Programming the Personal Computer

Wherein are revealed the functions of the keys, how
problems are solved, and a bit of what goes on inside.

by R. Kent Stockwell

HE HP-65 CALCULATOR uses the same reverse

Polish keyboard language, the same four-
register operational stack, and the same architecture
as its predecessors, the HP-35,! the HP-45, and the
HP-80.2 It also has two important features that are
new to hand-held calculators. One is its greatly ex-
panded function set, and the other is program-
mability, complete with conditional and uncondi-
tional branching, user-definable functions, and
magnetic-card program storage.

Function Set

Thirteen HP-65 keys are for data entry. These are
the digits 0 to 9, the decimal point, CHS (change sign),
and EEX (enter exponent). Numbers may be entered
with or without a power-of-ten exponent.

Keyed-in digits set the value of the X register, which
is also the display, in the four-register operational
stack.* The cLx (clear x) key allows corrections. Any
other key except SST and R/S terminates entry of a
number.

The four arithmetic functions (+, —, X, +) operate
on x and y, the contents of the X and Y registers. Oper-
ands are loaded into the stack with the ENTER? key;
they may then be operated upon by the function keys.
Operations execute immediately and results appear
in X.

Thirty-three other functions derive from using
three prefix keys (f, f ', g) to condition eleven suffix
keys (digits 0-9 and decimal point). The two gold-
colored prefix keys, labeled f and t7', access the func-
tions printed in gold above the suffix keys and the in-
verses or complements of these functions. The blue
prefix key, g, accesses the functions printed in blue
on the angled lower side of the suffix keys. {The no-
prefix meanings of the suffix keys appear on their
top faces.) All of these functions execute immediate-

»Capital letters are names of registers and Jower-case letters are register contents.

ly, operating on x, or x and y, or the entire operational
stack. Thus, for example, the key sequencef 4 obtains
sin x in the display, #' 4 obtains sin~ ' x, and g 4 ob-
tains 1/x.

Computations requiring more data storage than is
provided by the operational stack may use any of
nine data storage registers. For example, pressing
STO 4 stores x into register four, leaving x un-
changed. Pressing RCL 4 recalls 1, to X, leaving 1,
unchanged. Arithmetic accumulation to any storage
register is accomplished by inserting the desired op-
eration key between STO and the digit key that ad-
dresses the register. Thus the key sequence STC
<arithmetic operator><digit n> gives r,<arithmet-
ic operator>x in register R, and leaves x in the dis-
play.

The user can change the display format as required
by the particular problem. The key sequence DSP
<digit n> rounds the display value to n digits after
the decimal point in scientific notation,* while DSP.
<digit n> results in an absolute display rounded ton
digits following the decimal point. For example,
12.366 gives 1.24 01 in DSP 2 mode and 12.37 in
DSP . 2 mode. Display rounding does not affect inter-
nal values.

All functions involving angles, that is, sin, cos, tan,
R—P (rectangular to polar conversion), = D.MS
(conversion to degrees, minutes, seconds), and the in-
verses of these functions accept arguments or pro-
duce results in degrees, radians, or grads, set by the
key sequence g ENTER? or g CHS or g EEX, respective-
ly. These settings remain in effect until changed.

On the theory that users should be able to correct
key-sequence errors with minimal effort, any prefix
key overrides any previous prefix key, and the se-
quence f ENTER? clears any prefix keys. Thus, for ex-
ample, the key sequence STO + fg g4 gives 1/%,

*One digit to the left of the decimal point with power-of-ten exponent, e.g., 2.54 x 10"2.

o SRR R




while g f ENTER? 4 gives the value 4 in the display.

By now it must be clear how key conditioning with
color-coded keys and legends has been used to pro-
vide access to many functions with a limited number
of keys on a small keyboard. Although another level
of conditioning would further expand the function
set (e.g.,fgaorf ' gaorgt4could possess func-
tional meanings), this would greatly increase key-
board complexity, keyboard busyness, and internal
control programming. For these reasons, most of the
key conditioning remains at the one-prefix level.

HP-65 functions are listed on page 14. Fig. 1 shows
an example of a problem solution.

'Programming

All operations described so far apply when the
switch in the upper right-hand corner of the HP-65
keyboard is in the RUN position. When this switch is
in the W/PRGM position, the keystrokes are stored in
the 100-step program memory instead of being exe-
cuted. Twenty-five frequently used two-keystroke
sequences merge into a single memory step; thus
the program memory may actually contain more than
100 keys‘rokes.

Problem:
Evaluate Vg - fq-Tsn :i’ ~1) - Rip
for Vg = 8 volts, kT/q = 0.026 voits, Ip = 6 x 10~ amperes,
Is = 107'% amperes, R = 1200 ohms
Solution:
Stack Registers
Dispiay
Keystrokes X Y b4 T
T8 8. ' '
ENTER?  8.00 x 10° 8
026 .026 8
ENTER? 2.60 x 10-2  .026 8
.006 .006 .026 8
ENTER? 6.00 x 103 .006 .026 8
EEX 10 CHS 10-10 .006 .026 8
= 6.00 x 107 .026 8 8
1 1 6 x 107 .026 8
+ 6.00 x 107 .026 8 8
fin L79 x 101 .026 8 8
X 4.66 x 10— 8 8 8
~ 7.53 x 10! 8 8 8
1200 1200 7.53 x 10! 8 8
ENTERT 1.20 x 103 1200 7.53 x 10-1 8
.006 .006 1200 7.53 x 101 8
X 7.20 x 10° 7.53 x 10~ 8 8
.= 33ax10' 8 |, 8 8
Calculator in DSP 2 Mode

Fig. 1. An example of HP-65 use as a scientific calculator.

STO 1 RCL 1 g Rl
STO 2 RCL 2 g Rt
STO 3 RCL 3 g x=y
STO 4 RCL 4 g LSTx
STO 5 RCL 5 g NOP
STO 6 RCL 6 g x#y
STO 7 RCL 7 g xsy
STO 8 RCL 8 g x=y
g x>y

Fig. 2. User programs may have as many as 100 steps.
These twenty-five keystroke sequences merge into a single
step. Thus programs may contain more than 100 keystrokes.

The memory itself contains no absolute addresses.
Instead, it is a circulating shift register organized in-
to six-bit words. One word is a marker that denotes
the boundary between the beginning and the end of
the memory. Another word is a pointer which
denotes the last step executed in run mode, and the
last step filled in program mode. As a program runs,
this pointer is moved down through memory.
Branching is accomplished by moving the pointer to
the location of the destination label. User-defined
function calls are implemented by leaving the main
pointer at the call and activating a second pointer at
the function location (see Fig. 3). When the return to
the calling location occurs, the second pointer is
deactivated and the first pointer reactivated. Neither
the marker nor the pointers subtract from the 100
user steps.

Programs may contain three types of tests to allow
conditional execution of all operations. These are x-v
comparisons (x#y, x<y, x=y, x>y), four flag tests

Fig. 3. The program memory circulates continuously, its
beginning and end denoted by a marker. The main pointer
moves as programs are entered or executed. A second
pointer is activated when a user-defined function is called.



Problem: Flow Chart for Iteration:

Find the diode current Ip in the circuit shown. Also find its sensitivity
with respect to Vg and R, i.e., dlp/dVp and dly/aR.

Initialize
Equations: Counter

Vg = %Tm('l.zf 1) +Rig

a1 kT 1 o
e = [ )+

Ao _ _.D[kj(lm_u) +R]"

Compute
fito(n))A'[1o(n)]

oR q + g’

ls = diode saturation current in amperes

R = resistor value in ohms Display
Vg = battery voltage in volts Io (n)

kT/q = thermal voltage in volts Compute & Store
Ip(n + 1)

Decrement Counter

Algorithm:

For Newton-Raphson iteration,

fio(n)]
Io(n + 1) = Ip(n) ~ —
ol ) =lo(n) = % To(n)]
where Ip(n) = nth guess
fli, (n)] = function evaluated tor nth guess .
, ) o . Display
f [ID(n)] = first derivative of function, evaluated for nth guess 9.999999999 x 10%°
ID(n + 1) = (n + 1)st guess
—v. - Kin(e -4y -
Let flio) = Vs — ln(IS 1) - Rl
) B KT 1y
Then  f(lp) = - [E(ln . |s) R]

Specity convergence criterion: it [ip(n + 1) — Ip(n)] < C
the algorithm halts.

Program halts after ten iterations. The user may then
start ten more iterations.

Dispiay
Io (n)

Example:
g = 1070 A Load card and foliow user instructions.
R = 1.2kQ
VB =8V
kT/q = 0.026 V Results:
c=10"°A Ip = 6.278A
BID/BVB = 0.8305 mA/V
alJoR = ~5213 uA/Q

Time required to compute |p (step 3): 11 seconds. (Continued)

Fig. 4. An example of HP-65 programming. A common problem in many disciplines is the solu-
tion of irreducible equations, such as x = 5 In x. Finding the answer requires a clever first guess
at the solution and, based on the results of the first guess, an even more clever second guess,
and so on. The iterative procedure, tedious if done manually, can often be automated. In this
example the Newton-Raphson method is used to solve an electrical engineering problem.

10

S e




(there are two flags, each of which may be set or
Program: cleared and then tested for set or clear), and decre-
ment and skip if zero (Dsz). Except for psz, each test,
if false, causes program control to skip the next two

HP-65 Program Form

e Diode.. Current [taration Page o 2 . . -
] P S — o - memory steps; otherwise, execution continues nor-
- , ni:;‘;: mally. The psz operation decrements data-storage
RO register Ry by one, using integer arithmetic, and if
|7 blal: the result is zero, program control skips the suc-

ceeding two steps.

Literal labels with the co To function implement
branching. Thus LBL<n> is the destination for GTO
<n>, where n is a digit or a key A-E in the top row.

The HP-65 user may store two types of programs in
. : the program memory. First, he may precede a section
of memory containing various functions with LBL

t [terate 10 more imes)
Compute 31, favg

As Counter . N
3 <m>,wheremis A, 8, c,D, or E, and terminate the sec-
24 + Ra Seraten, tion with RTN (return). Thereafter, pressing ke A,B,C,
X \ || £8 "133 Compute 3l Jak xre P 8 y
ks 42 iju.z 0 awes D, or E in the RUN mode causes that memory section
, RTN 2% [eaves Fip YinX,old Xin E 5 A . .
_yfg_%zmlﬁg o i wa¥ 23;//:'2 to execute immediately. Any or all of keys A to E may
EEX 33 First guess =07 nop 5ol A be defined but the sum of memory steps for all func.
P g” I . . .
stz e i Note, DEE Lalied | o tions cannot exceed 100. These user-defined func-
'L?L_ 3; Inibaise. eourter || ﬁ‘ycraf:‘n . ”i tions behave exactly like the preprogrammed func-
; . it % o e . . .
AR ! Thus, 10 define 5 tions described earlier, yet the user may create the
/7 7 T E S | R I ey ¢ . _ y y
PLBL. 23 Herate . FR N FnsL functions to fit his special needs.
% : Yl ! *“:/?E’?”‘ et The user’s second option is to precede a block of
I+ 4l /, / nXx . +h irs: FLAGS . e ey . . .
2 ;02 ST i Ju}»u;o?.“f[ : code with a label definition and terminate it with the
T SO U< e ? J d It2 R/S (Run/Stop) key. In RUN mode this key stops an exe-
{ rmoer T eV XL ——— cuting program; if no program is running, pressing
HP-65 User Instructi the R/s key starts execution. Pressing GTo<label
- ser Instructions *
name>R/S th
~— we Dioge. € L Jterntion 2 w2 am /S then starts program execution, and the

brogarmer K. K. Stockwair owe 3/6/74 program halts at the R/s in memory. If the program
starts at the beginning of memory no label is needed;
in RUN mode control can be transferred to the begin-

A1 1T 171

S P B -~
[l _IMSTRUCTIONS o |oATA7UNTS|  xEV2 | DATA7UNITS

ﬁ;m S | { " ‘nlng'of memory by pressing RTN. Prqgrams (lilefme;d1
2 Inputs Chny Order) | i ——] in this way may call any of the functions A t roug

Therma! VoHage o vers S0 7| E; the desired key is simply entered into the program

Satwration Current f e | [ST6 ][5, definition.

Resistance | & oims Erlle] The ssST (single step) and DEL (delete) functions

Batiery Voltage Ve 'V”“‘J@? . . o,

Convergence Criterion fc,,wsl@; implement debugging and editing. In w/PRGM mode,
'8 Compufe Diode Current i | =N — Y each depression of sST advances the memory pointer
- I# display 9.499999999 < /0% | ,DD! one step and displays each memory step as a two-

,‘dO 4 and 5/ 1 le:‘ i d . . s

‘ : ! : igit key code. These codes represent digit keys by
| Otherwise skip o L i {ED ! ) .
4 Display Present Diede Current | (BB fyeammes’ their values and all other keys by a row-column index
'8 Continue (oo 3, ierate fen| s : of the key position referenced to the upper left-hand
o - more dimes) —— vy o) corner of the keyboard. For example, the decimal-
le Edher caleuste voltage sens:#.v:¥y1 ED.W:%”: . - . . .
o o w = ; point key is in the eighth row, third column, so its

b ! jcalculak resistance sens#.v,aty[ [ — ‘5','.‘2‘,4 code is 83. In the RUN mode, each depression of ssT
k- Ly or %g'ﬂ “{ advances the memory pointer one step and executes

r,, | ,ca/cula-l:/ £l ) i L ] the adjacent memory step.
Ll calewiste £4C 1) A The key sequence g CLx in W/PRGM mode deletes
I P or L the displayed memory step and moves up the next
- godo2_and re-enter any : %%‘ step to fill the gap. Any keys entered in W/PRGM mode
f—for z{le’”:’lp“ﬂ for a new O are automatically inserted following the displayed
[ |propiem. .. [ [ memory step. Thus the replacement operation con-

sists of a delete operation followed by the desired key.
The sequence f CLx clears the entire memory.

11




Programs can be stored on magnetic cards for later
use. Cards can be recorded and rerecorded as many
times as desired. To protect a recorded program on a
card, further recording can be prevented by clipping
the notched tab on the upper left corner of the card.
Users may write on the card and place it in a slot
above the keys A through E, thereby labeling any
specially defined keys.

Fig. 4 shows an example of HP-65 programming.

Firmware
To direct the various computational and control

functions of the HP-65, 3072 words of read-only mem-
ory (ROM) are used. Each ROM word contains ten
bits and constitutes a calculator microinstruction.
Microinstructions grouped together in blocks per-
form the various external functional tasks of the cal-
culator. A task may require one block of words or
several blocks woven together. For example, the CLx
function requires only a few words, while the sin
function uses the tan function, which uses the add
function, and so on.

Although production of efficient microcode is an
iterative process, the first step is the choice or design

HP-65 Normalization Routine

User input form is stored in two processor registers, A and B.

Example: - 23.624 x 1072
A 92362400000802 (,__ pigpjay

B 00200099999000 2 — Display, Decimal Point
7° ; Follows

Z 9 — Blank
Two Digit Exponent

Exponent Sign (0 or 9)
Ten Digit Mantissa
Mantissa Sign (0 or 9)

This is converted to internal normal form in a third register, C. For
computational efficiency this is mantissa in sign-magnitude form
with one digit to the left of an implied decimal point and exponent in
ten's complement form (see ref. 4). In the mantissa sign position,
g represents minus, O represents plus. Thus, —23.624 X 1072 would
store internally as

92362400000999

Program Listing:

ROM
Subroutine
Addresses

Program

Step ROM ROM
Statements

Number Address  Code Labeis
51 LA1OED 11 FIxXS F-1->P
52 L@1264 1114 1.1 C+ 1 ->CL¥]
s3 LR106S JSB FIX7

111,111 -> L1e?3

a -> [Ixs)
13 -> F
C - 1 -> CLx}
IF BlP) = @
THEN GO TO FIXT
12 > F
IF ALFD >= 1

s6 LAt@7a 1111 FIx3
57 Leier1 111 .11 Fixse
w8 Leiarz
59 Le1e73 1 FIx7
&9 Le1a74 11 1111 =Y L1@€3

€1 L@1e?s 11 1t

€2 LP1e7e 1011 1 FIx6
&1 Le1a7? 11111 11 -> L1i7e

&4 LB11@D: 1 1

€5 Leriel
€6 Letiez

THEN GO TO FIXZ
SHIFT LEFT AlM]
c-1->Cix1

11111 1 -V L1876 JsB FlIxé

111111 FIxt €+ 1 -> Clxs]
1F NO CARRY GD TD FIX3

192 LA1146
183 Le1147 111 11 -> L1878
1e4  LBI1SA: 1ot

195  LB1151 11 .11 -> Liert

@ - C -» Cix]
JSB Fixs

A EXCHANGE CLWJ
C -> ALW)
IF AlMY = 1

119 LB1167 1311111 Fixe .
tze Lei17e 11 111

121 Le11?1 1
122 L1172 11, 11,11 -> L1146

123 101173 1111t

124 LR1174 1yt 1t FIx2

THEN GO TO FIX1
8 -> A(M]
@ EXCHANGE CIM]

Flow Chart:

Set C Equal
toA

Exponent
Negative 1
? Zero Normal
Form
Complement
Exponent

Correct Exponent
For Decimal
Point Position

Remove Leading
Zeros by Left
Shifts and Adjust
Exponent

Program Listing Notes:
Subscripts, e.g., C + 1—=C{X], refer to various register fields
tor arithmetic operation (see ref. 1).

S = Mantissa Sign
MS = Mantissa and Sign
M = Mantissa
XS = Exponent Sign
X = Exponent and Sign
P = Pointer
WP = Word up to and Including Pointer, Right to Left

Fig. 5. An example of the HP-65's internal microprogramming. Even such a seemingly trivial

operation as digit entry requires careful design so it seems trivial to the user. Values must be

displayed as keyed in, yet be normalized to a standard internal form. This is the normalization
routine and the flow chart and ROM listing for it.

12




22 TN R

B

Ry

of an algorithm. This may involve such constraints
as accuracy, execution speed, microinstructions re-
quired, or even available design time. Next, a func-
tional flow chart is drawn to outline the sequence of
various operations and any conditional operations.
This flow chart is then expanded to sufficient detail
that it can be translated to microinstructions and im-
plemented on a calculator simulator. More often than
not there are implementation errors to correct; some-
times the entire algorithm is faulty, requiring a new
design. When the design is complete, integrated-cir-
cuit read-only memories are produced.

Where possible, the HP-65 uses the proven algo-
rithm implementations from the HP-35 and HP-45
(trigonometric, logarithmic, and exponential rou-
‘ines). This saved development time and reduced
iimplementation error probabilities.

Many HP-65 algorithms would provide interesting
descriptions here, but one that demonstrates appre-
ciable complexity is the digit-entry routine. Design-
ing this seemingly trivial function so as to seem triv-
ial to the user required considerable patience and
careful thought. Usually, any entry will produce an
undesirable result unless the designer specifically ac-
counts for it. Values must be displayed as keyed in,
yet they must be normalized to some internal form.
The table below lists some of the design constraints
on this algorithm.

USER ACTION DESIRED RESULT
More than ten mantissa  Ignore all digits after tenth
digits
First key of new entry Overwrite existing x if key

follows ENTER" or CLx;
otherwise do automatic
ENTER:

Shift exponent left; new
digit becomes least sig-
nificant digit of
exponent.

Ignore all decimal points
after first

Ignore

Acceptand display lead-
ing zeros, zero normal
form.

Enter one in mantissa;
following digits enter
exponent.

Decimal point first key  Displayonly decimal
of new entry point; zero normal form.

Digits after decimal point Continue appending dig-

its; no effect on internal
exponent

Extra digits after EEX

Multiple decimal point

Decimal point after EEX
Leading zeros keyed in

EEX first key of new entry

Digits before decimal Continue appending dig-
point its, increment internal
exponent.
following Complement exponent
sign
Multiple Complement mantissa

sign, or exponent sign if
has been pressed.

Such an algorithm was explained in a previous
issue.? Fig. 5 shows the flow chart and ROM listing
for the normalizing routine.

Acknowledgments

Many people of course, contributed ideas to this ef-
fort. Particular acknowledgment is due the follow-
ing: Paul Stoft and Tom Whitney for bringing to-
gether the necessary technical resources and people;
Dave Cochran, for the trigonometric and exponential
routines used in the HP-35, and for help in un-
derstanding the HP-35 architecture; Francé Rodé
for further explanations of the HP-35 architecture;
Peter Dickinson for suggestions and criticisms con-
cerning algorithm implementations, particularly the
extension of the HP-35 algorithms; Tom Osborne for
helpful advice and suggestions regarding the func-
tion set and the external behavior of the HP-65;
Homer Russell and Wing Chan for helpful sugges-
tions and criticisms for the function set, and for




patiently keeping up with numerous daily changes;
Steve Walther for providing the microinstruction lan-
guage compiler; Darrel Lauer and Al Inhelder for
crystallizing the keyboard layout from a myriad of
suggestions; Ed Heinsen and Lynn Tillman for ex-
tending the simulation software to accommodate the
increased complexity of the HP-65.5

References

1. T.M. Whitney, F. Rodé, and C.C. Tung, “The ‘Powerful
Pocketful’: an Electronic Calculator Challenges the Slide
Rule”, Hewlett-Packard Journal, June 1972,

2. WL. Crowley and F. Rodé, “A Pocket-Sized Answer
Machine for Business and Finance”’, Hewlett-Packard
Journal, May 1973.

3. D.S. Cochran, “Internal Programming of the 9100A
Calculator”’, Hewlett-Packard Journal, September 1968.

4. M.M. Mano, “Computer Logic Design”, Prentice-Hall,
1972, chapter 1.

R. Kent Stockwell

Kent Stockwell joined HP four years ago. As a member of
HP Laboratories for most of that period, he's done program
development, modeling, and numerical analysis for com-
puter-aided circuit design and, more recently, the firmware
development for the HP-65. Kent studied electrical engineer-
ing at Massachusetts Institute of Technology, graduating in
1970 with SB and SM degrees. A native of Kalamazoo, Michi-
gan, he now lives in Palo Alto, California, where he's cur-
rently remodeling his house and putting his woodworking
skills to good use. He also plays trombone and baritone horn,
and enjoys backpacking in the mountains of California and
Colorado.

Arithmetic
add
subtract
multiply
divide

Logarithmic
natural logarithm (base e}
natural antilogarithm (base e)
common logarithm (base 10)
common antilogarithm (base 10}

Trigonometric

set operating mode (degrees, radians, or grads)

sine

arc sine

cosine

arc cosine

tangent

arc tangent

add or subtract degrees/minutes/seconds

convert angle from degrees, radians, or grads to degrees/minutes/seconds and
vice versa

convert polar coordinates to rectangular coordinates and vice versa

Exponential
square
square root
raising a number to a power (y*)
reciprocal (can be used with yX function to extract nth roots)

APPENDIX
HP-65 Programmable Pocket Calculator
Functions and Operations

Other Preprogrammed Functions and Operations
extract integer or decimal portion of a number
factorial
recall value of w to 10 significant digits
convert decimal-base integers to or from octal-base integers
“roll down” or "roll up” numbers in operational stack
clear display
clear operational stack
clear all nine addressable memory registers
recall last input argument from separate “last-x" storage register
store or recall numbers from any of the nine addressable memory registers
register arithmetic
disptay formatting

Program Structure and Edit Functions
clear program memory
user-definable keys (A-E)
label
go-to
return
run/stop
no-operation
set flag 1
test flag 1
set flag 2
test flag 2
x=y
x#y
XSy
x>y
decrement and skip on zero
delete program step
single-step

14




