign is
output next to the first digit.

Examples

RS SN L1} ER I Par Foat
FEINT USING 1832037, 1@.87
!
I TEPDCDDLOT e sign Floats
FRINT LSIMG 48y
!
! Fut comma after "FY or "0Y o prevent flost

EHD

Sign symbols and text that are imbedded between digit symbols do not float.

Here are some examples of floating and non-floating symbols —

floating | non-floating
"§"DDT. DT "#", DDL. I
MODT. ID 0§ 00, DT

DD, I

#, %, M, or text imbedded in a numeric field stops the floating field.

Output BP-163

Replication

Many of the symbols used to make up field specifiers can be replicated (repeated) to specify

multiple symbols by placing an integer in the range 1 through 32 767 in front of the symbol.

The following 1}

MAGEs all specify the same format string —

Example
g OPTION BRZE I
=8 nIM mo
e
® i PEROD, e s HOE D

Placing an integer before a symbol works exactly the same as having multiple adjacent sym-
bols.

The following symbols can be replicated —

In addition to symbol replication, an entire specifier or group of specifiers can be replicated by
enclosing it in parentheses and placing an integer in the range 1 through 32 767 before the
parentheses. In this manner, both K and @ can be repeated. Up to four levels of nested
parentheses can be used for replication.

164 Output

i@

g {F
HE

48 PR
by

Compacted Specifier

A single symbol, ¥, is used to define an entire field for either numeric or string output. If the

corresponding print using item is a string, the entire string is output. If it is a numeric, it is output

in STANDARD form. K outputs no leading or trailing blanks.

Example

bcn]

i

e}

Pl o)

4

S8 FRINT USIHG ZERE, A

& HEST 1

v DATH Marw, 18, Hi Tdegard, 26, Fewe, 19
28 EMD '
HGES

Mary 1§

Hildegard 20

e 15

Carriage Control

The CR-LF normally output when the print using list is exhausted can be altered by using a
carriage control symbol as the first item in a format string; a comma must separate it from the

next item.

+ Suppresses the linefeed.

Suppresses the carriage return.

Suppresses both the carriage return and linefeed.

Output
Example
ARGE # g 50 H, M b S piress linsfesd
UL L
RS S A
I S M EEseY
A B 00T seew
FRINT USIHG "+"is equivalent to FREIMT LIM&; and FREIHT USIHG "~" is equivalent

to FEIMT LIMC—10s.

Field Overflow

If a numeric item requires more digits than the field specifiér provides, an overflow condition
occurs. When this happens, all preceding, correct items are output, followed by a CR-LF. The
item which overflowed is output in STANDARD format followed by the field specifier which
caused the overflow. Another CR-LF is output, then the rest of the print using list is output.

Example

USIHG Y2400 D0 2

USIHG "DDL I, DDD, DDC

L. oo

= LoD

An important thing to remember is that a minus sign not explicitly specified with = or I requires

a digit position.

No error message occurs when a field overflow occurs, but the computer beeps.

165

BP-166 Output

Summary

Here is a summary table of image symbols and their uses —

Symbol
Image Replication
Symbol Allowed? Purpose Comments

¥ Yes blank Can go anywhere

e No Text Can go anywhere
i Yes Digit Fill = blanks
Z Yes Digit Fill = zeroes
* Yes Digit Fill = asterisks
= No Sign “47 or ="
B No Sign “Aor ="
E No Exponent Format = ESDD
. No Radix Output **.”
[No Comma Conditional digit separator
F No Radix Output *“,”’
F No Decimal point Conditional digit separator
A Yes Characters Strings

[Yes Replicate For specifiers, not symbols
No Carriage control Suppress CR-LF
+ No Carriage control Suppress LF
- No Carriage control Suppress CR
K No Compact Strings or numerics
. No Delimiter
Yes Delimiter Output CR-LF
i No Delimiter Output FF

Considerations

One factor that must be taken into account when creating formatted output with FFE IHT LEZTHG
is the printer width. When dealing with numeric output, format strings should be designed so
that a line of characters doesn’t exceed the number of characters per line of the printer.
FRIMT UZIHG does not provide carriage return-linefeeds to keep lines within the width of the

printer.

Advanced Printing Techniques

Advanced printing techniques on the CRT and internal thermal printer are covered in Appen-
dix A.

Overlapped Processing

Your computer has a capability which can enable a program to run faster and more efficiently.
This capability is known as overlapped processing or overlapped [/ O. In overlap mode, [/0
initiated by a program statement proceeds in parallel with the execution of subsequent program

lines, while in serial mode the 1 /0 is completed before the next line is executed.

Overlap mode should be used when the amount of computation time is greater than the
amount of [/O time. A program that has significantly more computation time will have only a
small gain from overlap mode. A program with significantly more [/O time should be run in
serial mode. This is because extra time is needed to queue up the pending [/O operations. This
time is most significant when fast peripherals are used. In overlap mode, I/O and computation

statements should be intermixed.
rev:4/81

Output BP-167

The OVERLAP Statement

Overlap mode is set by the ¥

4 statement —

aren’t trapped if overlap mode is in effect.

If you are using ON ERROR (see Chapter 12) to trap errors, I /O errors (numbers 54-103)

The SERIAL Statement

The computer is returned to the serial processing mode which is the default mode at power on,

Hand S " by the - statement —

Using serial mode is recommended during program debugging to avoid confusing results.

Accessing Color on the CRT

There are three ways to access color for printing on the CRT —

¢ CONTROL and a Special Function Key
e CHR$

e An escape code sequence

The primary purpose for alphanumeric color on the CRT is to increase the visual impact of
output on the CRT. You can store program lines that have color in them, when the colored

characters are inside a quote field or a remark.

Color Using CONTROL

The CRT special features of INVERSE VIDEO, BLINKING and UNDERLINE are accessed by
pressing CONTROL and the appropriate SFK. On the facing edge of SFKs 8 thru 15 is a colored
oval which represents the color which can be accessed when pressing CONTROL and the SFK.
The color remains in effect until you press CONTROL and another color SFK, or until the

special features are cleared, which re-instates White as the color.

Color Using CHR$

Color can be selected using a value of 136 to 143 as the CHR$ argument. The colors and their

CHRS$ arguments are shown in this table.

136 137 138 139 140 141 142 143
WHITE RED YELLOW GREEN CYAN BLUE MAGENTA BLACK

BP-168 Output

For example,

results in a red A being printed on the CRT. Once you select the color it remains in effect until

you change it with another CHRS$ or an escape code sequence.

Color Using the Escape Code Sequence
Color can be selected for the PRINT and PRINT USING statements only, using the escape code

sequences on the System 45. The use of escape codes does not work with the DISP statement.

The sequence is —

71 specifier ¥ followed by the items being printed.

The specifiers are —

@ — Clear (Only for items A thru G) H — White

A — Blinking I — Red

B — Inverse Video d — Yellow
C — Blinking and Inverse Video K — Green

D — Underline L — Cyan

E — Underline and Blinking M — Blue

F — Underline and Inverse Video N — Magenta

G — Underline, Inverse Video and Blinking O — Black

For example,

results in a green A being printed on the CRT. Once a color is selected it remains in effect until

you change it with another CHR$ or an escape code sequence.

Only one specifier is allowed in each escape code sequence, so to turn on additional highlights,

you would need additional escape code sequences, as shown here.

results in the message printed in blinking, cyan inverse video. So does -

Turning the highlights off can be done by —

or by using —

BP-169

Chapter 1 1

Mass Storage Operations

Mass storage lets you save programs and data on a mass storage medium, and retrieve them later. You use
the same statements and commands to access either the internal tape cartridges or an external disc. If you
want more information about mass storage than is covered in this manual, refer to the Mass Storage ROM

Programming Manual.

page 172 ¢ MASS STORAGE IS (specifies standard
mass storage device)

page 176 ¢ INITIALIZE (lets a new medium be
used)

page 177 ¢ CAT (lets you see what files are the
medium)

page 179 ¢ CAT TO (stores catalog output into a
string array)

page 182 ¢ SAVE, GET (stores and retrieves a pro-
gram as a data file)

page 182 o LINK (retrieves a SAVEd program; saves
variable values)

page 184 ¢ RE-SAVE (stores a different version of a
SAVEd program)

page 185 ¢ STORE, LOAD (stores and retrieves a
program as a program file)

page 186 ¢ RE-STORE (stores a different version of
a STOREd program)

page 187 ¢ CREATE (sets up a new file for storing
data)

page 188 ¢ ASSIGN (opens a data file for accessing
it; closes it so it can’t be accessed)

page 189 ¢ PRINT#, READ# (store and retrieve
data into a data file)

page 194 « MAT PRINT#, MAT READ# (stores
and retrieves arrays into a data file)

page 197 ¢« ON END#, OFF END# (sets up and
cancels a trap for end-of-file condition)

page 199 ¢ BUFFER (reduces device access by stor-
ing data in a buffer temporarily)

page 201 « CHECK READ, CHECK READ OFF
(sets up and cancels write verification)

page 201 ¢ PROTECT (protects a file to guard
against accidental erasure)

page 202 ¢ PURGE (erases a file)

page 202 o COPY (duplicates a file)

page 203 ¢ RENAME (gives a new name to a file)

page 203 ¢ STOREKEY, LOADKEY (stores and re-
trieves Special Function Key definitions)

page 204 ¢ STORE BIN, LOAD BIN (stores and re-
trieves binary routines)

page 204 ¢« STORE ALL, LOAD ALL (stores and re-
trieves the entire state of the memory)

page 207 « REWIND (rewinds the tape cartridge)

.

Mass Storage Function

o TYP (determines what data type will be accessed
next)

Terms

o Standard mass storage device — the device where
mass storage operations are directed if not
specified otherwise. It is the righthand tape drive at
power on and SCRATCH A.

e File — the basic unit into which programs and data
are stored. Every file has a unique name.

e Record — the smallest addressable unit on a
medium.

e Directory — the medium’s record of all its file in-
formation.

e Serial file access — accessing data items one after
the other)

e Random file access — accessing data in a specific
record in the file.

Get Started with Mass Storage

To store a program on a tape cartridge, follow these
steps —

1. type

EXECUTE.
2. insert a cartridge into the righthand tape drive.
3. type press EXECUTE.
4. if you get ERROR 85, initialize the tape by typing

*; pressing EXECUTE.

if you get a catalog listing, note the names; you

can’t use a duplicate name.

pick a file name; with any 1 to 6 characters (ex-
CHR$(0) or CHR$(255)).

“file name "'; press EXECUTE.

press

E i

cept .
type

Your file is now on the tape under the file name. To
retrieve it later, insert the tape into the righthand
tape drive.

1. type

EXECUTE.
“file name "; press EXECUTE.

BP-170 Mass Storage Operations

Terms

The following terms are used in mass storage operations —

File number — the number assigned to a mass storage data file by an ¥ i statement so

that the file can be accessed for data storage. Its range is 1 through 10.

File name — Every file must be given a unique name. A file name is a one to six character string

m expression that can have any characters with the exception of a colon, quote mark,
ASCIINULL (CHR$(0)), or CHR$ (255). Blanks are ignored. Here are some examples

of file names —

Select code — The computer accesses 1/0 devices with a select code. It is an expression
(rounded to an integer) in the range O through 16. The following select codes are

reserved by the computer and can’t be set on an interface —
o 0 Internal Thermal Printer and keyboard
e 13 Graphics option
e 14 Optional tape drive
o 15 Standard tape drive
¢ 16 CRT
Mass storage unit specifier (msus) — is used to direct operations to a specific mass storage

device. It can be any string expression of the form —

device type [select code [, controller address | 9885 unit code [, unit code]]]

The letters specifying the various mass storage device types are —

Mass Storage Operations

The select code can be an integer in the range 1 through 15 with 14 and 15 reserved for the

tape drive and 13 reserved for graphics. If you don’t specify a select code, the computer uses a

98413A/B/C Required
Letter Device ROM Interface
T internal tape n/a n/a
Y 7905M (removable) yes 98041
Z 7905M (fixed) yes 98041
C 7906M (removable) yes 98041
D 7906M (fixed) yes 98041
M 7910H (fixed) (98413B/C) 98034!
P 7920M (removable) ves 98041
X 7925M (removable) ves 98041
F 9885M/S (flexible) ves 98032
H 9895A (flexible) yes 98034!
Q 7908 (fixed) {98413C only) 98034!

default value: 15 is default for T devices, 8 for F, 7 for H devices and 12 for all others.

The controller address specifies a hard disc controller. It can be an integer from 0 through 7. The

default controller address is O.

The 9885 unit code can be an integer from 0 through 3. The default unit code is 0.

The unit code can be an integer from 0 through 7. The default unit code is 0. It is ignored for the

9885 and tape cartridge.

Here are some examples of mass storage unit specifiers —

msus

Explanation

"1Q7 45"

Standard tape cartridge drive

Optional tape cartridge drive

9885 flexible disk at select code 8

7905A removable platter, select code 4, controller address O,

unit code 3

7908 disc drive, select code 7, controller address 5.

1 Only one other mass storage device may share this HP-IB interface.

09845-93000, rev: 9/81

BP-171

BP-172 Mass Storage Operations

Remember that the mass storage unit specifier can be any string expression. The following

program segment illustrates this.

Cispe go

File specifier — A file specifier names a file and what storage device it is on. It can be a string
expression of the form — file name [mass storage unit specifier]. Here are some

examples —

Protect code — A protect code can be used to protect a file from accidental erasure. It can be any
valid string expression except one with a length of zero. Only the first six characters are

recognized as the protect code, however.

The MASS STORAGE IS Statement

At power on and :

4, the tape cartridge drive, T15, is the standard mass storage
device for the system. This is the device to which all mass storage operations are directed if no
device is specified. The default device concept is useful in creating mass storage device-

independent programs.

The standard default device is changed by executing the 1% statement —

Lz mass storage unit specifier

Examples

Mass Storage Operations BP-173

Structure
All mass storage operations deal with files and records, the basic components of a storage
medium.
Files

Files are the basic unit into which programs and data are stored. Storage of all files is “file-by-
name’” oriented; that is, all files must be assigned unique names. The form these names must

take is covered in the “Terms’’ section at the beginning of this chapter.

There are eleven types of files —

e Program files e Root (ROOT) files

e Data files ® Backup (BKUP) files Data base files
e KEY files ® Data set (DSET) files

o STOREALL files e Assembly (ASMB) files

e Binary program files e Option ROM (OPRM) files

e Binary data files (Mass Storage ROM)

Records

Every file is composed of a varying number of records. A record is the smallest addressable unit

on a mass storage medium.

There are three types of records —

1. Physical records are 256-byte, fixed units which are established when a medium is
initialized. Every file starts at the beginning of a physical record; this is an important fact
for minimizing wasted space on a medium when creating data files. Otherwise, you need

not be concerned with physical records.

2. Defined records are established using the iz statement and can be specified as
having any number of bytes in the range 4 through 32 767 (rounded up to an even

number). A defined record is the smallest unit of storage which you can address directly.

3. Alogical record, a user-level rather than machine concept, is a collection of data items

which are grouped together conceptually.

When a file is established with a = - or statement (discussed later), the computer uses

as many records of 256 bytes as it needs to store the program. Logical and defined records are

not used with
rev:4/81

BP-174

Mass Storage Operations

Using the CEERTE statement for data files, you can specify how many defined records you wish
the file to contain and how big they should be. You don’t need to be concerned with the
correspondence between physical and defined records, except to remember that the first de-
fined record of a file starts at the beginning of a physical record. If a file doesn’t go to the end of

a physical record, space between the end of the file and the next file is wasted space.

EOF’s and EOR’s

Files and records are bounded on the storage medium by end-of-fite (EOF) and end-of-record
(EOR) marks which signify their ends. This section illustrates and describes the organization of
files and records on a storage medium.

Physical Records

A storage medium is divided into 256-byte fixed physical records when it is initialized.

256 bytes 256 bytes

-physical record-

End-of-File and End-of-Record Marks

When a file is created, its end is designated by a physical-end-of-file (PEOF) mark. Any space
between the PEOF and the beginning of the next physical record is unused space.

Unused space

f+—— physical record ———

| |
I I
| |
| |
file T +

/L

beginning of file PEOF (end of file)

When a file is created using the CFERTE statement (discussed later in this chapter), an end-of-
file (EOF) mark is placed at the beginning of each defined record. Each EOF mark takes two
bytes of storage space. At the same time, a physical-end-of-record (PEOR) mark is placed at
the end of each defined record. Numeric data items can’t cross a PEOR mark. If a numeric data
item can’tfit in the space between the previous item and the PEOR mark, it is placed in the next

record, wasting the space it couldn’t fit in.

physical record physical record ——

I
|
| o
|

mom
mom

defined record

defined record ——— defined record —

beginning of tile PEOR mark PEOR mark PEOR mark
PEOF (end of file)

Mass Storage Operations

As data is written to a file, the EOF marks are over-written. An EOF mark can be printed at the
end of the data by printing EHI (see the R [HT# statement) after the data. If an EOF mark is
not placed after the data, an end-of-record (EOR) mark automatically is.

l«——— data items %5—

|«—data items

mom

BP-175

beginning of file EOR mark PEOF (end of file} beginning of file PEOF (end of fite)

The Directory

The directory is the storage medium’s record of all of its file information; it includes each file’s
name, type, length, location and loading information. The directory information is automati-
cally revised when a file is created or purged. A spare directory is maintained on the medium in
the event that the first becomes unreadable. You are warned with a message every time the
spare directory is accessed if the main directory becomes unreadable. It is accessed automati-

cally by the system when necessary. Here is the message —
SFARE DIRECTORY ACCESS

There is no provision made for recovering information stored on a medium if both directories
are destroyed. If the main directory becomes inaccessible, it is wise to transfer all valuable data
on the medium to another one before the spare directory is destroyed. Rewriting the main
directory from the spare directory by adding, deleting or changing the name of a file may help

the problem, but this is not a good solution. You should transfer your data.
Tape Cartridge Directory

When a tape cartridge is being used to store and retrieve information, its directory is written
into memory the first time it is accessed. This is done to save wear on the tape and improve
performance by accessing the directory from memory rather than from the tape. The directory
on the tape is accessed only when it needs to be rewritten. The directory is erased from memory

under any of the following conditions —
o Reset (CONTROL-STOP)
o SLRATCH A

e Removing the tape from the drive

BP-176

Mass Storage Operations

The INITIALIZE Statement

The - statement enables a new mass storage medium to be used with Series 9800

Desktop Computers by establishing and testing physical records and main and spare direc-

tories.

A used medium can also be re-initialized; in the process, it is cleared of all information it

contained previously.

- mass storage unit specifier [, interleave factor]

The interleave factor is a numeric expression which defines the number of revolutions per track
to be made for a complete data transfer and can enable faster access to the medium. It is
ignored for all devices except the HP 9885 and 9895. See the Mass Storage ROM Manual for

an explanation of its use.

The It

program doesn’t utilize the mass storage device that is involved in the initialization process. [f

operation can take place at the same time as execution of a program if the

the program attempts to use the drive on which an initialization is in progress, program execu-

tion is suspended until the operation is complete.

CAUTION

WHEN INITIALIZING TWO TAPES AT THE SAME TIME,
ONE IN EACH TAPE DRIVE, YOU MUST LEAVE BOTH
TAPES IN THE DRIVES UNTIL THE RUN LIGHT GOES
OUT. DO NOT REPLACE EITHER TAPE BEING IN-
ITIALIZED WITH A TAPE WHICH HAS CURRENT DATA
ON IT; THE INITIALIZATION PROCESS MAY NOT BE
COMPLETE AND INFORMATION COULD BE DE-
STROYED.

Examples

rev:4/81

Mass Storage Operations

The CAT Statement

The (catalog) statement outputs a listing of directory information for a storage

medium: file names, types, and physical specifications.

[[selective catalog specifier / msus [, heading suppression]]

select code [, HP-IB device address] [; selective catalog specifier / msus [, head-
ing suppression]]

The selective-catalog-specifier parameter is a string expression one through six characters in
length. It causes only those files whose names begin with that combination of characters to be

cataloged.

The heading-suppression parameter is a numeric expression. If its value is 1, the heading of the

catalog (the top two lines) is suppressed.

The second syntax directs the catalog output to the specified device.

Examples

R o BT
Mo P

BP-177

BP-178

Mass Storage Operations

The information for each file is printed on one line. Here is a sample catalog output.

5 3 = 6

The name given to the file when the information is stored on the medium.

An asterisk in this column designates a protected file.

The various file types are specified by the following:

for a program file “for a data base root file

for a data file “for a data base backup file
for a KEY file

for a STOREALL file

for a binary program file
[for a binary data file (Mass Storage ROM)

reserved for additional ROM-defined file type.

“for a data base file containing a data set

‘ for an assembly language file

If a medium is being cataloged that was not initialized on your particular
model of Series 9800 Desktop Computer, your computer attempts to deter-
mine what types the files are and puts a question mark after the type in the
catalog output for all but DATA files. The type may or may not be correct. See

the Mass Storage ROM Manual for more information.

The number of defined records in the file.

The number of bytes per defined record.

The address of the physical record number with which the file begins. With
the tape cartridge, it is the number of the first physical record. Knowing the
length and address of files can let you find the gaps between files to see how
much room is left on the medium. See the Mass Storage ROM Manual for

information about other devices.

rev:4/81

Mass Storage Operations BP-179

7. msus The mass storage device on which the catalog was performed.
8. Available
tracks The number of tracks available for use. This is most important with the 9885;

see the Mass Storage ROM Manual.

The CAT TO Statement

The CHT Tii statement writes the specified catalog output into a one-dimensional string array.

This allows your programs to have access to mass storage catalogs. CAT TO can enable you to

copy files from one medium to another under program control. It can also enable you to

determine what the current standard mass storage device is for the system. The

statement also causes the computer to revert to serial mode, temporarily.

fil string array identifier [, skip count [, return variable]][; selective catalog

specifier /msus [, heading]]

The minimum length to dimension the array elements is 41 characters. Any elements not filled

with catalog entries are filled with the null string.

The skip-count parameter is a numeric expression which specifies the number of catalog

entries (lines) to be skipped before information is entered into the array.

The return-variable parameter must be a simple numeric variable. After the CAT TO opera-
tion, its value equals the number of the last catalog entry that was entered into the array. O is
returned as its value if there are no more catalog entries at the end of the catalog that weren’t
entered into the array. The value of the return variable, if not 0, could be used as the next
skip-count value to obtain the next part of the catalog for another CAT TO operation.

The selective-catalog-specifier / msus parameter is the same as for the 5T statement. The
selective catalog specifier affects both the skip-count and the return-variable parameters. The
skip-count skips the indicated number of entries of the selective catalog. The return-variable

returns the number of the last entry of the selective catalog.

The heading parameter is a numeric expression which, when its value is anything other than 1,

causes the second line of the standard T output to be entered into the first array element.
Otherwise, none of the heading is entered into the array. If it is omitted, the default valueis 1,

so the heading is not entered.

BP-180 Mass Storage Operations

Examples

Here are some example CAT TO statements —

Here is an example that illustrates how the skip-count and return-variable parameters work.
Assume that the medium being cataloged has many files starting with ““A’ on it. This pro-

gram —

creates a ‘‘window’’ the size of the string array around part of the catalog —

A

A

A

A

A - 5
A

A

A - These entries are written into CAT$
A - N
A

A

When this program is run, with an appropriate mass storage medium, 9 is returned as the value
for N.

rev:4/81

Mass Storage Operations

Here is an example that uses i to copy all files on a medium to another medium —

Storing and Retrieving Programs

Programs can be stored onto a mass storage medium in two different ways, into two different

types of files.

The first type of file for storing programs is known as a data file. When a program is stored into
a data file, it is stored as a series of strings, with one string per program line. This method is not
the fastest method of storing and retrieving programs, but it has a significant advantage. A
program stored into a data file can be accessed as string data items by other programs. This
type of file can also be used by some other HP desktop computers, such as the System 35.

statements and retrieved with

Programs are stored into data files with the ~and

. statement.

The second type of file is known as a program file. When a program is stored into a program
file, it is stored in a compiled, internal code interpretation. Storing the program also stores all
binary routines currently in memory along with the program. This is the fastest method for
and

storing and retrieving programs. Programs are stored into program files with the

statement.

If you get an ERROR 2 while trying to store a large program you’ve just run, you can try

scratching your variables with “ to free up some memory, then storing the program.

BP-181

BP-182 Mass Storage Operations

The SAVE Statement
The &

file on the storage medium.

f2 statement stores the program and any subprograms in computer memory into a data

file specifier [, beginning line identifier [, ending line identifier]]

Execution of the & statement creates a data file by “‘listing’’ the program and saving the list
on the medium as string data, one program line per string, with a maximum length of 160
characters. In this way, the file can be read, modified, or rewritten as string data by other

programs.

If you attempt to SAVE a program that has been SECUREJ, the information written to the

medium is meaningless.

When only the file specifier is given, the entire program is saved. If the beginning line identifier
is specified, the program from that number to the end is saved. If both line identifiers are
specified, the program section, from the first line identifier to the second, inclusive, is saved. If

the first line identifier is a label which is in a subprogram and execution is not currently in that

i occurs.

subprogram, £

The GET Statement

The partner of the

statement, the :E7T statement retrieves and puts into memory a

program saved previously with the : ~ statement, or any string data file consisting of valid

BASIC statements preceded by line numbers, stored one line per string.

" file specifier [, line identifier [, execution line identifier]]

Execution of the {z£ T statement causes the computer to read the specified data file and expect

to find a succession of strings that are valid program lines. As the program is retrieved, each line

is read in and syntax checked to make sure it is a valid line. If 3£ was executed from a

program, any tracing which was in effect is cancelled.

Mass Storage Operations

If no line identifiers are specified, the entire stored program is loaded into computer memory,

)

destroying any programs or data (except data stored with ! in memory.

If one line identifier is specified, the program is renumbered as it is loaded so that it begins with
the number of the specified line of the program currently in memory. Any lower-numbered
lines from a previous program are retained. The numbering remains the same on the storage

medium.

If the

f was executed in a program, program execution is restarted with —

o The program line immediately following the iz 7 statement in the original program or with

e the first line of the loaded program if there were no lines after the statement or if

these lines were destroyed by the { statement.

If two line identifiers are specified, program execution is restarted with the second line iden-

tifier.

When a program retrieved with ©:57 has an invalid line in it, the invalid line and an error

message are listed on the standard system printer. An example of how this can occur is when a

program is d with the Mass Storage ROM installed in the machine and later retrieved with

when the ROM is not installed. Any lines which have mass storage unit specifiers other
than : 715

1 are listed with an error message.

Examples

rev:4/81

BP-183

BP-184 Mass Storage Operations

The LINK Statement
The &

current values of all variables are retained.

statement is identical to the statement discussed previously, except that the

-file specifier [, line identifier [, execution line identifier]]

If no line identifiers are specified, the program is loaded, destroying the current program in

memory.

The first line identifier specifies that the loaded program is to be renumbered and is to begin

with the line number of the specified line.

If two line identifiers are specified, execution begins with the second line specified.

In effect,

"performs a ¥ operation on the loaded program, whereas . performs a

"operation, involving no pre-run initialization of variables.

Examples

The RE-SAVE Statement

A program stored in a data file can be loaded into memory and edited. It can then be re-saved

into the same file using the ! - statement —

: = file specifier [, protect code] [, beginning line identifier [. ending line iden-
tifier]]

- is equivalent to | - followed by
The protect code is used only if the file has been protected. When no line identifiers are
specified, the entire program is saved. When one line identifier is specified, the program is
saved from that line to the end. When two line identifiers are specified, that block of lines is
saved.

Mass Storage Operations BP-185

NOTE
If you are attempting to RE-SAVE a program you’ve made
longer and get ERROR 64, that means there is no space to
save the new version. If you were writing to a tape cartridge,
the old version is still there. However, if you were writing to

any type of disk, the old version is erased.

The STORE Statement
The

memory into it.

statement creates a program file and stores the program and any binary routines in

file specifier

BP-186 Mass Storage Operations

The LOAD Statement

Programs saved with

" are retrieved with the i statement.

it file specifier [, execution line identifier]

Execution of the i statement destroys any program, binaries and data in memory and

loads the program and any binary routines. However, any data stored in common is preserved

if the loaded program has a i i statement. If the |

statement comes from the keyboard
and no line identifier is specified, control returns to the keyboard after loading. If it comes from

execution of a program line in memory, execution begins at the first line of the loaded program.

NOTE
A program which includes enhanced or color graphics
keywords and has been STOREd on a 9845B Model 2XX or a
9845C cannot be LOADed on a 9845B Model 1XX,

When the line identifier is specified, execution of the loaded program begins at that line.

Examples

When LOADing a program which includes statements that are enabled by more than one ROM
(for example — TDISP, enabled by the I/O and Datacomm ROMs), be certain that your
computer has the same ROMs as the one used when the program was STOREd.

The RE-STORE Statement

A program file can be loaded into memory and edited, then re-stored into the same file using

the statement —

= file specifier [. protect code]

is equivalent to ¥

- followed by :
The protect code is used only if the file has been protected.

Examples

rev:4/81

Mass Storage Operations BP-187

Storing and Retrieving Data

Data in the form of numbers and strings can be stored into a data file. This is the same type of

iy

file as the one created by the Z~'VE statement, but it is created differently. You can group

conceptually related data items together, forming what is known as a logical record.

There are five basic data file operations —

¢ Creating a file —

e Opening a file —
* Recording data — F “#, random and serial

e Retrieving data — #, random and serial

e Closing a file —

Considerations

Before data is written onto a storage medium it is held in a buffer in the computer, then written
to the medium when the buffer is full. You should take care to terminate your program properly
before removing your tape or disk from the drive; otherwise data may still be in the buffer, not
written to the medium. You can make sure this doesn’t happen by closing the file, pressing
or reaching a STOP or END in your program.

The CREATE Statement
The ¢

- statement is used to create a data file.

E file specifier, number of defined records [, record length]

The number-of-defined-records parameter is a numeric expression in the range 1 through
32 767.

The record-length parameter is a numeric expression, specifies the length of a defined record in
bytes and is rounded up to an even integer. Its range is 4 through 32 767. If it is not specified, a

defined record length of 256 bytes is assumed.

The size of a file created is limited by the amount of available space on the medium. A medium

overflow error (F &) occurs if more records are specified than the medium can hold.

i also puts an EOF mark in the first two bytes of every defined record.

BP-188

Mass Storage Operations

Examples

i CREATE “Hs

e

T
34 bR R

When creating data files, you must be sure that the length and number of your defined records
suit the storage requirements of the logical records you plan to store. If the next data item in a
list being recorded won’t fit in the space between the previous item and the end of the record,
that space will be wasted. To determine storage requirements, see the section on Data Storage
which is later in this chapter. Attempts to store data into an insufficient amount of storage space

results in an error.

The ASSIGN Statement

Data files must be opened before they can be accessed. This is done with the F

ment. The two syntax shown below are equivalent.

i file specifier T{i# file number [, return variable [, protect code]]

file number 71 file specifier [, return variable [, protect code]]

The :

I statement sets up or references an existing internal files table and allows you to
utilize data files (with ¥ I}

T
i

ii# statements). The files table has room for ten entries.

All entries are cleared when a program is run, and when
-H F or reset is executed. The file number is a numeric expression; its range is 1
through 10. The
number, and positions the pointer at the beginning of the first record of the file.

statement also assigns a file pointer used for data access to the file

The optional return variable can be a simple numeric variable or array element and is set after
execution to indicate various results. You can use its value to check for errors. If no return

variable is specified, an error occurs if the file isn’t found, is protected or is of the wrong type.

Return Variable Meaning
0 File available
1 No such file found
2 File is protected, or wrong file type

Mass Storage Operations BP-189

The protect code is a string expression, and is necessary only if the file was protected earlier.
For all disks it must be the same protect code as the one to protect the file. If the file isn’t
protected, including the protect code causes an error. Using the null string as a protect code
corresponds to an unprotected file.

Examples

T #4, Return

T OHS

Line 20 illustrates a return variable. Lines 20 and 30 show that more than one number can be

assigned to a file.

All file numbers must be assigned prior to referencing them with PRINT #, TYP, and READ #. |

This includes subroutines and function calls which have as their parameters fill numbers.

Serial File Access

Serial file access is used to store or retrieve data items one after the other, without regard to
defined records. Logical records can be longer or shorter than defined record length. For each
data file opened, a file pointer keeps track of the data item currently being accessed. As you

store or retrieve data, the pointer moves serially forward through the file.

The PRINT # Statement — Serial

The serial

statement records values onto the specified file from the specified variables

or strings in computer memory.

file number; data list [,

file number:

The data list is a collection of items separated by commas. The items can be variables, array

identifiers, numbers, or strings of characters. The last or only item can be i, which causes an

EOF mark to be printed. Otherwise, an EOR mark is placed after the datq list is printed.

Printing begins at the position of the pointer after the data item most recently stored or re-
trieved, or at the beginning of the file if nothing has been stored or retrieved, or if the pointer
has been repositioned to the beginning of the file.

When storing a long string, it might be too long to be contained in one defined record. In that
‘ase, the string is automatically broken up and stored into as many defined records as it needs.
This adds four bytes to the amount needed to store the string each time the string crosses over

into another defined record. The parts of the string are identified as first, intermediate, or last.

09845-93000. rev: 9/81

BP-190 Mass Storage Operations

The length of data in the list must equal or be less than the storage space that remains in the file

after the pointer; otherwise, an EOF error occurs, signaling that you have filled your file. Data

can also be stored using the f statement in a file created with the statement if the

file has been assigned a number. , in effect, performs a serial print onto a file.

Examples

Lines 50 and 60 record values for A, B, C, D, and E (*) onto file #3. This data constitutes a
written record. The EOR which was placed after the data when line 50 was executed is overwrit-
ten when line 60 is executed. Another EOR is printed after the data in line 60. Remember, an
EOR signifies that there is no more data between the file pointer and the end of the defined

record.

The serial statement can also be used to generate program lines into a file. Such a file

can be retrieved with Here’s an example —

outputis —

Mass Storage Operations

The READ# Statement — Serial

The serial

statement retrieves values for variables and strings of characters from the
specified file. In serial mode, EOR marks are ignored and the file pointer skips to the next

record to find data.

-file number ; variable list

Before you can re-use data which has been stored in a data file with a ¥ I+ T# statement, you
must read the data back into computer memory. The data is not erased from the file; it is merely

copied into the variables specified in the same order in which it was stored with the i
statement. Therefore, variables do not have to have the same names specified in the Ff I+T#
statement, but they must be of the same type. Reading begins after the last item printed or read
on the specified file. To begin reading from the beginning of the file, you must reposition the

pointer or do another i

In order to retrieve all of the information stored, your i# statement(s) data list must match

in number and type (string vs. numeric) the T# statement(s) data list previously stored. If

the statement list specifies more data items than were originally stored, an EOR (or EOF

P was printed) error occurs, meaning there is no more data.

Data that is read must correspond to the type _ numeric or string _ that was printed. Precision (for
numeric data items) is automatically converted for short to real, but not for real to short. You can also

print an array and read back simple variables or other arrays, and vice versa.

Data in the form of strings can be read from a file created with the - statement. This can be
done by reading a series of as many strings as there are program lines. Each string must be long

enough to contain the program line. Dimensioning the strings to 160 characters ensures this.

Examples

+
i,
T

foom Fud -

1 ig.u i “ .Ef

rev: 8/81

BP-191

BP-192 Mass Storage Operations

f:’ U ém L - ::3 "

17

F:z -

Notice that value of F is rounded when used as the value for B.

However, an overflow or underflow can occur. This is illustrated by the following program.

R TR st g o % e e e PR WO
SR RSO TET O miminer

44 to be displayed and a beep to occur. To avoid the error,

can be executed. Then the default value is used.

Here’s an example of corresponding serial # operations -

A3

ey
LR

-y
H
it 42

[

R

Notice that 26 items are printed and 26 are read; they don’t need to match as far as simple or
array variable goes. Arrays are stored as a series of single data items with no regard to dimen-

sionality.

Mass Storage Operations

Random File Access

Random file access is used to store or retrieve data items from a specific defined record.

Random file access requires you to specify with a numeric expression, the defined record you

wish to access. The pointer is positioned at the beginning of that defined record.

The PRINT# Statement — Random
The random I 1T# statement is like the serial FF I
onto the file starting at the beginning of the specified record. However, EOF marks at the end of

T# statement except that it records data

records aren’t ignored. The data can’t be larger than the record.

[# file number, defined-record number|[;data list [, ERHI{]]

file number, defined-record number [Eiiii]

HTH

statement records data into the specified record of the file. Printing starts at the beginning of the

The data list is identical to that used in the serial ¥ IiT# statement. The random |

specified defined record. Any previous data in the record is overwritten. Any data not overwrit-
ten because the new logical record is shorter is inaccessible via that pointer. Specifying I}
causes an EOF mark to be printed after the data or at the beginning of the record (second

syntax).

The written record set down by the list(s) of data must fit in the defined record, otherwise an

EOR error occurs. If you attempt to specify a defined record number greater than the number

specified in the I k- statement, an EOF error occurs.

When no data list or is specified, an EOR is printed in the first two bytes of the record,

which makes the data in that record inaccessible.

i
i}
S
T -
T
)
s

7

s

T
13

Sy
¥

R L kil

Records 1 and 2 each have two values in them. Record 3 has an EOR in the first word.

BP-193

BP-194 Mass Storage Operations

The READ# Statement — Random

The random

i statement is like the serial {{i# statement except that reading of data
into the computer begins at the beginning of the specified defined-record and won’t read past

an EOR or EOF mark.

file number, defined record number [; variable list]

Again, as in the serial i# statement, the variables into which you read values do not

necessarily have to have the same names or precision type specified in the ¥ I+ T# statement.

If the number of items making up the data list is greater than the data in the defined record, an
EOR error occurs.

BT
These two operations retrieve the data stored in the previous example.
Repositioning the Pointer

If the data list is omitted, the pointer is repositioned to the beginning of the specified record. To

reposition the pointer to the beginning of a file (for use with serial file access) execute —

file number, 1

The MAT PRINT# and MAT READ# Statements

Entire arrays can be stored and retrieved, using either serial or random access, by use of the

#and I Ii# statements.

T# file number [, defined record number] ;array variable

[. array variable...] [,

P

I3 file number [, defined record number] ;array variable
[“redim subscripts *][, array variable [:redim subscripts *] , ...]

Mass Storage Operations BP-195

Arrays are stored and retrieved element by element without regard to dimensionality with the

last subscript varying fastest.

i{i# statements. Lines 60 and 80

and

Arrays can also be printed and read with the !

above could also read —

Random vs. Serial Method

The decision to choose random or serial methods depends upon the structure of the data which
is to be recorded and retrieved. Serial file usage makes the most efficient use of the storage
medium by packing all data tightly in the file. However, the data must be retrieved from the
beginning of the file and therefore an item in the middle of a file cannot be accessed until all
data coming before it is accessed. Random file usage is less efficient in its use of the storage
medium but it provides access to data at various points (logical records) within the file without
previously accessing the data which comes before.

BP-196 Mass Storage Operations

Closing a File
The ¥

number results in an error. It is recommended that a file always be closed when you are done

s statement is also used to close a file; any subsequent attempts to access that file

accessing it during a program segment. The two syntax shown below are equivalent.

file number

F file number Ti} #

Other Data File Operations

The other operations which can be performed with data files are —

e determining data type — T function

e trapping EOR and EOF conditions — {l

e determining data storage requirements

e buffering a file — & EREE

The TYP Function

The type function is used to determine what type of data the pointer will access next.
T%F < [-] file number

The possible values for the function and their meanings are —

Value | Meaning

Option ROM missing or data pointer lost.
Full-precision number.

Total string

End-of-file mark

End-of-record mark

Integer-precision number

Short-precision number (If short precision was
not expected, 6 indicates lost data pointer)
Unused

First part of a string

Middle part of a string

10 Last part of a string

ULtk W= O

O 00

If the file number is negative, the data pointer doesn’t move. If it is positive, the pointer moves
forward until it is positioned at something other than an EOR mark. In effect, a negative file

number causes a random read. A positive file number causes a serial read, ignoring EOR marks.

Mass Storage Operations BP-197

The ON END# Statement

Normally, encountering an EOF or EOR during a random access =EATi# or FF IFHT# operation

or encountering an EOF during serial access causes the program to stop. The i EHHI# state-
ment is a declarative’ which causes a branching operation to occur when an EOF or EOR is

encountered.

EHIHE file number (207 line identifier

1# file number 0ELIE line identifier

Specifying i EMII disables OVERLAP mode for that file. The routine branched to should
service the EOF or EOR condition.

Example
S, B0, S0, 00186

“IATAL", 4
“IATAZ", 4

N Rl
S A
o
i
- B
P e
-
-
.

P

' response request. can

can interruptan

routine if they are declared in the same program segment.

1 More information about interrupt branching can be found in Chapter 14.

BP-198 Mass Storage Operations

The OFF END# Statement
An (M ERI# declarative is deactivated with the ! Eli# statement.
vates OVERLAP mode for the file if it had been in effect previously.

ii also reacti-

i file number

EOR Errors

To recover from EOR errors, you can either shorten the data in precision or amount, or purge

and recreate the file with the defined records longer or more numerous.

Example

The following example illustrates a condition in which an EOR condition is generated.

Execution causes an EOR condition (ERROR 60); A$ is longer than the record. The EOR
condition can be avoided by increasing the number of bytes in “SHUN"’ or changing line 50 to
TH 1aFE

read

The following example shows how an EOF can be generated.

An EOF is generated when I = 6, B$(6) is ‘“‘after” the end of file IVNESS.

Data Storage

When storing data, it is possible to optimize the use of your storage medium by minimizing the
amount of unused space. The best way to do this is to create your files so they are suited to the

amount of data you wish to store and to storage medium capacities.

Mass Storage Operations

The following tables indicate how many bytes are needed to store various variables on a mass
storage medium.

Single Variable

Full precision 8 bytes
Short precision 4 bytes
Integer precision 4 bytes
String 1 byte per character + 4 bytes + 4 bytes each time string

crosses into a new defined record.

Array Variable

Full precision 8 bytes x dimensioned number of elements

Short precision 4 bytes X dimensioned number of elements

Integer precision 4 bytes X dimensioned number of elements

String 4 bytes per element + total needed for all strings as defined
above.

By summing up how many bytes of storage your data requires, you can tailor your file and
defined record lengths to suit your needs and minimize waste. However, keep in mind that a file
always begins on a new physical record. If a file requires a total of 520 bytes (2 physical records

plus 8 bytes), 248 bytes are unused, and therefore, are wasted space.

The BUFFER Statement
The

number to reduce device wear and increase efficiency by reducing device transfers.

statement is used to attach a buffer from user Read / Write Memory to a file

file number

The

a 256-byte, semi-permanent buffer to the specified file number. |

i statement allocates buffers from the main user Read / Write Memory by attaching

{'# statements cause

transfers to the buffer (rather than to the actual medium); when the buffer is full, its contents

are dumped to the medium. t statements fetch data from the buffer until it is exhausted;

the buffer is then refilled from the medium.

Buffering files is most advantageous if all files being accessed on a specific device are buffered.

See the Mass Storage ROM Manual for more information on buffering and its implications.

BP-199

BP-200 Mass Storage Operations

A buffer that is assigned to a file number is also dumped under these conditions —

ing that number to a different file

All buffers are dumped when any # {is done.

A buffer is returned to main Read / Write Memory under these conditions —

o Reset

o LTI
e Closing the file

e Returning from the subprogram in which the file being buffered was opened.

The i statement can’t be executed from the keyboard.
The CHECK READ Statement
The statement is used to verify information written to a storage medium.

t [# file number]

When no file number is specified, all storage operations are verified. The file number causes

only ¥ "# operations to that file to be verified. This is a bit-for-bit comparision.

' has the additional function of forcing transfer to the medium of the current data

oo

[

T# operation. However, the

record after every & statement has precedence over

. The data record is verified only when the buffer allocated by the !

statement is dumped to the actual medium.

The T

cartridge. Use only when necessary.

ilt operation reduces the speed of operations and increases wear on the tape

Mass Storage Operations

The CHECK READ OFF Statement

It operation can be cancelled by executing the [:HE

[FF [# file number]

The PROTECT Statement

ITECT statement is used to guard a file against accidental erasure, especially with disks.

The

T file specifier, protect code

The file specifier must specify an established file on a device.

The protect code is any valid string expression except the null string. Only the first six charac-

ters are recognized as the protect code.

Examples

NOTE
For tape cartridges, the directory doesn’t retain the protect
code itself, but only notes the fact that you have protected
the file. For all other mass storage devices, the protect code
itself is kept in the directory. A file on the tape cartridge can
be purged using any protect code; it need not be the one it

was protected with.

BP-201

BP-202 Mass Storage Operations

The PURGE Statement

The | statement eradicates any file (program, data, etc.) by removing its name from the

name table in the directory, thereby preventing any access to the file.

- file specifier [, protect code]

The protect code is necessary only if the file was previously protected. The records of the file
are then returned to ‘‘available space’’, being combined with adjacent available records, if any.

Examples

The COPY Statement

statement is used to copy the information in a file into another file.

The i

i source file specifier

The protect code is necessary only if the source file is protected.

Execution of the " statement causes all records of a file to be copied. The first file specified
can be of any type. A check of the name of the destination file is made; an error is given if the
name is present. If not, a file of the same characteristics as the source file is created. The same
storage medium can be both source and destination. If an option ROM file is copied to or from a

tape cartridge, its type is changed to ‘OPRM’.

Examples

The ¢

individually, thus duplicating the entire medium.

i statement is very useful for duplicating a storage medium. Each file can be copied

Mass Storage Operations BP-203

The RENAME Statement

The statement is used to give a file a different name.

old file specifier 7 new file name [, protect code]

Examples

STORE KEY and LOAD KEY

The typing-aid definitions of all special function keys can be stored onto a mass storage

medium using the

" file specifier

This creates a “KEY” file.

The stored definitions can be loaded back into the keys by executing the

statement —

file specifier

Examples

BP-204 Mass Storage Operations

STORE BIN and LOAD BIN

All binary routines currently in memory can be recorded separately from programs using the

i+ statement.

ti file specifier

statement.

STORE ALL and LOAD ALL

The entire user Read / Write Memory state: programs, variables, keys, binaries, CRT dis-
play — can be stored into a special memory file. The files table is not stored into the STORE
ALL file, however.

. file specifier

The file created by the . statement is very large; the minimum is 38 records.

. can’t be executed during execution of a subprogram.

Memory can be returned to the state it was in previously by using the :
: L. file specifier

All files being used when the corresponding : . was executed must be reassigned.

NOTE
In order to LOAD ALL a STORE ALL file, your computer
must be identical (options and memory size) to the one used
when the STORE ALL was executed.

Examples

rev:4/81

Mass Storage Operations BP-205

The Tape Cartridge

This section covers general information for using the tape cartridge for mass storage opera-

tions.

For heavy usage of mass storage files, such as nonconsecutive file sorts or data base manage-

ment applications, flexible disks or hard discs are recommended for optimum performance and
reliability.

The standard tape drive is on the right hand side of the computer and is the default mass

storage device at power on and ¥ 1. Its mass storage unit specifier is :T15. The
optional tape drive is on the left hand side of the computer. Its mass storage unit specifier is

:T14.

NOTE
Occasionally when using the tape cartridge, unexpected
high-speed movements may occur. Ignore these: they in no

way affect usage. but merely assure proper tape tension.

Recording on the Tape

To record on the tape cartridge, the record tab must be in the rightmost position, in the

direction of the arrow (as shown).

Write Protection

If the record tab is moved to the left, no information can be written to the tape. Information can
only be read from the tape.

BP-206 Mass Storage Operations

Inserting and Removing the Tape Cartridge

Insert the tape cartridge so that its label is up and the open edge is toward the computer. Both
the drive window and the door beneath it open when the cartridge presses on the lower door;
the cartridge can then be inserted.

To remove the tape cartridge, press the eject bar. If it is pulled out without pressing the eject

bar, another cartridge can’t be inserted until the eject bar is pressed.

General Tape Cartridge Information

Mass storage unit specifier :T15 (standard tape drive)

:T14 (optional tape drive)

Tape capacity 847 user-accessible physical records (216 832 bytes)
42 files (directory entries)

Rewind time 19 seconds

Initialization time 3 minutes

Tape length 42.67m (140 feet)

Number of tracks 2 independent tracks

Access rate (search speed) 11 770 bytes /second

Transfer rate 1 438 bytes /second

Typical tape life 50-100 hours

Typical error rate’ < 1in 107 bytes

1 This is dependent on the cleanliness of the tape head, tape care, and the cleanliness of the environment.

Mass Storage Operations

The REWIND Statement
The

statement rewinds the tape to its beginning.

[mass storage unit specifier]

If no parameter is specified, the default device is used. If it is not a tape cartridge, the statement
is ignored. There is also a Special Function Key to rewind each of the tape cartridges.

Operations which do not involve the tape cartridge can take place while the tape rewinds.

Mass Storage Errors

When using the tape cartridge, wear caused by contact between the tape and the read / write
head can occur. If at any time, the tape makes rattling sounds while moving, or error 84, 87, 88

or89ora:

warning begin to occur frequently, it is advisable that
steps be taken to prevent the loss of information stored on the tape.

The first step is to clean the tape head and capstan as discussed in the Installation, Operation,
and Test Manual. If this does not alleviate the problem, the next step is to transfer the informa-
tion to a new medium, retiring the worn tape. Continued use could cause loss of information or

damage to the tape drive itself.

. =1 can occur when either the tape drive or the cartridge itself fails. To determine the

source of the problem, a different cartridge can be inserted. If ¥ Z1 stops occurring,

assume the tape itself is bad and replace it. If ¥ i continues to occur, the drive itself is

bad. In this case, call your HP Sales and Service Office for assistance.

Optimizing Tape Use

The tape cartridge used with a Series 9800 Desktop Computer has two tracks with 426 records
on each track. Records are numbered consecutively; record 0 and record 426 are both at the
same end of the tape, on different tracks. Thus, records 425 and 426 are at opposite ends of the
tape. This can cause a situation in which one file spans two tracks, making access time-

consuming and wearing to the tape.

Record #0 Record #425

|

Record #426

BP-207

BP-208 Mass Storage Operations

To avoid this situation, you can create a dummy file in record number 425, making it impossi-
ble for one file to span two tracks. The following set of operations can be used on a tape with no

files on it to create this dummy file.

The file
directory which is why file A is created with only 420 records.

¢ will be in record number 425; the first five records on the tape are used by the

BP-209

Chapter 1 2

Debugging and Error Testing

page 210 « TRACE (monitors branching in all or part of a program)

page 211 ¢ TRACE WAIT (causes a delay after each statement that causes output)

page 211 ¢ TRACE PAUSE (pauses the program at a specified line)

page 212 « TRACE VARIABLES (monitors changes in the values of one to five variables)
page 212 ¢« TRACE ALL VARIABLES (monitors all variables in all or part of program)

page 213 ¢ TRACE ALL (monitors all branching and variable changes)

page 213 ¢ NORMAL (cancels all tracing operations)

page 213 ¢ ON ERROR (causes branching when an error occurs during program execution)
page 215 ¢ OFF ERROR (cancels the ON ERROR condition)

Error Functions

ERRL (line number of last error)
ERRN (number of last error)
ERRMS$ (message of last error)

BP-210 Debugging and Error Testing

Debugging a Program

Tracing a program is a convenient method of debugging the logic errors in the program. There

are two types of tracing statements — three which trace the logic flow (

i.) and three that trace wvariable assignments (7

k]

of a running program. Only one of each type can be
in effect at one time. A subsequent one cancels the previous one. Output from TRACE opera-
tions goes to the system comments line. When tracing, it is advisable to set the print all mode
(press and latch ®) and specify a printer other than the CRT as the print all printer (with
PRINT ALL IS) so that ¥

- outputs are more permanent.

Tracing statements can be programmed or executed from the keyboard. They do not increase
program Read/Write Memory requirements when executed from the keyboard or from the
program. If you are tracing a program and execute a GET operation, the tracing will be

cancelled.

Tracing operations cause the computer to temporarily revert to SERIAL mode even if OVERLAP
is in effect. TRACE, TRACE ALL, and TRACE VARIABLES also slow down program execution.

The TRACE Statement
The

branching occurs in a program, both the line number of the line where the branch is from, and

statement is used to trace program logic flow in all or part of a program. When any

the line number of the line where the branch is to are output.

" [beginning line identifier [, ending line identifier]]

When a branch occurs, the outputis —

line # Tiiline #

If no line identifiers are specified, all branches in the program are monitored. When one line
identifier is specified, tracing doesn’t begin until that line is executed. When both line identi-
fiers are specified, tracing begins when the first line you specify is executed and continues
(regardless of where the program is executing), then stops when the second line you specify is

executed.

rev:4/81

Debugging and Error Testing BP-211

The TRACE WAIT Statement

The 7 : ‘statement is used in conjunction with any other ¥

- statement. It causes
a specified delay to occur after each statement which causes a trace output. It is useful for

monitoring and examining trace output as it occurs.

T number of milliseconds

The delay is specified by a numeric expression in the range —32 768 through 32 767 which
indicates the number of milliseconds after each trace printout. A negative number defaults to

zero.

The TRACE PAUSE Statement

To check whether or not a line in a program is reached, or to monitor the number of times a

specified line is executed, use the - - statement.

- [line identifier [, numeric expression]]

If no parameters are specified, execution pauses when this statement is executed; the next line

to be executed is then displayed. This allows you to pause a running program and know where

it is paused, which is not possible with the i - statement.

When only the line identifier is specified, the running program stops when execution reaches

the specified line, but before the line is executed. When the numeric expression is specified, it is

rounded to an integer, call it N. The program stops when the specified line is reached for the
Cc

Nth time; the line isn’t executed. Execution can be resumed with that line by pressing .

Every subsequent time the line is encountered, the program pauses before the line is executed.

This type of tracing can be disabled by letting the line identifier be one that is not a line
identifier in memory. The most efficient way is to let it be a lower number than the lowest
numbered line in memory.

BP-212 Debugging and Error Testing

The TRACE VARIABLES Statement

To trace changes in values of variables without using an output statement, use the

. statement.

variable list

The variable list can contain simple numeric and string variables, and array identifiers; there
can be one to five items separated by commas. The value of any variable which changes is
printed. The outputis —

line number, variable name [#subscripts *]= value

The line number is the line in which the change occurred. If the change comes from a live

i. The new value of the variable

keyboard operation, the line number is replaced by
is indicated. In the case of an array, the values of the subscript(s) at the time are printed

following the name.

When an entire array changes value, the printout is —

line number, array name % i

Tracing variables also detects changes in subprograms of variables passed by reference. For
example, suppose —

is executed and # is passed by reference to a subprogram. If the corresponding variable in the

subprogram is changed, a trace message for - occurs.

The TRACE ALL VARIABLES Statement

To trace all variables with the ability to specify lines, use the state-

ment.

beginning line identifier [, ending line identifier]]

When no line identifiers are specified, all variables are traced throughout the program. When
one line identifier is specified, tracing begins after that line is executed. The ending line iden-

tifier causes tracing to stop after that line is executed.

Debugging and Error Testing BP-213

- cancels and is cancelled by -

This method of tracing can be turned off by letting the first line identifier be a line identifier
which is not in memory such as an undefined label or line number which is lower than the

lowest line number in memory.

The TRACE ALL Statement

To trace both program logic and variables, use the

statement. This statement

allows, in effect, concurrent execution of ¥

Either ‘part’ of the . mode can be altered without cancelling the other part. For

example, if 7

i.L.1s not affected.

Although the volume of printout is high, - L.is useful if a logic problem in a program

hasn’t been isolated with selective tracing.

The NORMAL Statement

All tracing statements are cancelled by executing

statement —

Error Testing and Recovery
The ON ERROR Statement

Run-time errors are those which occur only when a program is running. Dividing by zero is an

example. A run-time error normally halts execution. Through use of the statement,

run-time errors can be caught when they occur and execution can continue with the specified
line. The I
Interrupt branching and how {iF

. statement specifies a branching which takes place after an error occurs.

relates to other interrupts are covered in Chapter 14.

-t line identifier

ine identifier

L. subprogram name!

1 Can’t pass parameters

BP-214 Debugging and Error Testing

L. statement is active in the program segment where it is declared and in all

program segments called by that segment. is active only in the

program segment where it is declared. Execution of another statement cancels the

previous one.

When a run-time error occurs and the condition has been established, execution is

transferred to the specified line. Then the unctions (discussed next)

could be tested, error recovery procedures or ‘I i’ could be executed.

NOTE
When a program is running in OVERLAP mode, {if4

won’t trap most [/ O errors (54-103). It is advisable to use

If 26374 is specified and the recovery routine contains an error, it is possible to program into an
P

endless loop. It can be stopped by pressing g or {ser) If i

: or . is specified and the

routine contains an error, the normal error message is displayed and execution stops.

If the

level until

or computer priority is set at the highest

el

statement specifies a

" is executed. This means that the routine can only be inter-

rupted by an ¢ which is declared in the same program segment as

or is in the subprogram called by i

A routine accessed with i can be interrupted because system priority isn’t changed. Please

refer to Chapter 14 for more information about interrupts.

Error Functions

One string and two numeric functions can be used with i

The error line function returns the line number in which the

most recent program execution error occurred.

The error number function returns the number of the most

recent program execution error.

The error message string returns the most recent program

.and

execution error message, a combination of

Debugging and Error Testing BP-215

The OFF ERROR Statement

|
-
c
)
£
o
]
©
8
v

is disabled with the

Example

LI E

LAl T A

. b
by

BP-216 Debugging and Error Testing

Some errors are not trappable using the ON ERROR statement. These errors include —
e Syntax errors (not run-time errors)
e Errors occurring when statements are executed via live keyboard
e Errors detected by the [/ O processor when in OVERLAP mode

e Mass storage operation errors using LOAD, STORE, GET, SAVE, LINK, LOAD ALL,
STORE ALL, STORE BIN, LOAD BIN, RE-SAVE and RE-STORE.

The following errors are not trappable —

1 2 5 14

16 40 41 42
55 56 57 58
83

Some of the errors which cannot be trapped in the OVERLAP mode can be trapped if you run
the program in SERIAL mode.

Some of the mass storage errors (such as Error 80) can be trapped by doing an ASSIGN

statement for a known data file on the medium, as shown here —

could trap an Error 80 if the file CHAMP exists on that particular medium and it is not installed

into its drive.

The ASSIGN statement can be deactivated by —

after the ON ERROR is tested.

BP-217

Chapter 1 3

Special Function Keys

The Special Function Keys (SFK’s), marked kO through k15, provide a variety of uses: typing
aids for frequently used statements, commands, operations and other series of keystrokes,
program interrupting capability and accessing CRT special features.

page 220 ¢ EDIT KEY (lets you define a Special Function Key as a typing aid of up to 78
keystrokes)

page 225 ¢ SCRATCH KEY (erases the typing-aid definitions of one or all Special Function
Keys)
page 225 ¢ LIST KEY (lists the typing aid definitions of one or all Special Function Keys)

CRT Special Features
To access the CRT special features, hold down , then press any of these

kO (inverse video)
k1 ({blinking)
k2 (underline)

Repeat the procedure to clear the mode.

rev:4/81

BP-218 Special Function Keys

Pre-defined Definitions

These keys have the following definitions at power on or after SIZFEHTCH His executed.

Key Function
k0 Inverse video mode

o)) Blinking mode

Underline mode

REMIND":T14" [) (if optional tape drive present)
REMIHD":T15"
G cET

LOAT

SEVE

STORE

EDIT

EDIT LIME

LIST

SCRATCH

oOmxm

omxm

g 8868 BFEE R EJ
d

Special Features

The CRT special features — inverse video, blinking and underline — can be used alone or
combined. Each mode is entered by holding down , then pressing the specific key.

Example

For an example of blinking, hold down , then press CkiJ
Now type in ##xs 1111
To add inverse video to blinking, hold down , then press koJ

and type in ###i,

Special Function Keys

Each mode is exited by pressing and the specific key again or by pressing any of the

CLEAR keys. To get back to normal mode in the previous example, hold down and press
), ()

These special features are very useful for highlighting text which is output to the CRT in
programs. Strings can be displayed or printed to the CRT with any combination of the special

features.

Example

This example shows underline.

Note
Entering any combination of special feature modes adds one
character to the length of the string, as does exiting the spe-

cial features mode. For example, the length of —

is 11 characters.

If you use a special feature in an output or FE[statement, or
in a comment, make sure you enter at least one character
that has no special features before storing the line. Other-
wise, the entire program is in that mode after that point in the
program when listed.

14 specifies a blank which is a character.

BP-219

BP-220 Special Function Keys

Typing Aids

Keys 6 through 15 are defined at power on and SCRATCH H as typing aids so that frequently
used operations can be entered with a single key stroke. These definitions are indicated below

the appropriate key.

Hint
If you press a defined SFK and get an unexpected

message, check the shift lock key.

You can save your key definitions for later use with the STORE KEY statement and retrieve

them with LOAD KEY. These two statements are discussed in the mass storage chapter.

The EDIT KEY Command

There are 32 special function keys — 16 unshifted, 16 shifted — available to be defined as
typing aids. The initial definitions of keys 6 through 15 are not permanent, but can be edited, or

erased and redefined. These definitions were listed previously in this chapter.

NOTE
The CRT special feature definitions are permanent. They are

separate from the typing-aid definitions.

To define or edit a key, execute —

EDIT EEY key number
or type in —
EDIT

(Key 12 can be used if it still has its power-on definition)
and press the key to be defined.
The computer is now in the edit key mode with the key number displayed at the top of the CRT

and any current definition displayed. Any keys on the keyboard, up to 78 keystrokes, can be
entered to define a particular key, with these exceptions —

o 650))) ()3

Special Function Keys BP-221

In addition, the SFK itself may not be used in its own definition; this would cause an endless

recursion.

Pressing the SFK that is being defined a second time stores the keystrokes as the definition and
returns the computer to the normal mode. Pressing it immediately after the edit key mode was
entered defines that key as null if that key had no previous definition. can be pressed at
any time to abort the editing of the key; no new definition is stored and any previous definition
remains.

Most of the examples that follow relate to and build upon each other.

Examples

' HT statements. It would

For example, let’s say you are keying in a program that has many F¥

be handy to define key 0 as ¥ IHT. Keyin ELIIT.

Then press ko3,

and type in TAY
To store the definition, press (k.

Now if you wanted to type in: FEIMT :,%, four keystrokes can accomplish this:

= olalo]

One SFK definition can be used to define another. For example, say that is defined ¢

Key 2 could by defined to be FFIMT Faus, H by entering the edit key mode for key 2, then
pressing (k) (k)| @

then storing the definition by pressing (&) .

1 A Indicates a blank space

BP-222 Special Function Keys

An SFK can also be defined so that it performs an operation immediately. This is accomplished

by having the last entry in the definition be one of the special terminator keys —
FODE [

Only one of these keys can be used in a key definition and it must be the last entry in the
definition. A terminator key can be the 79th keystroke used to define an SFK.

Examples

In the previous example, is defined as FFIMHT Fauw, M To define as an immediate-

H enter the edit key mode for key 3. Then press

execute operation to execute
E

Then store the definition by pressing &3 .

Now when you press (&3 | the values of Pay and H are automatically printed.

As another example, say that you are writing a program which uses the above variables Pay
and H and you want the values printed many times throughout the program. By defining
to be —

o)

the entire line FF IHT Fa., Hcan be automatically stored after a line number by pressing key 4

following the line number.

If two or more SFKs that each contain a terminator key as part of their definition are used to

define another SFK, execution stops with the first terminator key.

Example

For example, suppose key 16, key 17 and key 18 are defined as follows —

Special Function Keys BP-223

Pressing key 18 results in —

The character editing keys (=3 & can be used to edit an SFK definition, or can be
entered as part of an SFK definition. They must be pressed while is held down to be
entered as part of the key definition.

Examples

For example, to change the previous definition of G, FEIMT Fauw,Hto IIZF FPauw, H, first
enter the edit key mode for k3 which was defined as FF IHT.

is displayed. Press (=3 six times to position the cursor under the P. Now type in I I 5F,

To delete the T, press <8,
To store the new definition, press (keJ,

The definition of key 2 is automatically altered because key 0 is part of its definition.

Here’s an example of using in a key definition. The definition of key 0, I'I=FA, can be
changed to include quote marks and an insert cursor so that only the text need be entered into
the display statement. Enter the edit key mode for key 0. Key in two quote marks, then hold
down and press (=2 and &% Now press key 0 to store the definition.

Now you can press key 0, type in the text you wish to display, and execute or store the line.

E
Many of the keys on the keyboard, such as , &) (I and do not have a directly
printable character, but instead cause some action to occur when pressed. To represent these
keys in the edit key mode, each key has a unique keycode that indicates its action and is

displayed on a separate line.

BP-224 Special Function Keys

When any of these keys is pressed for part of an SFK definition, the previous parts of the
definition roll up; the keycode for the key just pressed appears on the line above the cursor,

with the cursor in the entry area ready for another key.

When editing keycodes, the four editing keys (=2 =0 appear to have a slightly dif-
ferent function. Using =3 to move the cursor back into previously defined parts causes the
display to roll down. (53 causes it to roll up. allows keystrokes to be inserted above
(before) a keycode entry.

Example

For example, let’s say you wanted to define to set three tabs each three spaces apart but
defined it to be —

~Tab Clear
=Eight arrow
=REight areow
~REight areon
-Tab zet

~F gl are o
=RAight are o
=Eight arrou

=Eight areou

~Tab zet
To change the Taly « 1earto Tak =&t and delete one of the last four 7 i gkt arrows, do the
following —

Enter the edit key mode for &a. The flashing cursor will be in the line under the last Tab zst.

Now press —

(|
ten times to position Tab: Tl =ar in the cursor line. Now press —
To delete a Fi gt arr o, press —

=D

four times to position a F ikt ariows in the cursor line. Now press —

to delete that entry.

Finally, press G,

Special Function Keys BP-225

The SCRATCH KEY Command

To erase a specified key definition, type in —

(or press if it still has its power-on definition) then press the key you wish to erase.

To erase the typing-aid definitions of all special function keys, execute —

Erasing all SFK definitions adds 160 bytes (138 bytes if your System 45 has no lefthand tape
drive) to the power-on value of space available in Read / Write Memory, since the initial SFK
definitions use 160 (138) bytes.

The LIST KEY Command

All or selected SFK typing-aid definitions can be listed. Executing this command —

causes all typing-aid definitions to be listed on the standard printer. (see ¥

ter 10). To specify a different device on which the listing is to occur, execute —

" HEv# select code [, HP-IB device address]

A single key can be listed by executing —

LIST KEY [#select code [, HP-IB device address]:] SFK number
or
LI5T G

Here are some examples of | ¥EY commands —

BP-226 Special Function Keys

BP-227

Chapter 14

Program Interrupts

Introduction

Your computer has five interrupt declarative statements that enable program interrupt condi-
tions to be specified in a program. The specified interrupt conditions cause a GOTO, GOSUB
or CALL branching to occur. The five interrupt statements allow interrupts to come from —

e a Special Function Key (iH EEY)

e a program error ({14

e an end-of-file condition (i ErTI)

T

e a peripheral device (ZiH IHT)

This chapter covers £t EEY, [iH I*and general information about the five statements and

how they are related. {1 EFRFF is covered in Chapter 12, {14 EFIiin Chapter 11 and it THT
in the /O ROM Manual.

Any program interrupt, be it a keystroke, error, end-of-file, or peripheral interrupt, occurs while
some line of the program is executing. Branching that is enabled by an interrupt declarative
occurs when the program line is complete and is known as an end-of-line branch. Thus, more
than one interrupt can occur during statements that take a long time to execute like 151 T or

These are known as simultaneous interrupts.

Priority

Priority determines whether or not a program can be interrupted and also in what order
simultaneous interrupts are handled.

At power on, the priority of the computer is set to 0. All operations then assume this priority.
The ON declaratives specify a higher priority so that a program can be interrupted. A routine

can only interrupt the program if it has a higher priority than the current priority.

In the (i L tand CH IHT statements, you can specify priority in the range 1

through 15. If you don’t specify it, it defaults to 1.

The 0t EMIland 0t ERRCR statements have an implied priority of 16. Thus, they can always

interrupt a program.

BP-228 Program Interrupts

Changing System Priority

;, system priority is set to the specified

When an interrupt is declared with

priority when the branching occurs. When {171} is specified, system priority is not changed.

Since i:17T{! doesn’t change system priority, another lower priority interrupt can interrupt as

soon as the line specified by is executed. Thus, you should use ©:7{}in an interrupt only
if you don’t care if the program doesn’t return to where it was when the interrupt occurred or if

the interrupt routine is interrupted.

When the routine entered with ! is exited system priority is set back to what is

was before the interrupt.

Scope of Interrupt Statements

An interrupt declarative with ¢ is active within the program segment it is declared in and

within any subprogram called by that segment. An interrupt declarative with

only active within the particular program segment. Branching to a subprogram suspends

and ¢ F interrupts until the program exits back to the program segment in which they were

defined. Interrupts relating to those i and ¢ interrupts are logged (one for each

declarative), then processed upon return.

How Interrupts Interact

Tand 3

E

Interrupt declaratives can be split into two groups: one containing &

Tand © This distinction is made because priority

", the other containing

for the latter two is always implicitly the highest; for the former group, it can be specified.

ON KEY, ON KBD and ON INT

and ik

[interrupts —

Here are some facts about

interrupt routines can’t be entered again with a repeat of their interrupt until

is executed.

e Another interrupt with a higher priority can interrupt an interrupt routine in progress. The

lower-priority routine is completed when the higher one is done if the higher one specified

or .

. A lower-priority interrupt can’t interrupt a higher-priority one; it is

executed when the higher is done.

Program Interrupts BP-229

i takes precedence
. Y. Multiple ¢
with the same priority are handled in descending key number order. Multiple

e If simultaneous interrupts with the same priority are recorded,

over [i and ! I takes precedence over i} i interrupts

interrupts with the same priority are handled in descending select code order.

e To activate 7 declarations after i~ i has been executed,

executed.

olf i

any il

is cancelled with £ while an ¢ interrupt routine is executing,

with a high enough priority can interrupt the it interrupt routine.

ON ERROR and ON END

< and have an implied priority of 16, meaning they can interrupt at any time.

Here are some facts about how they are related —

e An !

same program segment or if {14

' routine can interrupt an routine if they are both declared in the

‘is declared with 1. in a subprogram which also

calls the ik li routine.

e An i} routine can interrupt an - routine if they are declared in the same

program segment. If i specifies 1. can only interrupt the error

subprogram if { and are re-specified in the subprogram. This must be

done since file assignments in a calling program aren’t active when a subprogram is called.

Errors

If the line or subprogram specified in % doesn’t exist, the specified

interrupt causes an error when it occurs. The line number in the error message won’t be the line

number of the i} statement, but will be the line number of the line that was executing when the

interrupt occurred.

BP-230 Program Interrupts

When are Interrupts Active?

At power on and #, all interrupt statements are activated. You can suspend inter-

rupts using the [statement.
The DISABLE Statement
Any (i i and i declaratives in any program segment are suspended by

- statement —

L

Tiand one {iH

One § interrupt per

select code can be logged, but the interrupt routines are not executed until declaratives are

"interrupt per key, up to 80 keystrokes for i

reactivated. Then interrupts are serviced according to priority.

The ENABLE Statement

declaratives are reactivated by executing the

7 and I statement —

The ON KBD Statement

(on keyboard) statement allows the keyboard to be used like an external input

The &
device, operating on an interrupt service level. It is used to keep track of which keys on the

keyboard are pressed. This is useful in terminal emulator applications and applications where

you want to override the normal operation of a key or keys. When - s executed, the

peripheral keyboard mode is set. This also disables live keyboard mode and any i

statements.

L]

All keys that are pressed are logged into an ON KBD buffer except the following —

D),), G | 6o (reset), @9 and

The i} statement can be executed only within a main program, not within a subprogram

or from the keyboard. If you put an i}

i statement in a subprogram,

Executing another {1 Ii statement cancels the previous one.

1 Can’t pass parameters.

Program Interrupts BP-231

Priority

Priority determines when interrupts are handled. An interrupt can only interrupt the program if

its priority is higher than the current system priority. The priority parameter is a numeric

expression in the range 1 through 15. If it is not specified, 1 is used as the default value. @

and .. set system priority to the specified level. 3 7T1i leaves system priority unchanged.

ALL

The #il.L. parameter specifies that all keycodes are trapped except - (reset), BP9 and
D

ON KBD Buffer

When an i
codes for the keys that are pressed. When a key is pressed, its keycode is placed into the buffer.

i statement is executed, an 80-keystroke buffer is established to hold key

When the buffer is full and a key is pressed, the computer beeps to advise you of this.

The buffer is emptied every time the ¥ EIi# function (discussed later in this section) is used.

Considerations

Here are some facts that should be taken into account when using i

L suspend and reactivate 34 . Up to 80 keystrokes are logged

for later processing when

o A

tion.

condi-

e Any type of ! “statement temporarily disables 1 i. The values input do
not go into the KBD buffer. The values in the keyboard buffer are saved and restored

when the input is complete.

statement.

BP-232 Program Interrupts

KBD$ Function

The & unction returns the entire contents of the buffer set up by {:

length is 80 characters. Every time |

1. [ts maximum

¥ is referenced in a statement, the current buffer

contents are put into ¥ 1# and the buffer is emptied. Thus, if you want to process the contents

must store the contents of i - into another string

of the buffer, the first reference to &
variable.

The null string is returned as the value of & when the buffer is empty or when peripheral

keyboard mode is no longer set because i i was executed.

For all ASCII keys pressed, the value in KBDS$ is that character (See the Reference Tables for
ASCII characters). For non-ASCII keys ((23 or &3 for example), the keycode should be
interpreted using the NUM function to get a meaningful numeric interpretation of the keycode.
For non-ASCII keys, two values are returned. The first is 255 which indicates non-ASCIIL. The
second value is indicated in the following table. If is held down when the key is pressed,
64 is added to the value. If @ is held down, 128 is added to the value.

Key Decimal Value Key Decimal Value
SFK #0 0 LEFT ARROW 22
SFK #1 1 RIGHT ARROW 23
SFK #2 2 UP ARROW 24
SFK #3 3 DOWN ARROW 25
SFK #4 4 ROLL UP 26
SFK #5 5 ROLL DOWN 27
SFK #6 6 HOME 28
SFK #7 7 CLEAR 29
SFK #8 8 CLEAR TO END 30
SFK #9 9 DELETE CHAR 31
SFK #10 10 INSERT CHARACTER 32
SFK #11 11 DELETE LINE 33
SFK #12 12 INSERT LINE 34
SFK #13 13 RECALL 35
SFK #14 14 TAB 36
SFK #15 15 TAB SET 37
STEP 16 TAB CLEAR 38
PAUSE 17 TYPEWRITER 39
RUN 18 BACKSPACE 50
CONT 19 RESult 51
STORE 20 STOP 52
EXECUTE 21 CLEAR LINE 53

BP-233

Program Interrupts

Examples

gel
c
©

Here are some example uses of

EAC

L 3 i
gt red ped et el qeed ped o

BP-234 Program Interrupts

The OFF KBD Statement

statement and peripheral

The {FF i
keyboard mode, thus allowing i
buffer.

! statement cancels a previously executed i

¢ and live keyboard to be active. It also clears the .

The ON KEY # Statement

The 32 special function keys can be used to interrupt a running program and cause branching.
This branching capability is useful for a program which requires user intervention. Each key can
be defined to cause a specific branch, so that the user can steer the program the way he wants
it. For example, a ‘menu’ of various routines can be displayed and accessed using special

function keys. Here is where a blank key overlay can be used.

This interrupt capability is declared with an i i statement which specifies the branching

operation and the related SFK.

t key number [, priority] line identifier

key number [, priority] . subprogram name*

The key number is an integer in the range 0 through 31. When a key is pressed and an

‘# has been declared for it, the specified branching occurs if the specified priority

exceeds current system priority. System priority remains unchanged if 71 is specified and is

changed to the indicated priority if i . is specified.

Priority

The priority determines the order in which multiple interrupts are handled. The range of
priority is 1 through 15. If it is not specified, it is assumed to be 1. An interrupt routine can only

interrupt the program if it has a higher priority than the current system priority.

1 Parameters can’t be passed.

BP-235

Program Interrupts

Example

Here’s an example that illustrates

BP-236 Program Interrupts

TR N

et I e I o |

declaratives have the same priority, the declarative with the highest key

If multiple

number is given preference when two keys are logged as simultaneous interrupts.

Program Interrupts BP-237

Considerations

i statements which specify ¢ are active only in the program segment in

which they were declared. A . interrupt is active in the program segment in which it was

declared and in all subprograms called by that segment. i declaratives are suspended

while a program is waiting for a response to an i statement and after

is executed.

If an i tor .. routine has not been completed and that key is pressed agam

the key won’t be acknowledged until the first routine is completed when its

s executed.

If a special function key has both i and typing aid definitions, the i - has

precedence while the program is running. Remember, waits caused by

v and [[temporarily suspend the so any typing aid definition is active at

fy

that time.

THE OFF KEY Statement

¢ declarative holds for a key until another declarative for the same key,

executed —

key number

BP-238 Program Interrupts

Summary

Here are some facts to remember when using

e The range of priority is 1 through 15.

e System priority is not changed when tis specified.

o “declaratives are temporarily deactivated by I "and

e An "declarative is permanently deactivated by another i ' for that particular
key, = tERTR = or :
for the key.

Softkeys

The softkeys are used with the ON KEY statement. Complete information covering the use of
Softkeys as an interactive graphics device is contained in Chapter 13 of the Color Graphics
Manual.

Appendix A
Advanced Printing Techniques

Introduction

This appendix introduces you to the more advanced printing capabilities of the CRT and the
internal thermal printer.

Some of the special capabilities are accessed by using various ASCII* control characters. See
the ASCII table in the Reference Tables for a complete list of ASCII characters. Another
capabilities allows the CRT special features: inverse video. blinking, underline, and color modes
to be accessed in a program rather than using the CONTROL key. A third capability uses
escape codes to address any location on the CRT selectively. The escape code sequences are
compatible with those used by HP 2640-series terminals. A fourth capability uses escape codes
to access capabilities of the internal printer which allow you to generate new characters
replace any character, print 150%characters and more.

Many of the examples in this appendix are meant to be tried because it is impossible to show
many of the CRT capabilities on the printed page.

A summary of escape code sequences can be found at the end of this appendix.

CRT Memory

Every line that is printed to the CRT is stored in the CRT memory. This memory can hold 50
80-character lines. Fewer longer lines or more shorter lines can be stored. When the memory
becomes full, each new line printed to the CRT causes the oldest line in memory to be lost. All
lines in CRT memory can be viewed with (33, (33, @ud or The CRT memory is cleared

with €28 a formfeed character (“i) or
with

CRT Special Features

The special features: blinking, underline, inverse video, and color can be accessed in a pro-
gram by using the CHR$ function or escape code sequence within an output statement. Any
time a mode is accessed or cleared, one character is added to the length of what is output,
though it is an unprinted character. This is a point to remember when dimensioning strings.
Any combination of the features can be accessed by outputting —

CHRS$ (n)

Where n is an integer in the range 128 through 143 and specifies which combination of features
is to be accessed. 144 through 159 are equivalent to 128 through 143. 160 through 255 are for
the Nationalized and Drawing characters.

" American Standard Code for Information Interchange.

rev:4/81

BP-239

BP-240 Appendix A

The following tables show which numbers provide access to which features:

\Y

| \VA v BL BL
CLR v BL BL UL UL UL UL
128 129 130 131 132 133 134 | 135
144 145 146 147 148 149 150 151

White Red Yellow Green Cyan Blue Magenta | Black

136 137 138 139 140 141 142 I 143
152 153 154 155 156 157 158 159

The following escape code sequence can also be used to access the special features —

X can be —
X | Result X Result
CLR H White
BL ‘ Red CLR - Clear IV, BL, and UL
J Yellow ;
I\Y K Gre \Y) - Inverse Video
IV, BL L c en BL - Blinking
UL M Bﬁxaen UL - Underline
UL, BL N Magenta
UL, IV 0 Black
UL, IV, BL
NOTE

The highlight features {IV, BL, and UL) are independent of
the color features. Therefore, setting a highlight does not

change the color and setting a color does not change the
highlight.

All special features accessed with CHR$ remain in effect until specifically cleared. This can be
done with the CLR feature above (for IV, BL, and UL) or by pressing the CLEAR key. Those
accessed with the escape code sequence remain in effect until the end of the line or until
another one is specified. At the end of a line, the highlight is cleared and the color set to white,
if the escape code sequence was used.

Examples

Here are some examples to try —

rev:4/81

Appendix A BP-241

The following example illustrates the differing effects of commas and semicolons —

Using Control Codes

ASCII characters are letters, numbers, characters and codes which each correspond to a unique
7-bit byte pattern. Each character also has equivalent decimal, binary and octal representa-
tions. The first 32 are control codes which pass control information between devices such as a
carriage return or linefeed.

function. A two-letter

The control codes can be accessed for output using or the i
symbol specifies the control code. To determine what keys can be used with to obtain a
control code, use the ASCII table in the Reference Tables. By following the line all the way
across from the desired code, the two or three keys which produce the desired character when
pressed with can be determined. For example, LF (linefeed) can be obtained by pressing

with either , , , or . The DEL character is the only one that can’t

be obtained using [covreolf,

Basic control operations on your computer utilize five control codes which affect output to the
CRT or internal thermal printer. Here are the codes and their various results —

Control Code CRT (DISP) CRT (PRINT) Internal Printer

BELL Beep Beep Nothing
BS(backspace) Back up and replace | Back up and replace Backup and replace

LF (line feed) Nothing Generate line feed only Generate line feed only

FF (form feed)

CR (carriage-return)

Clear display line

Clear printout area and
CRT memory

Search for top-of-form

Print; roll back one line

Clear display line Return to beginning of line

With the exception of the control codes described above, HT (horizontal tab, {Hi# %) and

ESC (escape code, ¢) which are discussed later in this appendix; all other control
codes are ignored by your computer.

BP-242 Appendix A

Example

Command Output

Clears CRT

CRT vs. Printer

There are a few cases where executing the same operation on the CRT and internal thermal

printer produces differing results. These incompatiblities occur when printing " or “#.
On the CRT, backspace causes the previous character to be cleared and replaced. On the
character is not cleared.

Examples

Operation Result-CRT Result-Internal Printer

e

The carriage return character also causes slightly different results on the CRT and the internal
printer. On the CRT, previous characters are cleared. On the printer, they are over-printed.

Examples

Operation Result-CRT Result-Internal Printer

Considerations

Control codes used within a BASIC statement are executed even when a program is listed. This
can produce some undesirable results. For example, try listing these program lines —

Thus, a program listing will be more readable if control codes are generated with the !
function.

rev:4/81

Appendix A BP-243

Disabling Control Codes

All control codes can be disabled (their action won’t be performed) and viewed using the
following escape code sequence —

The on_[y control code which is then recognized is CR (carriage return). When one is encoun-

tered, "# is printed and a carriage return-linefeed is executed. To see how this works, output

i, then list the program in the previous section.

The control codes are re-activated using or the following escape code sequence —

All control features and escape code sequences are cleared, the display and printer reset, and
CRT memory cleared using or the following escape code sequence —

If = is in effect,

- has no effect.

CRT Selective Addressing

Introduction

The top twenty lines of the CRT are known as the printout area. All lines printed to the CRT are
stored in CRT memory which was discussed at the beginning of this appendix. Through the use
of escape code sequences, any line in CRT memory can be selectively addressed and modified.

The operations available are as follows —

o Cursor Positioning e Display Positioning
Absolute addressing Roll up
Relative addressing Roll down
Backspace Next page
Space Previous page
Up Memory lock
Down -

Set tab e Editing .
Clear tab Delete line
Tab Insert line

Clear to end of line
Clear to end of screen
Insert character
Delete character

Home position — first row
Home position — row after last row

Selective cursor addressing and the other operations which are covered in the rest of this
appendix are very useful for form filling and text processing applications. It is recommended
that you use with # in the format string to output the escape code sequences to
avoid unexpected carriage return / linefeeds which can occur from length added to the output.

There are two example programs at the end of this appendix which combine many of the
operations to manipulate output.

BP-244 Appendix A

The Cursor

Any location on the screen can be addressed and a non-visible cursor specified as being there.
(This cursor is not the same as the flashing cursor which is present in normal keyboard usage.)
This cursor refers to a logical print position in CRT memory where the next character will be
printed. In this appendix, the word “‘cursor” always refers to the logical print position.

Addressing Schemes

The printout area is addressed using rows O through 19 and columns O through 79. The
following drawing illustrates this —

CRT memory is addressed using columns O through 79. The number of rows depends on line
length. The maximum number of lines was covered at the beginning of this appendix. The
following drawing illustrates addressing of CRT memory —

Ne e NHOUN—-O

26

In this drawing, line 6 of the CRT memory is positioned on line O of the printout area.

Appendix A BP-245

Setting the Cursor Position

The cursor can be set to any character position in the 20 lines of the printout area using
absolute or relative addressing, or a combination absolute and relative addressing.

Absolute Addressing
The cursor can be set to an absolute row and column position with any of the following escape

code sequences —

nn i
o onn B
winn L
onn Y

Here are some guidelines for using these escape code sequences —

e nn specifies a one or two-digit number which is used to specify the row and column
number. The digits preceding the R(r) specify the row number of CRT memory. The digits
preceding the Y(y) specify the row number of the printout area. The digits preceding the
C{c) specify the column number.

e The end of the escape code sequence is signified with a capital letter. Previous letters in
the sequence are lower case.

o The first column of the printout area is addressed using 0. The maximum column address
is 79; if anything greater is specified, 79 is used.

o The first row of either CRT memory or printed output is addressed using 0.

o If R is used to specify CRT memory and the specified row is not on the CRT screen, the
display will roll up or down as necessary.

e When Y is used to specify lines of the printout area, the range of rows is 0 through 19. If a
number < 0 is specified, line 0 is accessed. If a number > 19 is specified, line 19 is
accessed.

The cursor can be moved within a row by omitting the R and preceding digits. Here is the
escape code sequence —

nn i

Similarly, the cursor can be moved within a column by omitting C and preceding digits. Here
are the escape code sequences —

Moves the cursor to row 25, column 60.
Moves the cursor to column 60, row 17.
Moves the cursor to row 15, current column.
Moves the cursor to column 30, current row.
Moves the cursor to row 7 of

the printout area, current column

BP-246 Appendix A

Relative Addressing

The cursor can also be repositioned using relative addressing. From its current position, the
cursor can be moved up (negative number) or down (positive number), left (negative number)
or right (positive number). Here are the escape code sequences to use —

Here are some guidelines for using these escape code sequences —

e nn specifies a one or two digit number which is used to specify the number of rows and / or
columns the cursor is to move. The digits preceding the R(r) or Y(y) specify the number of
rows; the digits preceding the C(c) specify the number of columns.

e The end of the escape code sequence is specified with a capital letter. Previous letters are
lowercase.

e S specifies a sign : + or —. A plus sign (+) specifies right or down. A minus sign (—)
specifies left or up.

o If the number of columns specified is greater than the number of columns remaining after
the cursor in the current line, the cursor is positioned in the first column (negative move-
ment specified) or in the last column (positive movement specified). If the number of rows
specified in the negative direction is greater than the current row, the cursor is positioned
in the first row.

Examples

Moves the cursor down 8 rows, left
10 columns from its current position.

Moves the cursor right 7 columns, up
11 rows from its current position
Moves the cursor up 8 rows from its
current position

Moves the cursor right 10 columns
from its current position.

Combining Absolute and Relative Addressing

The cursor can be positioned to a new position using a combination of absolute and relative
addressing.

Examples

Moves the cursor to column 60 and down
8 rows from its current row.

Moves the cursor to row 10 and left 15
columns from its current position.

rev:4/81

Appendix A BP-247

Moving the Cursor

The following escape code sequences can also be used to move the cursor —

Move cursor up one row

Move cursor down one row

Move cursor right one column

Move cursor left one column

Move cursor to row after last row of CRT memory, first column
Move cursor to first column, current row

Moves the cursor to first row of CRT memory, first column
Move the cursor to next set tab position.

These escape code sequences can be used very easily by defining Special Function Keys to set
the cursor position, then move it up, down, left, and right.

ause the cursor to ““wrap around” when the edge of the screen is reached. When

the cursor is being moved to the right it wraps around on to the next line. When the cursor is
can be used to return the

being moved to the left, it wraps around onto the previous line.
cursor for normal printing after using cursor-moving escape code sequences.
the lines to scroll, if necessary.

cause

Example

Here is an example using cursor moving to fill in blanks in a form letter.

Using Tabs

The following escape code sequences are used to set and clear tabs —

Sets a tab at the column of the cursor
Clears a tab at the column of the cursor
Clears all tabs

The cursor can be moved to the next tab setting using or the control code * (horizontal
tab) which can also be accessed using If no tabs are set a TAB moves the cursor to
the beginning of the next line. Tabs remain set until they are cleared with reset or

BP-248 Appendix A

Clearing, Inserting and Deleting Lines

The following escape code sequences can be used in editing lines —

Clears the screen from the cursor position (remainder of the line and all lines follow-
ing)

Clears the remainder of the line from the cursor position

Inserts a blank line before the cursor line. Cursor remains on same line of CRT and
all following lines move down

Deletes the cursor line and closes up the gap. Cursor remains on same line of CRT,
and all following lines roll up

These escape code sequences are very useful for text processing applications.

Inserting and Deleting Characters

The following escape code sequences can be used for inserting and deleting characters —

Deletes the character at the cursor position
Turns on the insert character mode. Characters can be mserted to the left of the

cursor. Insert mode remains in effect until it is cleared with , reset, CEaR or "k
Turns off the insert character mode

Example

Rolling the Display

The display in the printout area of the CRT can be rolled using the following escape code
sequences —

Rolls the printout up one line (like C*3J)

Rolls the printout down one line (like &23)

Rolls the printout area up 20 lines (next page)

Rolls the printout area down 20 lines (previous page)

When using the escape code sequence with S and T to roll the printout, the cursor stays in the
same line of the CRT. Using any of the roll keys moves the cursor also. When using the escape
code sequence with U and V, the cursor is positioned to the upper left hand corner of the CRT.
The printout can only be rolled as far as the lines in memory; it can’t be rolled past the existing
lines to unused lines. You can’t roll all existing lines off the screen.

These escape code sequences are useful for accessing a line that is not currently displayed,
then moving the cursor in that line.

Appendix A BP-249

Selective Scrolling (Memory Lock)

Through use of an escape code sequence, it is possible to “‘freeze’’ a selected number of the
upper lines of the CRT in place. The roll keys and escape code sequences used for rolling the
display then have no effect on these lines. This is useful for keeping selected lines, such as the
heading of a table, on the CRT while other lines are rolled up or down. This can be done with
the following escape code sequence —

o Freezes all lines which are above the cursor line.
(lowercase L)

The remaining bottom lines can scroll up or down without moving the frozen lines. However,
absolute row addressing is disabled when memory lock is on. Qutput of a formfeed character
won’t clear the frozen lines. " positions the cursor to the first unfrozen line.

When memory lock is on, the cursor can’t be positioned using R to address a row of memory. Y
must be used to address a line of the printout area. When the printout is rolled using the U and
V escape code sequences, the cursor is positioned to the first unlocked line.

The frozen lines remain frozen until cleared with @ -
code sequence —

or by using the following escape

Unfreezes the lines which were frozen previously.

Example

Highlights, Color and Screen Addressing (Enhanced Graphics ROM)

When screen addressing is used to re-access a previously printed line, the previously printed
highlight/color is preserved until a new highlight/color is specified. If a line is re-accessed, but
to the right of previously printed characters, then the currently active highlight/color is used.

Program results:

9845B Graphics ROM

9845C Graphics ROM

Enhanced Graphics ROM

rev:4/81

BP-250 Appendix A

The Internal Printer

The internal thermal printer has additional capabilities, differing from some of those on the
CRT, which allow you to generate new characters, replace any character with a string, set and
clear tabs, alter margins, plot in plotting mode and print 150% size characters. These
capabilities are all accessed by using an escape code (CHR$(27)) and parameters. Keep in
mind that the escape codes remain in effect until they are deactivated. This can be done with
or reset. Some of the following features also have an escape code sequence which specifi-
cally clears it.

Structure

The internal printer prints up to 80 printable characters per line. Each character is formed from
a 5 x 7 dot matrix contained within a 7 x 12 dot matrix.

= rTTroT,r 11" ° ””"ﬂ
1 1
H]
N 1
| ;«—Ascenders
| |
| 1
L }
! 1
! |
L]
: . |
g Basic i
L sx7]
1 I
I‘ |] |
i I
. ;
| !
]
: 1
i
—- 1t Descenders
' |
I 1
N N A A §

The two rows above the 5 x 7 dot matrix are used for ascenders such as an umlaut. The two
descender rows are used for “‘legs” of lower case letters like p and y. The last row is used for
underline.

Rows Per Line

The number of rows of dots per line (from baseline to baseline) of printing can be altered from
the normal 12. Vertical spacing is set by outputting —

idd=

1 is a lower case ‘L. dd specifies one or more octal digits representing the number of rows of
dots. Each row of dots represents 1/77 of an inch of vertical spacing.

The range of the digits is O through 126 (176 octal). Default is twelve.

Appendix A BP-251

Example

Margins

When perforated paper is used, the top margin is normally set to approximately %" below the
perforation. This amount can be altered by outputting —

i is a lowercase “L”. dd are octal digits specifying the number of 1/77” rows below the
perforation as being the top margin.

The range of the digits is O through 127 (177 octal). O causes the perforations to be ignored; a
line could conceivably be printed on top of the perforation on 2 pages. Default is 36.

The bottom margin has a width in the range .79 to 1.19 centimetres.

Example

Setting Tabs

Horizontal tabs can be set by outputting —

A tab is set at the current character position. It is used by outputting a TAB code, CHR$(9).
If no tabs are set or no more remain in the currentline, a CR-LF is executed by the printer when
a TAB code is received. Two horizontal tab anomalies are associated with string replacement;

see the section on String Replacement.

All horizontal tabs are cleared with —

BP-252 Appendix A

New Characters

Up to nine new characters which are not part of the standard or alternate character sets can be
defined to replace another character.

A new character is defined by specifying a character to represent it and specifying up to eight
8-bit byte patterns to define the character. Bits one through seven of each byte are printed; bit
0 is used as a control bit and is specified by a subscripted X.

Byte
Number

- Bit Number
7 6 5 4 3 2 1 0
X1| Special Row
X2| Row1or8
X3| Row2or9
X4| Row 3
Row 4

Xé6| Row 5
X7| Row 6
X8| Row 7

5 Columns

of Standard Control Bits

5 x 7 Dot Matrix

These eight bytes are used to define up to twelve rows of dots for the new character. Byte one
defines a special row which can be printed in any of five row positions. Bytes two and three
define the first two rows of a standard 5 x 7 dot matrix; either or both can be moved to define
the two rows below the 5 x 7. Control bits are set when they equal one. This is used to
determine where bytes one, two and three are printed.

e -Tr-
{ ~~——Byte 1 pattern if X1 set.”

1
~«——RByte 1 pattern if X4 set.

F—Byte 2 pattern if X2 not set.

~———Byte 3 pattern if X3 not set.

F——Byle 4 pattern.

~—— Byte 5 pattern.

~——RByte 6 pattern.
—_—

~——Byte 7 pattern.

~——Byte 8 pattern.

J

:\\ Byte 1 pattern if X6 set and Xz not set.
Byte 2 pattern if X2 set.

L ‘ . Byte 1 pattern if X7 set and Xs not set.
T Byte 3 pattern if X3 set.

Byte 1 pattern if X8 set and no underline.

" 1f the number of rows per line is less than twelve, byte 1 pattern is printed in the first row above the standard 5 x 7 when X! is

set.

Appendix A BP-253

The syntax used to define a new character is —

:ddoddiddaddi-dd =dd + dd:dd::ddid

The +: specifies that this is a new character definition.

dd specifies one, two or three octal digits; the letter following them defines their purpose.

The digits preceding the = are the octal digits representing the character which is to be replaced
by the character being defined.

The bytes being defined by their octal equivalent are represented as shown —

Letter Byte
p 1
q 2
r 3
S 4
t 5
u 6
v 7
w 8

The last letter in the sequence must be a capital letter. Thus, if bytes 7 and 8 are not specified,
the i must be capitalized.

It is not necessary to define all of the bytes. Thus, byte four can be left undefined by omitting
the = and preceding digits. However, if these bytes were previously defined in another new
character, the old byte definitions remain. “:: clears old definitions.

Example
Here is an example which illustrates new character definition. Say that you wanted to print the
formula for solving quadratic equations, Y= —B++ (BA2-4AC)/2A. The + and y/

symbols can be generated quite easily.

The first step is to block out the characters being defined.

i i T r=—r- " FeTrccr- ot r=—r-"
I 1 1)
i | ' i
; * - —
'

I
1 | !
I ! L |
| | I [
I ! | [
jS— — L —
I i ! t
| | ' . |
‘\; 1 L]

| ! |
. 100000 | o

!
[y L | _ %l
| ! ' '

|

| ! y !
[T— = N
I | 1l I
I I | |
 S— I.
i I I]
! I | |
[— il L J
| 1 I [
‘ o ') '
i b)

i V
I I t I
! | t !

1 1
! | ! |
[! | ‘
! ‘ | 1 |
| I | 1
L_-L ________________ — L__I. _________________ —

BP-254 Appendix A

The second step is to determine the 7-bit pattern and octal representation. The control bit is
shown in parentheses.

*

S . —_— Yo

e L f k

! | Bit Pattern Octal ! ' Bit Pattern Octal
L o 1 0001000(0) 20 L Q@O®® o000 34
| ® ! 0001000(0) 20 ® ' 0001000(0) 20
| | 1 |

900000 i o11111000) 174 ; ® | 0001000(0) 20
[[B IR

! o 1 0001000(0) 20 ! o 1 0001000(0) 20
| o | 0001000(0) 20 10 @ ; 0101000(0) 120
| | — o0 | 0011000(0) 60
!‘ E 0111110(0) 174 E . | 0001000(0) 20
1 5 5 s

I - ! 1

i | i l
O A O I I j S S R R |

Next, determine characters which the defined characters will replace.

o replace % with

e replace ' with +

This program prints the formula Y= —B+ y/ (BA2—4AC) /2A.

¥=-BEl (B Z-4AC) 2R

77 bytes of memory are reserved for new character definition and string replacement (discus-
sed next). Each new character uses 8 bytes of memory. Thus, a maximum of nine new charac-
ters can be defined at one time; an additional definition replaces the last character defined.

Appendix A BP-255

String Replacement

Any character can be replaced by a string. The syntax is —

The digits preceding the :: are the octal equivalent of the character which is being replaced. The
digits preceding the .. are the octal equivalent of the length in characters of the replacing string.

If a character is both redefined and replaced, the replace takes precedence over the definition.
Of course, a character can be in the string it is replaced by and if it is redefined, is printed

redefined.

Example

Remember, 77 bytes total are available for new characters and string replacement. Also, the
maximum number of string replacements would be 25 single-character replacements. Each
string replacement requires 2 bytes plus one for each character in the string. Thus, a maximum
string length is 75 characters for replacement. Any additional attempts at replacement are
ignored.

Two anomalies are associated with string replacement and horizontal tab. If * is contained in a
replace string and no tabs are set, the printer will keep searching for a tab, feeding paper as it
goes. Reset (CONTROL-STOP) must be used to abort this.

The second anomaly arises when an "+ immediately follows a replace stiing definition. It is
ignored if it is the next character specified to be output after the replace string definition.

BP-256 Appendix A

150% Size Characters

Any character can be printed 150% of the normal character size. The syntax used to accomplish
this is —

To get back to normal size characters, use this sequence -

Example

Underlining

Any characters can be underlined by using the following syntax —

-+ underline indicator

An underline indicator is a character used in the above sequence both to begin the underlining
and to turn it off. The following table shows the various underline indicators and their function.

| Characters
Underline D,E,F,G,L,M,N, O
End Underline @, A, B,C HIJK
Example

FIMAL HOTICE

Underlining and 150% characters can be used at the same time. Underlining can also be
accessed with CHR$(132) and turned off with CHR$(128).

Appendix A BP-257

Plotting Mode
In plotting mode, the next 70 8-bit byte patterns define the dot pattern for the row. To access
the plotting mode, output —

Example

Here is an example of using the plotting mode to plot the sine function.

Tottimg mocds

Fridmbns e

whi e to e

fde s ot fobe fols ot

—
-
—
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-.
-
-
-
-
-
-
-
—
-
-
_-
—
-
-
-
—
-
—
-
——
—
—
—
-
——
e
-
-
-
-
-
-
-
-
L
--
.-
-
-
-
-
-
-
-
-
T
-
.
-
- —
-
-
-
-
-
-
-

BP-258 Appendix A

Summary of Escape Codes

For
Escape Code For Internal
Sequence Action CRT Printer
ESC A Moves cursor up one row V
ESCB Moves cursor down one row Vv
ESCC Moves cursor right one column VvV
ESCD Moves cursor left one column Vv
ESCE Resets the printer and CRT — vV vV
clears control features
ESCF Moves cursor to row after last row Vv
of CRT memory, first column
ESC G Moves cursor to first column,
current row vV
ESCH Moves cursor to first row vV
of CRT memory, first column
ESCI Moves cursor to next tab setting V
ESCJ Clears screen from cursor vV
(rest of line and all lines following)
ESCK Clears line from cursor position V
ESCL Inserts a blank line before cursor line vV
ESCM Deletes cursor line and closes up gap Vv
ESCP Deletes character at cursor position %
ESC Q Turns on insert character mode; Vv
inserts to left of cursor
ESCR Turns off insert character mode vV
ESC S Rolls printout up one line (like =3) vV
ESCT Rolls printout down one line (like (Z3) vV
ESCU Rolls printout up 20 lines (next page) Vv
ESCV Rolls printout down 20 lines vV
(previous page)
ESCY Disables control codes and vV vV
allows them to be viewed
ESCZ Reactivates control codes Vv Vv
ESCI1 Freezes all lines above cursor line Vv
(lowercase L)
ESC m Unfreezes the lines which vV
were frozen previously
ESC 1 Sets a tab at column of the cursor vV Vv
ESC 2 Clears a tab at column of the cursor Vv

ESC 3

ESC &a
ESC &d
ESC &k
ESC &l

(lowercase L)
ESC &n
ESC &o

Clears all tabs

Addresses the cursor
Accesses CRT special features
Outputs 150% size characters

Sets dots per line or top margin

Defines a new character

Specifies a string replacement

Examples

< < <

Appendix A BP-259

<

<< L < <L

The first example listed is used to move blocks of text. The second example should be run to
see how it lets you manipulate a table.

Example 1

o L

AT

BP-260 Appendix A
Example 2

b

]

Borat
L G R

5
=
P

«
T
e
e

Pl i g I

s A PR o e Fri .

Wed B, W [
- . . TR ERppes

PUSPRENEAR

i}
.

A]
1)
Lt R
[
JUUS B
]
e ? Bl
e EO S0 5

i

1o

y i oy

.

Appendix A BP-261

Li

g

Py

i

=

&

o

WIRE AL

iy

GLE "f' 13 ;::t l_..‘ ;
=

i

.

P

b

BEOTHE

o

f

F

I

£

..:L..j;

i

i
o
sk

e

e

LiF

I1yRE

BP-262 Appendix A

&

mhd

Appendix B

Programming Exercises

Exercises

This appendix contains several exercises to let you practice creating flowcharts. program outlines

and programs. The solutions are at the end of the appendix.

Exercise 1

Construct a flowchart to output all odd numbers between 35 and 50.

Exercise 2

Construct a program outline to calculate and print a compound interest table for $1000 of initial
principal, 6% interest and 100 periods. A compound interest table has two columns of numbers.
The first is the compounding period; the second is the new principal amount after compounding
the interest for that period, which is obtained by multiplying the previous principal by the interest
rate, then adding that product to the previous principal. Repeat this procedure for as many

periods as you want.

Exercise 3

Modify the previous program outline to allow the user to input the initial principal, interest and

number of periods and to repeat the procedure if he wants.

Exercise 4

Write a program which computes the straight-line distance between two points. Then input the

x,y-coordinates of both points. (The distance formula is \[(xl—xz)"’ + (v, —y,)2%)

Exercise 5

Write, store and execute a program which prints the numbers 35 to 50 using the FEATD and
LHTH statements.

BP-263

BP-264 Appendix B

Exercise 6

Write, store and execute a program which has three sets of numbers (three numbers in each
set). Corresponding numbers in the first two sets are added together, and the resulting sum is
multiplied by the corresponding number in the third set. Read in the sets using FEHL! state-

ments. The numbers are:

1stset = [4,17,-3] 2nd set = [8,4,—2] 3rd set = [12.1,7.33,5]

Exercise 7

Write, store and execute a program which calculates withholding tax. Withholding tax depends
upon both the salary amount and the number of exemptions. Taxable income is the salary less
$14.40 for each exemption. The actual amount withheld is $6.60 on the first $105, plus 18 % of
the taxable income above $105. Display both the tax withheld and net salary (salary minus
withholdings).

Exercise 8

A mathematician, Karl Friedrich Gauss, developed a theorem that said the sum of the numbers
from 1 to some other number, say n, could be represented by the equation S = n(n+1)/2. It
holds for the number 3 certainly, because 1+2+3=6 and 3(3+1)/2 = 6, but does it hold for
all numbers? Write and run a program which will count (1,2,3,4,...), add up the numbers as it
counts, and compare the sums to the resuits predicted for the formula for each number. Display
the results on the CRT. Are you in an infinite loop? Does the formula hold as far as you let it

run?

Exercise 9

Write and run a program which computes the standard deviation of a sequence of numbers.

The user should be able to enter the sequence. The formula for standard deviation is

Answers to Exercises

(Stant)
— 0

Generate The
Number

Is The
Number
=35 and <50

Yes

1
MOD (2) Number

Remainder = 1

Output The
Number

Is The
Number =-50

Exercise 2

1. Set the principal, interest rate and number of periods.
Print the table heading.
Generate and print the period number.

Compute and print the principal ((Principal*Rate) + Principal).

o oD

If there is another compounding period, go to step 3.

Exercise 3

Add this step to the program outline for Exercise 2:

6. If another table is desired, go to step 1.

MOD is an operator.

Appendix B BP-265

BP-266 Appendix B

Exercise 4

1e THPLT " ~dhd slf
=6 THPUT "z =
| Straight VinesS0RO0
4 FRIMT Straight _line
SEH EMD

(example inputs where X1=4, Y1 =5, X2=7, Y2=8)

Exercise 5

14 5, 36 JI9, 40,41,
28 READ | A, Ey L,D ELFiG,Hy LT kLM, 1, 00 F
38 FRINT A3EC3;DGEF;GiH: I3 Tsk L sMsHz0:F
48 EMD
538 3T 3R OZT 48 41 48 43 44 45
Exercise 6
16 DATA 4,17,-
pdy IATR 2,4,-2
{5} DATA 12.1,7.33,5
48 READ A,B,C,D,E,F,G,H,I
SH H=iAHD RS
(=15] Y= EB+E 2¥H
e Z=il4F sl
8 PRINT ®,%,2
25 EHD
145, 2 155,93 —25

The program can be rewritten from line 50 as:

S FRIMT <A+DsG, B+EsH, (0+HF 2]
1S EHD

42,43, 44,45 ,46 47, 43,

45 47 42 49

i

o
Tt

Appendix B BP-267

Exercise 7

Sl

A,
%

alary, "Exempt dons ", Exenpt 1 ons
gwmpfwun5%14.4

17

FFIHT “Tar H?rhhwld F'5Tax, "Het Salary F'iZalaru-Tas
EMD

s RS T I S PR UM
E x|

BoC I

(example inputs)

Tax Withheld £ 29,13

Exercise 8

16

=6 H=t+1

A8 F=H+H

4 LISF My

el IF M#dH+] 2o2=f THEH =26
] Fo'Trealid Theorem"
7

] SFOH, "Walid Theorem"
L] GOTO Z@

188 EMD

With the System 45 Desktop Computer, you can eliminate line 10 because variables are preini-
tialized to zero. However, initializing variables to zero is a wise procedure to follow in general

programming.

Exercise 9
1 neb=r hars
=K IHF“T "H number i the zequence”,
FFIHT "Previously entered" sy

B+

RN

[Rx Il

-

R

IHFUT "Erter 1 for mors number in the sequence; enter 8 if do
IF A=1 THEM 26

1 gma=CEkE ST R R S L B
FRIMT "Standard deviation”;Sions
EHD

IR BN

2y
=
A

1

ol il L Bt NS SR | B Ny
P

et
e

Frr-“'lnu]ll et erae] 4
» ertered &
Stardard dewiation 31,

Reference Tables

Glossary

Absolute plotting — Plotting to a coordinate which has its X and Y values specified in the

current user units.

Angle — The vector which a line or label is drawn, represented in degrees, radians, or grads,

counter-clockwise from the horizontal.
Anisotropic —The X and Y units are not displayed as equal to each other.

Array identifier — An array name followed by (#) used to access all elements in an array

collectively.
Axes — plura! of axis.

Axis — A line drawn within the Cartesian coordinate system along either the horizontal (X)

direction or the vertical (Y) direction.

Byte — A group of 8 binary digits (bits) operated upon as a unit.

Calling program — When a subprogram is being executed, the program segment (main pro-
gram or subprogram) which called the subprogram is known as the calling program.

Control returns to the calling program when the subprogram is completed.

Character — A letter, number, symbol, or ASCII control code: any artitrary 8-bit byte defined by
the CHR $ function.

Clipping area — The area which restricts the pen movement whenever lines are drawn in UDUEs.

Command — An instruction to the computer which is executed from the keyboard. Commands
are executed immediately, do not have line numbers and can’t be used in a program.
They are used to manipulate programs and for utility purposes, such as listing key defini-
tions.

RT-1

RT-2 Reference Tables

Constant — A fixed numeric value within the range of the computer; for example, 29.5 or 2E12.

Controller address — An integer from O through 7 which specifies the address of a hard disc

controller. 0 is the default address.

Current environment — The program segment which is being executed.

Current units — The mode of XY reference which is in effect; may be GDUs, UDUs or Metric

(mm).

Cursor — The device which is used to obtain digitizing information.

Data base — A set of data which is accessible by the computer and upon which a program may

perform operations.

Defined record — The smallest unit of storage on a mass storage medium which is directly
addressable. A defined record is established using the CREATE statement and can be
specified as having any number of bytes in the range 4 through 32 767 (rounded up to

an even number).

Digitizing — The process of obtaining an X,Y coordinate pair based on the location of the

cursor.

Display line — Line 22 of the CRT is used to display output generated by DISP, and any

INPUT prompt or question mark.

Edit key mode — When a Special Function Key is being defined as a typing aid. See
ERIT KEY.

Edit line mode — When the program in memory is being edited. See EDIT L INE.

File name — A one to six character string expression with the exception of a colon, quote mark,
ASCII NULL (CHR$(0)), or CHR$(255). Blanks are ignored.

File number — The number assigned to a mass storage data file by an ASSIGN statement. Its

range is 1 through 10.

File pointer — The current position within a file where data is about to be read or written.

File specifier — A string expression of the form: file name [mass storage unit specifier].

Reference Tables

Files — The basic unit into which programs and data are stored. Storage of all files are “file-by-

name’’ oriented; that is, each file must be assigned a unique name.

Formal parameter — Used to define subprogram variables and can be non-subscripted vari-
ables, array identifiers or files specified by #file number. A type word can come before
parameters to specify numeric type. Parameters must be separated by commas; the para-

meter list must be enclosed in parentheses.

GDUs — Graphic Display Units. An X,Y reference system which at default defines the CRT to
extend from X minimum=0 to X maximum=123.127753304, Y minimum=0 to Y
maximum = 100.

Handshake — A signal exchange between the computer and external device to communicate

data ready and data accepted information.
Hard clip — The physical limits of the plotting device, beyond which no line can be drawn.

HPGL - The low-level instruction set used with HP input and output devices.

HP-IB device address — A numeric expression which specifies the HP-IB address that is set on a

device. Its range is O through 30.
Input — A data transfer from an external device to the computer.

Interleave factor — Defines the number of revolutions per track to be made for a complete data
transfer on a 9885 or 9895 Disc. It is specified in an INITIAL I ZE statement.

Isotropic — The X and Y axes units are displayed as equal to each other.

Keyboard entry area — Lines 23 and 24 of the CRT are accessible only through keyboard
inputs. Every line that is typed in is displayed in this area. The first position in line 23 is
known as the “‘home’” position of the cursor. As the 148th character is keyed in, a beep

indicates that only 12 more characters can be entered.

Label — A unique name given to a program line. It follows the line number and is followed by a

colon.

Line identifier — A program line can be identified either by its line number (GOTO 150) or its
label, if any, (GOTO Routine).

RT-3

RT-4 Reference Tables

Line number — An integer from 1 through 32 766. In most cases, when a line number is speci-

fied, but is not in memory, the next highest line is accessed.

Live keyboard mode — Numeric computations and most statements and commands can be
executed from the keyboard while a program is running. Program lines can be stored
also. The running program is temporarily paused while a keyboard operation is ex-

ecuting.

Local variable — A variable in a subprogram that isn’t declared in the formal parameter list or
COM statement; it can’t be accessed from any other program segment. Storage of local
variables is temporary and returned to user Read/Write Memory upon return to the call-

ing program.

Logical record — A collection of data items which are conceptually grouped together for mass

storage operation. It is a user-level rather than a machine concept.
Main program — The central part of a program from which subprograms can be called is known
as the main program. When you press RUN, you access the main program. The main

program can’t be called by a subprogram.

Mass storage unit specifier (msus) — Any string expression of the form —

: device type [select code[+ controller address | 9885 unit code [» unit code]]]

The letters specifying the various mass storage device types are —

Device
Type Code | Device

—

Internal tape cartridge
7905M removeable disc
7905M fixed disc
7906M/H removeable disc
7906M/H fixed disc
7910H fixed disc (98413B ROM only)
7920M/H removeable disc
7925M/H removeable disc
9885M/S flexible disc
9895A flexible disc

7908 drive

=<

X o E OO

a I m

Medium — The material on which data is actually being kept and stored (as distinct from the
device, which does the actual reading and writing). Tape cartridges and disc packs are

examples of “‘media’’.

Metric units — A unit of measure mode where everything is referenced in millimetres.

09845-93000. rev: 9/81

Reference Tables

Mnemonic — An abbreviation or acronym that is easy to remember.

Module — In programming, a program segment which performs a specific, independent program
task.

Msus — The abbreviation for mass storage unit specifier.
Name — A capital letter followed by O through 14 lower case letters, digits or the underscore
character. Names are used for variable names, labels, function names, and subprogram

names.

Naming convention — A pattern or system for assigning names to variables or files so that some

manner of consistency or predictability is maintained.

Numeric expression — A logical combination of variables, constants, operators, functions, in-

cluding user-defined functions, grouped with parentheses if needed.

On-line — Capable of being accessed by the computer; usually means a device which is physi-

cally connected, functioning properly, and in communication with the mainframe.

Origin — The coordinate point at which a plotting operation begins.

Output — A data transfer from the computer to an external device.

Parity — A means of flagging data transmission errors by setting the eighth bit to produce an

even or odd number of set bits in a data word.

Pass parameter — Used in calling a subprogram to pass values to the subprogram and can be
variables, array identifiers, expressions or files specified by #file number; any variable
can be enclosed in parenthesis causing it to be passed by value.

Pen — The device which is used to draw or plot lines, and to label characters.

Physical record — A 256-byte, fixed unit which is established when a mass storage medium is
initialized. Every file starts at the beginning of a physical record; this is an important fact
for optimum device use. Otherwise, you need not be concerned with physical records.

Pixel — Picture element — the smallest unit of resolution on the CRT.

Plotted point — The point which has been plotted or drawn to.

RT-5

RT-6 Reference Tables

Plotting coordinates — The XY coordinate pair which specifies a plotting point.

Plotting space — The area within which plotting can occur.

Pointer — The method used to position the cursor, or to select a type of cursor.

Printout area — Lines 1 through 20 of the CRT are similar to a printing device. When the
machine is switched on, this area is the standard system printer to which output from
PRINT, PRINT USING, CAT and LIST is directed. It is also, at power-on, the print all

printer when in the print all mode.

Priority — A number in the range 1 through 15 which determines whether or not and in what
order interrupts are serviced. The priority of the interrupt must be higher than current

system priority to be serviced.

Program segment — The main program and each subprogram are known as program segments.

Every program segment is independent of every other program segment.

Protect code — Any valid string expression except one with a length of zero. Only the first six

characters are recognized as the protect code, however.

Read Only Memory (ROM) — Permanent memory which can’t be changed or erased. Option

ROMs are used to expand the language and capabilities of the computer.

Read/Write Memory (RWM) — Used to store programs, data and related information. The in-

formation in Read/Write Memory can be changed and is lost when the computer is shut
off.

Record I/O — Input/output operations concerned exclusively with the smallest addressable unit

of storage (records).

Redim subscripts — Numeric expressions separated by commas and enclosed in parentheses.

Reflected plot — A plot produced by interchanging either the X minimum and X maximum
coordinates, the Y minimum and Y maximum coordinates, or both X and Y coordinate

pairs to change the plot.

Relative plotting — Plotting which specifies plotting from an origin rather than to a specific X,Y
coordinate.

Reference Tables RT-7

Scalar — A numeric expression used as a constant in mathematical operations.

Select code — An expression (rounded to an integer) in the range 0 through 16 which repre-
sents an interface address. The following select codes are reserved by the system and

can’t be set on an interface:
® O Internal thermal printer and keyboard
® 13 Graphics
® 14 [eft tape drive
e 15 Right tape drive

e 16 CRT

Slant — The angle at which a character is drawn, represented in clockwise degrees, radians, or

grads from the vertical.
Snapshot — Current state at a particular time.

Soft clip — The limits of the plotting device which restrict pen movement for lines drawn in
UDU’s.

Special Function Keys (SFK’s) — These keys can be defined or redefined for use as typing aids
for statements, variable names or other series of keystrokes which are used often. Many
of them have pre-defined definitions. Any of the special function keys can also be de-

fined to have program interrupt capability.

Stack — A portion of memory used to temporarily hold information for processing in a particular

order.

Standard mass storage device — The device to which all mass storage operations are directed if
no device is specified. It is the righthand tape cartridge at power on and can be changed
using the MASS STORAGE IS statement.

Standard printer — The printer to which all PRINT, PRINT USING, CAT and LIST output is
directed if no device is specified. At power on, it is the CRT. It can be changed using the
PRINTER IS5 statement.

Statement — An instruction to the computer telling it what to do while a program is running. A
statement can be preceded by a line number, stored and executed from a program. Most

statements can also be executed from the keyboard without a line number.

RT-8 Reference Tables

String expression — As with numbers, you can manipulate strings, thus forming a string func-
tion. The different forms of a string expression are text within quotes, string variable
name, substring, string concatenation operation, string function, and user-defined string

function.

Subprogram — A set of statements, separate from and after the main program, that performs a
task under the control of the calling program segment. SUB and CALL or DEF FN and

FN are used to define and access a subprogram.

Subroutine — A set of statements, within a program segment, that performs a task. The GOSUB

and RETURN statements control subroutines.

Subscript — An integer used to specify the range of an array dimension. A single subscript is
used to specify the upper bound of a dimension; two subscripts separated by a colon are
used to specify the upper and lower bounds of a dimension. A comma is used to separate

the subscripts for each dimension.

System comments line — Line 25 of the CRT is reserved for error messages, mode indicators,
and the run light: # Results of keyboard operations, such as 3+3 EXECUTE or ¥ EX-
ECUTE, also appear in this line.

System design — The specification and implementation of a program or set of programs to

accomplish a given purpose.

Text — Any combination of characters; for example "ABC". Text can be quoted (literal) or

unquoted.

UDUs — User Defined Units. Defined by the program to whatever X and Y units of measure

which are convenient.

Unit code — The address set on a hard disc drive; it can be an integer from 0 through 7. O is the

default code. It is ignored for the 9885 and tape cartridge.

The 9885 unit code is the address set on a 9885 disc drive; it can be an integer from O
through 3. O is the default code.

Reference Tables

Variable — A name which is assigned a value and specifies a location in memory. Variables can
be classified into various categories and subsets of the categories as shown in the diagram

below. For example, any reference to a single numeric variable includes simple numerics

and elements of numeric arrays.

variable
single variable array variable
numeric variable tring variable numeric array string array
simple numeric simple string matrix matrix
array element substring vector vector

string array element

substring

Word — Two bytes; a group of 16 binary digits (bits).

RT-9

RT-10 Reference Tables

ASCII Character Codes

ASCII EQUIVALENT FORMS ASCII EQUIVALENT FORMS ASCIt EQUIVALENT FORMS ASCII EQUIVALENT FORMS
Char. Binary Oct | Hex | Dec Char. Binary Oct | Hex | Dec Char. Binary Oct | Hex | Dec Char, Binary Oct | Hex | Dec
NULL [00000000 | 000 00 0 space | 00100000 [040 20 32 @ 01000000 | 100 40 64 N 01100000 | 140 60 96
SOH | 00000001 [001 01 1 ! 00100001 | 041 21 33 A 01000001 [101 41 65 a 01100001 | 141 61 97
STX | 00000010 | 002 02 2 " 00100010 | 042 | 22 34 B 01000010 (102 | 42 66 b 01100010 | 142 62 98
ETX [00000011 | 003 03 3 # 00100011 | 043 23 35 C 01000011 | 103 43 67 c 01100011 | 143 63 99
EOT | 00000100 | 004 04 4 $ 00100100 | 044 24 36 D 01000100 | 104 44 68 d 01100100 | 144 64 100
ENQ [00000101 | 005 05 5 % 00100101 | 045 25 37 E 01000101 [105 45 69 e 01100101 | 145 65 101
ACK [00000110 | 006 06 6 & 00100110 | 046 26 38 F 01000110 | 106 46 70 f 01100110 | 146 66 102
BELL | 00000111 | 007 07 7 ’ 00100111 | 047 27 39 G 01000111 | 107 47 71 g 01100111 | 147 67 103
BS 00001000 | 010 08 8 (00101000 { 050 28 40 H | 01001000 110 48 72 h 01101000 | 150 68 104
HT | 00001001 [011 09 9) 00101001 | 051 29 41 1 01001001 | 111 49 73 i 01101001 | 151 69 105
LF 00001010 [012 0A 10 * 00101010 | 052 2A 42 J 01001010 112 4A 74 j 01101010 | 152 6A 106
vT 00001011 | 013 OB 11 + 00101011 | 053 2B 43 K 01001011 | 113 4B 75 k 01101011 | 153 6B 107
FF 00001100 | 014 [tle} 12 s 00101100 | 054 2C 44 L 01001100 | 114 4C 76 1 01101100 | 154 6C 108
CR 00001101 | 015 0D 13 - 00101101 | 055 2D 45 M 01001101 [115 4D 77 m 01101101 [155 6D 109
SO | 00001110 016 OE 14 . 00101110 | 056 2E 46 N 01001110 | 116 4E 78 n 01101110 156 6E 110
SI 00001111 | 017 OF 15 / 00101111 | 057 2F 47 o 01001111 | 117 4F 79 o 01101111 | 157 6F 111
DLE | 00010000 | 020 10 16 0 00110000 | 060 30 48 P 01010000 [120 50 80 P 01110000 | 160 70 112
DC1 { 00010001 021 11 17 1 00110001 | 061 31 49 Q 01010001 | 121 51 81 q 01110001} 161 71 113
DC2 | 00010010 | 022 12 18 2 00110010 | 062 32 50 R 01010010 | 122 52 82 4 01110010 | 162 72 114
DC3 | 00010011 | 023 13 19 3 00110011 | 063 33 51 S 01010011 | 123 53 83 s 01110011 | 163 73 115
DC4 | 00010100 | 024 14 20 4 00110100 [064 34 52 T 01010100 | 124 54 84 t 01110100} 164 74 116
NAK [00010101 | 025 15 21 5 00110101 | 065 35 53 U 01010101 | 125 55 85 u 01110101 | 165 75 117
SYNC| 00010110} 026 16 22 6 00110110 | 066 36 54 v 01010110 | 126 56 86 v 01110110 166 76 118
ETB | 00010111 | 027 17 23 7 00110111 | 067 37 55 w 01010111} 127 57 87 w 01110111 | 167 77 119
CAN | 00011000 (030 18 24 8 00111000 | Q70 38 56 X 01011000 | 130 58 88 x 01111000 | 170 78 120
EM 00011001 | 031 19 25 9 00111001 | 071 39 57 Y 01011001 | 131 59 89 y 01111001 | 171 79 121
SUB | 00011010 | 032 1A 26 : 00111010 072 3A 58 z 01011010 | 132 5A 90 z 01111010 | 172 7A 122
ESC | 00011011 033 1B 27 ’ 00111011 { 073 3B 59 { 01011011 [133 5B 91 { 01111011 | 173 7B 123
FS 00011100 | 034 1C 28 < 00111100 | 074 3C 60 \ 01011100 [134 5C 92 | 01111100 | 174 7C 124
GS | 00011101 035 1D 29 = 00111101 | 075 3D 61] 01011101 | 135 5D 93 } 01111101} 175 7D 125
RS 00011110 | 036 1E 30 > 00111110| 076 3E 62 A 01011110 | 136 5E 94 - 01111110| 176 7E 126
us 00011111 | 037 1F 31 ? 00111111 | 077 3F 63 - 01011111 | 137 S5F 95 DEL | 01111111} 177 7F 127

Use this table to determine what keys can be used with the CONTROL key to obtain a control
code. First, find the desired code in the first column. Then read across that line to find the two or
three keys which produce that character when pressed with CONTROL. For example, LF
(linefeed) can be obtained by pressing CONTROL with one of the following:

Y *®

o]

o SHIFT J

The DEL character is the only one that can’t be obtained using the CONTROL key.

Roman Extension Character Codes

Reference Tables

Ascll EQUIVALENT FORMS ascii|___EQUIVALENT FORMS AscCll|_EQUIVALENT FORMS Ascli L__EQUIVALENT FORMS
Char. Binary [Octal | Decimal Char. Binary [Octal | Decimal Char. Binary | Octal | Decimal Char. Binary | Octal | Decimal
CLEAR [10000000 | 200 128 Blue | 10011101 | 235 157 x| 10111110 | 276 190 11011111 | 337 223
Y 10000001 | 201 129 Magenia| 10011110 | 236 158 + | 10111111} 277 191 T 11100000 | 340 224
BL 10000010 | 202 130 Black | 10011111 | 237 159 4 | 11000000 | 300 192 b | 11100001 | 302 225
IVBL | 10000011 | 203 131 10100000 | 240 160 € | 11000001 | 301 193 F | 11100010 | 342 226
uL 10000100 | 204 132 2l 10100001 | 241 161 & 11000010 | 302 194 T | 11100011 343 227
IVUL [10000101 | 205 133 i 10100010 | 242 162 G | 11000011 | 303 195 - | 11100100 | 344 228
BL UL | 10000110 | 206 134 & 10100011 | 243 163 & | 11000100 | 304 196 1 | 11100101 | 345 229
IVBLUL | 10000111 | 207 135 0 10100100 | 244 164 & | 11000101 | 305 197 i 11100110 | 346 230
White | 10001000 | 210 136 A 10100101 | 245 165 & | 11000110 | 306 198 | 11100111 | 347 231
Red 10001001 | 211 137 3 10100110 | 246 166 G | 11000111 307 199 + | 11101000 350 232
Yellow (10001010 | 212 138 [u] 10100111 | 247 167 & 11001000 | 310 200 k 11101001 | 351 233
Green | 10001011 | 213 139 00101000 | 250 168 £ | 11001001 | 311 201 r | 1mowo10| 352 234
Cyan | 10001100 | 214 140 00101001 | 251 169 & 11001010 | 312 202 T 11101011 | 353 235
Blue 1000110t | 215 141 00101010 | 252 170 G 11001011 | 313 203 — | 11101100 | 354 236
Magenta | 10001110 | 216 142 10101011 | 253 171 & | 11001100 | 314 204 3 | 11101101) 355 237
Black | 10001111 | 217 143 10101100 [254 172 B 11001101 | 315 205 4 | 11101110 | 356 238
CLEAR | 10010000 | 220 144 3 10101101 255 173 A 11001110 316 206 t 11101111 | 357 239
Y 10010001 | 221 145 [u} 10101110 [256 174 G | 11001111 317 207 -~ | 11110000 | 360 240
Bl 10010010 | 222 146 i 10101111 | 257 175 R | 11010000 | 320 208 b | 11110001 | 362 241
IVBL | 10010011 | 223 147 - 10110000 | 260 176 i 11010001 | 321 209 L | 11110010 | 362 242
uL 10010100 | 224 148 A 10110001 | 261 177 11010010 | 322 210 11110011 | 363 243
VUL | 10010101 | 225 149 3 10110010 | 262 178 K 11010011 | 323 211 + | 11110100 | 364 244
BLUL | 10010110 | 226 150 o 10110011 | 263 179 & | 11010100 | 324 212 J 11110101 | 365 245
IVBLUL | 10010111 | 227 151 o 10110100 | 264 180 1 11010101 | 325 213 1 11110110 | 366 246
White | 10011000 | 230 152 4 10110101 | 265 181 @ 11010110 | 326 214 l 11110111 | 367 247
Red 10011001 | 231 153 N 10110110 | 266 182 E3 11010111 | 327 215 +~ | 11111000 | 370 248
Yellow | 10011010 [232 154 R 10110111 | 267 183 A 11011000 | 330 216 - 11111001 | 371 249
Green | 10011011 | 233 155 i 10111000 | 270 184 1 11011001 | 331 217 & | 11111010 | 372 250
Cyan | 10011100 | 234 156 i 10111001| 271 185 G 11011010 332 218 11111011 | 373 251
IV - Inverse video bt 10111010 272 186 0] 11011011 333 219 t | 100 37 252
BII: g:étigigne £ 10111011 273 187 [11011100 334 220 4 11111101 | 375 253
@ 10111100 274 188 i 11011101 | 335 221 T | 11111110 376 254
& 10111101] 275 189 [E] 11011110 336 222 11111111 | 377 255

Decimal values 160 through 255 access the Nationalized and Drawing Characters.

RT-11

RT-12 Reference Tables

Metric Conversion Table

To convert from To convert from
English Units Metric Units English to Metric, Metric to English,
multiply by: multiply by:
Length
mil micrometre (micron) 254 x10'% 3.937 007 874 x 1072
inch millimetre 2.54x 10"« 3.937 007 874 x 1072
foot metre 1 3.048x 107 '» 3.280 839 895
mile (intl.) kilometre 1.609 344 % 6.213 711922 x 107?
Area
inch millimetre? 6.451 6 x 10?5 1.550 003 100 x 1073
foot? metre 9.290 304 x 107 %% 1.076 391 042 x 10*
mile? kilometre 2.589 988 110 3.861 021 585 x 107!
acre hectare 4.046 873 x 107! 2.471 044
(U.S. survey)
Volume
inches millimetres® 1.638 706 4 x 10*% 6.102 374 409 x 107°
feet® metres 2.831 684 659 x 1072 3.531 466 672 x 10!
ounces centimetres 2.957 353 x 101 3.381402 x 10~ °
(U.S. fluid)
gallon litre t 3.785412 2.641721x 107!
(U.S. fluid)
Mass
pound (avdp.) kilogram 4.535923 7 x 10" % 2.204 622 622
ton (short) ton (metric) 9.0718474x 10 '« 1.102 311 311
Force
ounce (force) dyne 2.780 138 510 x 10* 3.596 943 090 x 10™°
pound (force) newton 4448 221 615 2.248 089 431 x 107!
Pressure
psi pascal 6.894 757 293 x 10> 1.450 377 377 x 107*
inches of Hg millibar 3.386 4 x 10! 2.952 9 x 1072
(at 32°F)
Energy
BTU (IST) Calorie 2.521 644 007 x 107} 3.965 666 831
(kg, thermochem.)
BTU (IST) watt-hour 2.930 710 702 x 10~ * 3.412 141 633
BTU (IST) joule § 1.055 055 853 x 10° 9.478 171 203 x 10™*
ftelb joule 1.355 817 948 7.375621493x 107!
Power
BTU (IST) / hr watt 2.930 710 702 x 10! 3.412 141 633
horsepower watt 7.456 998 716 x 107 1.341 022 090 x 1073
(mechanical)
horsepower watt 7.46 x 10%% 1.340 482 574 x 1073
(electric)
ftelb/s watt 1.355 817 948 7.375 621493 x 107!
Temperature
°Rankine kelvin 1.8« 5.555 555 556 x 107!
°Fahrenheit °Celsius °C=(°F-32) /1.8% °F = (°Cx 1.8)+32%

* Exact conversion) s qs . . 1s
+ Conversion redefined in 1959 Prefix | Symbol | Multiplier Prefix | Symbol | Multiplier
1 Conversion redefined in 1964 exa E 1018 deci d 107!
§ Conversion redefined in' 1956 peta P 1018 centi c 10—2
tera T 1012 milli m 10732
Note: The preferred metric unit for giga G 10° micro m 107°
force is the newton; for pressure, the mega M 106 nano n 10“9
pascal; and for energy, the joule. kilo k 10; pico P 10:12
hecto h 10 femto f 10
deka da 10! atto a 10718

Sources

American Society for Testing and Materials (ASTM), “‘Standard for Metric Practice”. Reprinted from Annual
Book of ASTM Standards.

U.S. Department of Commerce, National Bureau of Standards, “NBS Guidelines for the Use of the Metric
System’’. Reprinted from Dimensions/NBS. (October 1977).

Reset Conditions

Reference Tables

The following table shows the status of various conditions when the indicated operations are

RT-13

performed.
SCRATCHA
or
Power On
(Value) Reset SCRATCH | RUN | CONT

Variables R (none) - R R -
RESult R (0) - - - -~
Subroutine return pointers R (none) R R R -
Angular units R (RAD) R R R -
Numeric output mode R (STANDARD) R R — -
Random number seed R (7 180) R R R —
Standard printer R (select code 16) - - - -
Printall printer R (select code 16) - - - -
Standard mass storage device R (:T15) - - - -
SFK definitions R (Initial) - — - -
Processing mode R (SERIAL) - - -
Live keyboard mode R (INTERACTIVE) R - - -
Binary routines R (none) - - - -
Files table R (none) R R R -
DATA pointers R (none) R R R —
ERRL, ERRN R (0,0) R R R -

— means unchanged

R means restored to power on values

RT-14 Reference Tables

Memory

This section delves into the structure, organization and use of User Read/Write Memory. It is
not intended to be a complete explanation of memory, but to explain it as it relates to pro-
gramming operations.

Read/Write Memory

The System 9845 Desktop Computer uses two types of memory: Read/Write Memory and
Read Only Memory (ROM). Read/Write memory is used to store programs and data. When you
store a program or data, you ‘‘write’” into the memory. When you access a line of your program
or a data element, you ‘‘read’’ from memory, thus the term Read/Write. Read/Write memory is
temporary; it can be changed or erased. The contents of Read/Write memory are lost when the
computer is shut off.

Programs and data in Read/Write Memory can be saved for future use by recording the
information on a tape cartridge or other storage medium.

Memory Test and Loss

Each time the computer is switched on, the Read/Write memory is automatically tested. If a
block of memory is found to be defective, you are warned with a message. This results in less
memory that is available for your use. You can still use the computer and may not need the
defective memory, depending on your application. To determine how much memory is avail-
able for your use, execute SCRATCH A, then LIST. This displays the amount in bytes. Any
decrease in size would be in an increment of approximately 8 192 bytes. Call your HP Sales
and Service Office for assistance.

Read Only Memory

Read Only Memory differs from Read/Write Memory in that it is permanent. When the compu-
ter is turned off, the Read Only Memory is unaffected. Each option ROM is inserted into one of
the drawers in the sides of the machine, making it possible to expand the language and
capabilities. A small amount of Read/Write Memory is used by some option ROMs. This area is
called “‘working storage’’. The working storage used by each ROM is listed in the Installation,
Operation, and Test Manual.

Reference Tables

Conserving Memory

Large programs that involve large amounts of data can sometimes require more memory than
is available for use. This section presents some ways to conserve memory usage when writing a
program and using data.

One way to use less memory in a program is to limit the use of statements and comments in
the program. This limits program readability and documentation, but does conserve memory
usage and decrease program execution time.

The use of subprograms can also conserve memory. Variables used within subprograms either
share memory space with calling program variables or use memory only temporarily. So rather
than creating new variables for various routines, thus using more memory, a subprogram can
be used. In addition, the use of many short program segments, rather than a few large seg-
ments, results in better memory packing efficiency.

The use of “H{#= T and - precision variables, rather than full precision, is a good way to
conserve memory in a program that has a great deal of data. This technique is most useful when
dealing with large arrays. However it has two limitations: all calculations are performed with
full-precision accuracy, so i = and precision variables must be converted before
and after the operation. This slows down execution. Another limitation can arise when invert-
ing a matrix that is not full precision; the results will almost never be entirely accurate due to
rounding errors during calculation.

A fourth way to conserve memory is to break a program down into several sections and :
each section in a different file. This is known as overlaying. Each section can be brought mto
memory using L. I##. This operation preserves the values of variables, but erases each section
of the program as another one is linked in.

Memory Organization

Read/Write Memory is divided into blocks. Blocks are 64K bytes long. The following diagram
illustrates the blocks of memory. There can be up to seven blocks!, depending on the amount
of memory installed in your computer.

Block 0 Block 1 Block 6
T Reserved by
the System
32K
bytes Dimensioned
| Variables?
64K l L] [[J
bytes
Common

1 Odd-numbered memory blocks are used by the operating system and are not part of User Read/Write Memory.
2 The amount of memory taken by dimensioned variables can change depending on your program.

RT-15

RT-16 Reference Tables

The division of memory into blocks imposes limitations on programs and variables. The limita-
tions are —

e No main program or subprogram can be larger than one block of memory. A 1000-line
program typically fills one half of a 64K block.

e No main program or subprogram can cross a block boundary. That is, the main or sub-
program must be contained entirely in one block of memory.

This limitation may cause you to get an unexpected memory overflow error, i s
though executing |. I %7 indicates there is ample memory available. The reason for thlS is
that the available memory is not all in the same block.

To avoid this situation, it is advisable to organize your program into a short main program
and a series of short subprograms, rather than use long program segments. This works
well because a block can contain more than one subprogram. Additionally, a program can
consist of a main program and subprograms in several different blocks.

e No simple numeric or string variable or array element can cross a block boundary. Arrays
of long strings and long simple strings can cause an unexpected memory overflow or
waste large amounts of memory. For example, suppose you are allocating memory to
some variables in a i or i.i¥ statement. Suppose that there is a 25K-byte string
following a numeric variable, but only 10K bytes left in the block after the numeric
variable is allocated memory space. The string will have to be stored in the next block,
thus wasting 10K bytes of memory. Thus, the order of large strings in I 1 state-
ments can affect the amount of memory needed to run a program.

e Each time an array crosses a block boundary, six bytes of memory are added to the total
amount needed to store the array.

e The execution stack and any binary routines must be contained in block 0. You could get
a memory overflow when the other blocks are not full if the execution stack gets too large.
This can be caused by recursive subprogram calls and intermediate results involving long
strings. Some program restructuring may be necessary.

Reference Tables

Simplified Read/Write Memory Organization

1

{(high addreses)

reserved for internal use

l used for Option ROM Read / Write

binary routines

calling environment execution stack

current environment execution stack

free memory
— used as needed —

buffers
SFK definitions

First subprogram
symbol table

First Subprogram

Main program symbol table

Main Program

Value area

Common

(low addresses)

1 This boundary is fixed at power-on.

2 This information must be in Block 0.

This area is used for system configuration in-
formation — printer select code, for example.

The amount used by each ROM is listed in the
Installation, Operation, and Test Manual.

Binary routines are added to existing ones as
they are loaded into memory using .

The execution stacks are the way the computer
keeps track of where program execution is.
They contain DATA pointers, subroutines re-
turn pointers, " matching, and other
indicators for program execution. The current
environment execution stack also contains a
program pointer to monitor which line is being
executed currently. The size of an execution
stack varies during program execution.

Buffers for 1/O and mass storage operations
use Read /Write Memory. SFK defintions use
160 (138 if there is no lefthand tape drive)
bytes at power-on.

Each symbol table contains variable names,
any variable attributes (integer precision, array,
etc.), and a value pointer which points to the
value of the variable.

Each successive subprogram and its symbol
table comes ‘‘after’” (have a higher address
than) the previous one.

Contains the values for all main and subpro-
gram variables.

Contains the values of all variables declared in
COM statements.

RT-17

RT-18 Reference Tables

DMA and FHS NOFORMAT Transfers

The purpose of this section is to explain the organization of User Read/Write memory as it
relates to DMA and FHS NOFORMAT transfer rates.

If a DMA or FHS NOFORMAT transfer is to achieve the maximum transfer rate, the variable
that the data is entered into or output from must reside totally within one memory block. The
following guidelines ensure that a variable used for a DMA or FHS NOFORMAT transfer
resides totally within one memory block.

® The variable is a simple string or simple numeric variable, or

e The variable is a real, short, or integer numeric array that uses less than 32 720 words! of
memory. The variable MUST be the first variable declared in the main program. There
must be NO memory declared for use by a special ROM (e.g. Assembly Development
ROM).

The following is useful in determining the size and impact of variable allocation.

e No simple variable or array element can cross a block boundary. Arrays of long strings
and long simple strings can also cause an unexpected memory overflow or waste large
amounts of memory. For example, suppose you are allocating memory to some variables
in a DIM or COM statement. Suppose that there is a 25K byte character string following a
numeric variable, but only 10K bytes left in the block after the numeric variable is allo-
cated memory space. The string will have to be stored in the next block, thus wasting 10K
bytes of memory. Thus, the order of large strings in DIM or COM statements can affect the
amount of memory needed to run a program.

e Each time an array crosses a block boundary, six bytes of memory are added to the total
amount needed to store the array.

Storage of Variables
To determine how many bytes variables require when stored in memory, use the following

tables.
Simple Variable Amount of Memory Used
Full precision 10 bytes
Short precision 6 bytes
Integer 4 bytes
String 6 bytes + length (1 byte per character,

rounded up to an even integer)

Array Variable Amount of Memory Used

Full precision 10 bytes + 4 bytes per dimension
+ 8 bytes per element

Short precision 10 bytes + 4 bytes per dimension
+ 4 bytes per element

Integer 10 bytes + 4 bytes per dimension
+ 2 bytes per element

String 12 bytes + 4 bytes per dimension

+ 2 bytes per element + length
of each string

(1 byte per character, rounded
up to an even integer)

1 Note that array overhead takes up to 17 words for one-block arrays.

System 45 Compatibility

HP Compatible BASIC

Reference Tables

The BASIC language as implemented on your HP 9845 is an enhanced form of HP Compatible
BASIC. HP Compatible BASIC consists of statements, functions, operators, and commands that
are implemented in HP BASIC machines. HP Compatible BASIC is implemented on the HP
9845 as Level 1. Level I refers to the highest performance computational products. Thus, any
program consisting entirely of Level I BASIC language can be transported to any Level I BASIC

machine.

Below is a list of HP Level I BASIC. Contact your HP Sales and Service Office to obtain informa-
tion concerning the transporting of programs between machines.

Operators Functions

+ = AND ABS ERRL LWC$ LIN

- > OR EXP ERRN REV$ SPA

* < NOT INT ERRM$ UPC$ TAB

/ = EXOR LGT CHR$ PAGE

A < LOG COL LEN

DIV < > & MAX DET NUM SIN

MOD MIN DOT POS COS
RND ROW RPT$ TAN

Statements SGN SUM TRIM$ ASN
DROUND VAL ACS

SEELGN PROUND VAL$ ATN

CALL };};ACT TYP

COM*

COPY SQR

CREATE GOTO

DATA GRAD

DEF FN IF

DEG INPUT

DIM INTEGER

EDIT LET

END LINPUT

FIXED MAT array = array

FLOAT MAT array = array + —* /. = < > # < < > > array

FN END MAT...CON

FOR MAT array = (num. exp.)

NEXT MAT array = (num. exp.)+ —* / = < > # < < > = array

GOSUB MAT array = array + — * / = < > # < < > = (num. exp.)

* The type words INTEGER, SHORT and REAL are the only ones which can be specified in a CM statement or formal

parameter list. Arrays are limited to 6 dimensions.

RT-19

RT-20 Reference Tables

MAT...INV MAT PRINT# ON...GOTO RANDOMIZE SHORT
MAT...TRN MAT READ OPTION BASE READ STANDARD
MAT...IDN MAT READ # PAUSE READ# STOP
MAT...ZER OFF END PRINT REAL SUB
MAT...CSUM OFF ERROR PRINT# REDIM SUBEXIT
MAT... RSUM ON END PRINT USING REM SUBEND
MAT INPUT ON ERROR PURGE RESTORE WAIT

MAT PRINT ON...GOSUB RAD RETURN

9845A vs. 9845B/C

Listed below are differences between the 9845A and 9845B/C which affect operating and prog-
ramming:

® The operating system of the 9845B/C is internal, leaving all eight slots in each ROM drawer
free for option ROMs.

e The range of memory sizes on the 9845A is 16-64 K-bytes. This is increased on the 9845B/
C to approximately 56-449 K-bytes.

® The greatest line number available on the 9845A is 9999. The greatest line number avail-
able on the 9845B/C is 32 766.

e The size of the recall buffer is increased from 344 bytes (on the 9845A) to 1296 bytes (on
the 9845B/C).

e When using a tape cartridge for mass storage operations, the directory of the tape is stored
in Read/Write Memory of the 9845B/C. This reduces tape wear because the directory on
the tape doesn’t have to be accessed every time a tape read or write operation takes place.

e Four additional syntax were added to the 9845B/C: CAT TO, ON KBD, OFF KBD, and
KBD$.

e On the 9845B/C, all alternate characters, both nationalized and drawing, are accessed using
the CHRS$ function. On the 9845A, only some of the nationalized characters are available,
and are accessed using the shift-in and shift-out control codes.

e The only types of mass storage files which are compatible between the 9845A and the
9845B/C are the DATA and BDAT files. The 9845B/C cannot interpret any other 9845A
files.

e Programs that contain a large number of binary routines or recursive algorithms may cause
a memory overflow error when run on the 9845B/C, although they don’t on the 9845A.

o [OAD ALL is programmable on the 9845B/C. It is not on the 9845A.

e The printout area of the CRT on the 9845B/C can be addressed directly. A complete de-
scription of this capability appears in Appendix A of the BASIC Programming manual.

e Some of HP’s software will run only on particular models of the System 45. If you have
questions about software compatibility, refer to the System 45 Pricing Information brochure
(P/N 5953-4572D) or call your HP Sales and Service Office.

Reference Tables RT-21

File Compatibility

The 9845B/C can interpret mass storage files created on other HP desktop computers. The files it
can interpret are:

o DATA and BDAT type files from the System 35 or the 9845A.
o KEYS files from the System 35.

9845A Graphics ROM vs. 9845B Graphics ROM

9845B graphics differs from 9845A graphics in the following ways:
o CSIZE incorporates a character slant as its third parameter.

e GLOAD and GSTORE reside in the 9845B Graphics ROM and in the 9845A Mass Storage
ROM.

¢ | DIR and PDIR both incorporate a run, rise parameter as a means of specifying an angle.

® The line types are slightly different. The 9845B has a line type 10 with a major tick mark.
® When using the LABEL or LETTER statement, the linefeed distance on the 9845B/C is 15/16

of the distance of a linefeed on the 9845A. This is one dot for default character size.

9845B Graphics ROM vs. 9845C Graphics ROM

Listed below are differences between the 9845B Graphics ROM (for the 9845B Model 150 or
190) and the 9845C Graphics ROM:

o With the 9845C Graphics ROM, the CURSOR and DIGITIZE statements use the ARROW
KEYS as the default graphics input device, rather than the plotter as with the 9845B
Graphics ROM. The status strings for these statements also differ between ROMs. Refer to
the CURSOR statement in the Color Graphics manual for more specific information.

® When using the 9845C Graphics ROM, and both the ALPHA and GRAPHICS statements
are enabled, it may be difficult to tell which characters are PRINTed (alpha raster) and
which characters are LABELed or LETTERed (graphics raster) when the CSIZE is at default
(3.3 GDUs).

e GCLEAR with the 9845C Graphics ROM clears only the soft clip area of graphics memory
for all active memory planes. GCLEAR with the 9845B Graphics ROM clears the entire
graphics memory.

® When using GLOAD and GSTORE, the System 45C needs 3*(455 rows)*(35 words per
row) elements to store the entire graphics memory contents. The contents are stored as a
word of memory 1, a word of memory 2, and a word of memory 3. The System 45B Model
150/190 needs (455 rows)*(35 words per row) + 1(pointer) to store the complete graphics
memory contents. Refer to the GLOAD or GSTORE statements in the Color Graphics
manual for exact array sizes.

® The 9845C Graphics ROM uses eight pen numbers, while the 9845B Graphics ROM uses
five. The difference is most noticeable when using an external, multi-pen plotter. A PEN 5
statement is interpreted as PEN O with the 9845B Graphics ROM and as PEN 1 with the
9845C Graphics ROM. A negative pen always acts as PEN —1 with the 9845B Graphics
ROM. A negative pen with the 9845C Graphics ROM erases different memory planes, de-
pending upon the pen number. Refer to the PEN statement in the Color Graphics manual
for more information.

rev: 8/81

RT-22 Reference Tables

e With the 9845B Graphics ROM, specifying a second plotter turns off the first plotter. With
the 9845C Graphics ROM, specifying a second plotter leaves both plotters active. The plot-
ters remain active until they are turned off by a PLOTTER IS OFF statement.

e When using the 9845B Graphics ROM, the cursor type is determined by: Cursor Type MOD
2. If the result is O, the small blinking cross is used. If the result is 2, the large full screen
cross-hair is used. When using the 9845C Graphics ROM, the cursor type is determined by:
Cursor Type MOD 4. If the result is 0, the pointer is not affected by any other graphics
statements until another POINTER statement with a different cursor type is executed. If the
result is 1, a full screen cross-hair is displayed. If the result is 2, the small cross is displayed.
If the result is 3, the small blinking alpha cursor is displayed.

e When using the 9845B Graphics ROM, the status string for WHERE is one character (pen
up/down). The status string for the 9845C Graphics ROM is three characters (pen up/down
and region). Refer to the WHERE statement in the Color Graphics manual for more in-
formation.

e A text string highlighted using the 9845B Graphics ROM results in only the first character
being highlighted when transported to a System 45C with the 9845C Graphics ROM.

e The Katakana character set on the System 45C contains a yen sign instead of the backslash
character on the System 45B.

9845C Graphics ROM vs.
Enhanced Graphics ROM

Listed below are differences between the 9845C Graphics ROM (for the System 45C) and the
Enhanced Graphics ROM (for the System 45B Model 200/250/290 or the System 45C):

® The Enhanced Graphics ROM provides the following capabilities which are not provided by
the 9845C Graphics ROM:
« Rubber banding (POINTER type =4, 5, or 6)
« Fast tracking (GRAPHICS INPUT IS TABLET)
¢ Fast alpha

e The Enhanced Graphics ROM provides some capabilities that work only on a System 45B
Model 200/250/290 and not on a System 45C (refer to the Monochromatic Graphics manu-
al for more information):

e Fast erasing
e Arcs and circles
¢ Rubber banding with no background loss

® Programs which have been STOREd on a computer which has the 9845C Graphics ROM
can be LOADed on a computer which has the Enhanced Graphics ROM, and vice versa.
The only exceptions in program execution are:
e “type” = 4,5, or 6 in POINTER statement
e “‘graphics input identifier string”” = TABLET in the GRAPHICS INPUT IS statement
¢« PLOTTER IS HPGL specifies 8 pens with Enhanced Graphics ROM and 4 pens for 9845C

Graphics ROM

¢ GLOAD and GSTORE do not work between color and monochromatic CRTs.

® You can LOAD ALL any STORE ALL files between the System 45B Model 200/250/290
and the System 45C, as long as both computers have the Enhanced Graphics ROM, the
same options, and the same memory sizes.

e The two ROMs give different results if you use alphanumeric highlights with screen address-
ing and overprinting in your programs.

Reference Tables

® The following keywords have no effect when executed on a System 45B Model 200/250/
290:
¢ DEGAUSS
» CONVERGE
¢ MEMORY
¢ GSTAT(5,6, or 7)

® The Monochromatic Graphics manual explains how statements which specify colors and
memory planes are executed on a System 45B Model 200/250/290 (monochromatic CRT).

Standard Processor vs. Enhanced Processor

The HP 9845B/C Models 200. 250. and 290 are equipped with an ‘‘enhanced processor’’. The
HP 9845B/C models 100, 150, and 190 are equipped with the “‘standard processor’’.

The increased speed of the enhanced processor is due to “‘microcoding’” the parts of the operat-
ing system where the language processor spends most of its time for a typical computational
program. These microcode routines run from five to fifteen times faster than the standard proces-
sor routines. The result is an overall speed increase of about three times, depending on the
particular program. (The enhanced processor has very little effect on assembly language pro-
grams or I/O-intensive programs.)

Most of the microcode routines affect the Arithmetic Logic Unit (ALU) of the language processor.
Thus. speed increases are most noticeable when a program is spending almost all of its time
computing and there are no I/O or assembly language operations being done.

Because of differences in program structure and application, it is difficult to determine the speed
increase which you may see with the enhanced processor. However, it is possible to get an idea
of how much faster the individual routines run. The System 45 Computer Specifications brochure
includes run times for the math and trigonometric routines (for both the standard and enhanced
processors).

Maximizing Performance

There are some general guidelines to follow to make your programs run as fast as possible,
regardless of the processor that your desktop computer has. Here are a few of them:

¢ Use full-precision (REAL) variables for math operations.

e Use integer-precision (INTEGER) variables in FOR-NEXT loops.
e Use integer-precision (INTEGER) variables for array subscripts.
® Do not use short-precision (SHORT) variables.

® Use GOSUBs instead of CALLs whenever possible.

® Turn off TRACE and TRACK when not needed.

RT-23

RT-24 Reference Tables

Statement

Graphics Firmware Differences

Graphics ROM
documented in manual
HP p/n 09845-91050
HP p/n 09845-91051

9845C Graphics ROM
documented in manual
HP p/n 09845-92050

Enhanced
Graphics ROM
documented in manual
HP p/n 09845-93050
HP p/n 09845-92051

ALPHA
AREA COLOR

AREA INTENSITY

AXES
CLIP
CONVERGE

CSIZE
CURSOR

DEGAUSS

DIGITIZE

DRAW

Not implemented

Not implemented

Not implemented

No difference
No difference

Not implemented

No difference

Status string is 1 character
long

Not implemented

Status string is 1 character
long

No difference

Enables alphanumeric area

Selects fill from Color Cylin-
der model

Selects fill from R,G,B cube
color model.

No difference
No difference

Allows convergence to be
performed

No difference

Status string is maximum of
40 characters.

HP 9111 string is same as
HP 9874.

Additional clipping and
tracking information added
to all status strings.

Performs CRT degaussing

Status string is maximum of
40 characters. HP 9111
string is same as 9874 char-
acters 1-6

Additional clipping and
tracking information added
to all status strings.

No difference

Enables alphanumeric area

On 9845B, uses only the
luminosity value for fill.

On 9845C, works the same
as 9845C Graphics ROM.

On 9845B, uses the largest
of the three values for fill.
On 9845C, works the same
as 9845C Graphics ROM.

No difference
No difference

On 9845B,
plemented.

On 9845C, works the same
as 9845C Graphics ROM.

not im-

No difference

Status string is maximum of
40 characters.

HP 9111 has different string
contents.

Additional clipping and
tracking information added
to all status strings.

On 9845B,
plemented.

On 9845C, works the same
as 9845C Graphics ROM.

Status string is maximum of
40 characters. HP 9111
string is same as 9874 char-
acters 1-6.

Characters 7-8 are menu
item key values.

not im-

Additional clipping and
tracking information added
to all status strings.

No difference

Statement

Graphics ROM
documented in manual
HP p/n 09845-91050
HP p/n 09845-91051

9845C Graphics ROM
documented in manual
HP p/n 09845-92050

Reference Tables

Enhanced
Graphics ROM
documented in manual
HP p/n 09845-93050
HP p/n 09845-92051

DUMP GRAPHICS

EXIT ALPHA
EXIT GRAPHICS
FRAME
GCLEAR

GLOAD

GRAPHICS

GRAPHICS
INPUT IS

GRAPHICS INPUT
...IS OFF

GRAPHICS INPUT
..ISON

GRID
GSTAT

GSTORE

IPLOT
KEY LABELS

LABEL
LABEL KEY #

External devices not allowed

Not implemented
No difference
No difference

Clears entire CRT graphics
memory

16 381 elements required
for full-screen display
Column and row pointer is
NOT allowed

No difference

Not implemented

Not implemented

Not implemented

No difference

Not implemented

16 381 elements required
for full-screen display
Column and row pointer is
NOT allowed

No difference

Not implemented

No difference

Not implemented

External devices allowed
with # specifier

Disables alphanumeric area
No difference

No difference

Clears only the CRT

graphics memory within the
soft clip area

47 775 elements required
for full-screen display
Column and row pointer is
allowed

No difference

Allows as devices
array name (*)
ARROW KEYS
DIGITIZER
HPGL

LIGHT PEN

Deactivates device

Activates device

No difference

Returns value based upon
index

47 775 elements required
for full-screen display
Column and row pointer is
allowed

No difference

Transfers softkey labels to a
string variable

No difference

Labels specified softkey with
string expression

External devices allowed
with # specifier.

Disables alphanumeric area
No difference
No difference

Clears only the CRT
graphics memory within the
soft clip area

On 9845B, 15 925 elements
required for full-screen dis-
play

Column and row pointer is
allowed

On 9845C, works the same
as 9845C Graphics ROM.

No difference

Allows as devices
array name (x)
ARROW KEYS
DIGITIZER
HPGL

LIGHT PEN
TABLET

Deactivates device

Activates device

No difference

Returns value based upon
index

On 9845B, 15 925 elements
required for full-screen dis-
play

Columna and row pointer is
allowed

On 9845C, works the same
as 9845C Graphics ROM.

No difference

Transfers softkey labels to a
string variable

No difference

Labels specified softkey with
string expression

RT-25

RT-26 Reference Tables

Graphics ROM
documented in manual
HP p/n 09845-91050

9845C Graphics ROM
documented in manual

Enhanced
Graphics ROM
documented in manual
HP p/n 09845-93050

Statement HP p/n 09845-91051 HP p/n 09845-92050 HP p/n 09845-92051

LABEL KEYS Not implemented Labels all softkeys with | Labels all softkeys with
string expression string expression

LABEL USING No difference No difference No difference

LAXES Not implemented Draws axes with labeled ma- | Draws axes with labeled ma-
jor tick marks jor major tick marks

LDIR No difference No difference No difference

LETTER No difference No difference No difference

LGRID Not implemented Draws grid with labeled ma- | Draws grid with labeled ma-
jor tick marks jor tick marks

LIMIT No difference No difference No difference

LINE TYPE No difference No difference No difference

LOCATE No difference No difference No difference

LORG No difference No difference No difference

MAT AIPLOT Not implemented Plots array contents as X,Y | Plots array contents as XY
increments to current pen | increments to current pen
position in APUs position in APUs

MAT APLOT Not implemented Plots array contents as X,Y | Plots array contents as XY
coordinates in APUs coordinates in APUs

MAT ARPLOT Not implemented Plots array contents as X,Y | Plots array contents as XY
coordinates relative to an | coordinates relative to an
origin in APUs origin in APUs

MAT IPLOT Not implemented Plots array contents as X,Y | Plots array contents as XY
increments to current pen | increments to current pen
position in current units. position in current units.
Optional FILL Optional FILL

MAT PLOT Not implemented Plots array contents as X,Y | Plots array contents as XY
coordinates in current units. coordinates in current units.
Optional FILL Optional FILL

MAT RPLOT Not implemented Plots array contents as XY | Plots array contents as XY
coordinates relative to an | coordinates relative to an
origin in current units. origin in current units.
Optional FILL Optional FILL

MAT SYMBOL Not implemented Plots array contents as a | Plots array contents as a
specially defined labeled | specially defined labeled
character with optional FILL. | character with optional FILL

MEMORY Not implemented Assigns specified color to the | On 9845B, no effect on
memory plane program execution.

On 9845C, works the same
as 9845C Graphics ROM
MOVE No difference No difference No difference
MSCALE No difference No difference No difference

Graphics ROM
documented in manual
HP p/n 09845-91050

9845C Graphics ROM
documented in manual

Reference Tables

Enhanced
Graphics ROM
documented in manual
HP p/n 09845-93050

Statement HP p/n 09845-91051 HP p/n 09845-92050 HP p/n 09845-92051
OFF GKEY Not implemented Disables end-of-line branch | Disables end-of-line branch
when button is pressed on | when button is pressed on
the graphics input device the graphics input device
ON GKEY Not implemented Enables end-of-line branch | Enables end-of-line branch
when button is pressed on | when button is pressed on
the graphics input device the graphics input device
PDIR No difference No difference No difference
PEN Selects pen from stall based | Selects pen from stall based | Selects pen stall based on
on a modulo operation on a modulo operation the PLOTTER IS identifier
(pen5 =0 (pen 5 = pen 1 string
pen9 = 4) pen9 = pen 1) 9872A implies 4 pen plotters
(pen5 = pen 1
pen9 = pen 1)
HPGL implies 8 pen plotters
(pen5 = pen 5
pen 9 = pen 1)
PENUP No difference No difference No difference
PLOT No difference No difference No difference
PLOTTER IS Allows only Allows only Allows only
GRAPHICS GRAPHICS GRAPHICS
9872A 9872A 9872A
INCREMENTAL INCREMENTAL INCREMENTAL
as identifier strings HPGL HPGL

PLOTTER...IS OFF
PLOTTER...IS ON

Deactivates any active
plotter.
Multiple plotters are not
allowed

No difference

Turns off
previous plotter

array name ()

as identifier strings

Also allows individual mem-
ory planes as plotters

Does NOT deactivate any
active plotters.

Multiple plotters are allowed

No difference

Does not turn
off previous plotter

array name (x)

as identifier strings

Also aliows individual mem-
ory planes as plotters, but
on 9845B the plots are re-
plotied onto the one
memory.

Does NOT deactivate any
active plotters.

Muiltiple plotters are allowed

No difference

Does not turn
off previous plotter

RT-27

RT-28 Reference Tables

Graphics ROM
documented in manual

HP p/n 09845-91050

9845C Graphics ROM
documented in manual

Enhanced
Graphics ROM
documented in manual

HP p/n 09845-93050

Statement HP p/n 09845-91051 HP p/n 09845-92050 HP p/n 09845-92051
POINTER Type is either large (odd | Type can be any of four: Type can be any of seven:
value) or small blinking | 0 = off 0 = off
(even value) 1 = large 1 = large
2 = small 2 = small
3 = underline 3 = underline
remaining values are taken | 4 = Rubber Band for mem-
modulo 4 ory 1
color of marker can also be | 5 = Rubber Band for mem-
specified ory 2
6 = Rubber Band for mem-
ory 3
remaining values are taken
modulo 7
color of marker can also be
specified for 9845C.
POLYGON Not implemented Draws regular polygon, with | Draws regular polygon. On
approximations for circles. 98458, figures between 60
Optional FILL and 32 767 sides are drawn
with hardware arc generator.
Optional FILL
RATIO No difference No difference No difference
RECTANGLE Not implemented Draws rectangle with option- | Draws rectangle with option-
al FILL al FILL
SCALE No difference No difference No difference
SETGU No difference No difference No difference
SETUU No difference No difference No difference
SHOW No difference No difference No difference

TRACK...IS OFF

TRACK...IS ON

UNCLIP
WHERE

Not implemented

Not implemented

No difference

Status string is 1 character
long

The other differences between the computers are:

Stops tracking on specified
plotter

Enables plotter’s marker to
echo the movement of the
graphics input device’s
cursor.
Tracking to an array is
allowed

No difference

Status string is 3 characters
long

Stops tracking on specified
plotter

Enables plotter's marker to
echo the movement of the
graphics input device’s
cursor.
Tracking to an array is
allowed

No difference

Status string is 3 characters
long

1. A text string highlighted on the System 45B and then transported to a System 45C results in only the
first character being highlighted on the System 45C.

2. The Katakana character set on the Enhanced Graphics ROM and the 9845C Graphics ROM contain
yen signs instead of the backslash character on the 9845B Graphics ROM.

-3

o B

0~ o

10
11

12

13

14

16

Error Messages

Missing ROM or configuration error. Also, check to see if all option ROMs are
installed properly. Perform the System Exerciser if the problem persists.

Memory overflow; subprogram larger than block of memory. Also check to see if
your arrays are too large to fit in memory. If you are programming in assembly
language, you may have specified an ICOM which is too large for your current
availabe space.

Line not found or not in current program segment. Check the spelling of line
labels and line identifiers.

Improper return. Branched into the middle of a subroutine.
Abnormal program termination; no END or STOP statement.
Improper FOR/NEXT matching.

Undefined function or subroutine. Check spellings.

Improper parameter matching. Check the parameter lists in SUB and CALL, and
DEF FN and FN statements to see if they match in number and type.

Improper number of parameters. Check the number of arguments used in an FN
or CALL reference. In assembly language, the number of arguments pass by an
ICALL statement exceeds the number of parameter declarations in the sub-
routine entry section.

String value required.
Numeric value required.

Attempt to redeclare variable. Once a variable name has been declared in a DIM,
COM, REAL, SHORT or INTEGER statement, it can’t be redeclared in that
program segment.

Array dimensions not specified. You must dimension the array, either explicitly
or implicitly.

Multiple OPTICN BASE statements or OPTION BASE statement preceded by
variable declarative statements.

Invalid bounds on array dimension or string length in DIM, COM, REAL, SHORT
or INTEGER statement. Strings can’t be longer than 32 767 characters. The
range of array subscripts is —32 767 through 32 767.

Dimensions are improper or inconsistent; more than 32 767 elements in an
array. Check for wrong number of subscripts in an array reference. Check any
matrix multiplication for proper sizes. An FREAD operation requires a receiving
array to have the same number of dimensions as the array stored in the BDAT
file, and that the number of elements be sufficient to hold the entire data. String
length (in the case of string arrays) must also be consistent. Check the current
dimensions of the receiving array in the program.

EM-1

EM-2 Error Messages

17
18

19

20

25
26
27
28
29
30
31
az

33
34

37
38

39

40

Subscript out of range.

Substring out of range or string too long. Check substring specifiers against
length of string.

Improper value. Check numbers being entered, especially their exponents.

Integer precision overflow. The range is —32 768 through 32 767. An expres-
sion used in the syntax in one of your statements was out of range when rounded
to an integer. Check the values of the variables used.

Short precision overflow. Short-precision numbers have six significant digits and
an exponent in the range — 63 through 63.

Real precision overflow. Full-precision numbers have twelve significant digits
and an exponent in the range — 99 through 99.

Intermediate result overflow.

TAN (n*7n/2), when n is odd.

Magnitude of argument of ASN or ACS is greater than 1.
Zero to negative power.

Negative base to non-integer power.

LOG or LGT of negative number.

LOG or LGT of zero.

SQR of negative number.

Division by zero: or XMOD Y withY = 0.

String does not represent valid number or string response when numeric data
required. Check any use of VAL function and its argument. Check for correct
spelling of variable name.

Improper argument for NUM, CHR$, or RPT$ function.

Referenced line is not IMAGE statement. Check the line identifier in the PRINT
USING statement.

Improper format string.

Out of DATA. Make sure READ and DATA statements correspond. Use RE-
STORE if appropriate.

EDIT string longer than 160 characters. Try using a substring.

I/O function not allowed. TYP and other I/O functions aren’t allowed in any I/O
statement like DISP or PRINT. Place the value into a variable.

Function subprogram not allowed. An FN reference isn’t allowed in any /O
statement, or in redim subscripts. Place the value into a variable.

Improper replace, delete or REN command. SUB and DEF FN can only be
replaced by another SUB or DEF FN. They can only be deleted if the rest of the
corresponding subprogram is deleted. A renumbering may cause out-of-range
line numbers if completed, so an error occurs; check increment value.

First line number greater than second.

Attempt to replace or delete a busy line or subprogram. Typically, this is caused
by trying to delete an input statement that is still requesting values.

43

44

46

47

48

G0

61

B3

Error Messages

Matrix not square. The dimensions of an identity matrix or of one used to find an
inverse or determinant must be the same size.

lllegal operand in matrix transpose or matrix multiply. The result matrix can’t be
named the same as one of the operands.

Nested keyboard entry statements.

No binary in memory for STORE BIN or no program in memory for SAVE. There
are no binaries currently in memory or there are no program lines in memory
between the limits you specified. Check line numbers in SAVE against program
in memory.

Subprogram COM declaration is not consistent with main program. Check num-
ber, type and dimensions of variables.

Recursion in single-line DEF FN function. Only subprograms can be called recur-
sively.
Line specified in ON declaration not found.

File number less than 1 or greater than 10.

File not currently assigned. Execute an ASSIGN statement for the file, or check
the accuracy of the file number used. LOAD ALL destroys all prior assignments.

Improper mass storage unit specifier. Check the values of the select code, unit
code and controller address.

Improper file name. A file name can have 1-6 characters and can’t contain a
colon, quote mark, NULL or CHR$(255).

Duplicate file name. Choose another name or PURGE the old one. In some
instances, RE-SAVE or RE-STORE may be an alternative statement to use.

Directory overflow. There is a maximum number of files that a mass storage
medium can hold. A file will have to be removed to add another.

File name is undefined. Check the spelling.

Mass Storage ROM is missing. Check to see that the ROM is installed properly.
Perform the System Exerciser if the problem persists.

Improper file type. Use LOAD for PROG files, ASSIGN and GET for DATA files,
and LOADKEY for KEYS files.

Physical or logical end-of-file found. Attempting to READ# or PRINT# past the
end of the file. If you are in serial mode, you have run out of data. If you are in
random mode, you are reading a record beyond the reserved file length, or
specified record number is too large. Compare the data list to the file size. This
error can be trapped with the ON END statement.

Phuysical or logical end-of-record found in random mode. Attempting to read
more data out of a single defined record than are actually there. Compare the
data list to the record size.

Defined record size is too small for data item. You can either PURGE and
CREATE the file with longer records or regroup the data being recorded.

File is protected or wrong protect code specified. Check to see that the protect
code is included and spelled properly.

The number of physical records is greater than 32 767. That’s the limit; use
something smaller.

EM-3

EM-4 Error Messages

G4 Medium overflow (out of user storage space). A file can’t be set up because there
isn’t enough contiguous storage capacity on the medium. Use another medium,
PURGE some of the files on the present medium, or try to repack (as explained in
the Mass Storage ROM Manual.)

65 Incorrect data type. Each file must be read from the medium in the same way it
was written. Check to make sure that you are not trying to retrieve a numeric
data file as a program (with GET or LINK). This error may also occur if the wrong
type of array variable is used when reading a BDAT-type file. Use TYP to find out
what kind of data the computer is trying to read.

G& Excessive rejected tracks during a mass storage initialization. The medium can’t
be initialized. Medium wear on flexible discs, or a marginally-performing hard
disc drive is usually the reason for this. With hard discs, it is recommended that
the appropriate disc diagnostic tests be run for the drive involved. (Consult the
operating and installation manual for the drive.) If the medium is a flexible disc,
use a different one.

67 Mass storage parameter less than or equal to 0. Check values of variables.
Record numbers, record lengths and number of defined records must be positive
numbers.

68 Invalid line number in GET or LINK operation. This occurs only if the first line of

a DATA-type file does not begin with a line number. This error should be ex-
pected only if the DATA file does not contain a program, or if the program in the
file was created by another program and not by a SAVE or RE-SAVE instruction.

89 Format switch on the disc off. Turn it on for disc initialization to proceed.

70 Not a disc interface, or wrong device type. You are either using the wrong msus or
are trying to reference the wrong type of device. Check for correspondence of
device types. If they check out, your interface may be malfunctioning.

71 Disc interface power off. Turn it on. If it is already on, the interface may be
malfunctioning.
72 Incorrect controller address or controller power off. If the former, change the

address setting or change the program reference.

Additionally, this error can occur if the disc drive (7908 disc drive only) is temporari-
ly occupied servicing a disc drive front panel request such as LOAD (cartridge),
UNLOAD, STORE or RESTORE.

If allis in order, suspect that the controller or its interface is malfunctioning. See the
peripheral’s manual for location of the address switches.

73 Incorrect device type in mass storage unit specifer. Check all your device settings
and prcgram references.

74 Drive missing or power off.Check your device settings and make sure that the
device is receiving power.

73 Disc system error. Possible power difficulties in interface or controller. If neces-
sary, reset the computer.

76 Incorrect unit code in mass storage unit specifier. Check all your device settings
and program references.

77 Disc system error.

78 Interface error. Either the wrong type of interface card exists or no interface card

exists at the select code specified with the mass storage unit specifier. This error is
also generated if the interface card is not both the system controller and the active
controller.

09845-93000., rev: 9/81

79
80

81

83

84

BG

87

88
89

90

891-99
100

101

102

103

104
105-109
110

i11
112
113
114

Error Messages

Reserved for future use.

Cartridge out or door open. Also check to see if the interface is connected
properly and if the device is ready.

Mass storage device failure. Possible power failure. Check the data cable con-
nection or recycle power to the drive.

Mass storage device not present. Check mass storage unit specifier. When using
flexible discs, check that the unit number is not greater than 3.

Write protected. Check the write-protection device on the medium or drive. If it
is the result of an INITIALIZE statement to an HP 7906 Disc Drive with the
write-protect switch off, then reset the computer (CONTROL STOP)

Record not found or disc not formatted properly. A bad spot has been encoun-
tered on the medium. You either have to avoid this area of the medium by
creating a ‘‘dummy’’ file to avoid attempts to use it, or you have to re-initialize
the medium. (Remember, however, that initialization makes all previous data on
the medium inaccessible.)

When using the 7908 disc drive, this error may also indicate that an attempt was
made to address a record outside of the disc address space.

Mass storage medium is not initialized or data structure destroyed. Each medium
must have been initialized using the INITIALIZE statement. If you are certain that
the medium has been initialized, then you have a system failure.

Not a compatible mass storage medium. The cartridge or disc must be initialized
on a system compatible with your computer.

Record address error; information can’t be read. Hardware failure. Check for a
dirty read head. Perform the System Exerciser if the problem persists.

Read data error. Hardware failure. Check for a dirty read head.

CHECK READ error. Result of a print verification did not agree with the contents
of memory. This occurs only when CHECK READ has been enabled on the file,
and after four attempts to write correctly to the file. Check connection on data
lines and interface cables.

Mass storage system error. Principal cause for this error is “‘data overrun’ (the
computer not supplying or receiving data as fast as the disc. Check the disc
installation manual for the proper cabling, etc., and retry the operation.

Reserved for future use.

Item in print using list is string but image specifier is numeric.
[tem in print using list is numeric but image specifier is string.
Numeric field specifier wider than printer width.

Item in print using list has no corresponding image specifier.
ON KBD or TOPEN not allowed in subprogram.

Reserved for future use.

Graphics device specification not recognized. Check spelling of ““GRAPHICS”,
“9872A" or “INCREMENTAL"".

Graphics device has not been specified. Check select codes.
Graphics hardware not installed.
LIMIT specifications out of range.

HP 98036 Interface Card improperly configured.

09845-93000. rev: 9/81

EM-5

EM-6 Error Messages

113
116
117-149
150
151
152

153

o

[ST =,
oJroon
g Ix

—
&1
~ o3

158
159
160
161

162

163

164
165

166

167

168-183

184

185
186
187

188
189
190

TDISP not allowed unless peripheral keyboard active.

TOPEN is active on another select code.

Reserved for future use.

Improper select code.

A negative select code was specified that does not match present bus addressing.
Parity error.

Either insufficient input data to satisfy enter list, or attempt to ENTER from
source into source, or enter count exhausted without linefeed.

Integer overflow. or ENTER count greater than 32 767 bytes or 16 383 words.
Invalid interface register number. (Can only specify 4-7.)
Improper expression type in READIO, WRITEIO, or STATUS list.

No linefeed was found to satify / ENTER image specifier, or no linefeed record
delimiter was found in 512 characters of input.

Improper image specifier or nesting image specifiers more than 4 levels deep.
Numeric data was not received for numeric enter list item.
Repetition of input character more than 32 768 times.

Attempted to create CONVERT table or EOL sequence for source or destination
variable which is locally defined in a subprogram.

Attempted to delete a nonexistent CONVERT table or EOL sequence.

/O error, such as interface card not present, device timeout, interface or
peripheral failure (Interface FLAG line=0.), STOP key pressed, or improper
interface card type.

Transfer type specified is incorrect type for interface card.

A FHS or DMA transfer with no format specifies a count that exceeds the size of
the variable, or an image specifier indicates more characters than will fit in the
specified variable.

A NOFORMAT FHS or DMA type transfer does not start on an odd numbered
character position, such as A$[3].

Interface status error, TRL Character or an EQI was received on an HP-IB Inter-
face before ENTER list or image specification was satisfied.

Reserved for future use.

Improper argument for OCTAL or DECIMAL function or assembled location.
The OCTAL function has a range from - 65 535 to + 65 535. The DECIMAL
function has a range for its arguments from ~ 177 777B to + 177 777B.

Break Table overflow.
Undefined BASIC label or subprogram name used in IBREAK statement.

Attempt to write into protected memory; or, attempt to execute instruction not in
[ICOM region.

Label used in an assembled location not found.
Doubly-defined entry point or routine.
Missing ICOM statement.

181
192
183
194

193
186
197
188
1939
200-206

207

208

209

210

r-J

r-J
-3

ot

3
rJ
3

rJ
3

J

3
3

o

I
-3

ol

Error Messages

Module not found.
Errors in assembly.
Attempt to move or delete module containing an active interrupt service routine.

IDUMP specification too large. Resulting dump would be more than 32 768
elements.

Routine not found.

Unsatisfied external symbols.

Missing COM statement.

BASIC’s common area does not correspond to assembly module requirements.
Insufficient number of items in BASIC COM declarations.

Reserved for future use.

Binaries not allowed in LOAD SUB file. Do LOAD, SAVE, SCRATCH A, GET
and STORE on the file to get rid of binaries. However, the loaded program may
not run after the binaries are removed.

Volume not mounted. Mount it and execute a VOLUME DEVICES ARE state-
ment.

Operation not allowed on tape. Only the BKUP file used in DBBACKUP and
DBRECOVER is allowed on tape.

Bad status array. It must be defined as integer precision with = 10 elements.
Check spelling and current size.

Improper data base specified or data base not open. Improper name, or perform-
ing data base operation with invalid name.

Data set not found. Check set name or number and make sure it is on the volume
specified in the schema.

Reserved for future use.
Data base requires creation. Perform a DBCREATE.
Reserved for future use.
Volume name not part of data base. Check spelling.

Out of available memory for a DBOPEN, DBBACKUP or DBRECOVER. Out of
read/write memory if executed from main program. Out of special area if ex-
ecuted from subprogram, so perform the DBOPEN in the main program.

Improper or illegal use of maintenance word. Check spelling and leading or
trailing blanks.

Data set not created.
Reserved for future use.

Improper backup file. In DBRECOVER, backup file has incorrect information in
header or no primary DBBACKUP/RECOVER currently in progress (for secon-
dary operation).

Incomplete backup file. More than one volume in backup; probably mounted in
the wrong order. Start the recovery over.

Improper utility version number in root file. Rerun Schema Processor to generate
new root file.

EM-7

EM-8 Error Messages

231-232
233

234

235
236

237
238

239
240-299
300
301
302
303
304
305
306
307
308
309
310
311
312
313-329
330
331
337

Corrupt data base — must purge and redefine. Purge root file and run Schema
Processor.

Corrupt data base — all sets require erasure. When erasing a detail data set,
ensure that all related master data sets are on-line.

Data sets cannot be re-created without root file.
Operation not allowed while DBOPEN current. Perform a DBCLOSE mode 1.

Improper set list in DBBACKUP, DBCREATE, DBERASE, DBPURGE or dupli-
cate sets in the set list.

Reserved for future use.

Required data set root file not mounted. Mount it and perform a VOLUME
DEVICES ARE.

Referenced line not a PACKFMT statement. Make sure line identifier is correct
and that it references a PACKFMT statement.

Reserved for future use.

Insufficient length in a PACK statement, or insufficient current length in an
UNPACK. Insufficient length in a DBBACKUP or DBRECOVER statement.

List length >32 767 in PACK or UNPACK. Array in PACKFMT too large. Make
sure it is the correct variable; redimension if necessary.

Numeric conversion error. Improper real number found. Check PACKFMT to
make sure a REAL or SHORT variable, not INTEGER is being unpacked.

UNPACK requires a source string of greater length.
Reserved for future use.

CCOM area not allocated.

Not allowed when channel is active.

CMODEL statement required.

Not allowed when trace is active.

Too many characters in CWRITE.

New CCOM size not allowed when channel is active.
HP 98046 Interface Card failure.

Insufficient CCOM allocation.

lllegal character in CWRITE of non-TRANSPARENT data.
Not allowed for this CMODEL.

CCONNECT statement required.

Not allowed while Data Comm is suspended.
Improper CSTATUS array.

Reserved for future use.

Lexical table size exceeds array size.

Improper pointer array*

Non-existent dimension specified in MAT REORDER.

333
334
335
336

337
338
339
340
341

34z
343
344
345

346
347

348

Error Messages

Pointer array contains out-of-range subscript value.
Pointer array length does not equal number of records.
Pointer array is not one-dimensioned.

Number of records (plus twice the number of secondary keys plus twice the
number of substrings) exceeds 16 383.

Subscript extends beyond dimensioned maximum length.
Subscript out-of-range in key specifier.

Starting location is an out-of-range subscript value.
Lexical table is too small to include all characters.

Main lexical table length plus mode section length does not equal specified table
length.

Array is not one-dimensioned or is not integer.
Lexical mode section pointer out-of-range.
Lexical table length exceeds 16 383.

Data type of expression in CASE does not match type of expression in SELECT.
Verify that when the SELECT argument is a numeric expression, the CASE
argument(s) is a numeric expression. Or verify that when the SELECT argument
is a string expression, the CASE argument(s) is a string expression.

INDENT parameter out of range. (0 to 72 accepted)

Structured construct has improperly matched statements. Verify that you are
matching WHILE and END WHILE, REPEAT and UNTIL, LOOP and END
LOOP, IF and END IF (only one ELSE is permitted), or SELECT and END
SELECT (only one CASE ELSE is permitted). Also verify that the CASE ELSE
occurs only after all CASE statements for a given SELECT construct.

Attempt to execute looping statement when no matching WHILE, REPEAT, or
LOOP is active. Use the INDENT command to determine if you forgot to use a
WHILE, REPEAT, or LOOP when writing your program. Use XREF to determine
if there are any GOTOs or GOSUBs branching into your structured loops.

* This error occurs when data is lost in the process of reordering the array. If this error does not occur. it does not necessarily
imply that the pointer array contains a permutation.

Svstem

E rror octal number 3 octal number

This indicates a fatal error detected by the system firmware. It may have been caused by electro-
magnetic interference, a hardware failure, a firmware error, or an improper command. If reset
(CONTROL STOP) does not bring control back, the machine must be turned off, then on again.
If the problem persists, contact your local HP Sales and Service Office.

EM-9

EM-10 Error Messages

I/O Device Errors

Two error messages can occur when attempting to direct an operation to an I/O device that is
not ready for use. A printer which is out of paper or no device at a specifed select code are

examples. The first message that appears is —

1/0 ERROR ON SELECT CODE select code

If the condition is not corrected, the machine beeps intermittently and the following message
replaces the first —

I/0 TIMEQUT ON SELECT CODE select code

The I/O device can be made usable by correcting the error (loading paper, or changing the

select code, for example), then executing the READY# command —

READY # select code

This command readies the 1/O device and the operation which was attempted is attempted

again. The select code must be specified by an integer.

If you get an 1/O error on select code 0 and the printer is not out of paper, call your Sales and

Service Office.

In some cases, such as an interface which is not connected, READY # for that select code may
not solve the I/O error. In this case, STOP should be pressed to regain control of the computer.
Be sure to turn the power off before inserting an interface. After the problem is remedied, the

operation or program can be tried again.

If you get an 1/O error and you have an ON KBD statement in effect, you must press STOP to
gain control of the computer. Otherwise, the READY # command will be trapped by ON KBD.

CSTATUS Element 0 Errors

10 Timeout before connection

11 Clear to Send line false or missing clock
100 Channel MEMLIMIT overflow

101 lllegal protocol from remote

1oz Input buffer overflow

103 Internal buffer overflow

104 Autodisconnect forced

105 RETRIES count exceeded

106 NOACTIVITY timeout

200 98046 buffer overflow

DD
EN

LT
MO
RN
=)
TP
Un

900.8999

Error Messages

Assembly-Time Errors

Doubly-defined label

END instruction missing; or module name does not match.

Expression evaluation error.

Literal pools full or out of range.

ICOM region overflow.

Operand out of range.

Argument declaration pseudo-instruction out of sequence.

Incorrect type of operand used.

Undefined symbol.

Reserved for user.

IMAGE Status Errors

The following are possible values and meanings of the condition word (first element of the

status array). After an error, the status array is as follows —

Element

Description

1
2-4

—
oP© oI,

Condition word is non-zero

No change

DBOPEN mode

Statement identification number
Program line number

0

Value of the mode parameter
Integer-for system use only

Each statement has an identification number.

Number| Statement

401
402
403
404
405
406
407
408

DBOPEN
DBINFO
DBCLOSE
DBFIND
DBGET
DBUPDATE
DBPUT
DBDELETE

EM-11

EM-12

Error Messages

Condition
Word Value

0
-1
-10
-11

s
L

-23
-24

-91

-9z
-94
-95

11

12

13

16
17

18
a1

43

Error Description

Successful execution — no error.
Improper data base name; already have read—write access to the data base.
You may not open additional data bases; five are already opened.

Bad data base name or preceding blanks missing. Don’t change the first two
characters. Data base may not be open.

DBPUT, DBDELETE and DBUPDATE not allowed in DBOPEN mode 8.

Bad password — grants access to nothing or not to that set. Check spelling. Data
item, data set, or volume nonexistent or inaccessible. Check spelling and
DBOPEN password. Volume references must be numeric for DBINFO.

Detail data set required.
You lack write access to this data set.

DBPUT or DBUPDATE not allowed on Automatic Master. Check correctness of
set reference.

Improper mode in data base statement. DBGET mode 5 bad — specified data set
lacks chains.

Item specified is not an accessible key item in the specified set. Bad @
parameter — mustbe "€3i" or "8 "or "@".

Root file name in disc directory and name in root file are different. Make sure
root file not moved or renamed.

Root file version not compatible with current IMAGE/45 statements. Incorrect
version of Schema Processor used.

Data base requires creation.

Data or structure information lost. Data base must be erased or redefined.
Cannot DBOPEN while a DBBACKUP or DBRECOVER is going on.

End of file on serial DBGET; no entries following the current record.

Negative record number on directed DBGET. Check record number and spell-
ing.

Record number greater than capacity on directed DBGET. Check record number
and spelling.

End of chain encountered.
The data set is full.

No current record or the current record is empty; make sure that a current record
is defined for this set. There is no chain for the key item value. There is no entry
with the specified key value.

Broken chain. Must UNLOAD the data base.

DBUPDATE will not alter a key item. Make sure correct key item values are in the
correct places in the buffer string.

Duplicate key item value in master not allowed.

80
94
Ixx
3xx

4xx

S00

XX

Error Messages

Can’t delete a Master entry with non-empty detail chains.
Buffer string is too small for requested data. Redimension if necessary.

Argument parameter type incompatible with key field type (DBGET, mode 7 or
DBFIND) or current length of string argument is less than the string length of the
key item value.

Data set’s volume is not on line; or set not created.
Corrupt data base successfully opened in mode 8.
There is no chain head for path xx.

The automatic master for path xx is full.

The master data set for path xx is not on-line {Applies to DBPUT and DBDELETE
for detail data sets).

Root file volume isn’t mounted.

Needed volume on-line; created data set xx isn’t there.

EM-13

Operating and Programming Index

Operating and Programming
Index

This subject index is for the following manuals:

I Installation. Operation and Test (09845-93005)
W Workbook (09845-93090)

GW Graphics Workbook (09845-93091)

BP BASIC Programming (09845-93000)

RT Reference Tables
EM Error Messages

a

ABS (absolute value) BP-42
Absolute plotting RT-1
Absolute value (ABS) BP-42
Accessrate (tape) BP-206
Accessories supplied I-10
Accessories kits L. [-10
Accuracy of calculations BP-54
ACS (arccosine). BP-47
Actionsymbol BP-7
Addition L BP-34
Air filters, cleaning. [-38
ALPHA GW-4
Alphanumeric keys. [-1,1-3,BP-1
Alternate line types GW-8
AND operator BP-35
Angle. L. RT-1
Angularunits BP-47
Anisotropic. RT-1
Arccosine (ACS), BP-47
Arcsine (ASN) BP-47
Arctangent (ATN) BP-47
Arithmetic:
Functions. BP-42
Hierarchy................ BP-48
Keyboard.................... . BP-34
Operations. 1-2,W-7 BP-8,BP-34
Array:
Dimensioning BP-58,BP-59 BP-64
Functions................. BP-89
Identifier. BP-58 RT-1
String............. BP-95
Variables ... BP-13 BP-57 BP-58 BP-76
Arrow keys o BP-1
ASCII character codes. RT-10
ASN (arcsine).............. BP-47

ASSIGN. W-25,BP-188.BP-196
Assigning a data file . . W-25 BP-188 BP-196
Assigning values to variables. -2 BP-8
Assignment (LET and
implied) [-2.BP-56.BP-94
ATN (arctangent).................. BP-47
Audible output (BEEP) BP-144
AUTO (line numbering) BP-22
Automaticindent. BP-20
Automatic start for programs [-5.W-37
AUTOST [-5.W-37
AUTOST key W-2 BP-1
AXES .. GW-30
Axes ... RT-1
AXiS. ... RT-1
BACKSPACE key BP-1
Barcharts....... GW-22
BASIC language. BP-1 RT-19
BASIC User'sClub [-36
BEEP BP-144
Binary Coded Decimal Interface
exerciser [-83
Binary programs BP-204
Blinkingmode BP-218,.BP-239
Bounds (of array dimensions) BP-59
Brackets [] BP-16,BP-95
Branching.................. BP-114
End-of-line BP-227
Looping..................... BP-117
With SFKs. BP-227.BP-230
BUFFER (files)................... BP-199
Buffering, implicit BP-142

1

2 Operating and Programming Index

Calculatingrange. BP-38
Calculations, accuracy of BP-54
CALL BP-136
Calling program. BP-129 RT-1
Cartridge Tape Unit exerciser. [-76
Carrying cases, computer. [-11
CAT (catalog) I-5.W-17,BP-177
CATTO BP-179
Characters BP-17,RT-1
Definingnew................. BP-252
Foreign..................... .. RT-11
Nationalized and Drawing RT-11
Non-printable BP-149
CHECKREAD................. .. BP-200
CHECKREAD OFF BP-201
CHRS$ (character function) BP-106
Circles. GW-12
Cleaning:
Airfilters 1-38
Computer [-37
Lightpen....................... [-38
Tapedrives..................... 1-37
CLEARkey........................ BP-1
CLEARLINEkey. BP-1
Clearingthe CRT................. .. BP-1
Clearing the keyboard entry area. BP-1
CLIP GW-39,GW-41
Clippingarea RT-1
CLR—ENDkey.................... BP-1
Closingafile BP-196
COL (column) BP-89
Color Graphics exerciser. [-45,1-52
Color printing. BP-167
Coloredpens GW-8
COM (common). BP-63,RT-15
In subprograms. BP-138
Comma (for spacing) BP-144
Command. BP-16,RT-1
Comment delimeter (!) BP-9,BP-25
Comments within a program BP-9
Common logarithm BP-46
Compatibility, System 45 RT-19
BASIC RT-19
File................... BP-240,RT-21
Graphics firmware RT-24
9845A vs. 9845B/C RT-20
9845A graphics vs. 9845B
graphics, RT-21

9845B graphics vs. 9845C
graphics RT-22,RT-24

9845C graphics vs. enhanced

graphics RT-22 RT-24
Standard vs. enhanced processor. .RT-23
Computed GOSUB. BP-123
Computed GOTO BP-114
Concatenation (& - string) BP-97
Connectorsymbol BP-7
Conserving memory RT-15
Constant.................... BP-16,RT-2
CONT (continue) command. BP-28
With INPUT. BP-70
CONTkey W-4 BP-28,BP-76
Controlcodes BP-241
Disabling.................... BP-243
CONTROL
key W-36,BP-1,BP-23 BP-218 RT-10
Controller address BP-170,RT-2
CONVERGE [-29
Convergence panel -8
Convergence procedure [-28
Coordinates GW-5
COPY (files). BP-202
Copyinganarray. BP-78
COS (cosine) BP-47
CREATE (data files) W-24 BP-187
CRT [-8,1-16
Accessing. BP-146
Display area I-16
Installation. [-13
Intensity control [-8,1-15
Keyboard entry area. I-16
Memory.................. ... BP-239
Pull-outcards I-8
Printarea....................... [-16
Selective addressing. BP-243
Softkey label area.............. .. I-16
Special features BP-218,BP-239
System comments area [-16
CSIZE GW-14
Current environment. BP-129 RT-2
Currentunits RT-2
Cursor. RT-2
Moving. BP-247
Selective addressing. BP-243

DATA (with READ) BP-8,BP-66,BP-98
DATA pointer. BP-67
Repositioning BP-68
Data (on a mass storage device) BP-187
Amount of storage needed BP-198
Database......................... RT-2
Debugging.................... .. BP-210
Decision-making within a program. BP-8
Decision symbol. BP-7
DEFAULTOFF BP-51
DEFAULTON BP-50
Defaultvalues BP-50
DEF FN (define functions):
Multiple line BP-128,BP-134
Singleline BP-125
Defined record. BP-173,BP-187 RT-2
Defining a function BP-125,BP-134
Defining special function keys W-14,BP-220
DEG (degrees).................... BP-47
DEGAUSS [-31
DEL (deleteline) BP-21
DELCHRkey BP-1
DELLNkey................ BP-11,BP-21
Deleting characters. BP-1, BP-248
Delimiter:
Coma....................... BP-144
Comment{!).................. BP-25
PRINTUSING BP-156
Semicolon............. BP-13,BP-144
DET (determinant) BP-90
Device type (mass storage). ... BP-171 RT-4
Digit rounding (DROUND) BP-42
DIGITIZE GW-35
Digitizer exerciser 1-74
Digitizing. RT-2
DIM (dimension). BP-60
Dimensioning an
array BP-58,BP-59,BP-64,BP-95
Dimensioninga string BP-94
Directory BP-175
DISABLE (interrupts) BP-230
Disc Drive exercisers. [-68,1-69,1-78
DISP (display) BP-8 BP-144
Display exerciser 1-45,1-48
Display keys I-1,1-3,BP-1
Display line...................... .. RT-2
DIV (integer divide). BP-34
Division (/) BP-34
Byzero............... BP-50

Operating and Programming Index

DOT (inner product) BP-90
Dot matrix insyntax BP-16
DRAW. GW-6
Drawing characters RT-11
DROUND (digit round).......... ... BP-42
DUMP GRAPHICS GW-4
Dynamic memory allocation. BP-140
e (Napierian) BP-46
Ekey.......... BP-1
EDIT BP-11
EDIT (string). BP-99
EDITKEY (SFKs) BP-220
Editkeymode RT-2
EDIT LINE (programs) BP-19
Editlinemode RT-2
Edit/system command keys. 1-1,BP-1
Editing:
Keyboard lines BP-11
Programs. BP-19
SFKs BP-220
ENABLE (interrupt) BP-230
END BP-9,BP-29
End of file (EOF) marks BP-174
End of line branching BP-227
End of program (logical and physical). . BP-29
End of record (EOR) marks BP-174
Enhanced Graphics exerciser. [-45,1-56
Equalto{(=) BP-34
Erasing memory. BP-30
ERRL (errorline). BP-214
ERRMS$ (error message) BP-214
ERRN (error number) BP-214
Error functions. BP-214
Error messages and warnings. . .. BP-4,EM-1
Error, system EM-S
Ercors: BP-198
Assembly time EM-11
Image status EM-11
[/Odevice.................... EM-10
Escape code sequences BP-245
Summary. BP-258
EXECUTE key................. W-4,BP-1
Executionstack RT-17
EXOR operator BP-36
EXP (exponential) function BP-46
Exponential function............... BP-46
Exponentiation (~ or **) BP-34

Expression, numeric BP-17 RT-5

3

4 Operating and Programming Index

Field specifiers. BP-155
File:
Buffer................... ... BP-199
Closing...................... BP-196
Compatibility. BP-240,RT-21
Name.................. BP-170.RT-2
Number BP-170.RT-2
Opening. BP-188
Pointer............... .. BP-188,RT-2
Purging................ W-18,BP-202
Specifier. BP-172 RT-2
Structure BP-173
Table BP-188
Filetypes BP-173,RT-3
Assembly language. BP-178
Backup BP-178
Binary data BP-173,BP-178
Binary program BP-173,BP-178,BP-204
Data.......... BP-178,BP-181,BP-187
Dataset..................... BP-178
KEY BP-178,BP-203
OptionROM BP-178
Program..... BP-178,BP-181
Root. BP-178
STORE ALL (memory) . . BP-178,BP-204
FILL GW-22
Final value (FOR) BP-117
FIXED (fixed point) BP-8 BP-38,BP-39
FLOAT (scientific
notation) BP-8.BP-38,BP-40
Flowcharts BP-7
Flowline symbol BP-7
FN (function reference). BP-125,BP-133
FNEND BP-134
FOR/NEXT. ... BP-8BP-11,BP-117,BP-121
Nesting. BP-120
Foreign characters................. RT-11
Formal parameters. BP-129 RT-3
Formatstring.................. .. BP-155
Formatted output BP-155
FRACT (fractional part) BP-43
FRAME GW-10
Full-precision numbers (REAL) . BP-54 BP-62
Functions BP-8
Array BP-89
Defining. BP-125 BP-134
Error........... BP-214
In computations W-10
KBD$ (keyboard)............. BP-232
Math......................... BP-42

Output...................... BP-149
String............... BP-103
User-defined BP-13,BP-125,BP-134
Fuses. [-21,1-22

GCLEAR. GW-10
GDUs...................... GW-18.RT-3
GET BP-182
Glossary RT-1
GOSUB BP-8.BP-122
Computed................... BP-123
GOTO..................... BP-8,BP-114
Computed. BP-114
GRADl BP-47
GRAPHICS. GW-4
Graphics:
Display units (GDUs) GW-18,RT-3
Exerciser [-45.1-52
Firmware differences RT-24
Tablet exerciser. [-70
Training program. GW-1
Greaterthan (>) BP-34
Greater than or equal to (=) BP-34
GRID. GW-32
Grounding requirements. [-24

Handshake RT-3
Hardclip........... RT-3
Heading suppression (CAT)........ BP-177
Hierarchy, arithmetic. BP-48
HOMEkey BP-1
Home position (cursor) BP-1
HP-GL RT-3
HP-IB device address BP-18 RT-3
HP-Interface Bus exerciser. -84
HP Compatible BASIC RT-19

HP Sales and Service offices [-93

ldentifier, array. BP-58 RT-1
Identifier, line. BP-17 RT-3
Identity matrix BP-82
IF.THEN................ .. BP-8 BP-115
IMAGE (with PRINT USING) .. BP-8 BP-155
Summary. BP-166
Implicit dimensioning:
Array BP-58
String......... BP-95
Incrementvalue. BP-20
Incremental Plotter Interface exerciser .. [-87
Indent, automatic. BP-20
Initial value (FOR). BP-117
INITIALIZE. 1-4 BP-176
Initializinga tape [-4 W-19
INPUT. ... BP-8 BP-13,BP-69,BP-70,BP-98
Input. RT-3
Input/output symbol BP-7
INSCHRkey BP-1
INSLNkey. BP-11
Inserting characters BP-1
Insertinglines................. BP-11
INT (integer part). BP-43
INTEGER........... BP-61
Interface:
Exercisers [-81
Selectcodes 1-20
Connectingan. [-19
Interleave factor. BP-176,RT-3
Interrupt (program).......... BP-227
Interaction. BP-228
Simultaneous BP-227
Types....................... BP-227
Introductory training program W-1
Inverse matrix, BP-85
Inverse videomode. BP-218
/O device errors BP-290
I/Oslots [-19
Isotropic, RT-3
KBDS$ BP-232
Keyboard I-1.W-4 BP-1
Arithmetic BP-34
Entryarea [-16 RT-3
Operations. [-2
Keyboard Magazine. I-36
Keyword. BP-16

Secondary.................... BP-16

Operating and Programming Index 5

LABEL GW-37
Label....................... BP-17,RT-3
LDIR GW-14
LEN (length) BP-103
Lessthan (<).................. ... BP-34
Less than orequalto (<) BP-34
LET............ BP-8 BP-54 BP-94 BP-98
Implied. BP-56
LETTER GW-14
LGT (commonlog) BP-46
Lightpen [-8
Cleaning [-38
Connector [-21
Installation. I-16
LIMIT. GW-39,.GW-41
LIN (linefeed). BP-151
Line identifier. BP-17 RT-3
Linelength....................... BP-18
Line numbers BP-8,BP-9,RT-4
Auto numbering (AUTO). BP-22
Range............... BP-17
Renumbering (REN). BP-22
Using EDITLINE BP-19
Line types, alternate GW-8
LINK. ... BP-184
LINPUT BP-8,BP-98
LIST BP-26
LIST#. BP-26
LIST KEY (SFK definitions) BP-225
Literal BP-96
Live keyboard mode BP-3.RT-4
LOAD. BP-186
LOADALL. BP-204
LOADBIN BP-204
LOADKEY BP-203
Local variables. BP-140,RT-4
LOCATE............... .. GW-26.GW-41
LOG (naturallog) BP-46
Logarithm:
Common (LGT) BP-46
Natural (LOG)................. BP-46
Logging keyboard operations. BP-2
Logical operators. BP-35
Logical records. BP-173,RT-4
Loopcounter.............. BP-11,BP-117
Looping BP-117
LORG. GW-37
LWC$ (lowercase). BP-108

6 Operating and Programming Index

m

Main program. BP-17,BP-129 RT-4
Mainframe exercisers [-45
Manuals L. [-33
Package................ 1-34
Structure [-36
Margins. BP-251
Mass storage errors BP-207
MASS STORAGEIS.............. BP-172
Mass storage unit specifier BP-170,RT-4
MAT...CON (constant) BP-76
MAT-copy i BP-78
MAT...CSUM (column sum)......... BP-87
MAT-function. BP-81
MAT...IDN (identity) BP-82
MAT-initialize. BP-77
MATINPUT BP-71,BP-98
MAT...INV (inverse) BP-87
MAT-multiplication BP-83
MAT-operation BP-80
MATPRINT. BP-153
MATPRINT #................... BP-194
MATREAD BP-66,BP-98
MATREAD # BP-194
MAT..RSUM (rowsum) BP-88
MAT-scalar operation BP-99
MAT...TRN (transpose). BP-87
MAT..ZER (zero) BP-76
Matrices BP-82
Identity. BP-82
Inverse....................... BP-85
Multiplication. BP-83
Transpeseof BP-87
MAX (maximum).................. BP-43
Maximizing performance. RT-23
Medium. RT-4
Memory RT-14
Allocation, dynamic BP-140
Available foruse BP-26
Conserving RT-15
DMA and FHS NOFORMAT
transfers RT-18
Erasing....................... BP-30
Exerciser [-45,1-47
Lock......... BP-249
Losso RT-14
Organization RT-14,RT-15,RT-17
Read/Write. [-2,1-9,.RT-6,RT-14
Storing. BP-204
Test [-26, RT-14
Typesof........ RT-14

Working storage RT-14

Metric conversion table. RT-12
Metricunits. RT-4
MIN (minimum)................... BP-43
Minussign (—=).................... BP-34
Mnemonic. RT-5
MOD (modulo) BP-37
Module RT-5
MOVE.... GW-6
MSCALE. GW-18
Msus...................... BP-170,RT-5
Multiple-line function

subprogram BP-128,BP-134
Multiplication (*) BP-34

Name................. BP-17 BP-55 RT-5
Naming convention RT-5
Napieriane....................... BP-46
Nationalized and Drawing characters. . RT-11
Natural logarithm (LOG). BP-46
Nested FOR/NEXT loops BP-120
NEXT ... BP-117
Non-printable characters BP-149
NORMAL BP-213
Notequalto (< >or#)............ BP-34
NOT operator BP-36
Null string. BP-103
NUM (numeric) BP-107
Number formats for output.......... BP-38
Numeric:

Expression............... BP-17 RT-5

Keys........ [-1,1-2,BP-1

Variable. BP-54
OFFEND............ BP-198
OFFERROR BP-215
OFFKBD..... BP-234
OFFKEY BP-237
Offices, HP Sales and Service [-93
ONEND............... BP-197
ONERROR BP-213
ON..GOSUB. BP-123
ON..GOTO.......... ... BP-114
ONINT.......... BP-227
ONKBD................. BP-227,BP-230
ONKEY.............. ... BP-227,BP-234
On-line........................... RT-5

Openingafile BP-188
Operating procedures [-1
Operators. BP-34
Arithmetic BP-34
Logical................. BP-35
Relational BP-34
String........................ BP-97
OPTIONBASE BP-60
ORoperator...................... BP-36
Origin RT-5
Output BP-143,RT-5
Output functions BP-149
Output of numbers BP-38
Outputting program results. BP-8
OVERLAP BP-167
Overlaying RT-15
PAGE BP-152
PAPER ADVANCE key. 1-27
Paper, internal printer. [-11,1-27
Installation 1-27
Paper Tape Punch exerciser. [-78
Paper Tape Reader exerciser 1-78
Parameters................. BP-129
Parentheses BP-49
Parity. RT-5
Pass by reference BP-131
Passbyvalue................. ... BP-131
Pass parameter BP-129 RT-5
PAUSE BP-28
PDIR.......... GW-12
Pen RT-5
PENUP GW-6
Performance, maximizing........... RT-23
Peripheral exercisers. [-67
Peripherals. 1-32
Physical records. BP-173 RT-5
Pl BP-44
Piecharts. GW-12.GW-25
Pixel RT-5
PLOT GW-6
Plotted point. RT-5
Plotter exerciser. 1-73
PLOTTER IS “GRAPHICS”. GW-10
Plotting:
Absolute. RT-1
Coordinates. RT-6
Space............ RT-6

Operating and Programming Index 7

Pointer.. RT-6
DATA. BP-67
File.... BP-188
Program...................... BP-18
Repositioning (file) BP-194
POLYGON GW-12,GW-24
POS (position)................... BP-104
Power:
Cord.........., [-24
Cord connector. 1-21
Requirements 1-23
Switch [-8,1-25
Power-of-ten rounding (PROUND) . .. BP-44
Precision (accuracy) BP-54
For calculating. BP-54
For conserving memory RT-15
Pre-run initialization BP-27
PRINT..................... BP-8 BP-147
PRINT # BP-189,BP-193
PRINTALLIS BP-2
PRINTUSING BP-8 BP-155
Printallmode W-29,BP-2
PRINTERIS -4 BP-8 BP-9,BP-146
Printer:
Addressing. BP-250
Exercisers [-45,1-51,1-70,1-71,1-76
Internal [-8,1-27 BP-146
Paper................ [-11,1-27
Margins BP-251
Select Code. [-4,1-20,W-9 BP-2
Standard RT-5
Printoutarea, CRT RT-6
Priority BP-227 RT-6
Processors, standard vs. enhanced ... RT-23
Program BP-18
Controlkeys [-1
Editing...................... .. BP-9
Outline.. BP-6
Pointer........ BP-18
Running................. BP-27
Segment. BP-17 BP-129 RT-6
Writing................... .. [-3,BP-8
Program flow, controlling BP-8
Programming tutorial. BP-5
Prompt..........., BP-69
PROTECT BP-201
Protectcode. BP-172 BP-201,RT-6
PROUND (power-of-ten round). BP-44
PRTALLkey BP-1,BP-2
PURGE......................... BP-202
Purgingfiles. W-18,BP-202

8 Operating and Programming Index

Random fileaccess BP-193
Random number (RND) BP-44
Random numberseed. BP-44
Scrambling BP-45
RANDOMIZE BP-45
Range:
Calculating. BP-38
Line numbers BP-17
Various variable precisions BP-54
Storage BP-38
RAD (radian) BP-47
READ (with DATA) BP-8.BP-66,BP-98
READ #............... .. BP-191,BP-194
Read Only Memory (ROM). RT-6.RT-14
Read/Write Memory. 1-2.1-9.RT-6,RT-14
Reading data from afile............. W-27
READY # EM-10
REAL BP-54 BP-62
Real Time Clock Interface exerciser -85
Recallbuffer. BP-1
RECALLkey BP-1
Record /O RT-6
Recordingdatainafile. W-26
Records BP-173
Defined BP-173.BP-187 RT-2
Logical BP-173,RT-4
Physical BP-173.RT-5
RECTANGLE. GW-22
REDIM (redimension) BP-64
Redim subscripts BP-64.RT-6
Redimensioningan array BP-64
Referencetables. RT-1
Reflected plot., RT-6
Relational operators BP-34
Relative plotting. RT-6
REM (remark) BP-25
Remarks in program lines BP-9 BP-25
REN (renumber) BP-22
Renumbering lines. BP-22
RENAME (file}................ ... BP-203
REPEAT key. BP-1
RE-SAVE BP-184
Reset. W-35BP-2,.BP-14,BP-29.RT-13
RE-STORE................... ... BP-186
RESTORE (with READ, DATA). BP-68
RES (result) function [-2.BP-1,BP-44
Resultbuffer. BP-34
RESULT key. 1-2.BP-1,BP-34
RESUME INTERACTIVE BP-4
RETURN:
WithDEFFN............. BP-134
With GOSUB BP-122

Returnvariable BP-188
REVS (reverse) BP-108
REWIND. BP-207
RND (random number). BP-44
ROLLkeys........................ BP-1
Rolling the display. BP-248
ROM RT-6,RT-14

Drawers [-81-17

Installation. [-18
ROM Revision exerciser [-45,1-65
Roman Extension Character Codes. .. RT-11
Rounding........................ BP-41

Digit (DROUND)............... BP-42

Power-of-ten (PROUND). BP-44
ROW. BP-89
RPTS (repeat) BP-108
RS-232 Interface exerciser [-86
RUN BP-27
RUNKkey W-4
RUNlight -8 BP-18
Run-time error trapping BP-125
Sales and Service offices. [-93
SAVE BP-182
SCALE GW-18,GW-41
Scalar RT-7
Scientific notation (FLOAT) BP-38
SCRATCH BP-30
SCRATCHA BP-30
SCRATCHC BP-30
SCRATCHKEY............ BP-30,BP-225
SCRATCHP BP-30
SCRATCHV BP-30
Secondary keyword. L. BP-16
SECURE (program lines) BP-30
Select codes [-20,BP-18,BP-170,RT-7
Selective addressing (CRT) BP-243
Selective catalog specifier. BP-177
Semicolon (for spacing) BP-13,BP-144
SERIAL (mode).................. BP-167
Serial fileaccess. BP-189
SFKs......... [-1,W-14 BP-1 BP-217 RT-7
SGN (sign) BP-45
SHIFT key BP-1
SHORT. BP-62
SHOW GW-18
Significant digits. BP-41

In computations BP-54
Simple variables. BP-54
Simultaneous computations -2

Simultaneous interrupts BP-227

SIN(sine)........................ BP-47
Sixteen-Bit [/O Interface exerciser. [-82
Slant RT-7
Snapshot. RT-7
Softclip............. RT-7
Softkeys -8
SPA (space)..................... BP-150
Space dependent mode W-28,BP-23
Spacing between characters [-2,BP-23
Spare directory BP-175
Special function keys
(SFKs). I-1,W-14 BP-1,BP-217,RT-7
Defining as typing aids. . .. W-14,BP-220
Erasing definitions BP-225
Listing definitions BP-225
Pre-defined definitions. BP-218
Program interrupts BP-227,BP-234
Special features. BP-218
Splitplots GW-26
SQR (squareroot)................. BP-45
Stack........ RT-7
STANDARD output format. BP-8,BP-39
Standard mass storage device . . RT-7,BP-172
Standard printer. RT-7
Statements BP-8 BP-16,RT-7
STEPkey................. .. W-30,BP-27
Stepping through a program BP-27
STOP BP-29
STOPkey........................ BP-28
Storage of variables:
In memory. BP-38.BP-73,RT-18
On mass storage devices BP-199
Storagerange. BP-38
STORE. BP-185
STOREALL..................... BP-204
STOREBIN..................... BP-204
STOREKEY BP-203
STOREkey I-3,BP-18
Storing a program line. -4
Storing a program on tape [-4,BP-13
String:
Array BP-95
Expression............... BP-96,RT-8
Functions.................. .. BP-103
Operators. BP-97
Variable.................... .. BP-13
Strings. BP-93
Comparing BP-110
Concatenation. BP-G7
Dimensioning (explicit). BP-94
Dimensioning (implicit) BP-95
Maximumsize BP-94
Relational operations BP-110

Operating and Programming Index

SUB ... BP-136
SUBEND BP-136
SUBEXIT BP-136
Subprograms .. BP-17,BP-128 BP-138 RT-8

Conserving memory with. RT-15

Function subprograms .. BP-128,BP-134
Subroutine subprograms

(SUB).............. BP-128,BP-136
Subroutine return pointers......... BP-122
Subroutines (GOSUB) BP-122 RT-8
Subscripts. BP-59,RT-8
Substring, BP-96
Substring specifier. BP-96
Subtraction {(—)................... BP-34
SUM BP-89
SUSPEND INTERACTIVE BP-3
Symboltable RT-17
Symbols, flowchart BP-7
Syntax conventions. BP-16
System comments line. RT-8
Systemerror EM-9
System exerciser cartridges [-41
System exerciser summary table [-91
TAB (output function). BP-11,BP-149
TABkey BP-1
TABCLRkey...................... BP-1
TABSETkey...................... BP-1
Tab capabilities BP-1

Using escape codes BP-247 BP-251
Table, attaching computertoa [-12
TAN (tangent) BP-47
Tape cartridge:

Accessrate BP-206

Blank, [-11

Capacity BP-206

Care..........o [-39

Catalog [-5,W-17

Inserting and removing [-31

Lengthof.................... BP-206

Optimizinguse BP-207

Specifications BP-206

Unprotected [-3,W-1,BP-205

Write-enabled. [-3,W-1,BP-205

Write protection [-3,W-1,BP-205
Tapedrives. [-8

Cleaning I-3
Tapeexerciser [-45,1-50

Terminator symbol BP-7

9

10 Operating and Programming Index

Testing the computer [-41
Text....... BP-17,RT-8
Thermal printer, internal. [-8,1-27
TOPOFFORMkey.................. 1-27
TRACE....... BP-210
TRACEALL..................... BP-213
TRACE ALL VARIABLES BP-212
TRACEPAUSE.................. BP-211
TRACE VARIABLES. BP-212
TRACEWAIT BP-211
Tracing variables. W-33
Tracing program execution W-33
Training tapes [-32,W-3,GW-3
Transpose of amatrix BP-87
Trigonometric functions BP-46
TRIM$ BP-108
Truthtable BP-37
TYP (datatype).................. BP-196
TYPEWRITEROFF............ BP-31
TYPEWRITERON. BP-31
Typewriter keys I-1,BP-1
Typewritermode BP-1
TYPWTRkey...................... BP-1

UDUs (User-Defined Units). ... GW-18,RT-8

UNCLIP GW-39
Unconditional branching BP-114
Underline mode. BP-218,BP-231
Unitcode BP-171,RT-8

9885 BP-171
Unpacking the computer............... -9
UPC$ (uppercase). BP-107

User-defined function BP-13,BP-125,BP-134
User-defined units (UDUs) GW-18 RT-8

VAL (value) function. BP-105
VALS BP-105
Value area....................... RT-17
Variables [-2,BP-9,BP-13,BP-53 RT-8
Array BP-13,BP-57,BP-58 BP-76
Assigning valuesto BP-56,BP-65
Breakdown BP-55,BP-111
Forms........................ BP-54
Local BP-140,RT-4
Names BP-55
Numeric........... BP-54
Precision BP-54
Ranges....................... BP-54
Return BP-188
Simple BP-54
Storage........... BP-38,BP-73,RT-18
Types.............. BP-54
Vectors BP-57
Verification (file) BP-200
Vertical line (in syntax) BP-16
Voltage selector switch [-21,1-22

WAIT BP-31
WIDTH. BP-146
Word....... RT-9
Working storage. RT-14
Write protection (tape

cartridge) [-3,W-1,BP-205

