HP-41
SYNTHETIC PROGRAMMING
MADE EASY

by Keith Jarett

HP-41
SYNTHETIC PROGRAMMING
MADE EASY

By Keith Jarett

Copyright 1982, SYNTHETIX
P.0O. Box 1080
Berkeley, CA 94701-1080
U.S.A.

Library of Congress Card Catalog Number: 82-62786
ISBN: 0~9612174-~0-5

This book may not be reproduced, either in whole or in part,
without the written consent of the publisher, except that the
programs contained herein may be reproduced for personal use.
Permisssion is given to reproduce short portions of this book for
purposes of review.

Printed in the United States of America.

Acknowledgement: This book would not have been possible
without the existence of PPC, the users group that has
fostered the development of synthetic programming since the
1979 introduction of the HP-41C. Several members of PPC have
made direct contributions to the recently developed
techniques in this book.

Most of these contributions were made by Clifford Stern,
one of the handful of "grand masters" of synthetic
programming. Clifford was the technical consultant for this
book, developing several programs specifically for use here
and spotting errors during several rounds of editing.

Many other members of PPC contributed indirectly through
their own discoveries and developments that advanced
synthetic programming over the last three years. Richard
Nelson, the founder of PPC, deserves a large measure of
recognition. He has single-handedly kept PPC alive for 8
years through untiring effort.

I dedicate this book to my wife, Catherine Van De
Rostyne, who has patiently endured my HP-41 addiction, and
who provided invaluable help throughout the preparation of
this book.

The plastic Quick Reference Card for Synthetic Programming on
the back cover 1s an 1ndispensable tool for synthetic
programming. Its use is described in Chapter 1. For further
description see Appendix D and Appendix C, item 10.

For price information on this book, write to: SYNTHETIX, P.O. Box
1080, Berkeley CA 94701-1080, USA. Enclose an addressed return
envelope for faster reply. Dealer and distributor inquiries are
welcome.

ABOUT THE AUTHOR

Keith Jarett has been addicted to Hewlett-Packard
calculators since he bought an HP-45 in 1973 and wrote manual
keystroke programs for it. 1In early 1980 he wrote his first
synthetic program for the HP-41, a forerunner of "CU" (see
section 6C). The enormous potential of synthetic programming
qgickly became clear, as the next year brought a wealth of new
discoveries by PPC members. The author coordinated the
development of 67 synthetic routines for the PPC ROM, a custom
program module bv- and for HP-41 users.

He 1is currently a Senior Scientist for Teknekron
Communication Systems Division, after several years as with
Hughes Aircraft Space and Communications Group. He received a
B.S. in Electrical Engineering from Cornell University, and an
M.S. and Ph.D. in E.E. from Stanford University.

The material in this book is supplied without representation or
warranty of any kind. Neither the publisher nor the author shall
have any liability, consequential or otherwise, arising from the
use of any material in this book.

-ije

TABLE OF CONTENTS

page
1 INTRODUCTION -— WHAT IS SYNTHETIC PROGRAMMING?
What will this book do for you?

5 CHAPTER ONE -- CREATING YOUR FIRST SYNTHETIC INSTRUCTION
How to create and use the Byte Grabber
How to interpret and use the Quick

Reference Card for Synthetic Programming

15 CHAPTER TWO —— FREQUENTLY USED SYNTHETIC INSTRUCTIONS
16 2A. Synthetic Tones
18 2B. Short Form Exponents
23 2C. Flag Register Control
27 2D. Program Pointer Control
29 2E. Synthetic Text Lines
38 2F. The TEXT @ instruction
39 2G. Using ALPHA for numeric storage
46 2H. Other scratch registers
49 CHAPTER THREE -- BYTE LOADING

HLow to create and use a byte loader program

How to make any synthetic instruction

67 CHAPTER FOUR —— SYNTHETIC KEY ASSIGNMENTS
67 4A. Create and use a key assignment program
77 4B. The "poor man's byte loader"
81 4C. Pseudo-XROM function previews
83 4D. The RCL b key assignment
87 4E. Save/Recall Time Module alarms
97 CHAPTER FIVE -- UNDERSTANDING PROGRAM EDITING ON THE HP-41

Create the synthetic F@ label instruction

Viewing bytes of program memory

-iii-

187 CHAPTER SIX —-- HP-41 MEMORY STRUCTURE AND STATUS REGISTER
APPLICATIONS
107 6A. Memory structure, functional setup,
the status registers
119 6B. Suspend and Reactivate key assignments
124 6C. Renumbering data registers under

program control

135 SOLUTIONS TO PROBLEMS

143 APPENDIX A —- INSTRUCTION TIMING
Hints for speeding up your programs
Typical instruction execution times

How to do your own instruction timing

151 APPENDIX B —-— MORSE CODE AND STO b

Generate Morse code at 16 words per minute

159 APPENDIX C -- SYNTHETIC PROGRAMMING REFERENCES

Periodicals, books, etc.

165 APPENDIX D -— THE QUICK REFERENCE CARD FOR SYNTHETIC
PROGRAMMING
Description, Legend, enlarged copy

171 APPENDIX E —— BARCODE FOR PROGRAMS

187 INDEX

189 ADDENDUM

—iv-

INTRODUCTION
WHAT IS SYNTHETIC PROGRAMMING?

Have you ever wondered why the HP-41 doesn't allow more
than ten different TONEs? Or perhaps you have wondered why you
can't store and recall numbers from the ALPHA register, or why
parentheses are not available as display characters. HP-41
SYNTHETIC PROGRAMMING MADE EASY will teach you to overcome
these limitations and add a whole new set of functions to your
1{iP-41's vocabulary. Examples of added capability are:

~-Techniques you can use to make your programs faster,

shorter, or to reduce their SIZE requirement

-Three to six extra "scratchpad" stack-like registers for

general use

-21 additional display characters including parentheses,

quotation marks, ampersand, and others

-Over 100 additional TONEs

-Enhanced alpha string editing ability

-Suspension and reactivation of USER mode key assignments

-Simultaneous setting of all 56 system and user flags to

any desired state

-Renumbering of data registers under program control to

eliminate register usage conflicts between subroutines.

The creation and use of synthetic instructions is called
synthetic programming. Synthetic instructions are those which
cannot be entered from the keyboard by normal means. Thousands
of synthetic instructions are possible. These range from
non~standard TONEs to powerful instructions that access system
scratch registers. Synthetic programming will not harm your
HP-41 in any way, although the annoyance of occasional
“crashes" (temporary keyboard lockup and/or MEMORY LOST) is to
be expected as you are learning. Synthetic programming will
work on all calculators in the HP-41 family, including the

-1-

HP-41C and CV, regardless of date of manufacture. It depends
only on fundamental aspects of the calculator's internal

operating system that are common to all HP-41l's.

As a simple example of the beauty of synthetic
programming, consider the two short programs listed below. The
one on the left is a standard, nonsynthetic program to print
out the message "Hewlett-Packard". It occupies 4@ bytes of
program memory (more about bytes in Chapter 1). The program on
the right uses a synthetic instruction to do the same thing in
only 20 bytes, exactly half the space. In this example, which
you will encounter in more detail in Section 2E, synthetic
programming overcomes the lack of direct access to lowercase

printer characters on the HP-41.

Programs to erint

HONSYNTHETIC: the message

81 "H" Hewlett-Packard

82 ACH

83 SF 13

84 "EWLETT-" SYNTHETIC:

85 ACH

86 CF 13 81 “Hewlett-Packard"

87 p* 82 AVIEW

88 ACH 83 END

89 SF 13

18 "ACKARD"

11 AcA '
12 PRBUF CAT §
13 CF 13 END 48 BYTES

14 END END 28 BYTES

You need not become an expert to reap the benefits of
synthetic programming. Armed with the knowledge and confidence
provided by this book, you can quickly and easily create and
run any synthetic program from the HP User's Library, the PPC
Calculator Journall, or any other source. Also covered are the
most frequent applications of synthetic programming, so that

~2=

you may customize your own programs with synthetic

instructions.

This book is designed to provide an easy, practical
introduction to synthetic programming on the HP-41l. It uses
the latest simplified synthetic programming techniques in a
"hands on" approach that makes it easy and fun to try the
exanples on your calculator as you read.

The scope of HP—-41 SYNTHETIC PROGRAMMING MADE EASY is
intentionally limited, in order to provide the most readable
introduction to synthetic programming. Details are often
bypassed, but references are given for those readers who wish
to learn more about them. The casual synthetic programmer will
be able to learn all he needs from this book. For others this
book is a ticket of admission to the growing body of synthetic
programming literature. It has all the framework you need to

build your knowledge of synthetic programming.

If you own a PPC ROM2, your progress through the book can
be speeded up by using its advanced features such as synthetic
key assignment and byte-loading programs. If you have just the
calculator you will sometimes need to follow slightly more
elaborate instructions to "bootstrap" your system to full

synthetic capability. Either way it's fairly simple.

Hew lett-Packard does not support synthetic programming.
Although many individuals in HP's Corvallis Division have some
familiarity with synthetic programming, HP does not have the
ma* power to answer questions about synthetic programming from

users. So please don't ask HP about synthetic programming.

Just read this book and continue into the other sources of

information (Appendix C) for answers to your questions.
The most important benefit you'll get from HP-41
SYNTHETIC PROGRAMMING MADE EASY is access to all published

synthetic programs. Many synthetic programs, especially those

-3

in the PPC ROM, perform functions that can't be duplicated by
any nonsynthetic program. After you have read this book,
synthetic programs will no longer seem mysterious and
forbidding. There are hundreds of powerful synthetic programs
in the PPC Calculator Journal and elsewhere that will give

your HP-41 capabilities you probably never dreamed of.

1 The PPC Calculator Journal (PPC CJ) is a publication of
Personal Programming Center (PPC), a non-profit public benefit
California Corporation dedicated to personal computing. PPC
has several thousand members, most of whom are fellow HP-41
enthusiasts. PPC members have been responsible for virtually
every discovery in the field of synthetic programming,
beginning with the first description of synthetic programming
by William C. Wickes in the PPC CJ in 1979. The PPC Calculator
Journal continues to be the primary source for the latest
information on synthetic programming. To find out how you can

get the PPC CJ, see Appendix C.

2 The PPC ROM is a custom ROM plug-in module for the HP-41,
designed by PPC members and manufactured by Hewlett-Packard.
It contains 122 programs, most of which are usable as
subroutines in your own programs, and most of which contain
synthetic instructions. The manual is an astounding 492 pages
long and has probably not been fully read by any one person.
See Appendix C to find out how you can get the PPC ROM.

CHAPTER ONE
CREATING YOUR FIRST SYNTHETIC INSTRUCTION

A decimal (base 18) number xyz has the value
x'102+y'1ﬁ+2'1, where x, y, and z are any digits from & to 9.
Similarly a binary (base 2) number gqrst, (the subscript 2
indicates base 2) has the value q‘23+r'22+s‘2+t, where q, r,
s, and t are digits from @ to 1. g is the "eights" digit, r is
the "fours" digit, and so on. For example 19011, = 8+2+1 = 11,
and 11111111, = 1-27+41+2641-25+1-2%+1-23+1-22+1-2+1 =
128+64+32+16+8+4+2+1 = 255.

A hexadecimal (base 16) number uv;g has the value u"1l6+v,
where u and v are hexadecimal digits from zero to fifteen.
Since there aren't any ordinary digits that correspond to the
numbers ten through fifteen, it is standard notation to borrow
them from the alphabet: A, = 18, Bjg = 11, C1g = 12, Djg =
13, Ejg = 14, Fyg = 15. For example C5;¢4 = 12°16+5 = 197, and
FFig = 15°16+15 = 255. Incidentally, the shorthand "hex" will
be used throughout this book. It means the same as hexadecimal
or base 16.

If you are not familiar with base 2 and base 16 number
systems, read the last two paragraphs again and give them a
little thought. Like the rest of this chapter, it should all
begin to fall together after a couple of readings. Hang in
there, because we're going to start having some fun by the end
of this chapter.

The basic unit of program memory in the HP-41 is called a
byte. A byte is a collection of eight bits (binary digits)
that can range in value from U0Q000PP base 2 to 11111111 base
2, or equivalently from @ to 255 base 10. Although a byte can
take on only 256 distinct values, there are thousands of
distinct HP-41 instructions. The STO and RCL instructions
alone have more than 499 variations. This variety is achieved
by allocating more than one byte for some types of
instructions. Simple instructions like +, LOG, and MOD occupy

~5-

only one byte of program memory. Instructions like VIEW 14,
RCL 99, and :REG IND X require two bytes -- one for the

function name, or prefix, and the second one for the suffix. A
few types of instructions require three bytes, while text
lines require up to 16 bytes (for a 15 character text line).

Synthetic instructions can be created by removing prefix
bytes from two-byte instructions, using a simple procedure
described in this chapter and the next. As you shall see in
the examples in this chapter and the next, the removal of a
prefix frees the suffix byte, which can in turn become a
prefix and attach itself to the following byte or bytes. By
carefully selecting which instructions we start with, we can
force a wide variety of synthetic instructions to appear after
the original prefix byte is removed. To remove prefixes we use
a workhorse key assignment called the "byte grabber™,
discovered by Erwin Gosteli after some pioneering work by Jack
Baldrige. Incidentally, both Erwin and Jack are members of
PPC, and their discoveries appeared in the PPC Calculator
Journal (see Appendix C item 1). In fact, all the people
mentioned in connection with discoveries or programs in this
book are members of PPC.

Since the byte grabber is not a standard key assignment,
a special procedure is required to create it. You are not
expected to understand the procedure at this point, so just
follow the required steps carefully. Turn your thinking cap

back on after you have assigned the byte grabber.

Go get your HP-41 now, if you don't already have it in
front of you. If you've got any ideas about reading this book
first, then trying the examples later, forget them! The
examples are an essential part of the learning process. Doing
the examples will also make the text much easier to follow.
When you read "go to line ©5 and delete it", you won't have to
ask yourself what line @5 is. Trying the examples as you go
may seem to be slowing you down, but it will save you time in

the long run because you won't have to read and re-read.

—6=

If you have a PPC ROM, skip to step 12.

I1f you do not have a PPC RUM, you can assign the byte

grabber by carefully following an alternate procedure

conceived by Keith Kendall. Follow these steps precisely or

you'll have to start over from step 1. It may take a few tries

to get it right, but be patient.

1.

MASTER CLEAR to MEMORY LOST status. This is done by
holding down the backarrow key while turning on the
calculator, then releasing the backarrow Kkey. There
is a more complicated procedure for assigning the
byte grabber that doesn't require a MASTER CLEAR, but
you should consider this step a rite of initiation to
synthetic programming. This certainly won't be the
last time you get MEMORY LOST.

ASN "+" to the LN key (press: shift ASN ALPHA shift +
ALPHA LN). This assignment will be replaced by the
byte grabber assignment.

ASN "DEL" to the LOG key. (Press: shift ASN ALPHA D E
L ALPHA LOG.)

Switch to PRGM mode. You should see @Y REG 45.

Start CATalog 1 (still in PRGM mode) and press R/S
immediately before the display blinks. Repeat this
step if you didn't press R/S quickly enough.

Switch to ALPHA mode, then press the backarrow key
with the .END. in the display.

You should see the program line 4694 RCL 41l. The
origin of this mysterious line number will be
explained in Section 6A. A "bug" in the HP-4l's
internal programming has just allowed you to escape
the normal confines of program memory. You are now in
the system scratch register area. More about this in
Chapter 6, too. Now switch back out of ALPHA mode by
pressing the ALPHA switch again.

GTO .©@085. You can press LN for 0085 to save

10.

11.

12.

keystrokes. You should see 95 LBL ©3. You are now in
the key assignment area, which will also be covered
in Section 6A. The next step is to remove the dummy
"+" function assignment and replace it with the
synthetic byte grabber assignment. Since the
calculator thinks it is still in a program area, this
replacement is accomplished by keying in program
instructions that correspond to the data needed for a
byte grabber assignment. This correspondence is not
straightforward, so don't expect to understand it at
this stage.

DEL ©@83. You can save several keystrokes by pressing
USER (to activate the DEL key assignment that you
made to the LOG key), LOG, SQRT (the square root
key). You should see 04 STO @l. You have now deleted
the assignment of the + function. Next we replace it
by the byte grabber.

Key in the ALPHA (text) line "?AAAAAA". If you don't
have an Extended Functions module plugged in you will
see @5 "?ATTTTT ". The last five A's went past the end
of ‘memory into what would be the first part of
extended memory and appear as "ghost" characters.
Switch out of PRGM mode and GTO.. or do CAT 1 to get
out of the key assignment registers. Skip step 12 and
go on to the following text.

If you have a PPC ROM, or if you are returning after
reading Chapter 4 and you already have a copy of "MK"
(Make Key assignments), assign the byte grabber using
this abbreviated procedure instead of steps 1 through
11 above:
a.) Clear any Time Module alarms that are present.
b.) ASN ALPHA ALPHA LN (this clears the LN key of
any assignment
c.) XEQ or "MK"
d.) When the PRE+POST4+KEY message appears, supply

-8~

the inputs 247 ENTER+ 63 ENTER*t 15 and R/S.
When the program stops again, you're done. You
can backarrow the PRE+POST+KEY message, but it

is not necessary.

1f you have followed the above procedure carefully, the
byte grabber should be assigned to the LN key. But don't try
it yet; the byte grabber can be dangerous if you are not
careful. If you press LN in USER mode and hold it down, you
should see XROM 28,63, followed by the message NULL,
indicating that the time limit for releasing the key has been
exceeded. When the NULL message appears the byte grabber
operation is cancelled, and it is safe to release the key. In
a few pages you will beusing the byte grabber, so don't be
impatient. A little knowledge now can save a lot of MEMORY
LOST later.

If you have a card reader, write a status card (XEQ ALPHA
W S T S ALPHA) to record this synthetic key assignment. Then,
if you ever get MEMORY LOST, you can read in track 2 of the
card to reinstate the byte grabber assignment. It is then OK
to just backarrow the prompt for track 1.

NOTE: Whenever you see the notation BG, short for byte
grabber, in the following discussion, it refers to the byte
grabber assigned key, in this case LN. Unless the text
specifies otherwise, the byte grabber Kkey is to be pressed in
USER mode and in PRGM mode.

WARNING: Don't press BG indiscriminately in PRGM mode. If you
press it at or,just above an END, you may need to MASTER CLEAR
to restore use of Catalog 1. (The first thing to try is to BST
to the line that was displayed before you pressed BG the first
time and BG again.) If your keyboard ever "locks up", simply
remove the battery pack, and the printer if it is connected,
for a couple of seconds and replace it. If that doesn't work,
try turning the HP-41 off and on several times with the

-9-

batteries removed. Pulling out any plug-in modules (especially
QUAD MEMORY, XMEMORY, and XFUNCTION modules) may help. It is a
very rare crash that requires overnight removal of the

batteries.

Now switch into PGRM mode, GTO.., and key in these

instructions, which we will be using shortly:

@1 ENTER*+

g2 X<> 88

@3 STO IND 31
94 PI

Line @1 is a normal ENTER*.

Line 02 is obtained by XEQ, ALPHA, X, shift COS, shift
TAN, ALPHA, 8, 8. As you may know from reading the Owner's
Manual, the HP-41 implements many more functions than could
fit on the keyboard. Functions like X<> which are not on the
keyboard must be accessed by XEQ, ALPHA, function name, ALPHA.
The shifted ALPHA characters, like < and >, are unfortunately
not shown on the keyboard. Instead you should look at the
sticker on the bottom of your HP-41 to determine which shifted
key corresponds to the desired ALPHA character.

In case you haven't used indirect instructions before,
line #3 is STO, shift, 3, 1. The PI function can be accessed
by shift, 4.

Before using the byte grabber you need to know a little
more about bytes. Put the calculator aside for a few minutes
while you digest the next two pages.

For synthetic programming, it is often convenient to
express the 256 possible values of a byte in hexadecimal (base
16). By splitting the eight bits of a byte into two four-bit
groups and converting each four-bit group to a hexadecimal
digit we get a two-digit shorthand for the value of a byte. In
base 16 the letters A through F designate the numbers ten

-10-

through fifteen. The equivalence of 4-bit groups to
hexadecimal (base 16) digits is:

binary hex decimal
171%1%] 0]
0Yo1 1 1
019 2 2
gvll 3 3
0100 4 4
9101 5 5
@119 6 6
¥1ll1l 7 7
1200 8 8
1901 9 9
1910 A 190
1911 B 11
1190 C 12
1101 D 13
1110 E 14
1111 F 15

1 0oL 19 16

For example 010¢ 1101 base 2 = 4D base 16, and 1111 990@d1 base
2 = Fl base 1l6.

Take out your HP-41] QUICK REFERENCE CARD FOR SYNTHETIC
PROGRAMMING (the 2-7/8" by 6" plastic card that comes attached
to the back cover of this book) or refer to the full-size byte
table provided in Appendix D. The byte table contained in the
Quick Reference Card ("UQRC") is the Rosetta Stone of Synthetic
Programming, illustrating the byte equivalences that are the
key to creating synthetic instructions.

The byte is based on the hexadecimal representation rcjgs
where r is the row number (@ through F) and ¢ is the column
number. Rows @ through 7 comprise the first half of the byte
table; rows 8 through F comprise the second half. At the top
of each box in the byte table part of the QRC is the primary
function, or prefix, interpretation of that particular byte.

-11-

Immediately below is the suffix interpretation. At the bottom
of the box is the decimal equivalent for that byte. On the
right are display and printer character interpretations of the
byte; (see page 166); these will be covered in Section 2E.

As an example consider the ENTER+ instruction that you
just keyed in as line @1. Since we find ENTER+ in the prefix
(top) portion of the box at row 8 column 3 of the QRC, we can
conclude that ENTER+ is represented internally as 83
hexadecimal. The bottom row of the box at row 8 column 3 tells
you that 83 hexadecimal is equivalent to 131 decimal. You have
no immediate use for this decimal equivalent, but you'll find
it quite handy when you get to Chapter 3.

Next consider the X<> 88 on line ©92. We find X<> at row C
column E, and 88 in the suffix portion of the box at row 5
column 8. This means that X<> 88, a two byte instruction,
represented internally as hexadecimal CE 58, occupying two
consecutive bytes. Line ©3 is STO IND 31. STO appears at row 9
column 1 while IND 31 appears at row 9 column F. Thus STO IND
31 consists of the two consecutive bytes 91 9F. Line @4, PI,
is represented as hex 72 (row 7 column 2). Note that
instruction line numbers are not stored in program memory. The
HP-41 actually computes the line number by counting
instructions from the top of the program.

Suppose we could somehow get rid of the X<> byte (the hex
CE byte) in the X<> 88 instruction. The suffix 88 (hex 58)
would be left to "fend for itself", becoming the instruction
EtX-1 (see row 5 column 8 of the QRC).

The byte grabber key assignment allows us to easily get
rid of leading bytes in instructions. For this reason it is
sometimes referred to as a "prefix masker". The byte grabber
always operates on the program step following the one shown in
the display, grabbing its leading byte.

Now get out your HP-41 again, turn it on, and verify that
your program is still intact by switching to PRGM mode and
pressing SST to step through it.

To illustrate the prefix masking behavior of the byte

-12-

grabber on the X<> 88 instruction, first PACK (XEQ ALPHA P A C
K ALPHA). Do not GTO.. , since you want to stay where you are
in the program. GTO.. has the undesired effects of attaching
an END to your program and "kicking you out" of it. Make sure
you are in USER mode, then GTO .80l (the step before the X<>
88 instuction). Switch to PRGM mode if you are not already in
PRGM mode, and BG (press the LN key). You'll see a strange
looking text instruction
g2 TTTTTTR .

The starburst (all 14 segments lit) at the end of the
text line is, or was, the X<> part of the X<> 88. This hex CE
byte has been grabbed, leaving the suffix byte to become an
instruction on its own. SST and you'll see

Y3 E+X-1 ,

precisely as predicted.

Review this example until you feel comfortable with it.
Once you have conceptualized the byte structure of memory and
the action of the byte grabber (see Figure 1.1), you are over

the hump and on your way to some real synthetic programming.

What would happen if we grabbed the STO prefix from the
STO IND 31 instruction? According to row 9 column F of the
QRC, the IND 31 suffix byte would become a TONE instruction.
But wait a minute. The TONE instruction needs a suffix of its
own; after all, every TONE is a two-byte instruction. Where
will this newly exposed TONE instruction get its suffix? Let's
find out. BG at line 903 (GTO .9003 if you are not already
there and press LN in PRGM mode) to grab the STO byte.SST to
see

g5 TONE Y , a synthetic instructionl!

A quick check of row 7 column 2 of the QRC reveals that the
new TONE prefix captured the PI instruction, transforming it
into the suffix Y (see Figure 1.1). It is certainly reasonable
that the TONE instruction got its suffix from the next
instruction in the program -- it had to get it from somewhere.

-13-

You can SST line 05 in RUN (non-PRGM) mode to hear your new
synthetic tone. BST and SST to hear it again if you like it.
There are more than 1lob other synthetic TONLs waiting to be

explored.
hexadecimal program program
byte value: instructions instructions after
row column byte grabbing
8 3 ENTER 4 ENTER ¢
C E X<> TT?TTTTE
5 8 88 E+X-1
9 1 STO TTTTTT®
9 F IND 31 TONE
7 2 PI Y

Figure 1.1 Transformation of instructions by byte-grabbing.

14

CHAPTER TWO
FREQUENTLY USED SYNTHETIC INSTRUCTIONS

This chapter introduces the eight types of synthetic
instructions that are most frequently used. Regardless of
whether you get involved in writing exotic synthetic
programs, you will want to use some of these easily
understood instructions in your ordinary day-to-day
programming. The types of instructions to be discussed in
this chapter are:

A. Synthetic Tones, which personalize your programs;

B. Synthetic Exponential Data Entry Lines ("Short Form

Exponents"), which save bytes;

C. Flag Register Control, used to preserve the display
setting while constructing PROMPTs;

D. Program Pointer Control, which can freeze the
“flying goose";

E. Synthetic Text Lines, used where synthetic
characters such as parentheses or lower case letters
are needed;

F. The TEXT O instruction, equivalent to an i{HP-25 NOP
(No Operation) instruction;

G. Control of data registers "carved out of" the ALPHA
register, which provides auxiliary storage for
intermediate program results without disturbing the
numbered data registers; and

H. Use of other operating system scratch registers for

temporary data storage.

As examples of synthetic instructions are presented in
this chapter, step-by-step procedures on how to create them
will also be given. These procedures will use the byte
grabber key assignment that was constructed in Chapter 1.
Owners of the PPC ROM have the option of bypassing this
procedure and creating the instructions directly using PPC
ROM routine (Load Bytes). The appropriate inputs

-15=-

will be identified for each example. If the synthetic
instruction consists of two bytes and is not a digit entry,
PPC ROM routine @@ can be used in lieu of if a key
assignment of the function is also desired. It is recommended
that PPC ROM owners try at least some of the examples in this
chapter using the byte grabber instead of @I§ or .

For those of you without PPC ROMs, a short version of
"LB" will be introduced in Chapter 3, along with instructions
for using the byte grabber to key it up. You may do so now,
but you will learn more about using the byte grabber by
waiting until you get to Chapter 3 to key up and use “LB".

2A. Synthetic Tones

As mentioned at the end of Chapter 1, there are over 100
possible synthetic tones of widely varying pitch and
duration. Gf the 16 distinct tone frequencies, the first ten
are- the frequencies of TONE O through TONE 9. The durations
of synthetic tones vary from several milliseconds (tones
audible only as a "click") to several seconds. For many
prompting applications a relatively short, high-pitched tone
is required. TONE 89 is one such tone. It can be created as
follows. Delete any leftovers from the Chapter 1 examples and

key in these program lines:

g1 ENTER+* / @@ inputs:
g2 STO IND 31 TONE 89 = 159, 89
g3 SIN

Now, still in PRGM mode, GTO .@01 and BG (press LN in USER
mode). As usual, you'll see a text line like this: K2
TT?TTTTR . SST to see your new synthetic instruction @3 TONE
9 . It may not look synthetic but you'll soon hear the proof
that it is.

The IND 31 byte (hex 9F) became a TONE instruction after
the STO byte was grabbed. The SIN byte (row 5 column 9 =

-16-

decimal 89) became the tone number. Synthetic tone numbers
from 10 to 101 decimal are displayed in decimal with only the
rightmost (ones) digit shown. Thus in this case TONE 89
displays as TONE 9. Other tones, whose second bytes are
between row 6 column ¢ and row 7 column F, carry a letter
suffix as did TONE Y in the Chapter 1 example.

Switch to RUN mode and SST to hear TONE 89. It may

become one of your favorites for prompting.

Table 2.1 summarizes the synthetic tones that are
available to you. The fregquency of a tone is determined by
its column number in the table. The frequencies corresponding
to column A,B,C,D,E, and F form an upward progression, with
the highest synthetic frequency (column F) being just below
that of TONE ©, the lowest normal frequency.

The duration of each tone, in seconds, is listed in the
table. This duration is the total time the 1P-41 needs to
execute the tone; therefore the actual audio output duration
will be significantly shorter for the very brief tones.
Durations may vary from those listed depending on when your
1iP-41 was produced. For example TONE 2 is J.64 seconds long
on newer HP-4l1's, versus only #.861 seconds on the oldest
HP-41's.

As you scan the tone table, you'll notice that TOKEs 37
and 38 are the shortest, at .020 seconds each. The following
example illustrates a use for them. Clear the previous
example and key in the program lines

@1 DEG / @8 inputs:

g2 CLX

93 LBL 01

¥4 STO IND 31 TONE 37
©5 RCL ©5

06 SIN

@7 SQRT

¥8 STO IND 31 TONE 38
@9 RCL @6

i

159, 37

159, 38

-17-

19 SIN

11 SQRT

12 GTO ©1
GTO .9Y7, BG, and delete the text line. SST to see TONE 8
(actually TONE 38). GTO .993, BG, and delete the text line.
SST to see TONE 7 (actually TONE 37). Now switch out of PRGM
mode, RTN, and R/S. Although the HP-41's internal oscillator
is not crystal controlled, this pProgram makes a nice
tick-tock imitation of a pendulum clock.

Synthetic tones have other applications as well. See
Appendix B for a high-speed Morse code practice program that
uses synthetic tones. You can use Figure 2.1 to help you
choose the right synthetic tones for your applications. You
can pick a tone frequency and duration, and look up which
synthetic tone is the closest to what you need. Table 2.1 and
Figure 2.1 are reprinted with permission from Robert E.
Swanson, who compiled the data they contain for the
HP-41/HP-IL SYSTEM DICTIONARY, which is unfortunately out of

print.

2B. Synthetic Exponential Data Entry Lines

Pressing EEX CHS 3 in RUN mode gives you 1x16~3 in the
X-register. But if you try to do the same thing in PRGM mode
you'll get an instruction that looks like 1E-3 even though
you only pressed E-~3. The calculator insists on adding a
superfluous 1, wasting a byte of program space. Now that we
have a byte grabber I'll bet you can guess how we can get rid

of that 1. Clear the previous example and key in

@1 ENTER* inputs:
92 1E-3 E-3 = 27, 28, 19

PACK (this is necessary this time). As in the Chapter 1
example, you must press XEQ ALPHA P A C K ALPHA, and not
GTO.. , which would be easier to key in. The problem is that
GTO.. leaves you "high and dry", requiring you to execute

=18~

sanjoejnuew Jo o23ep 2Uy3z uo puadop Aew pue ’‘sSsSa] SPUODSS GT@G® 3INOJe ST UOTIRIND SUOY TeNn3IDY

ssIaqUINU WONX PUER ‘SWI} UOTINDIXD ‘Idqunu 7NOJL [ewTOosp 9yl ST Xoq yoes utyltm X9y

€9°T94 29 19 19°194 09°T9f| 65°1T mm.Hﬁ LS T 95 T SS T vS 1 €6°14 2619 165°194 05°19 6v 19 8¥°T19
B 0g'Il| 8@ 07" p9°q 99°L [
¥8°4 Sv'g LL°§g €L°0)| 8€°H.62°(2 Qv €T 0L mm.o//mm.qw L0 Ov°0)f 61°Y SS°a 1907 G20
8 /elfp 921> 621 peifle €2Tp 22Ip 12Tid 0210 6TIN 8TTW /ITH OTTHX STIM vITZ €TTL 211
L 1R v T v T vy Toff €v T 20 19 Tv° 19 0p 19} 6619 8T LE°T9 9€ 19| S€°TH v 19 €€° 194 2¢°19
2270 €2°Q 9
ge'g 0004 1e°q vself evd 92°d sy vorof o8'd 96 s2°7 TICOf 1277 Iy g 12°4 29°0
rTIiTp o1 601D 80T|j4 £0T@ 90T SOT) vOTllg €O0TY ¢0Tt 10T 00T 66 864 L6 96
119 0c°1q 62°19 82°19|| 22719 92 19 G219 v2 19| €2 T4 22 19 1¢“19 0219} 6T TH 8T TY L1°TF 91°19

Sp2l ogtd 8.°¢ 2igll 6 19°gd 8€0| 95°0) €607 9 9I°Y OL"Off <2L°G 89°[22°Q GL0°
G6 b4 €6 26 16 06 68 88 L8 98] 5g 8 £9 28] 18 08
ST 19 v1 T c1°1q 2t°19| TT°T19/ 01°19 60°TH 80° 19 £0°T9 90°T9 G019 ¥0°19|| £0°19 Nw.aw 10°14 00°19
ze0° fe v
(870} S8°(0c°¢ 09°¢l] 820 85°¢g SU'Q €1T°0) 12°(Q 2L07f G2 10°1 61°0 91°Q 62°4 6L°1
6L 84 L 74 S \ 74 €4 2L 14 04 69 89 L9 99 59 %9
€9°09} 29°0% 19°09 09°09} 65°09 85°0F LG 09 95°09)| GG 09 ¥S 0 €G°0F 25°09]| 16°09 0509 6¢ 09 8% 09
6£° 0 "0 £
(2°0f €6°0 LL°¢ 6T°Efl 66°¢ L0°HW 9v0°} 29°0f £LL°0 SL°Q vI'OF 62°0ff 98°T +v0°¢f 92°(@ 0§°0
£9| 29 19 09 6G 89 L4 99 G4 b9 €4 2s 14 04} 6% 8t
mv.owov.ommv.omev.owmv.owmq.Omﬁw.oaovaommm.oowm.omnm.omwm.ommm.oc¢m.ocmm.ommm.ow

I
¢I°0] 62°1) IL°T 08°€ll €' €8°Q 6v"(S9°0ff S€°Q 020} 020°) LI'T|l o06°1] 622 O1°1 220"
LY 9t mﬁ bt 1% f4, 1% [0} 6¢ 8¢ LE] 9€ GE] vel €9 2t
1£°09] 0£°09 62°09 82°09|f £2°09 92°0F G2 09 v2 09|l €2°0d 22°09 T2 09 02°09]| 61°09 81 0 Z1°09 91°09
1
L£°2] 9v gl S8°¢ SLUT| €2°¢f OL°W e6v'd 62°0f 280 Sv'd verd 8Ol 62°0 £V I 2€Q 28°1
1€ 0€] 62 82 L2 94 G2 e £4 2 12 0e 61 81 LT 91
GTC09[YT 09 £1°09 21°09|| T1°09] 01°09 60°09 80°09)f £0°094 90°09 G009 v0 09| €0 09 20°09d 10°0% 00°09
08°0Q ¢
GE0l 08 £9°Q (LE°€|| 2v°g 80°F L' [2'Of 82°(82° BZ'(@ 82°0) 82'(82°' 82°G} 82°0
ST $1 €T IS Tt [0 6 8 4 9 9 4 £ a T]
E| 3 a J g Y 6 8 L 9 g 14 € 4 1 ')

*SI3qUINN WOYX PUE sawl] uonndaxy HTEVL dNOL AD/Di¥-dH

~19-

J 9 iels-3 J 9 Ie(s-3 J v 9 El jel4-3 3el4-a I g v leld-y
Op
<) N | &) [« X © Y S |
)& [P] N) S 4
72 X4 A4 il o
=Y St m DAY 4
Ui v
Wpswymgo
Tz0°
50"
1°0
; : -
: , o
N =
i m
2°0%
SR B
(H) SL @[2TT S
AOHﬂ 7 —
I 164 g
N LOT L . H.Q'Il.
I eh A =
Sw ncv —
1 ey K-
1] I
sip | eeg o 1.,
,e_ RN S 90Ti5”
71 T S L
=N 4] L2o w4
1 Smwurlwm
Mowh [(9)(e) 9t .
%ﬁ ohwgﬂy 0°§
(Z4
€92 622 161 SLT 861 eyl 1€1 121 eIl S0t “bauy
- _ _ _ _ — | “baay
6 8 L 9 S 4 € Z 1 [} 1 4 € 14 S 9 - 19y
b 199
6 8 L 9 S € 14 1 () 4 3 a J 4 v XIH

22—

Catalog 1 and interrupt it to get back into your program. You
may save a little time in the long run by assigning PACK to a
key; Jjust ASN ALPHA P A C K ALPHA and press any key that
doesn't already carry an assignment that you need.

Now GTGC .01 and BG. Delete the text line -- the
starburst at the end of the text line is the captured
superfluous 1. SST to see ¥2 E-3 , a synthetic exponential
data entry line, often called a "short-form exponent"”.

You can try this synthetic instruction by S$S8Ting in RUN
mode. You'll find that E-3 works just as well as 1lE-3. It
obviously saves a byte of program memory, but you should also
be aware that it executes faster than 1E-3 to boot.

lixecution time, but not memory, can also ke saved by
using the decimal point instead of the digit © for a zero
entry, and E instead of the digit 1 for an entry of one. The
lone decimal point is not a synthetic instruction, but the
lone £ is. To create it, just grab the STO prefix from a STC
27 instruction. Row 1 column B of the (RC shows that the 27
suffix will become an EEX instruction.

It was stated earlier that PACKing is necessary when you
want to grab the leading 1 from an exponential data entry
instruction. The reason is that all digit entry instructions
are preceded by an invisible WULL byte {(row § column @) that
serves solely toc separate the new digit entry instruction
from the previous instruction. Do not confuse NULL bytes
with the NULL message that appears when you hold a key down
for 2 seconds after the function preview appears. As its name
implies, a NULL byte is a place holder that does nothing when
executed (except when it is a suffix in an instruction like
X<> ©¢ or IREG ©U@). NULL bytes, which are always invisible
except when they are within text instructions, are created
when instructions are deleted and are removed by PACKing.
This behavior will be explained and illustrated in Chapter 5.

In the first example of this section we used PACK to
remove the null that the liP-41 inserted between @1 ENTER* and
@2 1E-3 . If line ©1 had been a digit entry instruction, the

-21-

null would not have been removed by PACKing. It would have
been needed to maintain the separation of lines @1 and 2.
Except for this special case, PACKing will always remove the
null.

But there is another way to remove the null. One can
simply key in a one-byte instruction to fill the space that
is being held open by the null. Let's try this on the E-3
example. Clear line @2 and key in

@1 ENTER*

@2 1E-3
There is now an invisible null between lines @1 and ©2. Since
we want to grab the 1 from 1E-3, not the null, we fill the
null first. GTO .001, or just BST, and press RDN (roll down).
This is a one-byte instruction that overwrites the NULL byte.
Now BG and capture the leading 1. Backarrow twice and you'll
have

Y1 ENTER+*

g2 E-3
Thus the addition of two keystrokes to the procedure
introduced at the beginning of this section eliminates the
need for PACKing. This can be especially advantageous when
you're adding a synthetic exponential data entry instruction
to a long program which takes several seconds to PACK.

Chapter 5 will fully explain and illustrate the elusive
behavior of nulls. It uses a synthetic technique to make them
visible. Ambitious synthetic programmers who want to try
fancy tricks like constructing a synthetic line -E should
note that whenever you want to include a negative sign in a
digit entry line the appropriate byte is row 1 column C, NEG,
not row 5 column 4, CHS. The CHS key governs two different
operations: negating a digit entry and negating an existing

number .

-22-

2C. Flag Register Control

Normally when a program constructs an alpha message
containing numbers, the display mode is altered. For example

the sequence

g1 1.01 Register number index ~- 1 to 14
g2 STO 00

93 FIX ¢ These two steps are needed to make
g4 CF 29 the register number appear without
95 LBL 91 a decimal point in the prompt

g6 "INPUT " (Note there is a space following T)
@7 ARCL 0¢ Append the register number

@8 "y2"

299 TONE 9

186 PROMPT (key in input here)

11 STO IND 08 Store the input in the current

12 1sc 08 register; add 1 to register index
13 GTO ¥1

Line ©¥7 is obtained by ALPHA shift RCL
¥ © ALPHA, line 48 is ALPHA shift XEQ 3
ALPHA, line 99 is XEQ ALPHA T O N E
ALPHA 9

prompts for inputs numbered 1 to 10 and stores them in data
registers 1 through 19d. It has the undesirable feature that
lines ©¥3 and 94 change the display mode to FIX @. Synthetic
programming offers an easy way to avoid altering the display
mode in cases like this one.

It's time for a brief digression about flags. Since a
flag has only two possible states, set and clear, it makes
sense for the calculator to use one bit (binary digit) to
represent each flag. As it happens, the set state 1is
represented by 1 and the clear state is represented by 4. We
saw in Chapter 1 that a byte consists of eight bits. The

HP-41 Owner's Handbook reveals that a register consists of

seven bytes. Thus there are 8x7 = 56 bits in a register. If

-23=

the number 56 sounds familiar, perhaps it's because the HP-41
has 56 user and system flags, numbered ¥ through 55. So it
shouldn't be too surprising that all 56 flags occupy exactly
one register in the HP-41.

The flag register is one of the sixteen HP-41 system
scratch registers. You already know the first five: the stack
registers T, Z, Y, X, and L. The names of the rest are found
along row 7 of the QRC. The name of the flag register is 4
(row 7 column E).

Now to the case at hand. We want to preserve the display
setting while constructing a numerical message. To do this we
can RCL d before forming the message, saving the original
flag register in X. After forming the message we STO d ,
transferring the original flag register contents from X back
into the flag register. This restores all 56 original flag
settings, including the display setting.

For the example given at the beginning of this section,

this is accomplished as follows. Key in

g1 1.01 /@@ inputs:
2 STO 00

@3 LBL 41

g4 "INPUT *

U5 STG IND 16 RCL d = 144,126
06 AVIEW

¢7 FIX ©

@8 CF 29

©9 ARCL D@

16 STO IND 17
11 AVIEW

12 "p2

13 TONE 9

14 PROMPT

15 STG IND 09
16 ISG 99

17 GTO 61

©
3
(@]
Q
i

145,126

-24-

GTO .999, BG, and delete the text line. SST to see STO 4 .
GTC .004, BG, backarrow, and SST to see RCL d . The IND 17
byte (row 9 column 1) became STO, the IND 16 byte (row 9
column &) became RCL, and both AVIEW instructions (row 7
column E) became d suffixes. This version of the program will
prompt for input for data registers 1 through 1¢. When it is
finished, the display mode will be unchanged, rather than the
distinctly unfriendly FIX d.

81 1.8l
82 570 88

83+LBL 4l

84 “INPUT ©

B3 RCL d

86 FIx @

87 CF 29

88 ARCL aa

89 570 d

1@ =+7-

11 TOKE 3

12 PROMPT
13 ST0 IND @8

14 ISG 88

15 670 8t

The RCL @ / STO 4 combination can be used anywhere you
want to preserve the status of the display mode, trig mode,
or other flags. The original flag register can be stored
anywhere in the stack, but it should not be stored in a
numbered data register. Data retrieved from a numbered data

register is subject to normalization. If the 56 bits aren't

in a configuration that the HP-41 recognizes as an alphabetic
or numeric form, it will change bits as necessary to make it
an alphabetic or numeric value.

The detailed specification of what bit patterns are
recognized as alphabetic or numeric data is beyond the scope
of this book but for our purposes here an abbreviated rule on
normalization will suffice. Any 56-bit data pattern whose

-25-

first four bits are ©@gW1l can be safely stored into and
retrieved from a numbered data register. If the first four
bits are other than @@€1 the data is subject to normalization
(hence possible alteration) when retrieved. This is of course
no problem if the data is actually numeric or alphabetic.
Normalization is only a problem when dealing with
non-standard bit patterns such as flag register contents.

I1f you wish to store a set of flag settings in a
numbered register, you neea to set the first four bits to
0BGl beforehand. This is easily done as the following example
will illustrate. Clear the previous example except for its

RCL d and STC & instructions. Then GTO .06 and key in

]

1 CF ©© These first four lines set the
2 Cr 01 first four bits of the flag
3 CF 02 register to the pattern wWOEl.
b4 SF 93

5 RCL d

W6 STO Wl

G7 GRAD

986 SF ©1

Y9 CF £3

ly STCP

11 RCL 01

12 STO a

[

Switch out of PRGM mode, RTN, and R/S. Note that flag 1 and
GRAL node are set. R/S again to see the flags returned to
their original state, with flags @, 1, and 2 clear and flag 3
set. If you don't mind an example that requires a little
cleanup work with your flags you can change line 81 to SF g
and verify that many flags are changed when the program is
executed. For a guicker cleanup you may wish to use the copy
of the original flags that will be residing in stack register
Y at the completion of the program. Since this copy wasn't
stored in a numbered data register it's unchanged. Just RDU,
GTO .912, and SST to restore the flags.

26—

2D. Program Pointer Control

The HP-41 maintains a program pointer in one of its

operating system scratch registers. This pointer designates
what part of memory will be displayed when PRGM mode is

selected. The system scratch register that contains the
program pointer (together with some of the return pointers --
these are discussed in Section 6A of this book and in the PPC
ROM User's Manual under "Line by Line Analysis of ") is
designated the "b" register by the HP-41 operating system.

To illustrate the ease of program pointer control on the
HP-41 try the following example. Clear the previous example

and key in

¥l ENTER+ |/ inputs:
@2 STO IND 16 RCL b = 144, 124
©3 MEAN
@4 STO IND 31 TONE 89 = 159, 89
95 SIN
g6 STO IND 17 STO b = 145, 124
g7 MEAN

GTO .6W5 , BG, backarrow, GTO .0¥3 , BG, backarrow, GTO .001,
BG , backarrow twice, and PACK (do not GTO..). Switch to RUN
(non-PRGM) mode, RTN, and R/S. You'll hear the rapid staccato
of repeated TONE 89's. The "flying goose" is frozen in place.

How does this work? The RCL b instruction copies the
program pointer into the X register. The TONE 89 is executed,
then the STO b puts the previously recalled value back into
the program pointer. At the time the program pointer was
originally recalled the next instruction to be executed was
TONE 89. Therefore the STO b instruction causes execution to
jump back to the TONE &9 instruction. If you RTN and SST this
program you can verify that the sequence of execution is RCL
b, TONE 89, STO b, TONE &9, etc.

The reason that the flying goose holds still when this
program is run is quite simple. The goose is programmed to

move one position each time a LBL is executed. But there are

27~

no labels in this program, despite the looping. Thus the
goose is unable to move.

The next example provides the answer to an HP-41 trivia
question: What is the shortest "infinite loop" on the HP-417?
The answer is one program line, 2 bytes. Delete the TCONE 89
from the previous example and PACK. You now have

U1 RCL b

g2 STO b
If you RTN and SST this program, you'll find that the
execution sequence is RCL b, STO b, STO b, STO b, STO b, ---
ad infinitum, although the line number keeps increasing. For
SST execution the HP-41 always increments the line number
unless it executes a GTO, XEQ, RTN or END instruction, in
which case the line number is recomputed. The calculator does
not recognize STO b as a "jump" instruction, so it doesn't
bother to recompute the line number. If your SST finger were
extremely durable, you would find out that the line number
counts all the way up to 4094 before starting over at ©2. As
you will learn in section 6A, the number 4095 has a special
meaning to the HP-4l1's internal programming. This number
means that the line number needs to be recomputed.

For non-SST, free-running program execution, the
calculator does not update the line number at each step. That

would needlessly slow execution.

Advanced synthetic programming techniques are needed to
fully utilize the power of the STO b instruction. The
ultra-fast Morse code program in Appendix B illustrates
precompiled indirect branching, a relatively straightforward
application of program pointer control. Also, the sequence 0,
STO b, GTO .0@2 is an easy way to move the program pointer
into the key assignment registers. Details of how information
is stored in the key assignment registers can be found in the
PPC ROM User's Manual, under "Background for Q@ “.

2E. Synthetic Text Lines

The HP-41 differs from its predecessors most notably in
that it provides alphanumeric capability. This capability can
be used to label outputs or prompt for inputs. However the
set of display characters available seems to be rather
limited. For example there are no parentheses or quotation
marks.

Synthetic programming techniques permit 21 additional
distinct display characters to be used in text instructions,
including parentheses, gquotation marks, apostrophe,
ampersand, and others. These synthetic display characters can
be edited into a text instruction in a way which we shall
describe here. PPC ROM programs provide two alternate
methods. The simplest is to use to create synthetic text
instructions directly. The "Q-transfer" method, which
requires a supportive program such as PPC ROM program 019 ,
is also available. The first of these methods will be
presented in Chapter 3. The second shall be introduced in
Section 4B.

The byte-grabber method of creating synthetic text
instructions, which is introduced in this section, is fairly
simple and requires very little setup (just a byte grabber
key assignment). Therefore regardless of the availability of
other methods you should follow through the byte grabber
examples of this section. You may find it the most convenient
method for creating one or two synthetic text instructions.

Owners of a printer or an Extended Functions module may
be acquainted (through the functions BLDSPEC and XTOA,
respectively) with other, more cumbersome ways of creating
synthetic display characters. In this section we will show
that synthetic text lines can be used to save many bytes over
the normal methods which use BLDSPEC or XTOA.

The structure of a n-character text instruction is quite
simple. A hex Fn byte (row F column n) precedes n bytes, each
of which represents a character. Thus n+l bytes of program

-29-

memory are needed to hold an n-character text instruction.
The character-byte correspondence is illustrated in the byte
table, which is part of the Quick Reference Card for
Synthetic Programming. For example a row 5 column F byte
displays and prints as _ . Certain synthetic characters
appear substantially different on the printer compared with
their displayed form. For example row ¥ column 4 displays as
X but prints as © . A byte is only interpreted as a character
when it is preceded by a row F byte that brings the byte in
gquestion into the scope of the text instruction. In the
absénce of a row F byte, program bytes are interpreted in the
normal manner, as instructions or suffixes for previous
instructions. Kkow F bytes can thus be regarded as TEXT
instructions that require suffix bytes. The difference
between TEXT instructions and most other instructions is that
the number of suffix bytes is variable and that a TEXT
instruction triggers a very different interpretation of
suffix bytes, namely the character interpretation.

Synthetic text lines can be created using the byte
grabber in a four-step procedure. First a text line of the
desired length is created, with X's in the positions where
synthetic characters are required. Then the TEXT instruction
prefix is grabbed. This frees the suffix bytes to be
instructions, rather than characters. In this form the X's
can be replaced by instructions corresponding to synthetic
characters. The final step is to release the grabbed TEXT
prefix, which then captures the edited bytes and converts
them to characters.

An example should make this procedure clear. Suppose we
want to create the text line "HP'S #1" . Clear the previous

example and key in

@1 ENTER* inputs:
g2 "HPXS X1" 247, 72, 8Y, 39,

83, 32, 35, 49 .
GTO .901 and BG but do not backarrow the text line. It

contains the captured TEXT 7 prefix that you'll need later.

-30-

several times and you'll see that you now have:

%1 ENTER*?

g2 "TTTTTR"

03 -

U4 LN

&5 E4+X-1

Yo Y4X

@7 RCL 0@

0
49}
Lo

08 Et+X-1

09 STO Y1 .
Lines ©3 through #9 each correspond to a character from the
original text line. For instance, RCL @ corresponds to the
space. Row 2 column 6 of the CRC verifies this
correspondence. What we'd like to do now is to.replace the
E4X-1 instructions that correspond to the X's. GTC .008 and
backarrow the £tX-1 . We wanted a # symbol in this position.
Checking row 2 column 3 of the GKC we find that the
corresponding instruction is RCL ©3 . Key in RCL @3 as the
replacement for line w8. Now GTO .465 and backarrow the
E4X-1. Row 2 column 7 of the GRC tells us to key in RCL &7 as
the new line 45 to get the apostrophe character.

If you have followed the instructions carefully you

don't really need to PACK, but it can't hurt. You should have

gl ENTER*®

w2 "TTTTTg

©3 £~

U4 LN

g5 RCL 07

06 Y+X

07 RCL 0O

¥8 RCL 03

Y9 STO ©1
Now GTO .L@W1, and BG. You have grabbed the TEXT prefix from
line ¢¥2. This released the guestion mark and the starburst to
become instructions. SST and you'll see that the question

mark became STO 15 (check row 3 column F). $ST again and

-31-

you'll see that the starburst has regained its former
identity as a TEXT 7 instruction, in turn capturing the
following 7 bytes as text characters. Thus we now have

@1 ENTER*

g2 "T2TTTTge

93 STO 15

g4 "HP's H1“

If you have a printer you may wish to compare the way

these synthetic characters print with the way they display.

(If you don't have a printer just look at the lower right
corner of each box in the QRC to see the way that byte prints
as a character.) You'll find that the apostrophe and the #
symbol print as expected, but the starburst vanishes without
a trace. This vanishing behavior is to be expected in program
listings from any character in rows 8 through F. This point
will be discussed further toward the end of this section.
The append instruction is unique among HP-41
instructions in its implementation. An append instruction is
a text instruction whose first character is the append
character " (row 7 column F). Since the append character
takes up the first character byte of the text line and the
text line cannot exceed fifteen characters, the maximum
number of characters that can be appended is fourteen. If the
append character is synthetically inserted into a text
instruction in a position other than the first character
byte, it loses its privileged "control character" status and
becomes an ordinary character.
Let's edit some synthetic characters into an append

instruction. Clear the previous example and key in

@1 ENTER*

@2 "+ABCDEFGHIJKL"
GTO .0Y1 and BG but do not backarrow. The byte grabber's text

line will hold the TEXT 13 byte from the former line ©2 until
we are finished editing. SST through the program and you

should see

-32-

91 ENTER*

g2 "T2TTT7E"

93 CLD

04 -

05 *

g6 /

7 X<Y?

08 X>Y?

P9 X<=Y?

16 I+

11 z-

12 HMS+

13 HMS-

14 MOD

15 % .
Line ©3 is the append control character (row 7 column F).
Lines @4 through 15 correspond to the characters A through L.
See row 4 of the QRC for the correspondence. Now GTO .904 and
DEL 612 (XE¢ ALPHA D E L ALPHA ¢ 1 2). This deletes lines 04
through 15. We're going to replace all 12 characters by
synthetic characters. We can simply key in the instructions
corresponding to the characters we want. Try keying in these

instructions:

instruction: character:
g4 - A

J5 LBL 00 %

g6 LBL 11 ~

g7 RCL ©2 "

08 RCL 08 (

©9 RCL 09)

19 STO 11 ' (semicolon)
11 ASIN \

12 DEC _

13 CLD -

14 1/X T

15 + Q

=33~

Now PACK just to be sure there aren't any nulls present.
Delete line Y4 to create a NULL, then GTO .@61, BG, and
backarrow. You should see

J1 ENTER*

@2 STO 15

03 "BTRA"()a TR
The inputs for this example are 253, 127, ¢, 1, 12, 34,
44, 41, 59, 92, 95, 127, 96, and 64.

Put "ABC" in the ALPHA register and execute line ©3. The
ALPHA register will then contain "ABCTF#" () _+7@". If you
CLA and execute line @3 you'll get a surprise. The ALPHA
register will contain “"AX*"(),_+7¢". The NULL (overline
character) disappeared! The general rule is that NULL
characters are visible only when they are interior or
trailing characters in the ALPHA register.

If you execute ASTO X, even the interior and trailing
nulls will be invisible in the X register, but they will
still be present. This can be verified by trying the X=Y?
test. The result will be NO if, for example, the X register
contains an invisible null while Y does not, even if the two
registers display the same way. This behavior is not useful
enough to merit an example, but you should be aware that
viewing an ASTOred string that contains nulls will not reveal
the full structure. You should use ARCL and AVIEW when in
doubt.

Printer owners may be aware that the printer function
BLDSPEC can be used to generate any synthetic display

character. For example the instruction sequence

gl . (decimal point)
g2 X<>Y

@3 BLDSPEC

g4 PRX

will create a single display character corresponding to the
decimal value (@ to 127) in the X register. It will then
print the character as well.

Try 38, GTO .601, R/S and you'll get the ampersand, a

=34

synthetic character. Row 2 column 6 of the QRC shows how the
displayed version of the ampersand compares to the printed
version. Try 5, R/S and you'll get the one-armed man % in the
display and the Greek letter B on the printer. Row @ column 5
of the QRC verifies this result. A large number of the 128
standard printer characters display as starbursts. Something
like this must be expected since the 14 segment display does
not have the flexibility of the printer's dot matrix output.

Owners of the Extended Functions module have available a
powerful function, XTOA, that can be used to create synthetic
display characters. XTOA is a much faster version of PPC ROM
routine . Assign XTOA (or) to a convenient key and
try CLA, 38, XTOA. Switch to ALPHA mode and you should see
the synthetic display character &. If you now do ALPHA(Off),
5, XTGCA, ALPRA(on), you'll see &%. The one-armed man
character (decimal equivalent 5) has been appended to the
alpha register. To compare the printed versions you can
execute PRA.

Printer owners will appreciate the byte savings that are
possible by using synthetic text instructions to generate
lower-case and mixed-case text. Consider the normal method of

creating the printed output "Hewlett-Packard"

gr "H"

g2 ACA (load i into the print buffer from ALPHA)
©3 SF 13 (switch to lower case)

g4 "“"EWLETT-"

65 ACA (add lower case characters to the buffer)
w6 CF 13 (switch back to upper case)

w7 "p"

@8 ACA

09 SF 13

13 "ACKARD"

11 ACA

12 PRBUF (print the buffer contents)

13 CF 13 (back to upper case mode)

-35-

The byte count for this monstrosity is 37 bytes, compared
with 18 bytes for the synthetic text line "Hewlett-Packard"
followed by a PRA command. Moreover every mode change,
between upper and lower case in this example, uses a valuable
print buffer "register" (actually a byte). This is discussed
in more detail on page 19 of the July 1980 PPC Calculator
Journal. The synthetic text line approach conserves print
buffer space as well as program memory. Of course most of the
lower case characters (all but a,b,c,d,e) in the synthetic
text line appear only as starbursts in the display, although
the text line prints properly in a program listing. If you
can tolerate the somewhat messy SST display, you can achieve
dramatic everyday byte savings by using synthetic text lines

wherever you require lower-case or mixed-case printing.

Synthetic text instructions have much wider application
than just generation of nonstandard display characters. They
provide a simple, fast method to enter needed bytes under
program control. Byte loader programs (Chapter 3), key
assignment programs (Chapter 4), and other very powerful
synthetic programs use synthetic text lines extensively.
Using the first example from this section, we can illustrate
the simplicity of synthetic text lines compared to the next
best alternative, the XTOA function of the Extended Functions
module.

Goal: Create the synthetic text "HP'S #1"

Best Method: synthetic instruction @1 "mP'S #1"

Total bytes used: 8 Execution speed: fast

Next Best: use XTOA gl "Hp"
or 02 39

@3 XTOA (or XROM (B)
g4 "+s " (note the space)

95 35
06 XTOA (or XROM)
97 "H1"

Total bytes used: 18 Execution speed: slower.

-36-

Printer owners who like to use BLDSPEC to manufacture
"custom" printer characters can save bytes and speed up their
programs by using synthetic text instructions. The sequence:
7-character synthetic text instruction, RCL M, ACSPEC,
substitutes for the normal sequence: number, BLDSPEC, number,
BLDSPEC, ...,number, BLDSPEC, ACSPEC. The RCL M instruction
will be explained in section 2G. Details of the
correspondence between the normal BLDSPEC numbers and the
required 7-character synthetic text instruction can be found
in the PPC ROM User's Manual under [EB, or in the June 1980
PPC Calculator Journal.

For more exotic synthetic programming, synthetic text
instructions often need to contain bytes from rows 9 through
F of the QRC, which correspond to multi-byte instructions.
The byte-grabber technique presented earlier in this section
does not usually allow creation of such text instructions.
The easiest way to create these instructions is to use a byte
loader program, as you will see in Chapter 3. But bewarel!
Synthetic text instructions containing bytes from rows 8
through F appear as expected in the display but print
strangely. These row 8 to F bytes all display as starbursts.
If they are printed via PRA, they will appear as shown on the
QRC. For example a row C column D character displays as a
starburst but prints as M. However if you list the program,
all the row 8 to F characters in the text instructions will
disappear, without even leaving spaces to hint at their
presence. Certain of these characters, the ones that are
shaded on the QRC, will cause additional strange behavior
when listed (skipping spaces, switching to lower case, etc.)
If this messes up your listing, manually GTO the following
line and LIST the rest of the program. Incidentally, NORMAL
mode listings give a slight hint of the presence of synthetic
characters in that the statement number will usually be
indented if an invisible character is present. If you're
interested in learning more, consult the July 1980 PPC

-37-

Calculator Journal for an extensive, clearly written

description of these printer control characters.

2F. The TEXT 0 instruction

The HP-41 allows text instructions up to 15 characters
long, or 14 characters plus the append symbol. The first byte
of a text instruction is taken from row F of the QRC, with
the column number denoting the number of characters in the
instruction.

But what about column zero? By logical extension, a row
F column 0 byte would appear to denote a text line of length
zero. One might therefore expect such a TEXT ¢ instructions
to be the equivalent of CLA. Let's find out. Key in

g1 “ABC" input: @B input:
@2 STCO IND T 249 249, 249
To key in line ©2, press STO shift
. (decimal point) 9 (T).
GTC .001, BG, and backarrow. The STO has been removed, and
the IND T (row F column) now assumes the identity of a TEXT
U instruction. This instruction displays as a text symbol
with nothing following. It prints as "" (nothing between
quotation marks). Now run the pProgram and switch to ALPHA
mode. Surprisel! The "ABC" that was loaded into the ALPHA
register by line @1 is still there. The TEXT © instruction is
not equivalent to CLA. Further experimentation will reveal
that TEXT @ has no effect on the ALPHA register or any other
register (including the flag register). TEXT 0 will, like
virtually all other program instructions, enable the stack
lift. (See the Owner's Manual for a discussion of stack
1ift.)
What is an instruction like TEXT 0 good for if it

doesn't do anything? Suppose we want to increment an unknown
integer in the Y register without disturbing the stack. ISG Y
does this but it will also skip a line if Y was non-negative.

-38-

Therefore we need to follow ISG Y by an instruction that will
not affect the calculator's state whether it is executed or
not. TEXT ¥ is precisely the kind of instruction we want.
Moreover it is the only such one-byte instruction on the
HP-41. "Do nothing" instructions like TEXT ¢ are called NOPs,
short for no operation. NOP keys can be found on the HP-25,
HP-33, HP-55, and some other calculators. Synthetic
technigques have now given your iP-41 a similar capability.
You'll see sequences like

gl ISC X

@2 TEXT ©
in many synthetic programs. You can use such a sequence
anywhere you need an "increment but do not skip" capability.
Of course TEXT © can also be used following a DSE instruction

to Gecrement without skipping.

2G. Usinyg the ALPLA register for data storage

We have seen that one byte of program memory is required
to represent each character in a text instruction. We might
therefore expect that the 24-character ALPHA register would
require 24 bytes of non-program memory. This is equivalent to
24/7 = 3 registers plus 3 leftover bytes. These registers,
together with the stack registers, the flag register, and
others, are located in a separate section of memory called
either system scratch or the status registers. The name
status registers comes from the fact that the card reader's
WS1TS (write status) function records these registers on track
1 of a status card.

Since the flag register and the program pointer can be
accessed directly by synthetic instructions, perhaps we can
similarly access the 3+ registers that comprise the ALPHA
register. The suffix bytes for the flag register and the
program pointer register are from row 7, columns E and C

respectively, of the QRC. You have probably begun to suspect

-39-

that the other row 7 suffixes correspond to the other system
scratch registers. But before you start experimenting,
beware. You can safely RCL any of the status registers (the
"normalization" of stored data mentioned in section 2C does
not apply to status register operations), but don't alter
their contents until you know what you're doing, unless you
are prepared for the worst. For example if you clear status
register ¢ you'll get MEMORY LOST.

The ALPHA register occupies status registers M, N, O,

and part of P. As long as you don't mind altering whatever
was in the ALPHA register, you may use M, N, and O freely,
just as you would use numbered data registers. From what you
have learned about using the byte grabber you should be able
to create the following program:

91 LBL"RSHF"

02 CLX

@3 X<> 0

04 X<> N

05 X<> M .
If you need help, see the instructions at the end of this
section.

For the moment let's concentrate on the X<> M
instruction. Try the sequence CLA, 1.274065002 E-40, X<> M.
For the X<> M you can GTO .8¢5 and SST in RUN (non-PRGM)
mode. Now switch into ALPHA mode and you'll see %'@e”)7 .
What's going on? Let's refer to the QRC to identify the 7
bytes that comprise this character string. Designated by row
number r and column number c the 7 bytes are shown below.

BYTE IN HEXADECIMAL 01 | 27 | 40| 65 | 00 | 29
BYTE IN CHARACTER FORM x| - el e | ~|[) T
REGISTER INNUMERIC FORM | +1.| 27 | 40 | 65 | 00 | 2E-(40
L] g1 I
MANTISSA EXPONENT
(10 DIGITS)
SIGN SIGN

—4 -

The fourteen hexadecimal digits that comprise the seven bytes
are ¥1274065092960. The ten digits of the original X-register
contents are immediately recognizable as the second throuygh
the eleventh of these 14 digits. The first of the 14 digits
is a siygn digit. It is zero for positive numbers, 9 for
negative numbers, and 1 for alpha data. The last three of the
14 digits represent the exponent and its sign. If the twelfth
digit is zero the exponent is positive; if the twelfth digit
is 9 the exponent is negative. The last two digits are the
exponent digits if the exponent is positive. If the exponent
is negative, the last two digits are 140 plus the negative
exponent. In this case the exponent is -46, so the last two
digits are 100+(-40) = 6b. A simple rule that works for
either positive or negative exponents is: add 100K to the
signed exponent (that is, add the exponent to 160@ if it's
positive, subtract the exponent from 1006 if it's negative).
Keep only the last three digits of the result. This gives the
correct exponent digits for the HP-41 internal
representation. In this case 1009-40 = 960.

If we execute CTC .€85 and SST again to execute X<> I,
the number 1.274065682 E-40 returns to the X-register and
ALPhA is again clear. Now try another example. With the same
number still in X, execute X<> b, switch to ALPHA mode, press
append, backarrow, and A. You now have the string %'@e”)A .
Switch out of ALPLA mode and execute X<> M again to get
1.274065042 E-59 . Since the character A is hexadecimal 41,
the exponent became 41-109 = -59.

Feel free to explore further the equivalence of numbers
and seven-character alpha strings using the X<> M
instruction. Most numbers will consist primarily of starburst
characters. You should be aware that if you bring an alpha
string into the X register using X<> M, the result may behave
strangely if the two sign digits are not zero or 9 or if
there are digits other than ©-9 (that is, nondecimal digits)
present.

When you're using M as a scratch register to store a

—41-

number you probably won't care what the number looks like as
a character string, but the character/number equivalence can
be exploited in some advanced synthetic programming
techniques. For example, if we wanted to enter the number
1.274065062 x 1¢-49 in a program we could save 5 bytes of
program memory by using "%'@e”)™" followed by RCL M.
The X<> N and X<> O instructions behave similarly to X<»
M. The difference is that X<> M places the number in the
rightmost 7 positions of the ALPHA register. The instructions
X<> N and X<> O access the next two groups of 7 characters,
moving from right to left. Figure 2.2 should make this more
clear. You may also wish to try this short example. Load
"ABCDEFGHIJKLMNOPQRSTUV" into the ALPHA register. Lxecute CLX
and X<> G (use GTO .¥%2, SST, SST). The ALPHA register now
contains "ATTTTTT IJKLMNOPQRSTUV". The seven characters that
were occupying the O register (see Figure 2.2) have been
replaced by the overline characters that result from null
bytes (row ¥ column ©). The O register now contains the
number zero. Execute X<> N and ALPHA will contain
"ATTTTTT BCDEFGHPQRSTUV". Execute X<> O now and you'll get
"AIJKLMNOBCDEFGHPGRSTUV". Thus, in addition to their utility
as data storage instructions, the ST0O, RCL, and X<»
instructions for status registers M, N, and O can be used to
slice up and reassemble character strings in the ALPHA
register. These character manipulation capabilities are used
extensively in advanced synthetic programming to isolate
bytes for decoding or to replace certain bytes of a string.
One easily understood string manipulation application is

a 7-character right-handed alpha shift. The program "RSEF"
performs such a shift for strings of up to 21 characters,
removing the rightmost 7 characters.

¥l LBL"RSHF"

B2 CLX

B3 X<> 0

U4 X<> N

95 X<> M .

-4 2 -

r 0 N M
| 2] 11 1R

EEEEEEEEEENEEEEEEEEENEEEEE

I 24 CHARACTER BYTES
EXAMPLES: , \

lllllllllllllllllillllklild

1l

L lAIBIClnlEIFIGl"i'l*lxlll'lll"i’lﬂlﬂl*l*l"l‘d

Figure 2.2 The ALPHA register. Character strings of
length 1 to 24 are always right-justified. Leading positions

are null (hexadecimal ©@) and are invisible.

For example "ABCDEFGHIJKLMNCP", XEQ "RSHF", yields
"ABCDEFGHI". You can SST in ALPiHA mode to see how "RSHF"
works.

Now let's see how access to status registers M, N, and O
can help us in numeric programming. iiaving three extra
registers "on the side" can greatly alleviate register usage
conflicts. You can now write many of your subroutines so they
don't use any numbered data registers. That makes them
compatible with any program that only uses numbered
registers. For example many of the routines in the PPC ROM
use no numbered registers, so that programs that call these
routines are free to use any and all numbered data registers.
As a further aid to compatibility it is good programming
practice not to rely on the contents of M, N, and O to remain
the same when a subroutine is called.

Very short subroutines can often use part of the ALPHA
register to avoid using either stack registers or numbered
data registers. The ideal goal is operation equivalent to
internal functions -- saving X in LASTX, saving the T

register contents (in T), and providing the result in X.

-43-

As an example let's write a subroutine named "CNK" that
will compute the statistical combination function,
C(n,k) = ni = (n-k+l)(n-k+2)...n
kl(n-k)1 k(k-1)...1

the number of possible combinations of n items taken k at a
time. This routine is to take the values of n and k from
stack registers Y and X respectively and is to provide the
result C(n,k) in X. The previous contents of g% and T are to
end up in Y and % as they would for a built-in function. The
value k is to be saved in LASTX, while n is to be saved in T.
Due to the complexity of the calculation, "CNK" cannot

preserve the contents of Z and T without using a scratch
register. We will use status register M. This makes "CNK"
compatible with any callinyg program that uses only numbered
data registers. A sample "CNK" routine is listed below so you
can key it up and try it out.

¥l LBL"CNK" / @@ inputs:

g2 -

03 E 27 or 27, ©

B4 STO M 145, 117

65 RDH

06 LASTX

v7 X>Y?

08 X<>Y

g9 LBL 91

10 X<>Y

11 1IsG X

12 TEXT @ 240 or 240, 249

13 sT* M 148, 117

14 X<y

15 sT/ M 149, 117

16 DSE X

17 GTO @1

18 X<>Y

19 RDN

[2

20 X<> M 206, 117
21 END

To create the synthetic lines use 3TC 27, STO IND 17, RDN,
STO IND T, STO IND 20, RDN, STO IND 21, RDN, STO IND 78, RDN.
For each of the six STO instructions, grab the prefix byte by
going to the preceding step in PRGM mode then pressing BG and
backarrow.

Test "CNK" using 88 ENTERt* 3 XEQ"CNK", then 88 ENTER+t 85
R/S. Both should give a result of 1©¢9,736. This is the number
of three-note chords on an 88-key piano.

Here's how "CNK" works. At the beginning X contains k
and Y contains n. "CNK" initializes status register M to 1 on
iine ©4 so that the ST* M and ST/ M instructions in the LBL
91 loop will work as required the first time through the
loop. After the execution of line 86, M contains 1, X
contains k, and Y contains n-k. Then lines 07 and #8
interchange the roles of k and n-k if n-k is smaller. This
makes use of the identity C{n,k) = C(n,n-k) to speed
execution where possible. The LBL @1 loop increments n-k and
multiplies the result into M. Then at line 14, k is brought
back into X, after which it is divided into M and
decremented. At this point (back at LBL ¥l ready for the
second pass through the loop), X contains k-1, Y contains
n-k+1, and M contains (n-k+l1)/k, the first factor in the
expanded expression for C(n,k) that was given above. The loop
is executed k times, after which X is zero and Y is n. 7The
last three lines put Y in T, and bring the result from M to
X, clearing M.

You may wish to change lines ©4, 13, 15, and 20 of "CNK"
to use status register O instead of M. This will allow alpha
strings of up to 14 characters to remain undisturbed in N and

M when "CNK" is used.

—45-

Here is the promised step-by-step procedure for creating

ALPHA register access instructions. Key in

©1 LBL"RSHF" /@@ inputs:
P2 CLX

g3 STC IND 78 X<> O = 206, 119
¥4 CLX

@5 STO IWD 78 X<> N = 206, 118
86 LASTX

©¥7 STO IND 78 X<> M = 206, 117
g8 RDN

GTO .006, BG, backarrow, GTC .004, bG, backarrow, GTU .902,
BG, and backarrow. You now have the required synthetic
intructions for "RSHF".

2H. Using other status registers for data storage

Status registers P, Q, and a can be used under limited
conditions as temporary data storage. More details of how the
HP-41 operating system uses these registers can be found in
Section 6A of this book and on page 19 of the September 1979
PPC Calculator Journal, but we'll give a brief summary here.

Status register P can be used for storage in a progran,
but its contents will be altered if a digit entry line is
executed, or if any operation is performed that causes a
number to be displayed.

Status register ¢ can be used for storage as well, but
its contents are also susceptible to alteration. If you
execute a global ALPHA GTO or XEQ instruction (that is, a GTO
or XEC that refers to a Catalog 1 or 2 label), you'll lose
whatever was in Q. This does not apply to ALPHA LBL
instructions. Nor does it apply to XROM instructions, which
are different in structure from ALPHA XEQ instructions, as we
shall see in the next chapter. Q will also be altered if you
spell out an alpha name from the keyboard for a GTO, XEQ, or
LBL. Other instructions that alter ¢ are: any digit entry,

-46~-

SIN, COS, R-P, P-K, Y+X, SDEV, and any instruction that
causes the alpha register to be displayed (AVIEW, PROMPT, or
PSE with AON). Status register ¢ is used extensively by the
82143A peripheral printer in its exchange of information with
the 41 mainframe. If you plan to have the &2143A printer
attached when you run your programs you should avoid using
the Q register for data storage.

Status register a can be used by any program that will
not cause the subroutine depth to exceed 2. This means that
if the program contains no XEQ instructions it must not be
called as more than a first level subroutine. If a routine
that uses status register a is called as a second level
subroutine, the END or RTN in the main calling program may
not halt execution as it should. If register a wasn't empty
(zero) a RTN will be attempted to an address given partially
by the former contents of register a. You should also realize
that any XEQ or RTN will disrupt the contents of the a
register, shifting it by two bytes. Don't execute PSIZE (from
the Extended Functions module) with anything in status
register a either. The calculator will think that your data
is a set of return addresses and it will adjust them as if
they were return addresses to be revised according to the new

SIZE. All this should be more clear after you read Chapter ©.

Problems (Solutions follow Chapter Six)
2.1 Using synthetic TONE P and normal TONE 8, construct a
sequence of instructions to produce a Morse code "CQ"

(dah-di-dah-dit, dah-dah-di-dah).

2.2 Using the byte grabber, make the synthetic instruction
-El. Hint: Make El first.

-7 -

2.3

Using RCL d / STO d , write a short routine to view all
ten digits of the number in the X register without
altering the display mode. Hint: Modify the routine
below so that the display mode is restored.

g1 LBL"vX"

g2 " " (2 spaces)
23 SCI 9

04 ARCL X

05 AVIEW

g6 END

Using a RCL b / STO b loop, compute the Golden Ratio x =

1+1/x, displaying successive approximations.

a) Construct a sequence using synthetic text instructions
that will generate a prompt "X(n)=?", where n is an
integer from data register Qu.

b) Modify this sequence to preserve the display mode.

Construct an output labeling sequence that will display
"OUT=x»V" without altering the display setting, where x
is to ARCLed in FIX 2 from the X register.

Construct a complete MOD function that Operates like a
built-in function. Registers Z and T are to be
preserved, L replaced by x, Y by y mod x, and X by (y-y
mod x)/x. You will need to use a scratch register such

as M.
Using the byte grabber, make the two-byte instruction hex

Fl FO (a single-character text instruction, where the
character is hexadecimal F@).

—48~

CHAPTER THREE
BYTE LOADING

If you constructed the examples of Chapter 2 by using
the byte grabber, you will probably agree that the byte
grabber is a powerful tool for rapidly creating many types of
synthetic instructions. However, if you need to create
several synthetic instructions at a time, another approach
may be even faster. A special program, called a byte loader,
can be used to create the desired instructions, loading them
directly into program memory. You need only specify the
decimal value (@ to 255) for each byte in the desired
sequence.

The theory behind byte loaders is described in the PPC
ROM User's Manual under WEEB and also in the LDecember 198y
PPC Calculator Journal. byte loading programs were pioneered
by several PPC members, including William Cheeseman, Roger
liill, John McGechie, William Wickes, and the author. This
book will confine itself to a discussion of how byte loaders
are used.

There are three different byte loading programs that are
available for your use in this chapter. The first of these is
called "LB" (load bytes) and requires only a "bare" hP-41 to
operate. This byte loader program, written by Clifford Stern,
occupies 214 bytes and fits on a single magnetic card.

The second is the PPC ROM program §EB , a superb byte
loader written by Roger #ill. If you have a PPC ROM,
familiarize yourself with the instructions for . They are
similar, but not quite identical, to those for "LB".

The third byte loader, called "LBX", reguires an
Extended Functions Module. This program, also written by
Clifford Stern, is a shorter, faster version of "LB" that
makes extensive use of Extended Functions module functions
like XTOA. If you decide to use "LBX", refer to problem 3.5
for the program listing.

49—

Despite its compactness, "LB" does most of what the PPC
ROM version @ does, lacking only such dispensable
conveniences as interruptibility and cleanup messages. All
the conveniences of the RCOM version could not be incorporated
without unduly enlarginy the program. RCM proyrams are not
constrained by length because they don't take up any of the
user memory. In any case, what "LB" gives up in amenities, it
gains in speed. If you have an Extended Functions Module, you
should probably use "LBX" (see problem 3.5), since it is both
shorter and faster than "LB".

1f you have access to an HP-41 optical wand, you have
the option of entering "LB" or "LBX" directly from barcode.
Appendix E contains barcode for all the utility routines in
this book, providing a fast, error-free method to enter these
synthetic programs into your HP-4l. Be sure to use a
protective plastic sheet to avoid damaging the barcode. Gf
course if you would like more practice with the byte grabber,
you can ignore the barcode for now.

if you do not have a PPC ROM or an kExtended Functions
Module, start with the following instructions to create the
synthetic lines needed for Clifford Stern's "LB" :

g1 ENTER¢

©2 STO IND 16 (Press STO shift 1 6)

63 MEAN (Press XEQ ALPHA M E A N ALPHA)
@J4 STO IND 17

@5 RDN

¥6 STO IND L (Press STO shift decimal L)
@7 CLD (Press XEQ ALPHA C L D ALPHA)
08 ENTER*

39 ENTER*+

1¥ LBL 01

11 STO IND 78

12 RDN

13 STO IND 78

14 AVIEW (Press ALPHA shift R/S$ ALPHA)

-50-

15 STO IND 78

16 AVIEW

17 8TO IND 17

18 RDN

19 STO INL 78

20 AVIEW

21 STO IND 78

22 AVIEW

23 STO IND 78

24 RDN

25 STO IND 17

26 LASTX

27 STO 1IND 78

28 LASTX

29 STO IND 78

36 SDEV

31 STO IND 17

32 SDEV

33 STO IND Y (Press STO shift decimal Y)

34 CLD

35 ENTER*?

36 STO IND 78

37 SDEV

38 STO IND 1le

39 RDN

46 STG IND 17

41 SDEV
Now grab and delete the STO bytes from lines 40, 38, and 36
(for example for line 48 GTO .039, press the byte grabber
key, and backarrow). Backarrow line 35 (do not PACK) then
grab and delete the STO bytes from lines 33, 31, 29, 27, 25,
23, 21, 19, 17, 15, 13, and 1ll. Delete lines K8 and £9
(again, do not PACK), then grab and delete the STO bytes from
lines ©6, ©U4, and ©2. Lelete line 91 and key in the

nonsynthetic lines that are required to complete the

-5]-

Line 61 is a text line containing
the byte

following listing of "LB".
a single space. Use lE4 for line 71. If you like,
grabber can be used to remove the leading 1. In fact, if
you're getting into the spirit of synthetic programming,
you'll probably want to replace the "1" digit entries by "E"
synthetic digit entry instructions.

If you're using the kxtended Functions version of "LB",
the above procedure gives you all the synthetic lines you

need (plus a few extras to be deleted), except for line 34,

STO N. To form this line, start with STO IND 17, LASTX, aund
grab and delete the S7T0 byte.
Clifford Stern's byte loader "LE":

BieLBL 81 23 ARCL X 47 SF 11 69 GT0 85 93 %) ¢

82 CLST 24 "k REGS." 48 %0 d 78 OCT 94 LASTY

83 BEEP 25 TONE 8 49 INT 71 E4 95 STO IND T

84 STOP 26 AVIEN 58 DEC 72+ 9% %Oy

85 GT0 "+++ 27 PSE 511 7380 d 97 8T0 ¢

28 RCL b 52 + 74 FS2C 19 9g Rt

B6eLBL “LB* 29 STO [53 .1 75 SF 28 99 DSE X

87 F5? 58 38 “Feex- 54 % 76 FS?C 18 188 GTO 83

88 GTO 82 RO 55 + 77 SF 19 181 GT0 81

89 1 3§ 0 d 56 + 78 FS7C 17

18 ENTERt 33 CF 84 79 SF 18 +

11 ENTERt 34 CF 85 SPLBL 83 8@ F3? 15 :gg EE&-BS

12 CLA 35 CF 86 58 1.867 81 SF 17 184 ISG X

13 CF 2t 36 FSL 87 SO ENTERt 82 F$? 14 185 GT0 85

14 AVIEN 37 SF 85 83 SF 16 186 %O ¢

15 -18 JBFS 88 aelBL B4 g4 %O g 187 RCL [

16 GTO =++ 39 SF 86 61 = - 85 O [188 STO IND 2

48 F57C 89 g2 pRoL Y 86 “Fax- 189 XOY

17¢LBL 62 41 SF 87 63 “F7° 87 ST0 118 570 ¢

18 7 42 FS2C 18 ¢4 aviEM 88 ARCL ¥ 111 GTO &1

19 7 43 SF 89 65 ST0 [89 %O 112 END

28 INT 44 FSC 11 g6 RON 98 I5C ¥ .

21 FIX 8 45 5F 18 67 STOP 91 g0 g4 -BL'LE TEC

22 CF 29 6 FSC 12 ggFcoc 22 gp oy O 214 BYTES

Notes: suffix [means M 1line 3@ is hexadecimal F4 7F 090 9@ @2

suffix \ means N

line 61 is a single space
line 183 is hexadecimal F2 7F 0@

-52-

Check your program very carefully against the listing.
As with any program that uses status register ¢, any errors
in it might be sufficient to cause MEMORY LOST when you run
it. Therefore it is a good idea to record the program on a
magnetic card so you will not have to start all over again
because of a minor mistake. Note that some of the synthetic
lines are displayed differently than they appear in the
printed listing. For example line 3¢ displays as "+~ @ and
line 1@3 displays as "+~ . The instructions that involve
status registers M and N also appear differently in the
listing than in the display. M is printed as [and N as \.
This correspondence, which is important for several of the
status regyisters, is illustrated in row 7 of the QRC. For
example the suffix O prints as J].

INSTRUCTIONS:

Here's the procedure for using Clifford Stern's "LB".
The procedure for the PPC ROM's @A is substantially

similar; details can be found in the PPC ROM user's manual.

At whatever location in program memory where you want to

create a group of synthetic instructions, key in the sequence
LBLH ++ ©

XEQ"LB" .
(If you're using the PPC ROM, this last instruction will
change itself to XROM"LB".) The number of + instructions
should exceed the number of bytes you want to create by 1l6.

-53=~

If you didn't key up the above set of instructions in
sequence, that is to say if you went back and inserted more
+'s, you should PACK. If a multiple of 7 +'s was inserted
then you don't need to PACK. The reason for this will be
apparent after you read Chapter 5.

Since you'll be using "LB" frequently, it is a good idea
to record the LBL"++" sequence on a card. If you key in 99
+'s (so that line 10l is XEQ"LB"), GTO.., and GTO"++", the
sequence will fit on one side of a card. If you have an
extended memory module you could key in "++", SAVEP, to
create an extended memory file for the LBL"++" sequence. It
could then be called up as necessary by GLETP. The magnetic
card approach has the advantage of being immune to MEMORY
LOST.

At this point you can switch out of PRGM mode and XEQ
"LB" from the keyboard or just press R/S if you're at the
last line of the sequence. "LB" will first tell you how many
registers are available for loading bytes, then it will
prompt for each of the seven bytes that comprise each
register. The number of registers available is INT((p-18)/7),
where p is the number of +'s that you keyed in. Table 3.1 is
a handy quick reference to determine the number of +'s

needed.
Number of +'s Number of registers Number of bytes
used available available
0-16 [} 17}
17-23 1 7
24-39 2 14
31-37 3 21
14+7n n 7n

Table 3.1. Number of +'s needed for "LB" setup.

-54-

In response to each prompt for a byte, you need merely
key in the decimal equivalent (# through 255) of the desired
byte and press R/S. WARNING: If you wish to correct a numeric
entry before pressing R/S, you must press RDN (roll down)
before keying in the correct entry. This is necessary because
very important data is being held in the stack for use by
"LB". This warning does not apply to the ROM version of .

When you have entered all the bytes that you need, just
press R/S without a numeric entry. This terminates the byte
loading process. If you run out of registers, "LB" will
terminate automatically. Let's try an example.

Suppose you want to create a copy of the "CMOD" program
from problem 2.7 Recall that the program listing (in the

Solutions section that follows Chapter 6) included LB inputs:

@l LBL"CMOD" o/ inputs:
g2 X<y

03 STO M 145, 117

g4 X<>Y

J5 MOD

06 ST- M 147, 117

@7 LASTX

@8 ST/ M 149, 117

@9 CLX

10 X<> M 206, 117

These decimal equivalents can be used to create the required
4 synthetic two-byte instructions.

Set up as described above with LBL"++", 24 +'s, and
XEQ"LB". Switch out of PRGM mode and R/S. You'll see the
message "2 REGS." followed by a prompt "12". The "2 REGS."
message means that you can create up to 14 bytes (2 registers
times 7 bytes per register).

In response to the prompt "1?", key in the first decimal
input, 145, and R/S. Key in responses to each of the prompts

=55«

as shown below:

Prompt Response
12 145, R/S
2? 117, R/S
32 147, R/s
4? 117, R/S
52 149, R/S
67? 117, R/S
7?2 206, R/S
1? 117, R/S
2? R/S

The first seven inputs completed the construction of one
register, which was then inserted into the LBL"++" area. This
restarted the byte index at 1 (the first byte of the second
register). Then pressing R/S without a digit entry in
response to the prompt "2?" terminated the byte loading
processing, completing the second register with NULL bytes
and storing it in the LBL"++" area before halting. When "LB"

halts you can press SST once to get to LBL"++". Then you can
switch to PRGM mode and examine your new synthetic

instructions. It is a simple matter to clean up the remaining

+'s and key in the nonsynthetic part of the "CMOD" program.

As you can see, very little knowledge of synthetic
programming is needed to operate the "LB" program. The only
part of the process that requires such knowledge is the
determination of what decimal inputs are needed to create the
desired synthetic instructions. In Chapter 2 you gained much
of this knowledge through using the QRC. For example you
should be able to look at row 1 of the QRC to determine that
-El can be created using LB inputs 28, 27, and 17.

There are still large areas of the QRC, particularly
rows A through E, that have not been explained here. These
areas are explained in some detail in Corvallis Division
columns in the PPC Calculator Journal July, August, and
September 1979 issues. This chapter will give an outline of

-56-

these areas,

detailed information where appropriate.

decimal inputs are needed to create a given instruction. In
most cases you will also need to consult the QRC.

values are found at the lower left corner of each box in the

What follows is a summary of how to determine which

QRC. For example the decimal number 126 (row 7 column E)

corresponds to either the AVIEW instruction, the suffix 4, or

the character L.

I. One-byte instructions

ITI.

All these are nonsynthetic except for TEXT & (row F,
column @, decimal 240). Any decimal value from row ¢
or rows 2 through 8 will create a nonsynthetic
one-byte instruction unless it is preceded by another

byte that requires a suffix.

Ligit entry instructions will merge themselves into a
single multi-digit numeric entry line unless they are
separated by a null or some other type of instruction.
Use decimal values from row 1, columns & through C, to
make synthetic digit entry lines. For example -E-3 is
decimal 28, 27, 28, 19.

Two byte instructions

Two-byte instructions have a prefix, or first, byte

from the yellow shaded area of the QRC.

The first category of two-byte instructions is those
in row 9, plus columns 8 through D of row A, and
columns E and F of row C of the QRC. These take the
first byte from the box containing the function name,
plus a second byte from the box containing the desired
suffix. Thus STO M is 145, 117; TONE C is 159, 104;
RCL IND N is 144, 246; LBL X (local label) is 207,
115.
-57-

together with specific references for more

Decimal

The second category of two-byte instructions contains
the short form GTO instructions. These take the first
byte from row B plus a second byte of zero. The zero
is filled in by the HEP-41 the first time the GTO is
executed. The filled-in byte tells the processor the

jump distance and direction.

The third category of two-byte instructions contains
the GTC IND and XEG IND instructions. These take a
first byte of 174 (row A, column E). The second byte
is ¥ through 127 for GTO IND, or 128 through 255 for
XEQ IND. Thus 174, 117 is G710 IND M, while 174, 245 is
XEQC IND M.

The final category of two-byte instructions contains
all XROM's. These are peripheral functions that reside
in an external RCM (Read-Only Memory). When the
peripheral is not plugged in, the function appears as
XROM i,j , where i and j are two-digit decimal numbers
from 0 to 63 (actually ¢ to 31 for i). The number i
designates the identity of the peripheral -- i is
therefore called the ROM ID number. Certain
peripherals contain two 4-kilobyte ROMs, each of which
has its own ROM ID. The number j is a sequential
number of the function (in Catalog 2 order) within the
4K ROM.

XROM instructions consist of a hexadecimal A (binary
1010) followed by two groups of six bits. The first
group of six bits denotes, in standard binary, the
identification number (O through 31) of the external
ROM. For example, the printer is XROM 29, and the card
reader is XROM 30. The second group of six bits
denotes, again in standard binary, the number (Y
through 63) of the function within the external ROM.
For example, WSTS is the tenth function in the card
reader. This can be checked by executing CAT 2 with

~-58-

III.

the card reader in place and noting that WSTS is the
tenth function name to appear after the CARD READER

header. Thus WSTS is XROM 308, 1¢. In decimal byte
numbers this is 167, 138 (See Figure 3.1) In general,
the decimal byte number for XROM i, Jj are:

byte 1 = 160 + INT(i/4)
byte 2 = 64 * (i mod 4) + jJ
WSTS = XROM 30, 16

1919 0111 1000 1010

167 138

FIGURE 3.1

A typical XROM instruction

and its decimal byte numbers.

Three-byte instructions

Three-byte instructions take a prefix, or first, byte
from the green shaded area of the QRC.

The first category of three-byte instructions consists
of the long-form GTO's. All GTO's that refer to labels
other than ©@ through 14 are three-byte GTO's. However
with LB you can also create three-byte GTO's for
labels ©¥9 through 14. This valuable synthetic
programming technique eliminates the 112-byte Jjump
distance limitation normally associated with LBLs 00

-59-

through 14. It's not that you can't get to a LBL €0-14
with a normal two-byte GTO instruction; it's just that
the GTO will be much slower. Jump distances of more
than 111 bytes cannot be "remembered" by the GTO
instruction as shorter ones can, because the binary
form of the jump distance doesn't fit into the space
allocated for it in the GTO instruction. The
three-byte GTO instructions have a larger space for
storing the jump distance, so there is no artificial
constraint on jump distance.

Jumps to a short-form label (46U to 14) that are
shorter than 112 bytes can use the normal two-byte
GTO, while for longer jumps you should in most cases
use a synthetic three-byte GTO. The difference between
a three-byte GTO 14 and a three-byte GTO 99, other
than the fact that the first is synthetic and the
second is not, is that the first requires a one-byte
label (LEL 14), while the second requires a two-byte
label (LBL 99). Thus there is an overall savings of

one byte by using the synthetic three-byte GTOG
instruction.

Three-byte GTOs require the following decimal inputs:

byte 1 208
byte 2 J
byte 3 = 0 to 127

Byte 3 designates the label number. For example 208,
@, 1 is a three-byte GTC ¥l, while 208, ©, 115 is GTO
X (this requires a local LBL X -- decimal 207,115).

The second category of three-byte instructions
consists of the non-alpha XEQ's. These are quite
similar to the long form GT0's. The only difference is
that the required byte 1 input is 224. Thus 224, @, 98
is XEQ 98; 224, @, 116 is XEG L (which requires a LBL
L -- decimal 207, 116).

-6 -

To construct "“compiled" GTOs and XEQs (that is, those
for which the jump distance has already been filled
in), refer to page 21 of the August 1979 PPC
Calculator Journal for the detailed byte structure
required.

The third type of three-byte instruction is the END
instruction. The appropriate "LB" inputs to create an
END are 192 and # followed by a third input that
determine the type of END (see Table 3-2).

type of END byte 3 LB input

packed END 9
unpacked END 13
packed .END. 41
unpacked .END. 45
TABLE 3-2

"LB" inputs for byte 3 of an END

Always pack immediately after creating an END or an
alpha LBL in order to incorporate it into CAT 1.

The LBLs and ENDs in Catalog 1 form a linked list
upward from the .END. , with the distance to the next
higher LBL or END stored in the first and second bytes
of the LBL or END. The encoding of the distance is the
same as for a three-byte GTO or XEQ, except that the
direction bit is not used. (The direction is always
upward in program memory.) The instructions given here
for creating ENDs simplify matters by allowing the
calculator's PACK operation to fill in the correct
distance for Catalog 1 linkage.

-61l-

Iv.

Instructions involving ALPHA strings

Text strings require a leading byte from row F of the
QRC (decimal 249 plus the number of characters in the
string) as explained in section 2E. Each character
then requires a single decimal input, usually between
& and 127. For example "X(5)=2" is decimal 246
followed by the six character bytes 88, 40, 53, 41,
61, and 63.

Append instructions are text instructions which have
an append symbol (row 7 column F = decimal 127) as the
first character. The leading byte should be chosen to
allow for the append symbol in the length of the
string. For example "-@" is decimal 242, 127, 64.

Alpha GTO instructions are simply text lines preceded
by a row 1 column D byte (decimal 29). Thus decimal
29, 243, 65, 66, ©67 is GTO "ABC". Alpha XEY
instructions consist of a row 1 column E byte (decimal
30) followed by a text string. For example XEQ "FX" is
decimal 3G, 242, 79, 88.The mysterious WT instruction
found at row 1 column F is constructed much the same
as an alpha GTO or XEQ, but it is only good for
producing a crash condition that can be cleared by

removing and replacing the battery pack.

Alpha labels are composed of 4 + n bytes, where n is
the number of characters in the label. The appropriate
LB inputs are 192, @, 241 + n, @, followed by the n
character bytes. Thus LBL"A", a synthetic global (that
is, CAT 1) label, is decimal 192, ¢, 242, ¢, 65. If
you want the synthetic label to be assigned to a key,
you'll need to use a nonzero value for the fourth
decimal input. You'll also need to set a bit in status

register + or e (see Section 6A). The correspondence

-62-

of decimal byte codes and bit numbers to key locations
is covered in the PPC ROM User's Manual under

background for 3.

A much easier way to assign a synthetic global label
to a key is to use the built-in function ASN. For any
synthetic label that can't be assigned by ASN, you can
use the Extended Functions module's PASN function.
Only very strange labels like LBL ":" fall in the

class that requires PASN.

NOTE: You should always PACK immediately after
creating an alpha LBL or END in order to incorporate

it into CATalog 1.

Practice with. LB until you're familiar with creating
the types of synthetic instructions that were

introduced in Chapter 2.

Problems

3.1

Use LB to create the sequence of instructions

E

STO O

ST+ O

X<> O

STO M

ISG M

TEXT @
ZREG IND M
VIEW O
FS? IND M
TONE E

[T e A1l
;’EI\/\;"

-63-

Il}_ TY

ASTO N

VIEW N
This set of instructions is not particularly useful, but it
does illustrate a broad spectrum of synthetic instructions

that can be individually quite useful.

3.2 Write a short nonsynthetic program to convert XROM
numbers to the corresponding LB inputs. For an input of i
ENTERt j the two outputs should be 16Q+INT(i/4) and 64*(i
mod 4)+j as explained in the section on two-byte
instructions. These two outputs are the decimal inputs
required by LB to create XROM i, j.

Write a synthetic version of this program that replaces i and
j by the two outputs without disturbing the contents of stack

registers Z and T.

3.3 1Illustrate the use of synthetic local labels by creating

the sequence

LBL P (not LBL"P")
TONE 37 (displays as TONE 7)
GTO P (not GTGC "P")

3.4 Create a synthetic CAT 1 alpha label longer than 7
characters, for example LBL"RPN CALCULATOR"

3.5 If you do not have a PPC ROM, but you do have an Extended
Functions module, here is a shorter, faster version of "LB",
also written by Clifford Stern. The instructions for "LBX"
are identical to "LB", and you can use "LB" to help key it
up. The required LB inputs to create "LBX" can be found in
the Solutions section following Chapter 6 if you're having
trouble. If you plan to use "LBX" regularly, you should
probably rename it "LB" and put away the original "LB".

-64-

#ielBL 81
82 CLST

83 BEEP

84 5TOP

85 GT0 =++

BoeLBL “LBX"
87 F3? 58
8§ GT0 62
89 1
18 ENTER?Y
11 ENTERt
12 CLA
13 CF 21
14 AVIEW
15 -18
16 GTG ~++~

17¢LBL 82
187

19 7/

28 INT

21 FIx 8

22 CF 29

23 RRCL X

24 "k REGS."

253 TOKE 8
26 AVIEMW
27 PSE
28 RCL &
29 %"
38 B [
31 -2

32 RROT
33 RDN
34 STO
35 ASHF
36 SIGH
37 RALEHG
388

39 Y2
48 ATOA
41 *

42 512
43 NOD
44 ATO0X
45 +

46 +

47 .1
48 %
4% +
I8+

SieLBL &3
32 1.867
53 ENTER?

S4¢LEL 84

C & =

J

36 RRCL 1

-65—~

37 ke 77 610 81
5§ AVIEW

59 570 { 78¢LBL 85
68 RIN 79 he

61 STOF 88 I56 X

62 Foop 2z 81 GI0 85
63 GTO 85 82 27 ¢

64 XTOR 83 ROL [

65 X(» [84 STO IND 2
66 156 1 85 KOY

67 GTO &4 86 5T0 ¢

68 SIGN 87 GT0 a1
69 ¥{r ¢ 83 END

76 LASTY

71 570 IND T

73ET0 ¢ Epj 168 BYTES
74 Rt

75 DSE &

76 GT0 83

(Intentionally blank)

-66-

CHAPTER FOUR

SYNTHETIC KEY ASSIGNMENTS

4A. Key assignment programs

Byte loader programs are a big step forward in
convenience from the byte grabber. Synthetic key assignment
programs add even more convenience. A synthetic key
assignment program can assign any one- or two-byte synthetic
or nonsynthetic intruction to any key. For maximum
convenience you can make a set of commonly used synthetic
function key assignments and use LE to create any other
synthetic functions that are needed in your programs.

Key assignment programs are similar to byte loaders in
that decimal equivalents are used to construct bytes which
are stored in the appropriate section of main memory. Rather
than entering the decimal equivalents one at a time as with
LB, you load the stack with two decimal byte numbers plus a
row/column keycode.

The first key assignment programs were written by John
McGechie in early 1980. They were a truly awesome achievement
given the state of the synthetic programming art at that
time.

Just as for LB, there are three different key assignment
programs that are available for your use in this chapter. The
fifst is called "MK" (liake Key assignments) and requires only
the basic HP-41. This program occupies three tracks on two
magnetic cards. It was written by Clifford Stern.

The second key assignment program is I in the PPC
ROM, written by Roger hill. Wl is a true masterpiece of
synthetic programming and is virtually immune to user errors.
If you have a PPC ROM, review the instructions for in

the User's Manual.

-67-

The third program, called "MKX", requires an Extended
Functions Module. Written by Tapani Tarvainen, it requires
only one magnetic card. It is shorter and faster than "MK" or

I3 , and is more forgiving of user errors than either. The
listing for "MKX" can be found at the end of this chapter
under problem 4.4.

Although it is quite a short program, Clifford Stern's
"MK" incorporates many of the desirable features of the PPC
rROM's (I3 . As was the case for , all the conveniences
and error traps of could not be incorporated in "MK"
without unduly enlarging the program. liowever the most
important error trap, KEY TAKEN, is implemented. A little
error checking by the user instead of the program saves many
bytes.

If you have an optical wand, you may enter "MK" or "KKX"
directly into your ir-41 from the barcode in Appendix E. The
first time, though, it might be better for you to practice
using LB by keying up one of these programs.

"MK", which regquires nothing but a "bare" hHP-41, is
listed below followed by the decimal inputs needed to create
the synthetic instructions using LB. After you have used LB
to create the synthetic instructions, fill in the
nonsynthetic instructions in the normal way to complete the
program. Once again the suffixes M, N, O, P, Q, and } appear
as [, \, 1, *, _, and 7 respectively in a printed listing,

although P and ¢ are not used in this program.

Note that lines 11, 20, and 38 are not as they appear in
the listing. Especiall& misleading is line 2¢. Consult the
list of "LB" inputs following the program listing to
determine the composition of these and the other synthetic
program lines.

-68=-

B1¢LBL -HK* 32 RVIEM 63 ISG Z 95 =p# 126 XY

3 CLS 33 PSE 64 =" 9 %> N 127 GT0 16
EE Eéaéz 65 ST+ % 97 %> d -
84 CF 85 34¢LBL 16 66 ENTERt 98 FS? IND Z 128¢LBL 63
85 OF ag 33 "PRETPOSTHKEY* 67 Rt 99 DSE Y 29 Rt
96 CF 21 36 TONE 8 68 * 188 SF IND 2 138 OCT
a7 19z 37 AYIEW 69 ENTERt 181 X d 131 570
85 SIGH g - 78 Rt 182 STO 132 CLY
B9 X<y ¢ 39 FS? 82 71+ 183 “Feeexix- 133 E4
18 %3 7 46 STO [72 5T+ ¥ 194 FC2C @6 134 ST+ 3\

1= 41 CLST 73 RIM 185 == 135 %{» ©

17 RiL b 42 5TOF 74 FS? 85 186 KOO] 133 % d
13 RIN 43 LASTX 75+ 187 F§? 85 137 F57C 19
14 %<3 IND L 44 ¥ED 83 76 Rt 188 570 e 138 SF 28
15 ¥=y? 45 XE@ 83 77 RCL 109 FC?C 85 139 FS7C 18
16 GT0 82 46 Rt 78 Pt 118 ST0 ° 148 SF 19
17 80 1 47 X(8? 79 XEG 83 111 XOY 141 FS2C 17
18 "= 43 SF 85 88 X T 112 ¥=8? 142 SF 13:
19 570 » 49 ABS 81 R{Y? 113 10 81 143 F§? 15
2F "FEkEEE” 58 570 © 82 SF 86 114 X ¢ 144 SF 17
21 % 51 Rt 83 36 115 RCL © 145 F5? 14

22 %y IND L 32 X3 s 84 - 116 FC? @2 146 SF 16
27 Rt 53 El 85 FS? 86 117 “heas- 147 %< d
24 156 L 34 HOD 86 + HROL N 8RO L
25 - 35 REHY 87 Rt 119 STO IND L 149 "h**
26 570 b 56 LASTY 89 SIGN 120 FSC 82 158 STO ©

57 / 83 FS? 85 121 I56 L 151 ;2:-

58 INT 98 RCL e 122 5F @2 152 % ©
§§'Efi*fiu 59 4 91 FC? 65 153 S70 [
29 %3 1 68 DSE Z 92 RCL * 123+LBL 82 1§§ END

36 ~KEY TAKEW® 61 X#Y7 93 570 \ 124 %> 2 LBL'WK
31 TOME @ 62 X-87 94 FS? 86 125 §T0 ¢ END 313 BYTES

LB ingputs:

Line 99 206, 125 Line 11 241, 240" Line 12 144, 124
Line 17 206, 117 Line 19 145, 118

Line 20 247, 127, 42, 42, 42, 42, 42, 240"

Line 21 206, 118 Line 26 145, 124 Line 29 206, 119
Line 38 241, 24p* Line 40 145, 117 Line 50 145, 118
Line 52 206, 118 Line 53 27, 17 Line 64 240

Line 77 144, 11& Line 990 144, 127 Line 92 144, 122

Line 93 145, 118 Line 96 2p6, 118 Line 97 206, 126

Line 181 286, 126 Line 102 145, 118

Line 103 247, 127, ©, ©, J, 42, 42, 42

Line 106 206, 119 Line 1w8 145, 127 Line 119 145, 122
Line 114 206, 125 Line 115 144, 118§ Line 118 144, 118
Line 125 145, 125 Line 131 145, 118 Line 133 27, 20
Line 134 146, 118 Line 135 2ye6, 118 Line 136 2066, 126
Line 147 206, 126 Line 14& 206, 117 Line 15¢ 145, 118
Line 152 206, 118 Line 153 145, 117

*Indicates an invisible character from rows 8 through F in a

text instruction.

take very sure that you have keyed up "MK" correctly
before you try to use it. As with "LE", MEMOKRY LOST is
possible if this program is keyed up or used incorrectly. The
theory behind "MK" is far too complex to discuss here. In
fact, writing a SIZE 0WY key assignment program (one that
uses no numbered data registers) is the premier challenge in
synthetic programming. In this book we shall confine

ourselves to a discussion of how to use MK.

instructions for using Clifford Stern's "MK"

1.) If you are using the time module, clear all alarms. Any
alarms that are present when "MK" (or 3) is executeda will
be turned into garbage, rendered useless by normalization.
You may replace the alarms after you've finished creating
your synthetic key assignments. Section 4E presents a handy
pair of routines that can automatically save all alarms in
extended memory and bring them back from extended memory.
Executing the "SA" (save alarms) routine before "MK" clears
the alarms but saves them "off-line" for later restoration by
"RA" (recall alarms). PPC ROM users should take note that

alarms must be cleared before using or any routine that

-7~

calls @ (3, @O, &8, or @).
This restriction on alarms does not apply to "MKX" (see
problem 4.4).

2.) Make sure that a sufficient number of key assignment
registers is available before executing "MK". The number of
free reyisters may be checked by executing GTO .0@W in PRGM
mode. The number of key assignments that can be made using
"MR" is twice the number of free registers, since each
register can hold two key assignments. The PPC RCM's Gy is
more elaborate and can detect the absence of free registers,

producing a "NO ROOM" error message.

3.) Execute "MK" to initialize the key assignment process.
The program will find the first unused key assignment
register so that previous key assignments are not disturbed.

Never interrupt "MK" (or "MKX"). If you interrupt "HK", there

is a small chance of getting MEMORY LGCST. Restart "MNK"
immediately if you interrupt it. If you interrupt "MKX" you
will not get MEMORY LOST, but you may lose access to Catalog
1. Therefore you should restart "MKX" immediately without
attempting to enter PRGM mode. Your attempt to enter program
mode may kick you out of the "MKX" program. This will force
you to MASTER CLEAR to regain control unless you can find the
former contents of status register c in the stack and execute

a STO c. This will make more sense after Chapter 6.

4.) When the prompt "PRE+POST+KEY" appears, key in the three
components of the key assignment -- decimal byte 1, ENTER?,
decimal byte 2, ENTER*, user keycode (row/column), R/S. For
example to assign RCL b to the 1/x key you would key in 144
ENTER+ 124 NTER+ 12 R/S. The decimal equivalent of the RCL
prefix is 144, the decimal equivalent of the suffix byte b is
124, and the row/column user keycode for the 1/x key is 12
(row 1 column 2 unshifted). The first two decimal numbers
must be integers from & to 255, while the third input must be

a valid user keycode. A user keycode is a decimal number of

-71-

the form +rc, where r is the row number of the key, c is the
column number of the key, and the sign is negative if the key
is shifted. This is precisely the same form of keycode that
is displayed momentarily when you execute ASN, or that is
required as input for PASN (Extended Functions programmable
assignment). Both @ and "HLK" allow you to assign the
shifted shift key (keycode -31), although "MKX" does not. If
you do assign a function to the shifted shift key, a function
that requires filling in a prompt is a good choice to rrevent
accidental execution.

Warning: Do not PACK, reSIZE, turn off, or use ASN when "MK"
is halted for input, unless you are finished using it. Also
do not disturb the alpha register or LASTX.

5.) When the prompt "PRE4+POST4KEY" reappears (with the flag
2 annunciator set if you are using "MK"), you may enter the
three inputs for a second key assignment. This will conplete

one key assignment register.

6.) The prompt "PRE+POSTtKEY" will appear once again {without
the flag 2 annunciator if you are using "MK"), requesting an
input for the first key assignment of the next free register.
Repeat steps 4 and 5 until you have made all the key
assignments you want to make. Remember that you must not use
more registers than the number of free registers that you

observed before executing "MK".

7.) When you have made all the assignments you need, you may
simply ignore the prompt for the next input. This is true
even if your last assignment did not complete the register.
however if you quit while flag 2 is set ("MK" only) you waste
half a register unless you plan to fill it with a normal
assignment using the built-in ASN function or its cousin, the
Extended Functions module PASN function. Unlike "MK", ASN (or
PASN) will always look for gaps in the key assignment
registers before taking a new register.

-72-

8.) If you try to make an assignment to a key that is already
assigned, the message "KEY TAKEN" will appear. At this point
you have two choices. (But remember not to disturb ALPHA or
LASTX.) Your first option is to clear the key of its
assignment (ASN, ALPHA, ALPHA, key), re-enter the desired
assignment information, and R/S. 1he second choice is to
enter a new set of inputs specifying two decimal equivalents

and a different user keycode.

As an example of the power of "MK", let's make the

following synthetic function assignments:

STO b -11 STO d =12 STO M =13 STO N =14 STC O -15
RCL b 11 RCL a 12 RCL M 13 RCL N 14 RCL O 15
BG =21 X<> d =22 X<> M -23 X<> N =24 X<> 0 =25

The steps are as follows:

1) Manually clear any assignments trom the top row, shifted
and unshifted, and the second row, shifted only.

2) Check that at least 8 registers (15 assignments at two
per register) are available by executing GTO .Wdy in
PRGIM mode.

3) Switch out of PRGM mode and XBEQ "MK". 3upply inputs as

shown.
Flag 2 Input
("MK" only) ("MK", @3 , or "MKX")

clear 145, 124, -11, R/s
set 144, 124, 11, R/S
clear 145, 126, -12, R/S
set 144, 126, 12, R/S
clear 145, 117, -13, R/S
set 144, 117, 13, R/S
clear 145, 118, -14, R/S
set 144, 118, 14, R/S

~73-

clear 145, 119, -15, R/S

set 144, 119, 15, R/S
clear 247, 63, -21, R/S
set 206, 126, -22, R/S
clear 206, 117, -23, R/S
set 206, 118, -24, R/S
clear 206, 119, -25, R/S
set backarrow or ignore.

These synthetic functions are sufficient for about two
thirds of all synthetic program lines on average. For example
only one third of the synthetic lines in "LB" and "MK" are
outside this set of functions.

A few nonsynthetic functions are also handy to have

assigned. Recommended are

ASN "X<>y" 21 (press X<>Y key for 21)
ASN "RDN" 22 (R key for 22)

ASN "SIZE" 23 (SIN key for 23)

ASN "PACK" 24 (Cos key for 24)

ASN "DEL" 25 (TAN key for 25).

The first two of these assignments will eliminate the
search for LBL F or LBL G when you pPress X<>Y or RDN in USER
mode. This speeds response noticeably in many cases. The
other functions are just handy to have immediately available,
although the choice of key location is a matter of individual
preference. PACK and DEL are useful with the Byte Grabber.
The byte grabber or "LB" can be used to create any synthetic
function that you don't have assigned to a key.

Although you would normally use ASN to assign
nonsynthetic functions, as we did in this example, "MK" does
allow assignment of nonsynthetic as well as synthetic
functions. In response to the prompt "PRE+POST+KEY", simply
key in a single decimal number from @ to 255, followed by a

~74-

keycode. For X<>Y the decimal equivalent is 113; for RDN it's
117. Check the QRC to verify the correspondence. For
multibyte instructions, it's the same idea: DSE is 151, FCZC
is 171, END is 192, GTO is 208, XEQ is 224, LBL is 207.
Non-programmable functions use decimal byte numbers from row
@ of the QRC. For example to assign SIZE, PACK, and DEL using
“MK", you would use the single decimal inputs 6, 14, and 2,
respectively.

If you ever assign STO c or X<> ¢ to a key you should
either clear it as soon as you have finished keying up
whatever program you're making or else plan to be very
careful. Accidentally pressing STO c¢ or X<> ¢ gives a

virtually certain MEMORY LOST.
For my own personal use, I find it convenient to have

X<> ¢ on the keyboard. To help prevent disaster I assign it
to the relatively obscure location -21 (normally CLI). My
complete synthetic keyboard looks like this:

column: 1 2 3 4 5
row 1 shifted STO M STO N STO b
row 1 unshifted RCL M RCL N RCL b
row 2 shifted X<> ¢ X<> d X<> M X<> N X<> O
row 2 unshifted X<>Y RDN "EFT" eGOBEEP BG
row 3 no assignments
row 4 shifted DEL
row 5 shifted PACK
row 6 shifted SIZE XROMEAM INT XTOA
row 7 shifted STO Q X<>__
row 8 shifted Q-LOAD

-75=-

I find that this arrangement of key assignments is easy to
remember and requires very little switching in and out of
USER mode when keying in synthetic programs, Or even most

other programs.

On row 1, 4 unused keys leave space for temporary
program or function key assignments.

On row 2, "EFT" is a program described in problem 4.5,
"EFT" allows you to execute Extended Functions or Time Module
functions from the keyboarad, calling them by number.

The eGOBEEP function is a synthetic one-byte key
assignment that was discovered by Kobert Edelen. Use the
decimal inputs € ENTERt 167 ENTERt keycode R/S. When you
press the key, the display shows eGOBEEP - « If you £ill in
a decimal number k from ¥ to 63, you'll get XROM 28,k , which
includes the mass storage functions. If you fill in a k
between 64 and 99, you'll get XROM 29,k-64 + which covers the
full range of printer functions. For example PRKEYS is XROM
29,12, so eGOBEEP 76 will generate the PRKEYS command. The
printer function PRP (print program) requires an ALPHA input.
1f you press eGOBEEP 77, you will not be prompted for the
ALPHA input. Instead the byte-reversed contents of status
register ¢ will be used, exactly as for the Q-loader, which
is covered on the next few pages.

The "EFT" and eGOBEEP key assignments can be time savers
after you've learned the numeric equivalents for the
functions you use most often. 2 complete list of numeric
equivalents for "EFT" and eGOBEEP is presented at the end of
this chapter, accompanying the "“EFT" program in problem 4.5.

Also on row 2 is the byte grabber, which requires
decimal inputs 247 and 63 plus a keycode. On row 6, XROM
is a PPC ROM function that consists of a sequence of short
synthetic tones. It provides a pleasant alternative to BEEP,
at the cost of an additional byte in a program. XTOA is
another assignment from the extended functions module. Its

usefulness will become apparent in the next section.

-76-

4B. The "poor man's byte loader"

The last two key assiynments on the preceding synthetic
function keyboard, STO Q and Q-LOAD, regquire additional
explanation. Together with one of several byte~-building
programs, these assignments constitute a "poor man's byte
loader". assign these functions to convenient keys using
"MK". The decimal byte values are 145, 121 for STO Q and 27,
® for Q-LOAD. You'll also need the byte grabber and a RCL M
key assignment which you should still have on the keyboard.

if you are fortunate enough to have an extended
functions module, its XTOA function will serve very well as a
byte builder. If you have a PPC ROM, its function will
work. These functions take a decimal input between & and 255
from the X register and create the corresponding byte, which
is then appended to the ALPhA register (meaning that it
becomes the last byte in status register d). If you don't
have an extended functions module or a PPC ROM, create this

short synthetic routine to do the same job.

Bi+LBL “DC- 18 FS7C 17 19 570 »

Bz OC7 11 SF 1§ 28 “hx

81 4 {2 F57 13 21 ClX

a4 + 13 §F 17 22 BN

83 ¥> d 14 F5? 14 23 810 1

86 F572C 19 15 SF 16 24 RIN

87 SF 28 16 %{> d 25 END

88 FS2C 18 178 [LBLTIC

@3 SF 19 18 “hax- END 54 BYTES

LB inputs:

Line 93 27, 20 Line ©5 206, 126 Line 16 206, 126
Line 17 206, 117 Line 19 145, 118 Line 22 206, 118
Line 23 145, 117

-7 7 -

Note that this is the basic byte-building routine that
Clifford Stern wrote for his "MK" and "LB" programs.

Use ASN to assign XTOA, , or "DC", whichever you are
using, to a convenient key. Now we're ready to start. The
C-LOAD function creates a text instruction of up to 7
characters from the reversed contents of status register (.
For instance to create the string "HP'S #1", we would first
create the string "1# S'PL" in the ALPHA register, perform a
RCL M to extract it from the ALPHA register to X, then
transfer it to status register ¢ and press the Q-LOADL key.
Let's try it: '

CLA

49 XTOA (Use B or "bC" if you don't have
35 XToA XTOA. Some of these characters are
32 XTOA nonsynthetic and can be appended

83 XTOA directly, but it's probably not

39 XTCA worth the bother.)

8Y XTOA

72 XTOA

At this point you have the string "1# $'PH" in the ALPuLA
register. Now find a suitable place in program memory where
you'd like to insert the text instruction "HP'S #1". If you
don't already have such a place, just GTO .. and use the
bottom of program memory. When you're at the right spot in
PRGM mode, switch back to RUN mode and use key assignments to
do RCL M, STO ¢. Now switch back to PRGM mode and press the
Q-LOAD key. You'll see the synthetic digit entry instruction
E, which comes from the decimal value 27 of the (Q-LOAD key
assignment (see row 1 column B of the byte table). SST once
to see the text instruction "HP'S #1". Press Q-LOAD again and
you'll get the two synthetic instructions E and TEXT 9. The
first use of the (-loader cleared status register Q. The
second use therefore produced a text instruction with no

characters. So in addition to its ability to create synthetic

-78-

text instructions, the Q-LOAD key assignment provides a gquick
and easy way to get both the synthetic digit entry E and the
TEXT ¢ NOP instruction.

But the real power of the (¢-loader is unleashed by using
it in combination with the byte grabber. First you use the
w-loader to create a text instruction of up to seven
characters, then you grab and delete the text prefix,
releasing the character bytes to become instructions. The
following rather lengthy example will illustrate the power of
this "poor man's byte loader" techniqgue. Follow through it
very carefully a couple of times until you understand the
techniques that are being used.

In this example we will create the synthetic
instructions needed for the "CMOD" routine of problem 2.7.
THe four instructions are STO M, ST- M, ST/ M and X<> M. The
decimal equivalents are 145, 117, 147, 117, 149, 117, 296,
and 117. We proceed from the last byte to the first one:

CLA
117 XTOA
206 XTOA
117 XTOA
149 XTOA
117 XTOA
147 XTOA
117 XTOA
The first group of 7 bytes is now ready to be loaded into
program memory. GTO .. and key in LBL "CMOD" as a place
holder. Switch out of PRGM mode, RCL M, and STO Q. Now switch
back into PRGM mode and press the Q-LOAD key. You'll see the
familiar E instruction. Do not SST yet; instead press the BG
key. This removes the text prefix from the Q-loaded text
instruction. Backarrow twice to remove the grabbed byte and
the E instruction. You now have
g1 LBL "“CMOD"
@2 RDN

-79-

g3 ST- M
g4 sT/ M
@5 X<> M
.END.

It remains to load the STO byte. Switch out of PRGM mode and

CLA

145 XTOA
Now GTO "CMOD", RCL M, STO @, switch to PRGM mode, and
U-LOAD. PACK to remove the invisible nulls between this new
¢-loaded text instruction and the seven bytes we loaded
before. 5till at the £ instruction in PRGM mode, press BG and
backarrow twice. SST through the program and you should see

£l LBL "cmMcD"

W2 STC K

03 ST- M

P4 ST/ M

05 %X<> M

+END.

The STC byte was loaded in the text line. As soon as it was
released from the text line, it absorbed the RDN byte, which
pecame the suffix M.

With a little practice, this "poor man's byte loader"
can be used to quickly create synthetic instructions with a
riinimal amount of setup. All that is required are key
assignments for RCL M, STO (4, Q-LOAD, and BG, plus an
extendea functions module or a PPC ROM or the "DC" program,
and of course, the QRC.

It is good practice not to create pieces of instructions
with the Q-loader as we did in the first group of seven bytes
in the above example. It would have been better to stop at
the sixth byte, creating three instructions, then pick up the
remaining two bytes on the second loading. This eliminates
the need for time-consuming PACKing. The PACKing procedure

was shown here because it is necessary when creating

-80-

synthetic instructions that are more than 7 bytes long.

The only limitation of (Q-loading is that trailing nulls
are suppressed. Thus for example if you want to create the
instruction hex F2 7F @U@ (append one null), you'll need to
add a dummy "filler" instruction such as ENTER+*. For this
example the full procedure is CLA, 131 {(the ENTER?*
instruction), XTOA, & (null), XTOA, 127 (append), XTOA, 242
(TEXT 2 prefix), XTOA, move to desired location, RUN mode,
RCL M, STCO @, PRGM mode, Q-LOAD, BG, and backarrow twice.
You'll also have to get rid of the ENTER+ following your new
synthetic instruction. If the dummy 131 byte were not
included, the steps 0, XTOA, would not do anything and you'd
end up loading only the two decimal bytes 242, 127.

Further discussion of (~loading appears on page 27 of

the October 1980 PPC Calculator Journal.

4C. Pseudo-XROM previews

The only two-byte functions that are nonsynthetically
assignable to keys are peripheral functions. When the
corresponding peripheral is not plugged in, the function
appears as XROM i,j when the key is held down, where i and j
are two-digit decimal numbers from ¥® to 63. The notation
XROM means that the assigned function resides in an external
KOM (Read-Only Memory). The number i designates the identity
of the peripheral -- i is therefore called the ROM ID number.
Certain peripherals contain two 4-kilobyte ROMs, each of
which has its own ROM ID. The number j is a sequential number
of the function (in Catalog 2 order) within the 4K ROM.

When a key that carries a synthetic two-byte function
assignment is depressed, the hP-41 assumes for purposes of
displaying the function preview that the key assignment is a
normal XROM function. If the two decimal bytes of the key
assignment are x and y, the XROM numbers i and J that are

-81-

displayed in the XROM 1i,j preview are
1 = 4(x mod 16) + int(y/64) , and
J
where mod signifies the modulo function (see MOD in your
HP-41 Owner's llandbook). For example ST+ IND M = 146,245
appears as XROM 11,53 while TONE Y = 159,114 appears as XRCM

y mod 64 ,

61,50. This correspondence can be visualized on the QRC. The
column number of the first byte x is, in fact, x mod 1l6. This
pins down i to four possible values, which are shown in row A
of the {KC, at least for columns b through 7. For example,
ST+ is in column 2. Checking column 2 of row A we see the
notation Xk8-11, indicating that the first of the two XROM
numbers displayed will be 8, 9, 10, or 11.

The exact value of i is determined by which block of 4
rows the second byte y is in. The heavier horizontal lines on
the (RC help you to visualize the block boundaries. Kows ¥ to
3 correspond to the first value of i, rows 4 through 7 to the
second, rows 8 through B to the third, and rows C through F
to the fourth. If you then visually move the second byte up
to a corresponding box in rows ¥ to 3 (this is equivalent to
taking y mod 64), you can read off the value of j from the
bottom line of the box.

Let's contiuue with the ST+ IND M example. Since the IND
M suffix is in the fourth group of 4 rows, the value of i is
11. Next we visually translate the IND M suffix from row F
column 5 up to row 3 column 5, which is the corresponding
position in the first block of 4 rows. Checking the decimal
value at the bottom of the row 3 column 5 box, we see that
the value of j is 53. So ST+ IND M previews as XROM 11, 53.

The XROM preview numbers reveal much about the assigned
synthetic function, but they do not quite uniguely determine
it. For example an assignment of DSE IND 10 previews as XROM
30,10, or as WSTS if the card reader is attached. This
assignment is indistinguishable from the WSTS function until
the key is released. If you're ever in doubt about the
identity of a particular assignment, try it in PRGM mode

82

first. But just in case it's a byte grabber, don't press it
when you're in the vicinity of the .EWND. or any nonpermanent
EliD. Remember the byte grabbing constraints from Chapter 11!
For more details on XKOM preview correspondence see page
47 of the March 1981 PPC Calculator Journal. Page 45 of the
August 1¢81 PPC CJ contains a fascinating article by Roger
Hill on how the XROM correspondence can affect the behavior

of synthetic key assignments in PRGM mode.

4D. The RCL b key assignment

Uniyue amonyg assignable synthetic functions is RCL b.
Unlike other key assignments, which aren't essential if one
uses "LbB", the RCL b Key assignment is much more powerful
than a RCL b instruction located in program memory. Executed
from the keyboard, RCL b brings the current program pointer
to the X register. Lxecuted in a program the result woula
always be the same, namely the location of the KRCL D
instruction in program memory.

The result of a RCi b instruction is a program gointer
encoded in the last two bytes of X, expressible in four
hexadecimal digits. 1n the encoded form the pointer is not
especially useful. Two routines are presented here that
convert the RCL b program pointer to a decimal numper of
bytes. 1wo more routines provide a convenient way to
determine the number of bytes between twoc locations in
program memory.

The RAMBYT routine performs exactly the same function as
PPC ROM routine [. io use the RAMBY1 routine, Jjust go to
any point in Catalog 1 program memory &and press the RCL b
assigned key in RUN mode. The result is a program pointer for
that location. Execute KAMBYT (or [) to convert this
pointer to a decimal value.

The ROMBYT routine is similar to RAMBYT, except that it

-83-

expects as input a program pointer from a ROM location. If
you have a PPC ROM or any application ROM, you can try out
ROMBYT. Just go to a label or any other location in the ROM,
execute RCL b from the keyboard in RUN mode, and XEC "ROMBYT"
to see the decimal byte number corresponding to the program
pointer.

The most common application of program pointer decoding
is counting the number of bytes between two locations in a
program. For instance you may wish to know the total byte
count of a program. The RAMBC program determines the distance
between two program pointers by using RAMBYT to decode each
pointer, and subtracting the resulting decimal numbers. RAMBC
is functionally equivalent to the PPC ROM routine (count
bytes).

To illustrate RAMBC, let's find out how many bytes long
the RAMBC/RAMBYT/RCMBC/ROMBYT group of routines is. PACK
program memory if it isn't already packed. Go to LBL "RAMBC",
RCL b in RUN mode, BST (to the END), RCL b in RUN mode, and
XE¢ "KAMBC". The result should be 156, indicating that the
program is 156 bytes long, from the beginning of LBL “RAMBC"
to the beginning of the END. If you want to include the END
in your byte count, add 3 bytes to get 159. If the last line
of the RAMBC program group is .END., your byte count will be
up to 6 bytes more. In this case you can GTO.. and repeat the
above RCL b procedure to get the true byte count.

Divide by 112 to find out how many tracks the program
will regquire when recorded on magnetic cards. The END is
recorded on the cards, but if you have a program that is 112
bytes without the END, you don't have to read in track 2..In
a case like this the prompt for the last track can be
backarrowed for both recording and reading in. The only thing
on the last track will be the END, which carries no
information.

A more advanced use of RAMBC is to determine whether a
long-form (three-byte) GTO is required, or whether a
short-form (two-byte) GTO will suffice. Short-form GTO's (GTO

-84~

g0 through GTO 14) should only be used where the jump
distance is less than 112 bytes. This allows the jump
distance to be compiled, or stored in the instruction itself,
the first time the GTO is executed. Subsequent executions
will be much faster because the search for the LBL is
avoided. Only long-form GTO's can store jump distances longer
than 112 bytes, so that if you use a short-form GTO where the
jump distance is too long, your program will be slowed down
noticeably by the continual label searching.

To determine whether a two-byte GTCO, and its
corresponding one-byte label, can be used without losing the
advantage of the compiled branch, first key in the GTO and
LBL in their desired positions in the program. Use GTO nn and
LBL nn, where nn is between & and 14, inclusive. PACK to
remove any superfluous nulls. Go to the line following the
GTO instruction (if it happens to be the .END. insert a dummy
instruction and PACK again) and RCL b in RUN mode. Then go to
the corresponding LBL instruction (you can use BST, SST) and
RCL b again. XEQ "RAMBC" to see the jump distance in bytes.
If this jump distance is between -111 and +11l1 bytes,
inclusive, then the two-byte GTGC is sufficient. Otherwise
you'll need a three-byte GTO.

An alternative proceduré is to RCL b at the GTO
instruction, SST to get to the LBL, KCL b, and XEQ "RAMBC".
The result should be between -1¢9 and +113, inclusive.

If you need a three-byte GTO, you can construct a
synthetic one using LB inputs 288, ©, nn, where nn is between
@9 and 1l4. Or you can key in the sequence STO IND 8¢, ISG nn,
BST twice, BG and backarrow to remove the STO byte. Either
way, this allows you to use the one-byte LBL nn, saving one
byte over the standard instructions GTO xx, LBL xx, for xx
from 15 to 99. Once created, a synthetic three-byte GTO will
never change to a two-byte GTG, and it will always compile
the branch distance properly. It can be distinguished from a
two-byte GTO by using RAMBC to determine its length in bytes.

Here are the listings for RAMBC, RAMBYT, ROMBC, and

-85~

ROMBYT. ROMBC is of course analogous to RAMBC,

operates on ROM program pointers.

except that it

BLeLBL "RAMEL™ 13 FRL poe g -ROMBYT* 43 %() d 58 SF 13
B2 XY le E4 38¢LBL 62 44 CF 88 59 FS2C 16
83 ¥E@ &1 i+ 31 XE@ 83 45 FS7C @9 68 SF 14
B4 XY 18 DEL 32 3 46 SF 85 61 FS2C 17
85 XEQ 61 197 3/ 47 FS2C 1@ 62 SF 15
ga - 28 + 34 DEC 48 SF 86 63 FS?C 18
A7 RTH 21 + 35 RTH 49 FS7C it 64 SF 17
22 RTH S8 SF 87 65 FS2C 19
@#5e[Bl “RAMEYT") o 3o#lBL 83 af F5?C 12 66 SF 18
@3¢ BL A1 ZI4LBL "ROMBL® 47 ... 52 §F @89 67 FS7C 28
18 XEQ @3 24 RER B2 gg e g S3FSC 13 68 SF 19
1 B4 &3 & 39 570 © 54 5F 18 69 X(» d
12 7 26 REQ B2 45 sHF 55 FS2C 14 78 EWD
13 INT 27 - 41 “hesofi 56 SF 11 LBL "RAKBC
14 LRSTX 28 RTH 42 %0 1 57 FS2C 15 LBLRAMBYT
LBL"ROMBC
LBL"RONEYT
END 159 BYTES
LB inputs:
Line 11 27, 26, 17, © Line 1l6 27, 28, ©
Line 32 27, 19, 23 Line 38 206, 117 Line 39 145, 118
Line 41 245, 127, 0, ©, 9, ©5
Line 42 2@6, 117 Line 43 206, 126 Line 69 206, 126

The core of this group of routines is the LBL £3 subroutine,
which uses a couple-rof tricks of the advanced synthetic
programming trade. Its first four steps isolate the last two
bytes of X in the ALPhA register.

shifted left (line 41) and transferred to the flag register.

These bytes are then

At this point the 15 program pointer bits (the leftmost bit
is not needed here) reside in flags 9 through 23. Flag
operations are used to shift the bits into octal (base 8)
format, with three bits per digit (see below). This leaves
five octal digits in flags 4 through 23, with flags 4, 8, 12,

-86-

16, and 20 clear. These five octal digits are extracted from
the flag register in the form a.bcde x 1941, Regular
arithmetic operations can then be used to separate the digits
if necessary, after which the DEC function converts the
digits to decimal. This trick of shifting bits into octal
format and converting to decimal was pioneered by Roger Hill,

the author of many routines for the PPC ROM.

89 19 1 12 1 19 2 11 2 2n

/.

" 1% 1
4 19

o

13
4 5867 8 90 101 12 13 14 15 18 1 2t 2 2

You'll have to read the discussion of program pointer
formats in Chapter 6 to understand the manipulation of the
octal digits in the "RAMBYT" and "ROMBYT" routines.

4LE. Saving and Recalling Timer Alarms
Most key assignment programs (except "MKX" -- .see

problem 4.4) have one feature in common: they will not work
properly if any alarms are present, and they will disrupt the
alarms as well. One solution is to manually clear the alarms
using the time module's ALMCAT function. This is tedious and
it requires writing down the alarm information and
re-entering it later.

If you have an extended functions module and a PPC ROM,
you can use Clifford Stern's "SA" (save alarms) and "RA"
(recall alarms) to automatically transfer the alarms to
extended memory, then back to main memory when you're done
using the key assignment programs. "SA" uses the extended
function module's SAVERX function, which, unlike RCL, permits
extraction of data from main memory without normalization

(Section 2C discussed normalization). Actually the first and

-87-

last registers of the alarm block are normalized, but this

damage 1s repaired by "RA".

Here are the instructions for using "SA" and "RA" :

1) Make sure there is at least one END somewhere above LBL

3)

"SA" in Catalog 1. This is necessary to permit the
backwards GTO (line 66) to work properly with the
curtain lowered. This will be explained in Section 6C.
After you have verified that there is at least one ELU
above LBL "SA", XEQ "SA" to save the alarms in extended
memory in a file named "ALM" and to clear the alarm data
out of main memory. DATA ERROR at line 86 means there
are no alarms to be stored. DUP FL at line 6 indicates
that a file named "ALM" already exists in extended
memory. Execute PURFL, then press R/S to complete
program execution. NO ROUM at line 86 signifies that
there aren't enough unused registers remaining in
extended memory to store the alarms. At your option you
may continue execution after purging one or more files
and re-loading "ALM" into the ALPHA register.

Use any key assignment program you like. When you have
your synthetic key assignments set up the way you want
them, Xni& "KA" to restore the alarms and purge the "ALK"
file from extended memory. The "RA" routine uses the
Extended Functions module's programmable SIZE function
if needed to open enough free registers below the .END.
for the alarms. If the current total of free reqgisters
and S1ZL 1is insufficient to accomodate the alarms,
you'll get a DATA ERROKR message at line 15. If this
happens, PACK and/or clear a program and XEC "RA" again.
"RA" terminates with an OFF instruction, reqguiring you
to turn the lP-41 back on. This OFF instruction is
required to take care of the case in which you turn the
calculator off after executing "SA" but before executing
"RA". The Time Module saw no alarms the last time the

calculator was turned off, so its countdown timer is not

-88-

active. The OFF instruction starts the Time Module
counting down for the nearest alarm immediately, and
enables it to advise you of any past-due alarms. A CLOCK
instruction would serve the same purpose. For subroutine
use, you may replace the OFF instruction by RTN, as long
as you keep in mind the fact that if the calculator is
turned off while the alarms are saved the Time Module's
countdown timer will not be accurate until the next time
you turn the hP-41 off.

Here's the listing of Clifford Stern's "SA" and "RA"

Bi+LBL “EH" 22 FLSIZE 42 XROM *E?" 62 ¥{d A 81 ENTERt
B2 XROM “F3- 23 =~ 43 17 63 5T0 IND L 82 DSE ¥
83 INT 24 RCL [44 - 64 RDH 33 ATOY
64 XROH =£7- 23 - - 45 (Y7 65 ISG L 84 “ALH"
BS R{Y 26570 46 GTD 83 66 GTO 8l 85 CF 25
86 - 27 ARCL e@ 47 E3 67 CLA 86 CRFLD

87 S1ZE7 28 RCL 1 438 7 68 GTO 83 87 +

838 EKTER? 29 570 @8 49 + 33 E3

89 -ALA" 38 ®#{r 58 SIGK 69+¢LBL &2 83 s

18 LASTH 31 DSE 2 51 °8- 78 RRCL IND L 9@ +

1+ 32 ST0 INB 2 92 R 71 ¥=87 9] XY

12 FLSIZE 33kt 72 CLA 97 ¥y ¢

13 - 34 STD ¢ S53¢LBL 8 73R [93 X{¥Y

14 #{a? 35 “ALAe 54 = 74 STO IRD L 94 SAVERX
13 58RT 36 PURFL 95 RCL IND L 95 ¥R0ON “BC*
16 x{Y? 37 BEEP 56 X0 { 79¢LBL 83 95 RO

17 PSIZE 38 OFF 57 =+ - 76 ATOX 97 570 ¢

18 Kt 58 X{ 77 Rt 98 BEEP
19 XROM -CZ* 39¢LBL -SR* 39 X#Y? 78 B ¢ 99 END

26 GETR 48 XROM -OM" 68 GTO 82 79 LASTX LBLTRA

21 kt 41 176 61 ARCL ¢ 88 INT LBL'SH

END 175 BYTES

-89-

LB inputs:

Line 23 241, 240% Line 24 144, 117
Line 26 145, 118 Line 28 144, 117
Line 34 145, 125 Line 47 27, 19
Line 52 206, 117 Line 54 241, 240%
Line 57 242, 127, 170"

Line 5& 2o, 117 Line 61 155, 125
Line 73 206, 117 Line 78 %06, 125
Line 92 206, 125 Line 97 145, 125

Line
Line
Line

Line

Line

Line

* o
Indicates an invisible character from rows 8

the QRC (decimal values 128 through 255).

25
30
51
56

62
88

241,
206,
241,
206,

206,
27,

170*
118
16
117

118

19

through F of

liote that lines 25 and 57 contain the character AAj g

(decimal 170), which is a printer control character that

causes 1Y spaces to be skipped. Printer control characters,

discussed at the end of Section 2E, can cause even stranger

behavior in program listings. The shaded characters in rows A

through E of the QRC are printer control characters.

Problems

4.1 Review the solutions to the Chapter 2 problems and

consider how synthetic key assignments could speed up

keying in those programs.

4.2 Try keying up Clifford Stern's "LB" program by first

using the "poor man's byte loader" technique to create

the following instructions
hex ¥4 7TF 60 w0 02
E4
X<> ¢
STO c¢
hex F2 7F w0

-90-

X<> ¢
5TO ¢
Fill in the rest of the synthetic instructions using your

"working" keyboard of synthetic function assignments.
You can then fill in the nonsynthetic instructions to

complete the "LB" program.

4.3 Predict and verify the XROM number previews for the
following synthetic key assignments:
a) TONE 89
b) X<> P
c) ISG IND N

4.4 Here is a new key assignment program that uses the
Extended Functions Module. Called "MKX", it was
conceived and written by Tapani Tarvainen, and revised
and optimized by Clifford Stern. It uses a totally
different approach, made possible by the capabilities of
the PASN (programmable key assignment) function.
kssentially, "MKX" uses PASN to make a dummy assignment
to the designated key, then it finds and replaces that
dummy assignment in the key assignment registers. "MEKX"
is sufficiently different from "MK" and [that a
separate set of instructions is called for:

1) Make sure that Catalog 1 contains no LBL"ANUM", and that
it does contain an END above LBL"MKX" (you can GTO
."MKX", GTO .909, and XEQ "END"). Failure to observe
either of these constraints before executing "MKX" will
require you to MASTER CLEAR. "CU" constraint 1 in
Section 6C explains why the END is needed. The second
constraint ensures that line 04 creates an "ANUM"
function (not global label) assignment. See Section 6A.

2) Load the stack with three inputs and execute "MKX". The
three inputs required for "MKX" are the same as you
would use for "MK" or @@ . The difference is that you
load the stack with the two decimal inputs and the

-91-~

keycode (in Z, Y, and X, respectively, as for MK)
before executing "MKX".

3) Alarms need not be saved or cleared. They will not be
disrupted.

4) If you don't have enough free registers, you'll get
PACKING, TRY AGAIN at line ©4. This is much more
forgiving than "MK".

5) Like "MK", "MKX" is not interruptible.

6) 1f you try to assign a key that is already taken, the
new assignment will replace the old one, with no
indication that this has occurred. If this isn't what
you want to happen, check the key before executing
"MRKX".

7) To assiygn another key, simply load the stack with the
three required inputs and execute "MKX" again or simply
R/S since the last assignment left you at the top of the
"MKX" program anyway.

8) There are no wasted half-registers with "MKX". Each new

assignment is treated identically, and a new register is
opened only if there are no existing "holes" to be

filled in the assignment registers.

BieLBL MK~ 12 576] 23 . 33 X#Y? 44 FC?C 25
82 “RHUN" 13801 24 SIGN 34 XO N 45 I5G L
83 CF 25 14 “Feee B- 35 ¥=y? 46 ¥=y?
84 PASN 15 8> 1 25¢LBL a1 36 SF 25 47 GT0 81

B85 “xipe 16 ¥ [26 XO IND L 37 ¥=y2 48 R4

86 RCL [17 §70 » 27 X0 I 38 Rt 43 570 ¢

87 Rt 18 *+- 28 “hs" 39 "hssse= 58 CLST

88 XT0A 19 X(> 1] 29 570 © 48 ST0] 51 END

89 Rt 28 Rt 38 s 41 “Feee .

16 XT0R AKX C JAON 4w LBLTHKK

11 RCL T 2RELN 3 bt 43 sro i L EWD 123 BYTES

LB inputs:

Line @5 245, 1, 185, 12, @0, 240~
Line ¥6 144, 117 Line 11 144, 122 Line 12 145, 119
Line 13 206, 117

-92-

Line 14 247, 127, ©, 9, @, 248%, 166", 66

Line 15 266, 119 Line 16 206, 117 Line 17 145, 118
Line 18 242, 127, 248"

Line 19 286, 119 Line 21 2066, 125 Line 22 144, 118
Line 27 2d6, 117 Line 29 145, 118 Line 31 206, 118

Line 34 206, 118

Line 39 245, 127, 42, 42, 42, @

Line 4¢¥ 145, 119

Line 41 244, 127, 4, 0, 240"

Line 42 206, 119 Line 49 145, 125

*Indicates a character from the second half of the QRC,
normally invisible in printed listings, but visible as a
starburst in the display.

4.5 If you like the eGOBEEP key assignment that provides fast
access to all the printer and mass storage functions,
you may wish to try this short routine by Clifford
Stern. It provides a capability similar to eGOBEEP for
the kExtended Functions and Time Modules.

Just key in the reqguired stack input if any,
ENTER*, then key in the number of the desired function
and XE¢ "EFT". The "EFT" program will PAUSE for about a
second to allow you to key in an ALPHA argument such as
a file name. If the ALPHA argument you want was already
in the ALPHA register, you won't have to key anything
in. ALPHA inputs are limited to seven characters or
less. "EFT" builds a short sequence of bytes containing
the requested XROM instruction, then it executes the
sequence. The byte sequence is actually contained in
status registers b and a.

There are two notable constraints on "EFT". The
first is that unlike eGOBEEP, "EFT" works only in RUN
(non-PRGM) mode, so it cannot be used to enter program
lines for Extended Function Module or T'ime Module

-93~-

Functions. The second is that you must not use "EFT" to
execute PSIZE (function number 30), or to execute XYZALM
(function number 93) where a nonzerc Z input is needed.
PSIZE will alter the byte sequence in status registers b and
a that "EFT" is executing there. The XYZALM constraint is
due to the fact that the 2 register contents are altered to a
value that is effectively zero by the time the XYZALM
instruction is executed from the status registers. You should
also avoid using "EFT" to execute PCLPS (function number 27)
if this would clear "EFT" itself, because you would then
begin executing the key assignment registers.

Incidentally, the reason for lines 15 and 23 is to defer
any error stop until after the return to program memory. If
you halt in the status registers, the processor takes a very

long time to compute a line number.

BLeLBL "EFT* 88 CLX i55F 25 22 RIN
82 RCL I 89 b4 16 “Fhti* 23 FSL 25

83 CLA 16 + 17 RON 24 5TOP

B4 5TO HRLD 188> [259F 38

@5 AON 12 "sTou " 19%>a 26 EHD

96 P5 13 %Y 28 XO N LBL'EFT

87 ROFF 14 XT0R 20%0 b ENL 58 BYTES

Barcode for "EFT" can be found in Appendix E.

LB inputs:
Line ©2 144, 117 Line @4 145, 117 Line 11 144, 117
Line 12 247, 145%, 112, 176*, 84, 12, 117, 166"
Line 16 245, 127, 127, 116, 145%, 124
Line 18 206, 117 Line 19 2¢6, 123 Line 20 206, 118
Line 21 206, 124

*Indicates an invisible printer character. The hex A6
(decimal 166) character in line 12 causes 6 spaces to be
skipped.

-94-

Numeric function codes for "EFT" and eGOBEEP
(XROM numbers are also included for reference)

"EFT" eGOBEEP

(XFUNCTIONS, TIME, WAND) (HP-IL, PRINTER)

~EXT FIN 1B “TINE- © -HASS ST IH -PRINIER 2D
1 ALENG 25,81 &5 ADATE 26,81 t CREATE 2g,81 45 HACA 29,81
2 AHUM 25,82 56 ALMCAT 26,82 2 Ik 26,82 gf FTTHR 29,82
3 RPPCHR 25.83 67 ALMNOMN 26,63 3 NEWM 28,83 g7 WOCOL 29.63
4 RPPREC 25,84 62 RTINE 26,84 4 PURGE 28,84 43 HCSPEC 29,84
5 ARCLREC 25,85 59 RTIME24 26,85 5 RERTA 28,85 g9 ACY 29,85
& AROT 25,86 78 CLK1Z 26.06 & READK 28,86 78 ELDSPEC 29,86
7ORTDE 25.47 71 CLKZ4 26,87 7 READP 22,87 7y LIST 29,87
g8 CLFL 25,88 72 CLKT 26,88 g RERDR 23,88 72 FRA 29,88
9 CLKEYS 25,89 73 CLETD 26,89 9 READRY 28.89 73 'PRAXIS 29,89
14 CRFLAS 25,18 74 CLOCK 26,18 18 RERDS 28,18 74 PRRUF 29,18
11 CRFLD 25,11 75 CORRECT 26,11 11 READSUE 28,11 75 PRFLAGS 29,11
12 DELCHR 25.12 76 DATE 26,12 12 RENAME 28,12 76 FPRKEYS 29,12
13 DELREC 25,13 77 DATE+ 26,13 13 §EC 28,13 77 PRP 29,13
14 EMBIR 25.14 75 DDAYS 26,14 14 SEEKR 28,14 78 TPRPLOT 29,14
15 FLSIZE 25.13 79 DNY 26,15 15 UNSEC 28,15 79 TPRPLOTR 29,15
is GETRS 25,16 88 DOM 26,16 16 VERIFY 28,16 88 PRREG 29,16
i7 GETKEY 25.17 g&i MDY 26,17 17 WRTR 28,17 81 PRREGY 2917
15 GETP 25,18 52 ROLAF 26.18 13 WRTE 28,18 g PRY 29,18
19 GETR 25.19 37 RCLSH 26,19 15 WRTP 28,19 g3 PRSTK 29,19
8 GETREC 25.286 324 RUNSW 26.20 20 WRTPY 28.28 84 PRY 23,28

GETRY 25,21 a5 SETAF 26,21 21 WRTR 28.21 85 pEcPLOT 29,21
27 GETSUB 25,22 @5 SETDATE 26,22 22 WRTRY 28,22 g6 ciprur 29,22
23 GETX 25.23 27 SETIME 26.23 23 WRTS 28.23 @7 skpooL 29,23
24 INSCHR 23.24 83 SETSH 26,24 24 ZERD 28,24 g sTepLeT 2924
25 INSREC 23.25 g9 STOPSH 26.25 25 - 28.2% @9 FET 29,25
26 PASN 25.26 g9 SM 26,26 26 -CTL FHS 28,26 -
27 OPCLPS 25,27 9f T+ 26,27 27 RUTGID 28,27
25 POSR 25,28 92 TIME 26,28 23 FINDID 28,28
23 POSFL 25,29 93 XyZalM 26,29 29 IHA 28,29
38 PSIZE 25.78 38 IHD 28,39
31 PURFL 25.3L 31 OINSTAT 28,31 . AT
32 ROLFLAG 25,32 - NAND 1F - 32 LISTEN 28,32 %ﬁigMRgSL)’LR
33 RCLPT 25,33 129 WHDDTA 27,81 3B LOCRL 2433 STk
24 RCLPTA 25,34 138 WNDDTX 27,82 34 MANID 283 e
35 REGMOVE 25,35 131 WHDLNK 27.83 35 OUTA 8,35 o
36 REGSWAP 25,36 132 WHDSUE 27,84 36 PURIN 28.36 GOBE%P
37 SAVERS 25.37 133 WHDSCH 27,85 37 euRop 28,37 € .
3 SAVEP 25,38 134 TMNDTST 27.86 38 REMOTE 28,38
39 SAVER 25,39 39 SELECT 28,39
48 SAVERX 25.48 48 STOPID 28.4@
41 SAVEX 25.41 41 TRIGGER 28,41

42 SEEKPT 25.42
43 SEEKPTR 25.43
44 SIZE? 25.44
43 STOFLAG 23,45
46 XOF 25,46
47 XTOR 25,47

-95.

(Intentionally blank)

-96-

CHAPTER FIVE
UNDERSTANDING PROGRAM EDITING ON THE HP-41

In Section 2B you were promised an explanation of how
nulls are created when programs are keyed up and edited and
under what conditions they can be removed by PACKing. This
explanation is simplified by the construction of a very
special synthetic instruction called an FJ label. The F@
label is capable of displaying several following instructions
as text characters without actually absorbing them as the
byte grabber does.

First construct this special synthetic instruction using
"LB", with inputs 192, ¢, 240. Alternatively, if you have the
byte grabber assigned to a key, you may key in the
instructions ENTER+, STO IND 64, RCL IND T, BST twice, BG,
and backarrow twice, removing the STO byte. Either way, you
should PACK immediately so that the calculator can
incorporate this synthetically~-created LBL into Catalog 1.
You now have a synthetic global label instruction. It is
synthetic since its third byte is 240 decimal = FO
hexadecimal (hence the name F0 label). Normally the third
byte of a Catalog 1 LBL instruction is 241 + n, where n is
the number of characters in the label name. A third byte of
240 gives a name length of -1. It turns out that the
calculator interprets this highly nonstandard length
parameter in contradictory ways. For displaying the F@ label
in PRGM mode, the processor uses n = 15, which is -1 modulo
16. So you see LBLT followed by 15 characters. The processor
skips one byte (which is normally the byte containing the key
assignment information for the label), and displays the
following 15 bytes as characters. However if you SST in PRGM
mode you'll see that these character bytes have not really
been absorbed into the F@ LBL instruction.

An example should make this point clear. But first a

07 -

word of caution. Do not SST the F@ label in non-PRGM mode or
run a program containing an F@ label. That will "crash" the
HP-41, locking out the keyboard until the battery pack is
removed and replaced to clear the crash. Removing the
batteries halts an internal "infinite loop" condition, in
this case without disturbing the memory contents. Executing
an FU label is one of the friendliest crashes. Others (such
as byte-grabbing the .END. and deleting it) cause an almost
unavoidable MEMORY LOST.

Starting with your F@ label in the display (PRGM mode),
key in the sequence of instructions -, *, /, X<Y? (Press XEQ
ALPHA X shift COS Y ? ALPHA), X>Y?, X<=Y?, I+, I-, HMS+,
HMS-, MOD, %, %CH, P~-R, R-P, LN, X*%2, SQRT, Y*X, CHS, E+X,
LOG, 10UtX, E+X-1, SIN, and COS. Now go back to the F¢ label
and you'll see

LBL "BCDEFGHIJKLMNOP"

(If you don't see this display, PACK and you should get it.)

The characters B through P are actually the instructions
*, /., through LN, that follow the F@ label. Rows 4 and 5 of
the QRC show the correspondence of instructions to these
characters. To further illustrate this correspondence, locate
and backarrow the / instruction and go back to the F@ label.
You'll see

LBL "BTDEFGHIJKLMNOP"

This illustrates that when instructions are deleted, they are
replaced by nulls, which are normally invisible. The overline
character is the character representation of a null
(hexadecimal @0 = decimal @) byte. Now PACK and you'll see

LBL "BDEFGHIJKLMNOPQ",
which shows the removal of nulls by packing.

The FJ label enables us to see a striking demonstration
of the operation of the processor when instructions are
inserted in a program. Single step to the X<Y? instruction,
corresponding to the character D, and insert a + instruction.
Go back to the F@ label and you'll see

LBL "BDP™T""7T EFGHIJ"

-98~-

The @ character corresponds to the + instruction. But you
probably didn't expect the six nulls (overline characters).
This example illustrates that whenever an instruction is
inserted where there is no room (that is, where an
insufficient number of nulls are present), seven null bytes
are opened for the new instruction, even though only one null
may actually be used. The rest of program memory, down to and
including the final .END. , is shifted down one register
(seven bytes), decreasing the number of free registers by
one. (Refer to Chapter 6 for a description of how program
memory is organized and where the free registers are.)
Because of the register operations available to the
processor, this one-~register shift is much faster than a
one-byte shift would be.

Insertions where sufficient nulls are already present
will not disturb the rest of program memory. For example,
single step to the + instruction and key in the instructions
STO @1, STO 62, STO ©3, STO @4, STO 65, and STO ©66. Go back
to the FU¥ label and you'll see

LBL "BD{P123456EFGHIJ"

The six new instruction bytes exactly filled the available
space. Any additional insertion would open another seven
bytes.

Now that you have seen how insertion of instructions is
accomplished by the processor, you can understand why the
byte grabber works. When pressed in PRGM mode, the byte
grabber creates a TEXT 7 prefix, followed by a null byte and
a third byte that has always been decimal 63 in this book (MK
can make it any value you like). A TEXT 7 instruction
occupies 8 bytes of program memory, consisting of a one-byte
TEXT 7 prefix followed by 7 character bytes. But the
processor only knows that it has to make room for the three
bytes that are being inserted. In the usual case there are no
nulls present for the insertion, so 7 new ones are created.
Therefore the eighth byte -- that is, the seventh character
-- is taken from the existing program. Figure 5.1 illustrates

-99-

the capture of this byte from program memory for the example
of Chapter 1.

BEFORE
Instructions: ENTER+ STO IND 31 PI
Hex equivalent: 83 91 9F 72
Decimal equivalent: 131 145 159 114

AFTER
Instructions: ENTER * "TRTTTTR” TONE Y
Hex: 83 F7 @ 3F 9 9 @ & 91 9F 72
Decimal: 131 247 @ 63 @ © © ¢ 145 159 114

Figure 5.1 Creation of TONE Y using the Byte Grabber

The byte grabber can be used to grab up to 5 bytes if
you like. Simply PACK or otherwise make sure there are no
nulls ahead of the bytes you want to grab, just as you would
for using the byte grabber normally. Then, before pressing
the BG key, insert one to four bytes of "filler"
instructions. For example, to grab two bytes you could insert
a "filler" X<>Y before pressing BG. We did this in Chapter 2
to grab the 1 from exponential entry instructions without
packing. To grab three bytes, you could insert the digit 9
and BG. To grab four .bytes, insert EEX and BG. To grab five
bytes, insert EEX 9 and BG. In all these cases, the idea is
the same. The processor only requires three bytes for the
byte grabber. If you open 7 bytes with an insertion and fill
four of them (for example by inserting lE 9) and press BG,
the byte grabber will drop into the three remaining nulls.
But since the TEXT 7 instruction is 8 bytes long, it must get
its last 5 character bytes from the existing program.

~160-

Be very careful when grabbing more than one byte. You
might accidentally grab part of the .END.. If you do this,
don't backarrow! Immediately BST and BG again to release the

.END. from the previous byte-grabber text line.
You might be under the impression that packing removes

any and all nulls from a program. Not so. Occasionally a null
carries essential information and cannot be deleted.

The first such case occurs when the null is located
between successive numeric entry instructions. Let's continue
where we left off with the F@ label, which when we left it
looked like this:

LBL "BD{P123456EFGHIJ"
5ST once to the — (subtract) instruction just ahead of the *
instruction which corresponds to the character B. Key in the
two successive numeric entry instructions 1E3 and 56. Switch
into ALPHA mode and back to terminate the 1E3 instruction
before starting on the 56. Now go back to the F@ label and
you'll see

LBL ""BRE B8 """ B .

The first three starburst characters comprise the 1E3
instruction, while the next pair of starbursts is the 56
digit entry. Now PACK to see the result

LBL "BEBE BBBL123456"

All the nulls disappeared except the one between the two
numeric entry instructions. That null is needed to prevent
the two instructions from merging into a single program line.
This is why a null between successive numeric entry
instructions is nonpackable. The need for nulls to separate
numeric entry instructions from each other explains the nulls
we saw before packing in this example. The HP-41 operating
system insists on adding a null in front of every numeric
entry instruction at the time it is keyed in. This null will
be removed by packing unlecs the previous instruction is also
a numeric entry. The operating system also insists, for
similar reasons, that there be at least one null separating

the numeric entry instruction from the following instruction

-161-

as the numeric entry is being keyed in. In the preceding
example, seven bytes were opened up when the 6 of the 56
numeric entry was keyed in. If no bytes had been opened,
there would have been no space isolating the 56 from the
following program instruction. If that following instruction
had been a numeric entry, the 56 would have merged into it to
create a single (incorrect) numeric entry instruction. Thus
at least one null separator byte was required. Since the

HP-41 opens 7 bytes at a time, seven nulls were created.

Any null byte that is part of a multi-byte instruction
is nonpackable. For instance the instruction ST+ @@ appears
in an Fw label as 8~ . The second byte is a null. This byte
cannot be removed by packing, since it is part of an
instruction and thus carries essential information, in this
case the reyister number. Civen the complex rules for
removing nulls, it's no wonder that the PACK instruction can

take a long time to execute.

One additional obscure point involving nulls deserves to
be covered. Wormally when you key in an instruction, it is
inserted after the current instruction, overwriting any
existing nulls and opening seven new nulls if space 1is
needed. tiowever if the current instruction is an unD (or the
-EWD.), the new instruction is inserted precisely where the
Lkl was, with the END being shifted down 7 bytes. This occurs
even if there were sufficient nulls preceding the LEND.

To illustrate this behavior at ENLs, start with the
sequence: FJ label, -, *, END. Go to the V@ label, PACK, and
you'll see LBLT B8 followed by more characters. The second,
third, and fourth characters visible are the END. Now delete
the * instruction. If you inserted a new * instruction here
it would exactly take the place of the old one. If however
you SST to the END and then insert a new * instruction, the
result is

LBLT “p=—==—~ B8 plus four more characters.

-102-

The * instruction was inserted where the END used to be,
while the LEND was shifted down 7 bytes. Six additional nulls
were created where none were really needed. Therefore it is
good programming practice not to make insertions into a
program with the END in the display. Instead BST before
making the insertion to take advantage of any nulls preceding
the END. Of course PACK will eliminate the nulls anyway, but
this technique may help you avoid having to resize to key in
a program that barely fits in memory.

You'll note that in the last example the END changed its
appearance when it moved. This is because part of the first
two bytes of an END or a global alpha label is used to store
a relative address to the preceding element in Catalog 1.
Thus if Catalog 1 contains LBL "ABC", END, .END., then the
.END. contains a pointer to the END, the END contains a
pointer to LBL "ABC", and LBL "ABC" contains a blank relative
address field, indicating the top of Catalog 1. The
calculator uses this linked list, climbing the chain of
labels and ENDs from the .END. up each time a global label
search is undertaken. The linked list is also used for
backstepping. When BST is pressed the calculator finds the
nearest preceding global label or END and counts down from
there to find the correct instruction. This is necessary
because line number information is not stored in program
memory. Without starting from a known position like a Catalog
1 label or END, the calculator cannot know whether a given
byte constitutes an instruction or a suffix for a preceding
instruction. The BST operation is implemented the only way it
can be, by counting downward from a known position. This
explains why BST can take so long near the end of a long
program that has a lone global label at line Jl.

Relative address information is also contained within
local (non-text) GTO and XEQ instructions, as was mentioned
in Chapter 3. The first execution of one of these
instructions requires a time-consuming search for the

corresponding LBL. But when this search is completed the

-1063-

relative address is filled in, allowing much faster branching
on subsequent executions. With the F@ label it is possible to
Observe GTO and XEQ instructions before and after the
relative address information is filled in. The structure of
this relative address information is explained in detail on
page 21 of the August 1979 PPC Calculator Journal.

Problems
5.1 Predict the result of the following steps, including the
number and location of invisible nulls. Use the F@ label to

verify your prediction.

a) Key in the instructions +, 3, -, 4, 5, and *. 1Insert I+
and I- after the +. Insert RCL @5 after the 4.

b) Key in the instructions +, -, XEQ 0@, GTO 99, *, and /.
Lelete the GTO 99 and key in ST+ 75.

~104-

(Intentionally blank)

=105~

ABSOLUTE LOCATION
OF REGISTER

HEX DECIMAL

--]r 3FF 1023 —-‘r
VvoID
3F0 1008
3EF 1007 EXTENDED
MEMORY
239
REGISTERS MODULE 2
301 768
OFF- 300 768 voID
LINE 2FF 767 -
MEMORY A
voID
2F0 752
2EF 751 EXTENDED
MEMORY
239
REGISTERS MODULE 1
201 513
_V__ 200 512 void "
1FF 511
“ i |
REGISTERS
1c0 sas
1BF a7
o4
ON- REGISTERS
LINE e o ONE HP-82170A
MEMORY o QUAD MEMORY HP41CV
REGISTERS OR INTERNAL
140 320 4 HP-82106A MEMORY
13F 319 MEMORY MODULES
64
REGISTERS
100 256 Y
OFF 255 -1
64 } Hpatc nTERNAL
REGISTERS | MEMORY ,
1 oo 192 |
0BF 191
oFFLINE 128 b ExTEnDED
MEMORY REGISTERS j FUNCTIONS MODULE
1 o 6 |
03F 63
(VOID)
_ 010 16
fr 00F 15 HP-41
SYSTEW 16 STATUS INTERNAL
SCRATCH L REGISTERS SCRATCH REGISTERS
— 000 0

Figure 6.1 QOverall Structure of HP-41 Memory

-106~

CHAPTER SIX
HP-41 MEMORY STRUCTURE AND STATUS REGISTER APPLICATIONS

This chapter will complete your knowledge of the basics
of the workings of the HP-41. Some of the details given here
may not be of immediate use, but they are presented to
provide a reference. They also provide a point of departure
for those of you who want to write your own "bit-fiddling"
synthetic programs. Even if you plan only to use the simpler
techniques of synthetic programming, and use "canned"
synthetic programs from the PPC ROM or the HP User's Library
for the fancy stuff, this information will help you get a
general idea of how such "bit-fiddling" synthetic programs

work.

6A. Memory Structure

Figure 6.1 on the facing page illustrates the
organization of program, data, system scratch, and extended
memory on the HP-41l. The extended memory, including that
portion contained in the extended functions module, is called
off-line because programs cannot be executed directly from
extended memory. They must first be brought into the main

(on-line) memory.

Details of the contents and structure of extended memory
can be found on page 18 of the March 1982 PPC Calculator
Journal. Another article on page 26 of the April 1982 PPC CJ
shows how synthetic technigques can permit execution of

programs directly from extended memory.

The functional organization of main memory is shown in
Figure 6.2 on the next page. The data registers extend upward
from a partition (more about this when we discuss status

-1087-

TOP OF ON-LINE
MEMORY SIZE -1 T
(511 FOR HP-41CV)
DATA
REGISTERS
00)
DATA/PROGRAM PARTITION —s—1— — — — — — _ {1
CONTROLLED BY SIZE LBL “ABC '
FUNCTION
END PROGRAM
LBL “NEXT" MEMORY
(CATALOG 1
END PROGRAMS)
END.
(— o ————= —
NUMBER OF REGISTERS
wEREE" AVAILABLE IS SHOWN
AS 00 REG nn OR AS
THESE PARTITIONS ARE REGISTERS 'END. REG nn .
MAINTAINEDANDMOVED | __ |]
AUTOMATICALLY BY THE
TIME MODULE
™ ———— ——
CAT 2 OR CAT 3
F"':(‘g{'"" FUNCTION KEY
ASSIGNMENTS AT
ASSIGNMENTS TWO PER REGISTER
BOTTOM OF ON-LINE
MEMORY (HEX 0C0 = 192) -

Figure 6.2 On-Line Memory Usage

-108-

register c) to the top of rmain memory. User programs extend
downward from the same partition to the .END., which is moved
automatically by the calculator as required. Below the .END.
are the "free" registers -- those available for additional
programs, timer alarms, or key assignments. They can also be
converted to data registers by increasing the SIZE, which
pushes down all data and programs into the free register
block. Decreasing the SIZE pushes the program and data
upwards in memory, adding to the number of free registers and
causing some of the higher numbered data registers to be lost
off the top of memory. The number of free registers present
at any time can be checked by executing GTO @900 in PRGM mode
or else RTM in RUN mode then switch to PRGM mode. In either
case the display will show 99 REG nn, where nn is the number

of free registers.

Below the free registers are the alarms and key
assignments. Key assignments of Catalog 2 (peripheral) or
Catalog 3 (built-in) functions occupy registers starting at
decimal location 192 and proceeding upward. Each register
that contains key assignments begins with a hex F@ marker
byte. The other six bytes of the key assignment register
contain a pair of function key assignments, each of which
requires three bytes. Of these three bytes, the first two
define the function. These are the two bytes that you provide
decimal values for when using MK. The third byte defines
which key the function is assigned to. The specifics of what
byte is used to define a given key can be found in William C.
Wickes's classic article on page 28 (second column) of the
November 1979 PPC Calculator Journal. Page 280 of the PPC ROM
User's Manual has a clear summary as well.

Timer alarms reside immediately above the key assignment
registers. Each alarm requires one register for the alarm
time, plus additional spaces if there is a message and/or a
repeat interval associated with the alarm. One "header"

register at the bottom of the alarm registers, just above the

-109-

BYTE NUMBER WITHIN REGISTER
REGISTER
‘lsl‘lalzl'|°nuusen
T
BIT MAP FOR SHIFTED 1 | LINE 15
ASSIGNED KEYS ; SCRATCH I NUMBER
|
USER FLAGS: 0T0 29 | SYSTEM FLAGS: 30 TO 55 14
|
T T T
ZREG | NOT | COLDSTART | CURTAIN I .END. 13
POINTER | USED | CONSTANT | POINTER |I POINTER
| | |
I T T
THIRD | SECONDRTN | FIRST RTN I PROGRAM 12
RTN : POINTER I POINTER I POINTER
| T T
SIXTH RTN | FIFTH RTN | FOURTH RTN ' THIRD 1"
POINTER | POINTER | POINTER | RTN
| | |
T
BIT MAP FOR UNSHIFTED |
ASSIGNED KEYS | SCRATCH 0
1
TEMPORARY SCRATCH FOR ALPHA LBL, GTO, XEQ,
OR WHEN KEYING IN DIGIT ENTRY INSTRUCTIONS 9
I T
DISPLAY ! cATLN | ALPHA REGISTER
FORMAT | NUMBER | (2¢) (25) 2 23 22 '
|
ALPHA REGISTER ;
21 20 19 18 17 16 15
ALPHA REGISTER
1 13 12 1" 10 9 : 6
ALPHA REGISTER 5
] 6 5 4 3 2 1
LAST X REGISTER 4
STACK REGISTER X 3
STACK REGISTER Y 2
STACK REGISTER Z 1
STACK REGISTER T 0
SIGN |<“ MANTISSA (10 DIGITS) \—.l SIGN strousur

Figure 6.3 The Status Registers

-1ly-

uppermost key assignment register, is required to define the
total number of alarm registers in use. Another register

delimits the top of the alarms.

This completes the description of HP-41 memory
structure, except for one very important area --— the status,
or system scratch, registers. The name "status registers" is
due to the fact that the contents of these 16 registers is
recorded on track 1 of a status card by the card reader's
WSTS function.

The 16 system scratch registers reside at the very
bottom of the HP-41 address space, at locations @ through 15
(decimal). The register names are T, %, Y, X, L, M, N, O, P,
G, -, a, b, ¢, 4, and e, respectively. You are already
familiar with most of these registers; the first five are
described in your Owner's Manual, while several of the others
were introduced in Chapter 2. Figure 6.3 is a brief summary

of the processor's usage of these registers.

The stack registers, T, Z, Y, X, and L. are available to

the user through normal means. In addition to the ENTER*+,
RDN, R+, and LASTX instructions that have been incorporated
in many HP calculators, the HP-41 allows direct access to all
the stack registers through instructions like RCL Z or X<> L.
With synthetic programming, the use of STO, RCL, and X<> can

be extended to the other status registers as well.

Registers M, N, O, and P contain the 24-character ALPHA

register. The ALPHA register contents are always
right-justified in the status registers. The rightmost byte,
byte ¥, of the M register contains the rightmost character.
Byte 1 contains the second-to-last character, and so on. If
the ALPHA register contains 7 or fewer characters, only the M
regiscer is used. As more characters are appended, the
leading characters are bumped right-to-left then upward into
registers N, O, and P. When the 24th position is filled (in

-111-

register P), a warning tone sounds. Appending more characters
will then push the leftmost characters into the scratch
portion of register P. However if you remain in ALPHA mode,
or at least have a non-numeric display, the four characters
in positions 25 to 28 (the leftmost 4 bytes of P) will remain
in place for extraction by synthetic methods such as RCL P.
The Morse code program in Appendix B uses this 28-character
capability.

The leftmost two bytes of P are used by the processor
under some conditions. The first byte is an encoded
representation of the numeric display status (FIX, <CI, LING,
Flay 28, Flag 29, and the number of digits). This byte is set
up by the processor whenever a numeric display is needed or
when a digit entry instruction is executed. The second byte
of P is used for digit entry, whether it be manual or in a
running programn.

Executing the CATalog function also alters the first and
second bytes of P. The first byte contains the catalog number
(1, 2, or 3), while the second byte contains the line number
within the cataloyg.

betails of the bit usage in the first two bytes of the P
register can be found on page 13 of the July 1981 PPC

Calculator Journal.

The ¢ register is used whenever an ALPHA label name is

spelled out. This happens when the label instruction is keyed
in or when the corresponding GTO or XEQ is keyed in or
executed. The label name is placed, in byte-reversed order,
in Q.

The Q register is also used during digit entry, whether
manual or in a running program. The number is composed in ¢
before being transferred to the X register.

Details of (¢ register usage can be found on page 78 of
the August 1981 PPC Calculator Journal. Be aware that the Q

register is also used by the printer if one is connected.

-1l12-

The '+ register contains a bit map for the unshifted

assigned keys in its first four bytes and half of the fifth
byte. This is part of a clever technique that the [iP-41
operating system uses to speed execution of functions from
the keyboard. When an unshifted key is pressed in USER mode,
the processor checks the corresponding bit of the F register.
If the bit is clear, the processor knows that the key has not
been assigned, and one of two actions is taken.

If the key in question is not in the top row or in the
unshifted second row (ALPHA keys A-J and a-e), the default
function (that is, the one that is printed on the key) is
executed. If the key is in the top row or unshifted second
row, a search of the current program for the corresponding
local label (A through J or a through e) is initiated. If the
label is found, program execution begins at that point. If
the entire program is searched without finding the label, the
processor (finally!) executes the default function.

If the bit in the + register is set the processor knows
that the key has been assigned. It then searches for the key
assignment information first in the key assignment registers.
If no function assignment is found, the processor checks the
key assignment byte (the fourth byte) in each global label in
Catalog 1, from the .ERD. up to the curtain. If no global
label assignment is found (this is not a normal case), then a
function like CAT, ABS, or 1/x is executed.

Thanks in part to the key assignment bit map, the first
step in the above USER mode execution sequence occurs guite
rapidly. liowever the local label search can be very time
consuming if the current program is more than 100 lines or
so. This is why it is a good idea to assign X<>Y and RDN to
their default keys. In USER mode the seemingly redundant
function assignment takes precedence over the local label
search, eliminating the delay associated with that search.

The rightmost two and a half bytes of the | register
contain the hexadecimal code for the last function executed
from the keyboard. The printer may make use of this area as

well.
-113-

Registers a and b contain the program pointer and the

stack of return pointers. Each pointer occupies two bytes,
expressible in four hexadecimal digits. Bytes 1 and © of
register b contain the current program pointer. When an XEQ
instruction is encountered, this pointer is pushed onto the
return stack -- that is, into bytes 3 and 2 of register b. If
another XEQ is encountered before the RTN from the first one,
the program pointer and the first return are pushed leftward
two more bytes. The return stack in registers a and b can
accommodate up to six pending return addresses in this way .

When a RTI instruction is encountered, the first return
address in bytes 3 and 2 of register b is checked. If its
value is zero, the current program pointer is retained and
control returns to the keyboard. Otherwise the return stack
is shifted leftward two bytes, with the former first return
address being moved into the program pointer slot. Execution
continues from that location in program memory, one step past
the XE¢ instruction that caused the return address to be
bushed onto the return stack.

Wow for a little technical detail on program pointers.
The four hexadecimal digits of the program pointer are
interpreted one way for RAM (read/write Random Access Memory)
and another way for RCM pointers {(those from a plug-in Read
Only Memory). For RAM the first four bits denote the byte
number within the register, while the other 12 bits denote
the register's absolute address from the bottom of memnory .
The format is

Ubbb, U0@r,rrrr,rrrr ,
where bbb denotes the byte number (expressible in three bits
since the maximum value is 6 = Pll0 base 2) and where
r,rrrr,rrrr denotes the register number {expressible in 9
bits since the maximum value is 511 = K¥E@dl,1111,1111 base 2).
For example ©lWl,©901,10610, 1110 = hex 51AE denotes byte 5 of
register 1AE (= 430 decimal). Byte numbers range from 6 to ¢
as the program pointer moves downward through one register of
a program. Thus 6lAE is above 4lAE in a program, and 41AE is
above 61AD.
~114-

RAM return address pointers are the same as ordinary RAM
pointers, except that the three bits that designate the byte
number within the register are shifted to the right. These
bits, normally the second, third, and fourth from the left of
the 16-bit pointer, are shifted three positions over, to the
fifth, sixth, and seventh bit positions. The RAM return
pointer format is

gg@g, bbbr ,rrrr,rrrr .

ROM pointers consist of a port address in the first four

bits plus a 12-bit byte number within that port:
pPppPpP., bbbb, bbbb, bbbb .

The port address part of a ROM pointer is not the same as the

physical port number. The correspondence is:

port address physical port or device
9] internal ROM o

internal ROM 1

internal ROM 2

not used

Service RCM module

Time module

Printer

Tape Drive (IL monitor)

Port 1, Lower 4K

Fort 1, Upper 4K

Port 2, Lower 4K

Port 2, Upper 4K

Port 3, Lower 4K

Port 3,

Port 4,

F Port 4,

Upper 4K

o B w B @ T v+ B - TN B s S NES I SR ¢, B S VU (SR g

Lower 4K
Upper 4K
Each port address can accomodate a 4 Kilobyte RCM (4096 = hex
FFF +1 bytes). The 12-bit byte number starts at zero and
increases toward FFF as sequential ROM program instructions

are executed.

-115-

Another important detail: When you RCL b in RUN mode at
a specific line of program memory, the pointer value is
usually one byte above the location where the instruction
resides. Thus if a RCL M instruction is located in bytes 6
and 5 of register 1AE, and you RCL b at this line of program
memory, the resulting pointer value will be @1AF hex, one
byte above the actual location of the RCL M instruction.
Where nulls are present, the pointer will be farther above
the instruction. In fact it will be one byte above the group

of nulls preceding the instruction.

Status register ¢ contains essential pointer information

needed to define the configuration of memory usage. Referring
to Figure 6.3, we'll proceed right to left through the c¢
register.

The last (rightmost) three hexadecimal digits of
register c contain a pointer to the register containing the
+END., which marks the bottom of user program memory. The
-END. is always positioned in the rightmost three bytes of
the register, with nulls preceding it as needed to occupy the
space between the last instruction and the .END.

The next three hex digits of ¢ contain a pointer to data
register ©0. This pointer, often called the “"curtain",
effects the separation of program and data memory. Any time
the SIZE is changed, this pointer is adjusted and the
contents of memory are shifted. Several short synthetic
programs have been written to move the curtain, transforming
program steps to data or vice versa. In Section 6C you will
encounter one such program, together with an introduction to
curtain moving. Within @ and @@ are instruction
sequences that temporarily place the curtain at Ul@ hex = 16
decimal. This allows program memory or the key assignment
registers to be accessed by STO IND and RCL IND instructions.
RCL will, of course, normalize the register contents. The

previous contents of register c are held in the stack or in

~-116-

other status registers for replacement before the program
halts. LB and MK illustrate the power of curtain control.

The next three hex digits of ¢ contain the "cold start
constant”. These three digits are 1, 6, and 9 in every HP-41
manufactured so far. If the processor ever finds that these
digits have been altered, it clears all of memory, giving the
MEMORY LOST message in the display. The rationale behind this
action is that since the processor never alters these digits,
any alteration must be due to power failure. (No provisions
were made for errant synthetic programmers.) Presumably other
parts of memory would also have been altered, so clearing the
memory is required to prevent an unsuspecting user from
getting erroneous results. The main thing to remember about
the cold start constant is not to store anything in ¢ unless
these three hex digits are 169, under penalty of MEMORY LOST:
Incidentally, if the register immediately below the curtain
pointer is nonexistent, you'll also get MEMORY LOST. So watch
what you store in c.

The fourth and fifth hex digits from the left are
apparently not used by the operating system or the printer.

The leftmost three hex digits of c constitute a pointer
to the lowest register of the summation register block. For
example if the curtain is at hex 1lEB (SIZE @21 with full
memory) and a IREG U1 command is executed, the IREG pointer
will be set to hex 1lEC which is 1EB + 1.

The d register contains all 56 flags. Byte 6, the

leftmost byte, contains flags & through 7, while byte 0
contains flags 48 to 55. The flag register is used as the
cornerstone of synthetic programming. Until the advent of the
extended functions module, most bit manipulation could be
done only by dropping one or more bytes of data into the flag
register. Once in the flag register, the first thirty bits of
the data can be directly modified as flags ©#0 through 29. A
prime example of this technique is the "RAMBYT" program of
Chapter 4. You'll find pairs of X<> d instructions, separated

-117-

by several lines of bit-fiddling flag operations, in many of
the synthetic routines in the PPC ROM.

The e register contains a bit map for shifted assigned

keys. This bit map is precisely analogous to the one for
unshifted keys in the I register. It also occupies the
leftmost four and a half bytes of the register.

The next two hex digits, half of byte number 2 and half
of byte 1, are used as scratch by the processor.

The last three hex digits of the e register constitute
the program line number. Since the line number is not stored
with the instructions in program memory, and since
instructions vary in length from 1 to several bytes, the
processor must calculate the line number. This calculation is
time consuming and must be redone every time you execute the
Catalog function, SST a GT0 or XEQ instruction in RUN mode,
or otherwise jump to a location with an unknown line number.
Because the calculation is time consuming, it is not
performed in a running program. This speeds program
execution, but it also causes a noticeable delay when you try
to switch to PRGM mode after running a program. The processor
will not show you the program instruction until it has
computed the line number that goes with it. How does the
processor know that the line number needs to be recomputed?
It's simple. Before the processor starts running a program
(58T execution does not count as "running a program" in this
context), it sets the line number to hex FFF = decimal 4095.
The line number remains FFF as the program is executed. When
you try to E£ST or to switch to PRGM mode, the processor sees
that the line number is FFF and automatically recomputes the
correct line number for the current program pointer by
counting down from the preceding END.

The mysterious line 4094 you saw in Chapter 1 when you
created the byte grabber was due to the fact that when you
pressed backarrow in ALPHA mode, the calculator decremented
the line number by 1 without realizing that the FFF line

-118-

number was invalid. The RCL £l that you saw was a phantom
instruction that appears when the program pointer register

(status register b) contains zero.

6B. Status Register Application 1 -- Suspend Key Assignments

As part of its compatibility with HP-67 operation, the
HP-41 has 15 keys (top two rows unshifted plus top row
shifted) which, when pressed in USER mode, will find and
execute the corresponding local label (A-J and a-e). But this
feature conflicts with any global label or function key
assignments to these keys, since the HP-41 gives precedence
to function and global label assignments. How many times have
you wanted to use the automatic assignment of local labels
A-J and a-e, but found a function or global label key
assignment in your way? You press LOG to execute LEL U, but
instead you get another function that you have assigned to
that key. Wouldn't it be nice if there were a way to
temporarily eliminate the conflicting key assignment, then
bring it back later?

Synthetic programming techniques permit this to be done,
and the PPC ROM contains two routines that do it. You use

[SK | to suspend the function and global label key
assignments, and to reactivate themn.

To use @B , simply key in a register number k, and XEQ
"SK". The key assignment bit maps from status registers + and
e are stored in data registers k and k+l, while the bit map
areas in the + and e registers are cleared. Because the bit
maps are clear, the calculator thinks that there are no key
assignments’ present. Therefore you can press the LOG key in
USER mode to execute LBL D. Any function or global label key
assignments that are present are held in suspended animation.

When you want to reactivate the global label and
function key assignments, just key in the same data register

number k, and XEQ "RK". The contents of data registers k and

-119-

k+1 are recalled and put into status registers + and e. Since
the calculator now has the proper bit maps, the key
assignments operate normally again.

There is another way to reactivate your function key
assignments. You need only read in a program card on the card
reader. It doesn't matter whether you read the card in USER
mode or not, but it must be a program card. This technique is
valuable if you accidentally disturb data registers k and k+l
that hold the key assignment bit maps after you execute "SK".

Let's analyze the workings of PPC ROM routines E3 and
@ (suspend and reactivate key assignments). If you don't

have a PPC ROM, key in B8 and L using LB:

91 LBL "SK" "LB" inputs:
g2 SIGN

¥3 CLX

g4 X<> - 206, 122
W5 XEQ 14

g6 ISG L

W7 TEXT © 248

g8 .

g9 X<> e 206, 127
19 LBL 14

11 "*"

12 X<> M 206, 117
13 STO N 145, 118
14 ASTO 1IND L

15 RDN

16 RTN

17 LBL "RK"

18 SIGN

19 ARCL IND L

2 hex F2 7F @0 242, 127, ©
21 ISG L

-120-

22 TEXT 0O 249
23 ARCL IND L

24 hex F3 7F OF FF 243, 127, 15, 255
25 X<> N 206, 118

26 STO + 145, 122

27 X<> M 206, 117

28 STO e 145, 127

29 RDN

30 CLA

31 END

The accompanying "Stack and ALPHA Register Analysis
Form" is an indispensible tool for step-by-step tracing of
synthetic programs. You'll understand its value after you've
used it to trace E® and G .

When you execute , the register number k is first
stored in LASTX by the S1IGN function. Thén an X<> |
instruction is used to extract the contents of the ' register
and simultaneously clear it. The LBL 14 subroutine uses the
ASTO function to store a six-character string in register k.
This six-character string consists of an asterisk character
followed by the first five bytes of the former }r register
contents. The asterisk is needed as a place holder in case
the leftmost byte of the I register is zero. The three-step
sequence "*", X<> M, STO N, sets up the ALPHA register
contents for the ASTO operation, as you can see on the ALPHA
register analysis form. Take the time to understand this
three-step sequence if you want to write your own synthetic
programs.

The rest of the B routine performs a sinilar
operation, extracting the contents of register e and clearing
it, and storing a similar six-character string in data
register k+1.

When you execute [the data register number k is first
stored in LASTX by the SIGN function. Then the six-character
string is ARCL'ed from register k and shifted left one byte

-121-

RN EREEEREEEENEEERERN NLd

PoIES) paIes1) BEEEERR) V10

9 E] [A NQ¥

0LS

OLS

—
x| _{SIvl€lc¢il 0 W <>X
i
N <>X

J444CUTT0T 6] 8l xt_1¢S] ¥ u®i

T ONT TDdV

Lol (401
Kl
jr—t
&3

CITlon 68! |SIVIE[C

lﬁmozv i

I+X T 9S1

LIS el)T » =i
Z "TUNT "IOdV

—
X

1 X NOIS

T z £ X o, 1T

NIY

E 7 z A NTI

...... TGNT OLSV

0LS

N
ZTETCTTTOT] 618 $_____| W <>X

=122~

% poieaT) "EFCER) poieal) u¥u

%1 19T

E] 9 <>X

3 2z A 0 .

(dON) uu
1

I+X JS1

NILd

% T Z S NG

T ANI OLSY

¥ N _OLS

L191S] 7ie]C]l b N <>X

M paIeal) FEECER R paieat) ‘ em

%1 191

#1_0dX

4<>X

X'10

X NOIS

w15, 74T

X | Xl—jorT

hl NOILONYLSNI

WHO4 SISATVNY VHJTV ANV MOV1S

NOILONYLSNI

3NN

WNHO4 SISATVNY VHJTV ANV XOV1S

-123~-

by appending a null, though an asterisk would do just as
well. Register k+1 is then ARCL'ed, shifting the previous
string another six characters to the left. Two more bytes,
hex OF and FF, are appended, causing a further two-byte shift
to the left. The ALPHA analysis form reveals all this action
in detail.

At this point the N register contains the required 7
bytes for r, while the M register contains the correct bytes
for e. The last several lines of extract the contents of
N and M, store them in i and e, and clean up ALPHA and the
stack. Note that the last two bytes of e are OF FF, requiring
the calculator to compute a correct line number. Earlier
versions of L@ stored 00 09 in the rightmost bytes of e,
causing the line number to be incorrect if the program was

single-stepped or run in TRACE mode.

6C. Status Register Application 2 -- Register Renumbering

Suppose you have a program which calls a user-supplied
program as a subroutine. A typical example would be a root
finder program which finds a value of x such that f(x) = @&.
In this case f(x) is calculated by a user-supplied
subroutine. The user supplies the name of the f(x) program,
the root finder stores the name in a data register and calls
it as needed with an XEQ IND nn instruction.

In writing such’a root finder program, you have a
difficult decision to make. The root finder will need to use
some numbered data registers to hold its data, and it is
essential that these registers not be disturbed by the user's
f(x) program. No matter which registers you choose, there is
always the possibility of a register usage conflict between
the root finder and the f(x) program. You might try using
data registers 50 and up for the root finder, figuring that

-124-

most reasonable f(x) programs wouldn't be using those
registers. But even if this would work, it is wasteful. In
most cases the user's f(x) program won't use anywhere near 50
registers.

Synthetic programming provides a way out of this
predicament. A short synthetic routine can reposition the
curtain that separates data registers from program memory,
effectively renumbering the data registers.

For example, suppose the root finder program uses the
five data registers @0 through ©4. Just before calling the
f(x) program, the root finder calls the synthetic routine
"CU" (curtain up) to raise the curtain five registers. The
figure below shows the effect of raising the curtain five
registers. Although the contents of the registers haven't
changed, a RCL @@ will now extract the contents of what used

to be called data register @5.

BEFORE AFTER
R o6 R 01
R os Roo
NEW “CURTAIN"

R o R o1 THESE DATA REGISTERS
R g3 R g HAVE TEMPORARILY
R g2 R 03 BECOME PROGRAM STEPS
R o R’ .04 IN THE TOP PROGRAM
Rog R g5 | oFcataLog1.
LBL “TOP” <— LBL “TOP”
END <— END

)) PROGRAM

)) MEMORY
.END. <— END.]

Similarly a RCL ¢l instruction will produce the contents of

what used to be register @6. The important registers that the

~-125~

root finder needs to protect from the user's f(x) program are
now inaccessible by STO and RCL instructions. The contents of
what used to be called data registers 900 through 94 are now
regarded as part of program memory by the calculator. In fact
if you were to go to the top program of Catalog 1, you'd find
this data at the top of the program. Of course it would appear
in the form of program instructions rather than' as numbers.

The important point is that after raising the curtain by
five registers, the root finder program can call the £(x)
program without fear that its essential data will be
disturbed. The f(x) program will have free use of what it
thinks are data registers ©0¢ and up.

When the f(x) program returns control to the root finder
program, the first thing the root finder does is to lower the
curtain back to the original location. This restores the
original data register numbering and makes the root finder's
data accessible again as data registers @@ through 94.

The accompanying program listings for the curtain-raising
routine "CU" and a typical root finder program "SOLVE"
illustrate the principles we've been discussing. This version
of "CU" was written by Tapani Tarvainen, and represents a

major breakthrough from previous versions.

LB inputs for "CU":

Line ©3 144, 125 Line ¢4 145, 117

Line @65 245, 127, ¢, P, ¢, 33

Line ©¥8 206, 117 Line ¢9 206, 126 Line 16 145, 119
Line 13 1794, 245 Line 15 240 Line 21 168, 245
Line 22 151, 117 Line 27 206, 119 Line 28 206, 126

Line 29 145, 117
Line 30 244, 127, ©, 9, ©
Line 31 206, 118 Line 32 206, 125

-126-

@1 BL "SOLVE" 18eLBL 19 36 E-6 @1eLBL “CU- 19 FRC

82 “FNAME?" 19 RCL 89 37 X(=y? 82 INT 28 X287
83 Aok 28 RCL 83 38 GTO 18 83 RCL ¢ 21 SFIND [
84 STOP 21 XEQ 14 39 RCL 83 84 ST0 [22 DSE [
85 ASTO 88 22 ENTERt 48 BEEP 85 “Feesl= 23 ABS
86 ROFF 23 ENTERt 41 RTH 86 RDN 24 -
87 "XGUESSI?* 24 X{> o1 87 11 25 %+8?
83 PRONPT 25 - 42¢LBL 14 88 ¥ [26 GT0 83
89 570 63 26 / 43 4 89 X 4 27 % 1
18 -XGUESS27= 27 RCL 82 44 XER “LU" 5 o1p 28 X d
11 PROMPT 28 ¢ 45 XEQ IND Yy pp 29 §T0 [
12 - 29 CHS 46 4 30 “Fese-
13 570 82 38 ST0 62 47 CHS 12¢LBL 03 3RO
14 RCL 68 31 RCL 63 48 REQ “CU" 3 psoc IND [32 XO ¢
15 LASTX 32+ 49 END 14 156 ¥ 33 RIN
16 XEQ 14 33 5T0 83 | g vgoyE 15 - 34 CLA
17 570 81 34 RCL 81 gy 16 2 35 END
35 ABS 17 7 LBL*CUY
97 BYTES 18 ENTERt END 67 BYTES

Barcode for "SOLVE" and "CU" can be found in Appendix E.

The SOLVE routine starts by asking for the name of the
user-supplied f(x) program and for two initial guesses at the
root, that is, the value of x such that f(x) = @. SOLVE then
proceeds to apply Newton's method to find the actual root of
f(x) = . To do this it will need to evaluate f(x) at several
points. Each evaluation of f(x) is accomplished through the
LBL 14 subroutine, which raises the curtain 4 registers, calls
f(x), then lowers the curtain 4 registers to its original

location.

The "CU" routine raises the curtain by the number of
registers specified in X. If this number is negative the
curtain is lowered. Two stack registers are preserved, so that
the original contents of Y and Z (before executing "CU") end
up in X and Y. This feature is used in the "SOLVE" program to

preserve the function name and the trial value of x in the

-127-

stack. Then an XEC IND Y instruction is sufficient to call the

f(x) function with the correct input.

To try out the SOLVE/CU combination, try this example.
GTO.. and key in:
91 LBL"TEST"
02 1/X
@3 LASTX
va -
05 1
06 +
This short program calculates f(x)=(1/x)-x+1. Comparing
problem 2.4, you can confirm that the solution to f£(x)=0 is
x=1+1/x, which is the Golden Ratio.
XEC"SOLVE" now and supply the requested information:

Prompt Response
FNAME? TEST (R/S)
XGUESS1? 1 (R/S)
XGUESS2? 2 (K/s)

After about 40 seconds you'll hear a BEEP and see the result
1.618033989. This example does not really make use of the full
capabilities of the SOLVE/CU combination, but you can be
assured that SOLVE and CU will work just as well with any
user-supplied f(x) program, regardless of any apparent
register usage conflicts. Of course the usual limitations of
root finding by Newton's method still apply. Certain
ill-behaved functions can cause problems, as can bad initial
guesses. But in most real-world cases, it works quickly and
well.

Constraints on the use of "CU"

1.) While the curtain is in a raised position, data registers
temporarily become program steps at the top of the first
program in program memory. Some of these temporary

program steps may be labels. Therefore do not branch

-128-

backwards to a local label in the first program block

when the curtain is up.

2.) Don't PACK program memory while the curtain is raised. It
is more than likely that the protected data registers
will contain null bytes which will be removed by packing.
You can partially protect yourself from data alteration
by PACKing before raising the curtain. This way the
processor thinks your top program is already packed. Also
make sure that several free registers (below the .END.)
are present before using "CU". Then if you insert a
program instruction, make a key assignment, or set an

alarm you won't inadvertently cause a PACK to occur.

3.) Always restore the curtain to its original position. This
is a matter of good programming practice. If you
accidentally leave the curtain up you'll have to go into
the first program in memory, delete the extraneous
instructions at the top (thereby clearing your protected
data), and PACK to bring the program up to the new

curtain.

4.) Don't put the curtain immediately above a void, or
nonexistent, location. For example a curtain location of
16 (decimal) is OK since register 15 (status register e)
exists. But if you put the curtain at 17 you'll get
MEMORY LOST, since register 16 does not exist. MEMORY
LOST can be avoided if you bring the curtain back to an
allowable location before halting ("MK" and "LB" do
this), but you'd better know exactly what you're doing.

With the "CU" program, not only can one program renumber

the registers before calling another program, but this second

program can do a second renumbering before calling a third
program. The process can be continued indefinitely, creating
a multi-level data "stack". The critical sequence of steps to
be embedded in any program to allow it to guard data
registers ¥ through k-1 from a subroutine is:

k

XEQ "cu*

XEQ subroutine
-k

XEQ "cu"

Register renumbering through curtain control adds
greatly to program flexibility. For example a program that
uses data registers 19 through 19 can be run with a SIZE of
only 1@. You need only lower the curtain 10 registers before
executing the program, transforming registers @@ through @9
into registers 10 through 19. Don't forget to put the curtain
back where it was immediately after running the program -- an

inadvertent RCL 99 could wipe out part of your programs.

Tapani Tarvainen's "CU" program is functionally
equivalent to Bill Wickes's W (curtain up) program that is
in the PPC ROM, so they may be used interchangeably. If speed
is important you should be aware that Tapani's "CU" is
significantly faster than (@ . Also available are the
even-faster PPC ROM curtain control routines GBI , , and
B3 . These three routines have additional restrictions on
their use which you should understand before you use them.
For background information on curtain moving in general and
on the routines named here, see the PPC Calculator Journal:
May 1980 page 23, June 1980 page 45, July 1980 page 2, and
March 1981 page 2. The programs "MS" and "RS" discussed in
‘the PPC CJ articles are earlier versions of EB and .
The PPC ROM User's Manual contains helpful information in the

writeups for . ' , and B . Appendix M of the
ROM Manual contains even more background material on curtain

moving.

How the "CU" routine works

First the contents of status register c are placed in
the rightmost part of the ALPHA register. Then line ©5
appends four bytes. At this point status register M, which
consists of the the last seven characters of ALPHA, contains
the last three bytes of c, followed by three null bytes and a
hexadecimal 21 byte. The curtain pointer resides in the first
byte and a half of M.

Next M is extracted and swapped with the flags. The
curtain pointer now resides in flags ©# through 11. Actually
flags ¥ and 1 are guaranteed to be clear, since the curtain
is always less than or equal to 512 = 0010, 0000, 8000 base 2.
The original flags are saved in status register O for later
restoration, while the number 1l is stored in M for later use
as a loop index.

The mysterious hex 21 byte sets flags 50 and 55. Flag 50
prevents any message in the display from moving (see Example
6 under in the PPC ROM User's Manual). Flag 55 must be
set to allow "CU" to be interrupted or single-stepped with a
printer attached. If flag 55 were clear, flags 55 and 21
would both be set on interruption, possibly altering the
portion of the flag register that corresponds to the .END.
pointer.

The LBL ©3 loop performs binary addition in the flag
register using Tapani's unique, elegant algorithm. The binary
number in flags © through 11 is converted to decimal and
added to the decimal increment (the number of registers by
which the curtain is to be raised). Then the resulting
decimal sum is converted back to binary and placed in flags ©
through 11.

-131-

The feature that makes Tapani's program unique is that
this binary to decimal to binary conversion is completed at
each bit before the next bit is considered. Each time through
the LBL U3 loop one bit of the current curtain pointer is
replaced by the correct bit for the new curtain pointer.
Consider the way this process works for the least significant
bit, the first time through the LBL #3 loop.

When LBL 83 is encountered for the first time, X

contains the curtain increment you asked for. Lines 13 and 14
clear flag 11, the "ones" bit of the curtain pointer, and add
1l to X if flag 11 was set. This effectively converts the flag
11 bit to decimal, adding it to X. The flag 11 bit of the new
curtain pointer will be set if and only if the number in X is
now odd. If you don't see why this is so, consider that the
new curtain pointer is the sum of the number in X plus the
binary number residing in flags € through 1ll. Since flag 11
is clear, the binary number is divisible by 2. Thus the sum
is odd, and flag 11 is to be set, if and only if X is odd.

Lines 15 through 24 perform several operations that are
equivalent in effect to setting flag 11 and subtracting 1
from X if X is odd, otherwise leaving flag 11 clear, then
dividing X by two. This division has an integer as the result
because the previous step ensured that X would be even. The
flag index is decremented from 11 to 10 for the next pass
through the loop. Flag 11 attains the proper state for the
new curtain pointer: set if and only if X was odd. Lines 25
and 26 cause the addition to proceed to the next most
significant bit if the increment has not been reduced to zero
yet.

The second time through the loop the binary number is
only 11 bits long (flags @ through 19). We had to divide X by
2 so that it would be a decimal increment consistent with the
new "ones" bit at flag 18. The number in X does not merely

represent the originally requested curtain increment. It now

-132-

contains a component corresponding to a "carry", if there was
any, from the previous bit.

This time through the loop flag 16 is cleared and
transferred to X, then flag 19 is set if and only if X is
odd. Once again, X is made even and divided by 2 for the next
pass. This procedure continues until X is reduced to zero, as
it must eventually be because of the repeated division by 2.

Notice that nowhere in the routine do we require
knowledge of whether X is positive or negative. "CU" works
the same in either case. When a flag is cleared X is
incremented. When a flag is set X is decremented. Each time
through the loop X is divided by 2, until eventually X
becomes zero.

Lines 27 through 29 extract the contents of the flag
register and place them in status register M, restoring the
original flags and placing the modified last three bytes of ¢
adjacent to the first four bytes of ¢ which still occupy the
rightmost 4 bytes of N. The ALPHA register is shifted left
three bytes by an append instruction. All seven bytes of the
new c register are now in status register N. They are
extracted and stored in c. The X<> c instruction is used in
case you want to restore the old curtain later with a simple
STO c. Of course to do that you'll have to find the old c
regyister contents in the stack, if it's still there.

The last few lines clear the ALPHA register for neatness
and straighten out the stack. The former Y and Z end up in X
and Y; Z contains the previous ¢ register contents, and T
contains zero.

Follow through this analysis a few times until you
understand it. It may help to load the stack with 4 ENTER* 3
ENTER+ 2 ENTERt* 1 and GTO "CU". Make sure the SIZE is at
least ©981. Then you can SST through the routine and see
what's going on for this simple case of raising the curtain 1

register.

-133-

Don't be concerned if much or even most of this Chapter
is difficult to fathom at first reading. After all, that's
why I saved it for last. Consider that the byte grabber and
the "bootstrap" method of assigning it to a key were both
discovered two years after synthetic programming began. There
is undoubtedly much more yet to be discovered about your

liP-41. Perhaps you will be the one to do it.

-134-

SOLUTIONS TO PROBLEMS

CHAPTER 2

2.1 Here's one version of "CQ":
g1 LBL"CG" / B inputs:
¥2 RAD
B3 CLX
94 TONE
@95 TONE
g6 TONE
©7 TONE
98 SIN
g9 TONE
19 TONE
11 TONE
12 TONE
13 END

159, 12¢

Lo B o o B se B ¢ ¢

159, 126

159, 120

c v o

2.2 Key in
¢l ENTER*
g2 1lE1

GTO .0E1l, key in RDN, BG, and backarrow twice. You now have
El on line ©2. wext key in STO 28, PACK, BST, BG, and
backarrow. The PACKing placed the 28 suffix byte adjacent to
the E1 instruction, purging the intervening nulls. When the
STO prefix is grabbed, the 28 suffix becomes a NEG digit
entry byte and is incorporated in the adjacent El
instruction.

@ inputs for -El are 28, 27, 17.

2.3 91 LBL"VX" o / inputs:
g2 " " (2 spaces)
©3 RCL d 144, 126
¥4 SCI 9

25 ARCL Y (not X since the stack was raised by RCL 4)

-135-

96 STO d 145, 126
@7 RDN

¥8 AVIEW

©9 END

In cases like this you should get in the habit of doing the
AVIEW after the STO d rather than before. This prevents

altering system flags. In this particular case the display
will revert to normal (the AVIEWed number will disappear) at
completion of the program if the AVIEW is done first, since

STO d clears flag 54, the message flag.

2.4 liere's one solution to the Golden Ratio problem.

¢l LBL"GR" / B inputs:
g2 FIX 9

g3 E 27 or 27, ©
@4 RCL b 144, 124

95 X<>Y

06 1/X

07 E 27 or 27, ©
98 +

09 X<>Y

10 VIEW Y

11 STO b 145, 124

It converges to a 1@-digit solution in 8 seconds.

2.5 a) g1 LBL"PX" inputs:
92 FIX ©
@3 CF 29
va "X(" 242, 88, 49
J5 ARCL 90
06 "p)=2" 244, 127, 41, 61, 63
@7 PROMPT

-136-

To generate the synthetic lines using the byte grabber,

key in
0l ENTER*
gz "XX."
w3 "kXx=2"

GTO W2, BG, GT'C .005, backarrow, KCL @9, CT0 .02, BG, DEL
og2, GTOo .01, BG, GTO .04, backarrow, RCL ©¥8, GTO .©01, BG,

DEL 002, backarrow, and key in the nonsynthetic lines.

b) To preserve the display mode, insert RCL d and STO d as

shown:
91 LBL"PX" / G inputs:
P2 RCL a4 144, 124
©3 CF 29
04 FIX O
05 "X("
06 ARCL 00
g7 “"F)=2"
w8 STO d 145, 124
69 RDN
1¢ PKOMPT
i1t is possible to save one byte by replacing lines 0z - g3 of

this program by

0z . (decimal point)

g3 X<> a 206, 126
This stores zero in the flay register, clearing all 5o0 flags.
The we need only to FIX U to get the desired status of flags
29 and 36-41. fTdhe old flay reyister contents are in X just
as before, ready for the subsequent STC d that restores the
previous flag settings. To make the X<>d instruction using
the byte grabber, start with STO IND 78 followed by AVILEW.
Grab the STO byte and backarrow. The IND 78 becomes X<> and
the AVIEW becomes the d suffix.

~-137-

[N
(e}
[\
—

08
Line €8 can
Key in

ol

b2

LBL"CX" inputs:

RCL d 144, 126

FIX 2

"ouT="

ARCL Y

ST0 d 145, 126

RDN

R ERAVAS 243, 127, 12, 86

be constructed using the byte grabber as follows.

ENTER*
oy

GTO .0Yl, BG, GTG .404, backarrow, LBL 11, GTO .P81l, BG, DEL
Yz, backarrow.

2.7 LBL"CMOD" / inputs:

D2 X<>Y

@3 STO M 145, 117

4 X<>Y

¥5 MOD

06 ST~ M 147, 117

©¥7 LASTX

U8 £T/ M 149, 117

9 CLX

10 X<>M 206, 117

Lines @€l-©g4

save y in M and x in L. Then y mod x is

subtacted from M. Lines ©7-10 divide M by X, bring M back to

X, and clear M.

2.8 (see page 192 in the Addendum section)

CHAPTER 3

3.1 GTO.. and key in LBL"++", at least 45 +'s, and XEQ"LB"“.
Switch out of PRGM mode, R/S, and respond to the prompts as

follows:

-138~

prompt response

1? 27 R/s
2? 145 K/s
372 119 R/S
4?2 146 R/S
5? 119 R/S
6? 206 R/S
772 119 R/S
1? 145 R/S
2? 117 R/S
3? 150 R/S
472 117 R/S
52 240 R/S
67? 153 R/S
772 245 R/S
1? 152 R/S
22 119 R/S
3? 172 R/S
4? 245 R/S
52 159 R/S
67? 166 R/S
772 244 R/S
1? 1 R/S
2? 4 r/S
3? 5 R/S
4? 6 R/S
52 242 R/S
6? 127 R/S
772 96 R/S
172 154 R/S
2? 118 R/S
372 152 R/S
472 116 R/S
5? RrR/S

When the program stops you can press SST to get back to

-139-

LBL"++" and see your new synthetic instructions.

3.2 Here's a simple nonsynthetic program to compute the LB
inputs from XROM numbers. This program takes advantage of
the fact that 64*(i mod 4) is the same as 256 *FRC(i/4). At
the right we note how the stack register contents change

through the proygram. Where there is no entry, the contents

of that register are unchanged from the previous step.

LBL"XRLB" L X Y 2 T
X<>Y i Jj z t

4 4 i z

/ 4 i/4 3 z z

INT i/4 INT(1/4)

X<>Y 5 INT(i/4)

LASTX i/4 3 INT(i/4) z

FRC i/4 FRC(1i/4)

256 256 FRC(i/4) 3j INT(i/4)
* 256 64(1 mod 4) 3 INT(i/4) INT(i/4)
+ 64 (i mod 4) byte 2 INT(i/4)

X<>Y INT(i/4) byte 2

160 160 INT(i/4) Dbyte 2

+ 160 byte 1 byte 2 INT(i/4) INT(i/4)
END

To use XRLB, key in i ENTER+ j and XEQ"XRLB". The output

in X is byte 1 in decimal. Byte 2 is in the Y register.

Here's a synthetic version of "XRLB" that does not disturb
stack registers Z and T. At the right are noted the
important stack and status register contents as they change

through the program.

-140-

LBL"XRLB" N M L X Y z T
STO M 3 j i z t
RDN i z t j
4 4 1 4 t
/ 4 i/4 z t ot
870 N i/4

FRC i/4 FRC(i/4)

256 256 FRC(i/4) =z t
* 256 64(i mod 4) z t t
RCL M 3 64(i mod 4) z t
+ 3 byte 2 z t t
160 160 byte 2 z t
ST+ N 160+i/4

X<> N lo® l60+i/4

INT 160+i/4 byte 1 byte 2 z t
CLA v 4}

END byte 1 byte 2 Z t

3.3 Use at least 17 +'s and execute LB. The 7 inputs are
207, 120, 159, 37, 208, O, 1l26¢.

5.4 Use at least 31 +'s and load decimal values 192, &, 255,
@, 82, 80, 78, 32, &7, €5, 76, €7, 85, 76, ©5, 84, 79, 82.
PACK to incorporate this new global label into Catalog 1.
Since this label i1s longer than 6 characters it cannot be the

object of a GTC IND or XEQ IND instruction.

3.5 The proper LB inputs are 144, 124, 206, 117, 206, 118,
145, 117, 286, 117, 206, 125, 145, 125, 242, 127, b, 206,
125, 144, 117, 145, 125.

CHAPTER 4

4.2 The decimal byte equivalents required are 244, 127, @,
@, 2, 27, 20, 206, 125, 145, 125, 242, 127, @, 2406, 125, 145,

-141-

125. GTO.. and key in LBL "LB". Then in RUN mode do CLA,
125, XTOA, 145, XTOA, 125, XTOA, 206, XTOA, 4, XTOoA, 127,
XTOA, 242, XTOA. GTO "LB", RCL M, STO Q, enter PRGM mode,
Q-LOAD, BG, and backarrow twice.

Switch back to RUN mode and do CLA, 125, XTOA, 145, XTOA,
125, XTOA, 206, XTOA, 20, XTOA, 27, XTOA. GTO "“LB", RCL M,
STO ¢, and enter PRGM mode. No PACKing is required here
since the 242 byte is not part of a preceding instruction.
Thus no direct attachment to the new bytes is required.

Still in PRGM mode at LBL "LB", Q-LOAD, BG, and backarrow
twice.

Continue with CLA, 2, XTOA, 9, XTOA, @, XTOA, 127, XTOA, 244,
XTOA. GTO "LB", RCL M, STO Q, enter PRGM mode, (-LOAD, BG,
and backarrow twice. The fact that we did not include the
decimal 2 byte in the second group of bytes saved us from the
need to PACK before loading the third group. Moreover, this
procedure was essential anyhow since the one weakness of
Q-loading is its inability to load trailing null bytes. We
could not have loaded the sequence hex F4 7F 90 @y
successfully by itself.

4.3 a) XROM 61,25
b) XROM 57,56
c) XROM 27,54

CHAPTER 5

5.1 The byte sequences in hexadecimal are as follows:

a) 40, 47, 48, 00, 00, va, 09, 0o, ©vY, 13, 41, @0, 14, 25,
15, 42. There was room for the I+ (hex 47), but the - opened
seven bytes. The RCL @5 fit in the null that was already

present between the 4 and 5 digit entry instructions.

b) 40, 41, E¢, @00, @9, 92, 4B, 00, 42, 43. The ST+ 75 takes
two of the 3 bytes formerly used by GTO 99.

-142-

APPENDIX A
INSTRUCTION TIMING

In reading Chapter 2, you might have wondered how anyone
could determine that the synthetic digit entry instruction E
executes faster than 1, or that the decimal point executes
faster than the digit zero. In HP-67 days, these results were
obtained by keying in a sequence of 160 or more identical
instructions, measuring the time needed to execute the entire
sequence, then dividing by the number of instructions in the
sequence. Needless to say, this procedure was both laborious
and time-consuming.

Synthetic programming permits automation of. the procedure
of entering hundreds of copies of a particular instruction (or
even copies of a short sequence of instructions). The proper
byte sequences are created and stored, in 7-byte groups, in
contiguous registers. The bytes can then be executed as
program instructions by placing the precper code in the program
pointer register.

As a measure of the capability of the HP-41 system, the
HP 82182A time module allows even the timing of the sequence
of synthetically stored instructions to be automated. Clifford
Stern has written a synthetic program which uses the time
module to time an arbitrary group of one to seven bytes. The
program creates and stores as many replicas of the byte group
as it can within the unused portion of program memory. It then
executes the full sequence of byte groups, measures the
elapsed time, divides by the number of identical groups, and
displays the resulting time per group.

Table A.l gives typical results for instruction execution
time. Emphasis has been placed on instructions for which
alternatives are available. If you need a LOG function, it
doesn't realy matter how long it takes since you don't have
any faster way to calculate the logarithm. But to increment a

register, you may be interested to know that the sequence E,

-143-

t, at 78.7 msec, is slightly slower than the segquence 1IS8G X,

TEXT b,

at about 74 msec. If you need the speed you may be

willing to use the extra byte of program memory to get it.

Other conclusions fron the timing chart are:

K+ R+ is faster than RDN RDN ;

X<> is faster than RCL but slower than STO ;

Status regyister operations are always faster than the
corresponding numbered register operations ;
compiled GTO's are very fast, with XEQ being a bit
slower ;

digit entry is very slow. ‘i‘his is due to the fact
that status regyisters P and Q must be loaded before
the X register ;

For faster numeric entry use E instead of 1, and the
decimal point instead of zero. Note that CLX, SIGN is
a much faster way to get 1.

For faster entry of negative numbers, use a positive
numper entry followed by a separate CKS instruction,
rather tnan & sincle iustruction containing the
negative number. Fress ALPHA ALPHA to terminate the
positive nuwmicer entry, then press CHS to get the
separate (i instruction. CHS is much faster than KEG

(negation within & number entry instruction).

These results from the timing program are another example

of how knowledge of synthetic programming can improve your

general programming technigue.

If you have a PPC RCM, an extended functions module, and

a time module, you can use Clifford Stern's program to do sone

instruction timing of your own. liere are the instructions:

1) Make sure that there is an END above this program in the

Catalog 1 list. This is necessary to allow the GTO

instructions to work properly with the program/data

"curtain" positioned at hex ©1l0. For further explanation,

see

"CU" constraint 1 in Section 6C.

~-144-

Table A.l Typical execution times (in milliseconds)

Stack operations

ENTER* 11.7
X<>Y 19.3
RDN 16.9
Rt 12.9
CLX 9.8
LASTX 13.0
CLST 16.5
SIGH 13.3
CHS 12.5
CLA 9.5
RCL status 20.3
STO status 16.8
X<> status 19.7

Misc instructions

LBL ©4-14 19.6
two-byte LBL 13.1
CLD 20.6
TEXT © 12.3
AON, AOFF 19.0
ADV (no printer) 9.2
BEEP (flag 26 set) 1042.4

(flag 26 clear) 14.9
DEG 19.8
RAD 19.9
GRAD 20.5
PSE 1333.2
NULL 5.7

Storage register operations

STO ¥G-15 12.3
STO 16-99 2.6
STO status 16.8
STO IND ©9-99 32.3
STO IND status 32.1
RCL ©9-15 22.8
RCL 16-99 24.1
RCL status 20.3
RCL IND ©9-99 35.7
RCL IND status 35.6
X<> @@-99° 23.4
X<> status 19.7
X<> IND ©€@-99 35.1
X<> IND status 35.0

-145~-

ST+ 00U-99 38.9

ST+ status 35.3

ST- €U¥=-99 40.8

ST- status 37.3

ST* PY-99 46.8

ST* status 43.9

ST/ WWY=-99 49,5

ST/ status 45.8

ISG X , TEXT 6 (skip) 73.2 (x = 1)
(non-skip) 74.4 (x = -1)

DSE X , TEXT @ (skip) 72.9 (x = 1)
(non-skip) 74.9 (x = 2)

Digit Entry

%] 69.7
1 through 9 59.8
. 61.8
E 53.06
- (NEG, negates the 66.9

mantissa or exponent.
By itself, it places
a zero in X.)

Miscellaneous multi-byte instructions

GTO ¥9¥-14 , compiled 17.3
GTC(three byte),compiled 24.5
XEQ, compiled 35.2

global LBL, 1 character 45.4
2 character 49.3
3 character 51.9

2) Clear flay 42 and set SIZE at least ©id4. Clear all timer

3)

alarms (you can use the "SA" program from Section 4E).
Make any key assignments you want now. Do not make any
key assignment’s (except global labels) after you've
started step 3 and before you've finished step 9.

Enter the number of registers to be used for storing the
byte sequence. The number of registers should be selected
to provide an exact multiple of the number of bytes per
group of instructions, except that 1- and 7-byte groups
are always OK. For example if the group is 3 bytes long,
the number of registers should be a multiple of 3. If it

~-146-

4)

5)

6)

is not a multiple of the number of bytes per group,
you'll eventually get DATA ERROR at line 114. If you pick
a multiple of 60 registers, you can't go wrong. XEQ "IN"
to initialize to this number of registers. The timing
program will adjust the SIZE if needed to provide the
requested number of free registers below the .END. . If
the existing combination of SIZE and free registers is
not sufficient to allow the requested number of free
registers to be provided for timing, a DATA ERROR message
will appear at line 49. If this happens, clear a program
or reduce the number of free registers requested and
repeat from the beyinning of step 3.

The "IN" procedure automatically falls into LBL "S8", the
instruction storage routine. The "S" routine will prompt
you for a group of one to seven bytes. Key in a decimal
number between © and 255 for each byte, and press R/S
without an input to indicate the end of a byte group. The
group of bytes will then be duplicated and stored
throughout the initialized block of registers below the
.END. and above the key assignments.

With flag Wl clear the "S" routine halts at LBL "T", the
timing routine. At this point the stack is clear. You. are
free to load the stack as needed for your instruction
sequence. Press R/S or XEC "T" to start the timing. The
result, expressed in milliseconds per group of bytes, is
returned in the X register when the timing routine halts.
If you happen to have an error condition that causes a
halt in the stored instruction sequence, you must press
GTO "S8" and XEQ 1. You can then store a new sequence of
instructions as in step 4, or simply enter a valid
argument and XEQ "T".

To repeat the timing for another initial condition,
reload the stack and XEQ "T" again (do not simply press
R/S -- see step 9). If you want to set up the alpha
register as well as stack contents, just set flags 1 and

2 before executing "T". The timing routine will stop for

-147-

7)

8)

9)

19)

you to load the alpha register (as well as the stack, if
you like). Note that "T" can be called as a subroutine
for automated timing of the same function with a variety
of stack inputs.

To switch to timing a different group of instructions,
XE¢ "S8" again. You have the option of setting flag 1
first if you wish the timing to proceed automatically
with a clear stack. Set flags 1 and 2 if you need to load
the alpha register for timing.

To select a different number of registers for instruction
storage, enter the number and XkQ "IN" again.

To clear out the free register block at the end of the

timing session, press RTN and R/S, or just R/S after
using the "T" routine.

Three additional convenience routines are provided in
this program. They are each non-prompting versions of the
instruction storage routine "S".

XEQ "1" with a decimal input (¥ to 255) to store a
sequence of one-byte instructions.

XEQ "2" with a decimal input to store the repeating
sequence: one-byte instruction, LASTX. This sequence is
helpful when timing unary operations like SIN or LN.

XEQ “3" with a decimal input to store the repeating
sequence: one-byte instruction, X<> L. This is useful for
timing binary operations like + or MOD. Just initialize
by filling the stack with "Y" arguments, then putting the
"X" argument in X and executing "T".

When you use "2" or "3" you'll have to separately
time LASTX or X<> L and subtract to get the net execution
time for the particular function you're timing.

When you time numeric entry instructions, you must
separate them so they don't run together into a single
huge instruction. Use a null or LASTX, and subtract the

time for the separator.

Barcode for the complete instruction timer program is

included in Appendix E.

-148-

81 XRON “EF"
82 AYIER
83 XROM “LF-
84 XROM “OK*
85 XY

86 156 X
87 XROM “BC-
88 GT0 13

@9¢LBL *3*
18 "=

113

12 670 81

13¢LBL -2"
14 =y-

15 2

16 GTO &1

17¢LBL =1-
18 CLA
19 E

20¢LBL 61
21 570 a
22 ASTO X
23 CLA

24 AVIEN
&5 CF 29
26 FIX 8
27 AV

28 XT0R

29 ARCL Y

63 *

68 -

38 GT0 16

314LBL “IN"
32 ST0 63
33 XROM “F7*
34 INT
35 ENTERt
36 XROM “E?"
37 BOY
38 -
39 570 01
48 SIZE?
41 ENTERt
42 Rt
43 +
44 RCL 83
45 -
46 7
47 -
48 ¥(8?
49 SORT
38 4
3+
52 B{Y?
53 PSIZE
34 XROM -OM"
3N Rt
1
57 +
38 XROM “CX-
MAG e
68 RCL 83
6l E
62 +
63 XOY
64 X3 ¢
ae”
66 RCL {
67 ST0 88
X
69 RSTO IND £
78 RDN
7RG ¢
72 X 81

73+

74 2561
75+

76 7

77
78 XROW *DP-
79 ASTO 82
8@ BEEP

8ieLBL 18
82 STOPSK
83 CiX

84 SETSH

85¢LBL -§"
86 CF 29
87 FIX 8
88 CLR

89 CLX

98¢LBL 11
91 XT0R
92 ISG a
93 -

9 O [
95 ~DEC. ~
96 ARCL a
97 b7

98 AVIEW
99810 [
188 STOP
181 FS2C 22
182 GT0 11
183 CLA

184 AYIEN
185 570 §
186 BSE »

187¢LBL 16
188 RCL 63
189 7
118 *
111 RCL a
112 7
113 570 o4

-149-

114 0OCT
1153 GTO IND a

116¢LBL 87
1y XG o
118 %05 1
119 570 a
128 GT0 12

121¢LBL 84
122 FIx 1

123¢LBL 83
124 SF 29

125¢LBL 86
126¢LBL @3
127¢LBL 82
128¢LBL 61
129 ASTO X
138 17

131 RCL a
132 7

133 INT
134 RCL b
135 ARCL 2
136 DSE ¥
137 S0 b
138 ~he~
139 FC? 29
148 "Fex"
141 RCL a
142 ES
143

f44¢LBL 12
145 RCL 83
146 +

147 ABS
148 RCL 91
149 30 ¢
158 RCL]
151 GT0 @9

152¢LBL @9

133 E

154 ST- L

155 ARCL X
156 LASTX

157 Rt

158 RCL]

159¢LBL @9
168 STO IND 2
161 BSE Z
162 GTO @9
163 DSE a
164 GTO @@

165¢LBL 13
166 CLD
167 RO
168 ST0 ¢
169 CLST
178 FC? 82
171 FC? 81
172 TONE 8
173 FC? &1
174 RTN

173¢LBL "T"
176 ARCL @82
177 ¥ROM -XE"
178 SETSHW
179 XOY
188 36 E3
181 *
182 RCL @8
183 /
184 FIX 9
185 TOME 8
186 END

LBL™3

LBL™2

LBL™1

LBLTIH

LBL™S

LBL™T

END 329 BYTES

The complete instruction timer program listing is shown
on the previous page. A few of the synthetic lines have
ambiguous representations in the printout. These are listed

here together with their decimal equivalents for LB:

Line hex decimal

1o F2 CE 74 242 2p6 116

14 Fl 76 241 118

65 F7 A6 99 A6 93 oD 1C 85 247 166 153 166 147 109 28 133
68 F5 AC ¥2 84 A6 94 245 172 2 132 lo66 148

Lines 65 and 68 contain printer control characters. The hex

A6 character causes 6 spaces to be skipped; hex AC causes 12
spaces to be skipped.

Sumnmary of Error Traps:

Line 49 DATA ERROR means available memory is
insufficient to produce the requested
number of storage registers.

Line 114 DATA ERROR means that the number of bytes per
group does not evenly divide the number of
registers allocated ("IN") for storage of the
full instruction sequence.

Line 115 NONEXISTENT means that you tried to time an
8-byte group. This program will handle 1l- to
7-byte groups.

Timer program data register usage:

Rgy = scratch (number of instruction groups)

Rg) = curtain lowering code (temporarily placed in c)

Rgp = return pointer for the stored byte sequence

Rp3 = number of storage registers

If any of Ry; through Ry are altered, you must
re-initialize (enter the number of registers and XEQ"IN").

-150-

APPENDIX B

MORSE CODE AND STO b

The idea of using the HP-41] to produce machine-perfect
Morse code was introduced by Richard Nelson (the founder of
PPC and editor of the PPC Calculator Journal) on page 5¢ of
the February 1980 PPC CJ. His program employed the synthetic
TONE P, but at that time synthetic programming was in its
infancy, so the execution logic was confined to standard
techniques. As a result, transmission speed was only about 6
words per minute. However a General class amateur radio
license requires you to be able to receive 13 words per
minute. Conventional methods are clearly inadequate to produce
code at this speed.

Clifford Stern has written a Morse code program that
brings the full power of synthetic programming to bear on the
problem. To understand the technique used, first consider the
following execution loop which appeared in an earlier version

of this program:

LBL #1
RCL IND L
XEQ IND X
ISG L
GTO 1

The individual characters of the message have been stored in
series of data registers, and the LASTX register contains

counter for those registers. The KCL IND L instruction puts

[T A

single character in the X register, then XEQ IND X calls
short tone routine corresponding to the character in X. For
example if X contains the letter "C", then the following

sequence is executed:

-151-

LBL " C n
TONE 8

TONE P
TONE 8
TONE P

RTN

The simplicity of this procedure is due to the use of
synthetic single-character global labels. These are used for
three of the punctuation marks and the letters A through J.
The non-synthetic labels for those letters are local, not
global, and cannot be the object of indirect addressing.

However, speed is still a problem with this approach.
Because XEQ IND X has to search Catalog 1 to find the proper
tone sequence, it requires a relatively long time to execute.
In fact, 16 milliseconds per label is spent climbing up the
global label chain from the .END. in the search for a
specified global label. This causes a noticeable delay for
labels placed high in the catalog.

The major breakthrough for this Morse code program is
replacing XEQ IND X with a STO b instruction so as to jump
directly to each tone sequence. Not only does this provide a
dramatic breakthrough in speed, but it is a striking example
of how synthetic programming makes possible that which cannot
be done by normal means, no matter how elaborate. In effect,
synthetic techniques are used to compile indirect branching

addresses.

Some details have to be considered when applying this
procedure. First, there must be a method to determine the
correct address to branch to. This is accomplished here by
inserting a RCL b instruction before each set of tones; for

example:

-152-

(STO b will cause execution to pick up here)

TONRE
TONE
RTN

8
TONE P
8
P

The sequences are called with flag 26 clear during the setup
process. The RCL b results are incorporated into codes which
are stored in a series of data registers. The other detail to
be taken care of is the inclusion of return addresses in the
code so that the RTN at the end of each tone sequence brings
execution back to the ISG L instruction.

For the ultimate in speed, the GTO 61 instruction is
replaced by a RTN. A second return address is included with
the one just discussed to make this work. This second return
address 1is set up to transfer execution directly to the RCL
IND L instruction, eliminating the need for LBL ©01.
Furthermore, RTN is 15% faster than a compiled two-byte GTO.

The primary pointer and two return pointers account for
six bytes of each STO b code. The leading byte is taken from
row 1 of the QRC to avoid normalization problems when
recalling the stored codes from data registers. (The fact that
the first byte is from row 1 guarantees that the code will be
treated as legitimate alpha data.) Because the leftmost hyte
is nonzero, a STOP instruction, rather than a KTN, is required
to halt execution.

In the system used here, both of the return pointers are
constructed by normal subroutine calls. This technique is much
simpler than synthesizing the pointers because it does not
require calculation of the program's location in memory or
merging return addresses onto a program pointer. The first
return pointer is constructed by the XEQ IND T instruction at
line 58, while the second pointer is constructed by XEQ 95 at

-153-

line 45. Thus the RCL b instruction preceding each set of
tones provides the complete code for storage, since the two
returns are pending at that time.

The result is a Morse code program that produces code at
16 words per minute -- a substantial improvement over
conventional methods. Also, the true capacity of the ALPHA
register is highlighted, as 28 characters may be entered at a
time during the setup phase. This capability is made possible
by the fact that the calculator remains in ALPHA mode during
data entry (see the information on status register P in
Section 6A). Ambitious synthetic programmers should also
consult the P register summary on page 13 of the July 1981 PPC
CJ for full details of how the digit entries on lines 42 and

52 are used to modify the P register.

Here are the instructions for using Clifford's Morse code

program "MC":

1) Execute a SIZE of at least one greater than the number of
characters in the message.

2) XEQ "MC". Enter the message in groups of 1 to 28
characters. The tone prompt that signals the end of the
standard ALPUA register indicates here that 4 more
characters can still be entered. Press R/S to process
each group. If you get NONWEXISTENT, increase the SIZE and
start over.

3) Push R/S without making an entry to transmit the message.
Press R/S or XEQ 1¢ to repeat the message.

4) To get slower code output, insert any instructions which
do not affect LASTX between lines 45 and 46 and XEQ "MC"

again. This change increases the character spacing.

If you have an optical wand, use the barcode in Appendix
E to load the Morse code program. If you do not have a wand,

-154-

there are a few things you can do to speed up keying in the
program.

The following synthetic key assignments will facilitate
keying in "MC" from the listing: 159, 126 (TONE P); 159, 8
(TONE 8); and 205, @ (the global label counterpart of the
Q-loader). This last assignment was discovered by Tom
Cadwallader, and can be used to produce’ the required synthetic
labels. For example to create LBL "A", key in XEQ A or LBL A.
This loads the character "A" into the Q register. Delete that
instruction (if you were in PRGM mode when you keyed it in),
and press the assigned key in PRGM mode to create LBL "A".
This procedure was discovered by Valentin Albillo, another
synthetic prograrming pioneer, and can be used to key in the
program's global labels for A-J.

A different process must be used to produce labels for
the colon, period, and comma. One method is to enter the
punctuation mark into the ALPHA register, ASTO X, and press
GTO IND X (all in RUN mode). This loads the punctuation mark
into Q. After NONEXISTENT appears, switch to PRGM mode and
press the assigned key to obtain the corresponding global
label.

As an alternative, the byte grabber can be used to

synthesize any of these labels:

g1 ENTER*+ inputs:

g2 STO IND 66 192,

83 SIN 9, (any value is OK)
g4 "Z:" 242, ¢, character byte.

Pressing the byte grabber at line @1 removes the STO byte and
creates LBL ":" . PACKing is essential to incorporate these
synthetic labels into the global chain, regardless of the

means by which they are created.

-155-

@1eLBL "HC"
82 5F 26
83 =,z
84 X I
85 ¥> d
86 RCL b
87 FC2C 2¢
88 GT0 8i
89 CLA
18 ASTO 2
11 % [
12 SIGH
13 ASTO X
14 s
15 ARCL X
16 RASTO b

17+LBL 8!
18 5F 26

19 "CHARACTERS?"

28 PRONPT
21 FC2C 23
22 G10 @6
23 VIEW 2
24 CF 26
25 CLX

26 EHTERt
27 X0 ¢t
28 ¥=Y?
29 GT0 82
38 SF 85
31 RO]
32 ¥
B RGI
34 XOY

J5eLBL 82
36 “Fe"

RIS SO0 §
38 X=07

39 GT0 82
48 570
41 RIN
286

43 FC7C 29

44 GTO @5
45 XEQ 85
46 RCL IND L

47 570 b

48¢LBL 83
49 5T0 IND L
38 RDN

S1eLBL 84
52 .
53 e

J4¢LBL 85
[RGt
36 RDN

37 5F 25
58 XE@ IND T
39 IS6 L
68 RTH

61 FS?C 25
62 GT0 83
63 FS? 26
64 GTO 97
63 DSE L
66 FC2C 85
67 GTO &1
68 ST0]
69 GT0 84

78¢LBL 86
71 LASTX
72 B3
73+

74 LASTX
737/

76 STO @8
77 SIGN
78 Rt

79 570 4
88 RCL a1
81 5TG b

82¢LBL 87
83 RCL @8

84 SIGN
85 5ST0P

86+LBL 18
87 RCL 81
88 ST0 b

89¢LBL "
98 RCL b
91 TONE 8
92 TONE 8
93 TONE 8
94 TONE t
95 TOME ¢
96 TONE t
97 RTH

98eLBL =-"
99RCL b
188 TONE 8
181 TOKHE ¢
182 TONE ¢
183 TOKE ¢
184 TOKE 8
185 RTN

186+LBL =/-
187 RCL b
188 TOHE §
189 TONE ¢
118 TONE ¢
111 TOKE 8
112 TONE 1
113 RTN

114¢LBL "7*
15 RCL b
116 TONE t
117 TONE ¢
118 TOKE 8
119 TOKE 8
120 TONE ¢
121 TONE t
122 RTN

-156-

123¢LBL =."
124 RCL b
123 TONE ¢
126 TONE 8
127 TONE ¢
128 TOME 8
129 TONE ¢
138 TONE §
131 RTN

132e¢L8L ="
133 RCL b
134 TONE 8
135 TONE 8
136 TONE t
137 TOKNE t
138 TONE 8
139 TONE §
148 RTH

141¢LBL 9"
142 RCL b
143 TONE 8
144 TONE 8
145 TONE 8
146 TOKE 8
147 TONE &
148 RTH

149¢LBL 9~
158 RCL b
151 TONE &
152 TONE 8
133 TONE 8
154 TONE 8
135 TOKE 1t
156 RTH

157¢LBL =5"
158 RCL b

139 TONE 8
168 TONE §
161 TOKE 8
162 TONE t
163 TONE ¢

164 RTH

165¢LBL =7~
166 RCL b
167 TONE 8
168 TOME &
169 TONE t
178 TOKE ¢
171 TONE ¢
172 RTH

173¢LBL "6~
174 RCL b
175 TOKME 8
176 TONE ¢
177 TONE ¢
178 TONE ¢t
179 TONE ¢
188 RTH

18ieLBL =5°
182 RCL b
183 TOME ¢
184 TONE 1
185 TOMNE ¢
186 TONE ¢
187 TONE ¢t
186 RTH

189¢LBL =4~
198 RCL b
191 TOKE ¢
192 TONE ¢
193 TOKE t
194 TOKE t
195 TONE 8
196 RTN

197¢LBL =3"
198 RCL b

199 TOME ¢
208 TONE t
281 TONE t
282 TONE 8
283 TONE §

284 RTN

205¢LBL 2"
286 RCL b
287 TONE t
288 TONE t
289 TONE 8
218 TONE &
211 TONE 8
212 RTH

213¢LBL °1°
214 RCL b
215 TOKE 1
216 TONE 8
217 TONE §
218 TONE §
219 TONE 8
226 RTH

221¢LBL -2°
222 RCL b
223 TONE 8
224 TONE 8
225 TONE t
226 TONE ¢
227 RTH

Z28¢LBL "@"
228 RCL b
238 TOKE &
231 TONE 8
232 TOHE t
233 TOKE. 3
234 RN

235¢LBL "
236 RCL b
237 TONE t
238 TONE 8
239 TONE 8
244 TONE 8
241 RTH

2424LBL k"

24IRCL b
244 TOME 8
245 TONE
246 TONE ¢
247 TONE 8
248 RTN

249¢LBL “K-
258 RCL b
251 TOHE 8
252 TONE t
253 TONE &
254 RTH

255¢LBL =¥~
256 KCL b
257 TONE ¢
258 TOME ¢
259 TOME t
268 TONE 8
261 RTH

262¢LBL "B~
263 RCL b
264 TOHE 8
265 TONE 1
266 TONE 1
267 TOME ¢
268 RTH

Z69¢LBL "G"
278 RCL b
271 TOME 8
272 TONE 8
273 TOWE. *
274 RN

Z75¢LBL "
276 RCL b
277 TOKE ¢
278 TOKHE &
279 TONE 8
288 RN

281¢LBL “Y"

282 RCL b
283 TONE 3
284 TONE t
285 TONE 8
286 TONE 8
287 RTH

288¢LBL "P"
289 RCL b
298 TONE
291 TONE 5
292 TOKE 8
293 TONE t
294 KT

295¢LBL ° -
296 RCL b
297 FC? 2
298 RTH
299 LASTX
386 LN

381 RTH

3az+LBL “H"
383 RCL b
384 TONE &
385 TONE 8
386 ETH

Ja7+LBL -U-
388 RCL b
389 TONE ¢
318 TOKE
311 TONE 2
312 KTH

J13¢LBL “F"
JI4RCL b
315 TOKE 1
316 TOHE 1
317 TONE 8
318 TONE ¢
319 RTH

J28¢LBL “C-

-157-

321 RCL b
322 TONE 8§
323 TONE ¢
324 TOME &
325 TONE ¢
326 RTH

J27+LBL “L"
328 RCL b
329 TOWE 1
136 TONE B
331 TONE ¢
332 TONE ¢
333 KN

J34eLBL D"
JILRCL b
336 TONE 8
337 TONE ¢
338 TONE *+
339 KN

J48¢LBL “H"
41 RIL B
342 TOME
343 TONE ¢
344 TOHE ¢
345 TOME ¢
346 RTH

3474LBL "5
348 RCL b
349 TONE ¢
358 TONE
351 TOHE t
352 RTN

353eLBL “I°
354 ECL b
3535 TOKE ¢
356 TONE +
357 RN

JaBeLBL "R"
359 RCL b

360 TONE 1+ LBL*MC
361 TONE 8 LBL™:
362 TONE ¢+ LBL™-
363 RTN LBLT/
LBL™?
364¢LBL "H* LBL".
65RILE LBL".
366 TONE § LBL'@
367 TONE + LBL™9
368 RTN LBL™8
LBL"7
369¢LBL 0= LBL'6
IRCL B LBL'S
371 TONE 8 LBL™4
372 TONE & LBL"3
373 TONE 5 LBL'Z
374 RTN LBLTY
LBLTZ
375¢LBL A~ LBL'®
376 RCL b LBLTJ
377 TONE + LBL'Y
378 TONE 8 LBL'K
379 RTH LBL™Y
LEL'E
38@¢LBL T~ LEL'G
3B RCL B LBL7M
382 TONE 8 LBL'Y
383 RN LBL'P
LBL”
384¢LBL “E* LEL'M
385 RCL b LBLTU
386 TONE t+ LBL'F
387 EWD LBL'C
LBL™L
LBL'L
LBLH
LBL'S
LBL'I
LBL'R
LBL'H
LBL™0
LBL'A
LBL'T
LBL'E
END
845 EYTES

Three of the text instructions in the Morse code program

appear in an ambiguous form in the printed listing. These

are:
line hex decimal
03 F4 2C ©¢1 8¢ 81 244 44 1 128 129
36 F2 7F 09 242 127 @
53 F2 7F 09 242 127 ©

-158-

APPENDIX C
SYNTHETIC PROGRAMMING REFERENCES

Here is a list of sources for information on [P-41

synthetic programming:

1. PPC Calculator Journal, published by Personal

Programming Center, a non-profit, public benefit California
corporation dedicated to personal computing. The issues from
July 1979 (Volume 6, Number 4) to the present contain a wealth
of information on the HHP-41l in general, and on synthetic
programming in particular. The PPC CJ is still the most
up-to-date and comprehensive source for synthetic programs,
techniques,and discoveries.

To obtain a PPC membership application and a price list
for back issues of PPC CJ, send a 9" by 12" self-addressed
stamped envelope with 3 ounces of postage to:

PPC Dept. SPME

2545 W. Camden Place

Santa Ana, CA, 92704 USA
To speed the processing, mark the lower left corner of your
outer envelope with "New member info plus iP-41 back issues."
You don't need to enclose a letter; it will only slow things

down.

2. PPC Technical Notes, published by the Melbourne,

Australia chapter of PPC. PPC TN is a smaller-scale
publication than PPC CJ, but it specializes in synthetic
programming. Issue number 9 contains the best summary of
HP-41 microcode currently available. The current subscription
price is 20 Australian dollars per year to US and Europe. Mail
Australian currency, a check payable through an Australian

bank, or an Australian currency money order to:

-159-

R.M. Eades
P.0O. Box 15

Hampton, Victoria, 3188
AUSTRALIA

Since the subscription rate may have changed by the time

you read this, be prepared to send an additional payment.

3. PPC-UK Journal, published by the United Kingdom

chapter of PPC. PPC-UK J is a relatively new publication, but
so far it has placed considerable emphasis on tutorials and
other helpful information for beginners. For more information
and a membership application, send a self-addressed stamped
envelope to:

bDavid M. Burch

Astage

Rectory Lane

Windlesham, Surrey

GU2@ 6BW

ENGLAND

Overseas inguiries should include an addressed envelope
with an international postal reply coupon or two maghnetic

cards in lieu of postage.

4. The Hewlett-Packard Users' Library catalog contains a

few synthetic programs. The Users' Library did not accept
synthetic programs uptil January 1982, so the current catalog
may not reflect the extent of synthetic programs in the
Library.

The current membership fee for the Users' Library is
$25.064 in the US or Canada, and $40.09 elsewhere. Mail your
payment in the form of a check payable through a US bank to:

HP Users Library

19g0Y N.E. Circle Boulevard

Corvallis, Oregon 97330

-160-

5. HP Key Notes, formerly published by Hewlett-Packard,

but no longer available as a newsletter., A limited number of
synthetic programs have appeared in Key Notes since the
January 1982 initiation of synthetic programing to the Users'
Library. Starting in August 1983, Key Notes will reappear as a
section in the new quarterly HP Portable-Computation Guide.
The Portable-Computation Guide will be free with a membership

in the HP Users' Library (see item 4). For information on
price and availability of back issues of Key Notes, write to:
HP Key Notes
10080 N.E. Circle Boulevard
Corvallis, OR 97330 USsA

6. Synthetic Programming on the HP-41C, a book by Bill

Wickes, published by Larken Publications. This book was the
first compilation of synthetic programming information and
techniques. Because it was written in 198¢, Wickes' book does
not contain any examples using the byte grabber or Extended
Functions module or Time Module functions. Nevertheless it
remains a excellent reference book. Wickes's approach is
substantially different than that of HP-41 Synthetic
Programming Made Easy. Each subject is covered in full depth
before the next subject is begun.

If you want to learn more about synthetic programming, I
strongly recommend that you read "Synthetic Programming on the
HP-41C". The knowledge you've gained from reading HP-41
Synthetic Programming Made Easy will enable you to get through
Bill Wickes's book more quickly and with better understanding
of the details. Wickes's book contains several interesting
synthetic programs together with line-by=-line analysis that
will help complete your mastery of synthetic programming.

"Synthetic Programming on the HP-41C" is available at
many calculator dealers and college bookstores. Alternatively,

-161-

you may mail your order to:

Larken Publications

Dept. SPME

4517 NW Queens Ave.

Corvallis, Oregon, 9733¢

U.S.A.
The current price is $11 postpaid, by surface mail. For
airmail, add: for USA, Mexico, Canada $1, for Europe and South
America $2, for elsewhere $3. Payment should be in the form of

a check payable through a US bank.

7. The PPC ROM User's Manual, which accompanies the PPC
ROM. The PPC ROM is a custom ROM module for the HP-41 designed
by PPC members and manufactured by hewlett-Packard. The PPC

ROM contains over 60 synthetic programs, each of which is
analyzed line-by-~line in the User's Manual.

By the time you read this, the PPC ROM may be available
at calculator dealers. You may also order the PPC ROM from
Personal Programming Center. For price and ordering
information mail a self-addressed stamped envelope to :

PPC

2545 W Camden Place

Santa Ana, CA 92704
Mark the lower left corner of your outer envelope "PPC ROM
ordering info". A substantial discount is available to PPC
members. This discount could almost pay for your first year's
membership.

8. Calculator Tips and Routines (Especially for the
HP-41C/41CV), edited by John Dearing, published by Corvallis
Software Inc. This book contains listings for many of the PPC

ROM routines, some of which are synthetic. A great number of
nonsynthetic programming tricks are also described.

“"Calculator Tips and Routines" is available from dealers
or directly from :

-162-

Corvallis Software, Inc.

Dept. SPME

P.O. Box 1412

Corvallis, Oregon 97339-1412

U.S.A.
The current price is $15 within the USA and Canada, $20
elsewhere, airmail postpaid. Payment should be in the form of

a check in US dollars, payable through a US$ bank.

9. The HP-41 SYNTHETIC Quick Reference Guide, a

pocket-sized (3-1/2 inch by 6 inch) compilation of synthetic

programming information. Slightly wider than the plastic

Quick Reference Card for Synthetic Programming (so that the
card will fit inside), the booklet contains XROM listings, a
memory map, a byte table, tone tables, function timings, and
some more exotic goodies. This is a reference book and not a
"how to" book. However reference to the PPC Calculator Journal
and other sources are included where further explanation is
required. The HP-41 SYNTHETIC Quick Reference Guide is
available from:

J.J. Smith

Dept. SPME

226 24th Place

Costa Mesa, CA 92626

USA
The price is $5.00 plus postage of $1.00 (US or Canada) or
$2.006 (elsewhere). Instead of postage you may include a
self-addressed stamped envelope with sufficient postage for
two ounces.

10. The HP-41C Quick Reference Card for Synthetic
Programming. Extra copies of this 2-7/8 inch by 6 inch plastic
card are available from some dealers and college bookstores.
Check the dealer from whom you bought this book.

-163~

Alternatively you may mail your order to:

Synthetix

Dept. SPME

P.O. Box 113

Manhattan Beach CA 90266 USA
The price is $3 per card plus $1.50 per order shipping charge.
US orders can enclose a self-addressed stamped envelope in
lieu of the shipping charge. Payment should be in the form of
a check payable through a US bank. If this is a problem, US

currency is equally acceptable.

An earlier, more compact, black-and-white version of the
QRC is also available while supplies last. It is 2-5/8 inch by
4-1/2 inch, so like the QRC it fits in the HP-41 carrying case
alongside the calculator. Called the "HP-41C Combined
Hex/Decimal Byte Table", it contains essentially the same
basic byte table as the QRC. The only noticeable differences
are the lack of a flag listing, multi-byte structure summary,
and color tinting. The price is lower than the QRC at $2 for
one card plus either $1 shipping or a self-addressed stamped
envelope. Additional cards on the same order are $1 each to
USA, Canada, and Mexico, $1.20 each to other countries. Checks
(payable through a US bank) should be made payable and mailed
to SYNTHETIX at the above address.

-164~

APPENDIX D
THE QUICK REFERENCE CARD FOR SYNTHETIC PROGRAMMING ("QRC")

The QRC is a 2-7/8 inch by 6 inch plastic card that
contains a wealth of information that is essential for
synthetic programming. Each copy of HP-41 Synthetic
Programming Made Easy comes with a QRC on the back cover.

The leftmost two-thirds of the QKC is occupied by a byte
table. Each box in the byte table illustrates the several
possible interpretations of a byte. Refer to the "Legend for
the CRC" on the next page. These equivalences are introduced
and explained in Chapters 1 and 2.

Display characters are not shown for the second half of
the byte table (rows & through F), since they are all
starbursts (all 14 segments 1lit). This allows the full
indirect suffix equivalents to be shown on the second line of
each box. Printer characters shown are those that result from
PRA when the byte in question resides in the ALPHA register.
At the bottom of each half of the byte table are binary
equivalents for the hexadecimal digits ¥ through F.

To the right of the first half of the byte takle is a
summary listing of the functions of all 56 HP-41 flags. Lext
to the second half of the byte table is a quick reference
summary of LB inputs (decimal byte equivalents) for each type
of instruction. Chapter 3 covers this subject.

Obscure aspects of the QRC: Characters from rows &
through F disappear in printed program listings (not PRA
output), except that characters that are shaded will cause
additional strange behavior (see Section 2E). Row © shows the
required MK inputs, & through 15, for non-programmable
functions in small letters. See Section 4A for details. Row 1
includes the W™ function which has no effect except to lock
up the keyboard until the batteries are removed. The SPARE
bytes will form two-byte No Operation instructions.

If this summary of the QRC seems confusing, you probably
haven't read Chapters 1 and 2. Go back and read theml!

-165-

“FIRST
HALF”
(ROWS0TO 7)

“SECOND
HALF”
(ROWS 37O F)

PRIMARY (PREFIX)

DISPLAY
SUFFIX CHARACTER

DECIMAL PRINTER
EQUIVALENT CHARACTER

e

]
BIT OR FLAG NUMBERS 0 TO 56 FLAG FUTNCTIDNS
7 BYTES x 8 BITS PER BYTE = 56 BITS

TWO-BYTE
(YELLOW)

THREE-BYTE
(GREEN)

VARIABLE
LENGTH
(BLUE)

\IIIARY EQUIVALENTS FOR T
EACH HEXADECIMAL DIGIT

BYTE STRUCTURE

FOR LB AND MK

Legend for the QRC

-166~

(uayiuhs) 8s‘0'zrz’0’z6L = . 191
"SIYd u ‘(AeX) ‘U4 19Z'0°T6L= . 18]
(duayiuAs) 59 1¥Z'0 = v. DIX
S31Aq Ja4o0J0d U ‘U 4-0pZ'0E= . DIX
06'68'88°EHZ'6Z= ZAX. OLO
$8JAq 48420uDYd U ‘U+0¥Z'6Z= . 019
€9 LY LTUEVT= é(4. 8E I¥T= 9.
"ADYJ §s1iy SO SUNOI joquiAs puaddy
SalAq JB4O0JDY3 U ‘U40pZ = X3l
suoianuysul yibus) ajqoiIDA
(sdwodsp)z ‘(NIVda)y ‘(*ANI')ZE
$10J0J1pUI SRYDIS JO WNS +6°0'Z61 = QNI
SOL'0'vZZ= Q BIX
1990]°0’¥2Z = DIX
2€'0'80Z= Z€ 019
1940|°0°80Z = QL9 wJoy Buo
suoyInysul ajAg-aaay)
0'68L= 21l 019
0'19q0} + /1 = 019 WwJo} Lioys
8EL°L91 = 0L'0E WOUX= SISM
I4+(y pow 1)p9'y /14091 = M WOUX
EYT'VLL=X ONIDIX 6'7LL=60 ANIOLD
44+821'vL1=QNI BIX Dos’p/[=QNIOLO
sasnd |p1dads ayAq-om]
601°ZS1=(601)H MIIA LZL'L0Z=D 181
9PT'9L= N ANl +1IS £11'90Z=W<>X
68°65L= 68 3INOL ¥Zl'v¥l=q 1Y
THT'0LL= A QNI JéSd £Z1°L0Z= @181
€8L°LSL= SSONI 3SQ 9L'SPL=9(0LS
SUOIINLYSUI BJAG-OM)
SuoNINSUI 34AG-14jnw JO BUNYINYS

82uaysIXd
Jaund
35d

0/l
WY9d
1SS
abossaw
1vg moj
VHd1V

L4IHS
aJuanbas

Aoy joipind
Anua pyop
waysAs

NO °$u0d
avd L
avyo 0
avy
930 0
apow by ¢
ONI/Xid L
0

t

0

L

NOOO—ONM<T
TN WLINWBNWDN

< O
- < -

v-ov
X
9N3
1S
Aodsip
subip jo
Jaquinu 6g-9¢
pesn jou Gg
pasn jou pg
Jonubw
alnjosqo 7 g¢

COmrrm—mNOO —r—

v-ov

O/1 i [pnuDw Zg
AGW/AWQ
Jpuwy 1g
1v) 0¢
Buidnoab 416ip 62
DWIWOI /*29p 87
apow W3ISN LT
9|qoud oipnd 97
aJouby Jousd 67
aJoubs abuns pz
Ayua pydjp £z
AJjua ‘wnu zZZ
a|qoud uud |2
uo-winyl 0z
0 pauDapd| $1
asn |psouab| g
ajoidwoour
piodas /]|
MWVIS/dL L L
PVEL 0 1
WION L 0
NVW O O
Jajuud 71 91-61
IMIBAO P}
aspa Jomoj g1
apms|qnop Z|
aNJaxa ojnD | |
asodund
josauab 01-00

(p Jo45169%) SOV14

-l67-

dut o s »[FRBS SB[52 5025|3298 RREK|2S SR SRRR[ERES 555|055 2598|9558 588
LULL [OLLL | tOLL [O0OLL | L1OL | OLOL | 10OL | 000L | tL10 | OLLO | [OL0 | 0OLO | 1100 |OL00 | 1000 | 0000
4 3 a] v 6 8 | ¢ 9 s y £ z L 0
AL Z9CL|«STL]| I vaL] = €aL|Z 2oL | A LEL| <Ozl m6LL|~ BLL[N LLL| 3 9LL] S SLL|aVLL|®ELL|a CLL
|+ 9z pla ol q]8 o|l@.4| 2" 0[8idsro|ea\NsIw|e 1|8 x|g Al®s z|e 1

a| mIAY [Aas| Nvaw] cosx| Nois| éa#x| éA=x] x1] xusvi] Nad| su] usm| id]| A<>x| 3D
o lllfuott|weol| T8oL]% oL rooL|T sot[uvoL]ecol| col] > LOL[P OOL| > 66[a 86] & 6] « 96
9] rle 1|8 H|8 o|les 4|m 3|@ afa >|® a|a v| iot{root| > 66| 86|~ 6] . 96
100«| aNd| ¥He| SWHe] aed| wea| dui| ami| co=x| co>Xx|x+IN1| éo<x] co#x| 1Ovi| sav]| x/
— s6[4 ve|r €6~ 26|31 16|z 06~ 68| % 88| M L8[~ 98| s8] L v8[|S e8|d 2Z8|o@ 18|d 08
- s6|lv ve|c g6 z6| 3 162 06| . 68| x 88|~ £8[.1 98| 1 s8|: v8|s e8|y z8|= 18| 08
23« Nviv| soov| Nisv] Nvi| sod[Nis|t-xi3] xiot| 901 x43| swd) xea]| wwos| zux[N1
O 6N 8L|W ££]1 9Z[A SL| r vZ| T eZ|H 22| D 1Z| 2 0] 3 69|a 89| 0 9[a 99|V s9]@ 9
v|o 6c|n 8w ce| v 9L| o se| move| T eLlmoz) S tz|s o] 3 69| 893 £9(E 99[w 9|z 9
de¥| ¥ed| HO%| %] aow| -swH|+swH| 3] “+3| eAsx| ia<X| éA>X Ml %l -] 4+
c €9[< 29[= 19|> 09« 65| : 85|6 £S5|B 95[2 S5 2 v5| S eS| ¥ S| £ IS|2 0S| T 6v|© 8v
¢ €9 29[= 19]” 09| <« es|®: 85|65 5|8 9s| L ss| g vs| S 5| zs| £ 15|2 os|: ev|a@ sy
S101S|vL o1s[eL oLs|zL oLsfLL oLs|oL oLs |60 015 [80 015]£0 0LS[90 0LS|S0 015 [0 015 |€0 01S |20 0LS| L0 OLS{00 OLS
oLy - Y[- Sv| - ww|+ €v|* av| < Lv]| > Ov| . 6E| 8E| % Z&|® 95| # SE|. vE| i €8] <€
el to[«ov| - svl>ww| v ev|x zv| « 1v[: ov| . ee| % sc|w Lg% og|w sef. ve| : ee| ze
S1L10d|vL 124 €L 12421 1D¥|LL 124]0L 124 |60 12¥]80 12¥|£0 12¥[90 103]50 124 |¥0 124]£0 14 |20 12¥] L0 124 {00 1Dy
16| 3 06| = 62| » 82| ¥ 2|0 92| 0 S2|©@ vZ| 0 €| 2 22| ¥ Lz P 0z| %2 61| % el & Ll B 91
8 16| 8 oc| 7 62| @ 8z| @ 2| @ 9z @ sz| @ ve| @ cz| @ 22| @ 12| ® oz| ® oL @ 8L ® L1 B 9l
M| 03] co19] 9IN] xa3 : 6 8 L 9 S y £ z L 0
® SL|» VL[| El|a clf< LL|®OL|o 6|v 8T £]a 9|9 §[»° v|+ €|x 2| = 1|+ 0
ol& st|® vi| > €L}~ zif@ tL|® oL @ 6o 8 o] @ 0| < 90| x so| » vo| @ €of ® 20| » o] _ 00
yL 181 €1 181|z1 191] L1 181} oL 181 |60 19180 181 £0 191] 90 18150 191 v0 181 €0 181] 20 11| 10 18100 181 TINN
NSV L4IHS —= 7 |v/d/¥sn[(WO¥d)— Avd NO mMm 158 EY4N S/ d1) Ad0D 1A [(019)3@] IV)

i] a p)] v 6 8 L 9 S [£ z L | o

XI13IHINAS ‘2861 @

ONIWWVIO0Ud JILIHLNAS 304 QAVD JONTIIAY XOIND JLY-dH

-168-

VST ‘99206 VD '4309G UDLIDYUDW ‘"BAY SMALHOW OPSL ‘XILIHINAS O 9d0j9AUS PAduUI}S POSSAIPPO-}{IS D PUdS ‘D20 JN0A I SJ0ID9P 4O 51| D PUD UODULIOU! @21 10

Ttee J ottt Jott Joott J ctot | otot [toot [ooot J tito [oL10 | LoLo | 0010 | LLOO | OLOO | LOOO | 0000
| 3 a J] v 6 8 L 9 S 14 £ [4 L 0

2 552| vsz| € €Se| 1 ZsZ] # 1Sz| z 0sz| < 6vz| x 8vZ] ™ LvZ| ~ 9vET| N S¥T| 3+ Y¥T] S EVTI 4 TYT| ® VL[a OVT
4] 2ani| pani| 2ant| aaNif o anif .4 aNI{ —DaNI| td GNI] COGNI]\N ONI{JWGONI] 1 aNIf X ONIf A GNIf Z ONIf 1 QNI
sioxal vioar|ewxat|zioar tiaxatfouixas] 6 1xatf 8 4x3L) £ 1x3L] 9 1X31} S 1X3L| ¥ IX3 € LX3L[2 1X3L] L 1X3L) O 1X3L

o 6cz| v gez|w Lez| T 9ez] A sez| r vez| r ecz| M zez] e Lez| # oEz| @ 6TZ| P 8LL] 2 LIZ| A 9TL| © STL| o VTT
3Lt eani|ot Lant|soLani|goLani] o LaNi|90 LaNi{ S0 LaNI|#0 LONI|E0 LANI{ZO LONI] LOLGNI|OOLANI} 66 ONIj 86 ONI| L6 NI{ 96 ONI
-- pax|-- vax|-- v3Ix|-- vIx]|-- vIx|-- BIxX]|-- BIX]|-- VIX]-- BIX| - IX| -~ BIX]| -~ BIX] -- BIX] -~ BIX| ~~ VIX|—~ VIX

—ezzl v oozl ezl ~ozzl 1 etz[z8iz| A zizf X 9Lz MSLz| A viZi D ELZ] & TIT] B LLZ| 8 0LZ} B 602) & 80T
alse anil v6 aNi| €6 aNi] ze aNt} L6 aNi| 06 aNi| 68 aNI| 88 GNI| Z8 GNI| 98 GNI| S8 ONIf ¥8 ANIf €8 ANI| Z8 GNIf L8 ONIf 08 ONI
-- 019]-- 019|-- 019|-- o19]-- 019|-- 019|-- 019|-- 0L19]-- 0L9[-- OL9|~~ 019[-- OL9}-~ O19|-~ 019}~ OL9[~~ 019

0 20z N 90z w soz| 1 voz] > €oz[r zoz| 1 Loz| H 00Z] D 66L| 4 861) 3 L6Lf @ 961} D S6L| A V6Ll B E6L1 @ 6L
316z ani| 8z ani|zz ani| 9z aNil sz aNi| vz aNt| €2 GNIJ 22 GNIJ LZ QNIJ OZ GNI 69 NI| 89 NI £9 ONI| 99 ANI| $9 NI| ¥9 ONI
-- 81| --<>X [Iva019|1va019}1v8019[1v80191v8019{1v8019f1v8019{1v8019[1vE019{1¥8019]1v8019|1¥8019 | V8019 [1¥8O1I

& L6l < 061 | = 681 » 881 s 98| & S8L M PEREXAD S (8L ¥ 081 £ 6L 2 8LL| ¥ LLL ©9LL
alc9 ani|z9 ant| L9 ani| 09 aNI] 6S aNI| 8S GNIJ £S aNi| 9S ANI| SS QNI| ¥S ANI| €5 ONIJ ZS ONIY LS ONI| 0S ONI| 6¥ NI 8Y ONI
lv1 oot o19(z1L 019 L1 o19}ol 019[60 01980 019§£0 01990 01950 0190 019[€0 OLIJZ0 OL9[L0 OLD|00 OL9| FAVdS

-169-

S Gl = vZL R eLL|® oL % 1| ® osL[® 69t D 89L] v 91| 991 % SOL| & vOLI # €9L| & T9L| i L9} 091
v 1y anil 9 aNi| sy anif v aNif €v ani| 2y aNif Ly aNi| Ov ONiE| 6€ GNIf 8€ NI| L€ ANI| 9€ ONIf SE ONI| Y€ ONIj €€ ONI} € ONI
vas|aNISE | éod] ésd) Dédd] désd D $slie-szx|zz-vex|ez-ozx|61-9 LX|S L-Z LX| LL-8dX] £-¥ ¥X] €-0 ¥X

#ost|Fest|= st @ ostfssi[ovsi|oest|ozstf@ (SL 2 OSL| Y evL| 0 8Ll Y LVL] @ 9VL| T SYL|B byl
6 1e ani| o ant|6z ani] 8z ani] zz aNi| 9z aNif sz aNi| 2 aNI| €2 ONIj 22 ONIJ 1Z ONIJOZ ANIf6L GNIf 8L GNIJ ZL ONIT 9L ONI
INOL| 9N3 128 Xi3] 0¥V O0LSv] 9I| MIIA 35a oSl /1S] #*1S| -S| +1IS 0S| M

T evll > evt|™ vt| @ ovt] < 6€L] » 8EL| o Le1| ¥ 9cL| + SEL| J vEL| S EEL{ 0 TEL] » LEL| X OEL| = 6ZL| & 8ZL
glsiL anilvL ani|€L aNif zL aNI] LL aNIj oL GNI| 60 ONI| 80 AN} £O ANI| 90 GNI|SO ONI{¥0 ONIf €0 ONI| 2O ONi| LO NI} 00 ONI
AQV|LdWOdd] 440] NOV] d440v| 9¥1d 3Sd| JHSY V)| d338] NLd| dOISILN3IING| avd9] avdl 93d

3 3 a J g v 6 8 L 9 S 4) z L 0

XILIHINAS ‘2861 O ONIWWVIO0Yd JILIHINAS 404 Q3VI IONIYAFY NIIND JLy-dH

(Intentionally blank)

-170-

APPENDIX E
BARCODE FOR PROGRAMS

Barcode is provided here for all of the utility programs
in this book, so that you may conveniently enter these
programs into your HP-41 using the 82153A Optical Wand. If
you have a wand or if you can borrow one, this will save you
some time.

Always protect the surface of the barcode with a clear
plastic sheet. It may also be helpful to place a clean dark
sheet of paper behind the barcode to improve the contrast.

This barcode was tested in a trial printing and found to
be readable. If your barcode is not readable, try inking in
any incomplete bars, scanning the rows faster with the aid of
a straightedge, or holding the wand at a different angle. If
all else fails, try another wand.

If you have a card reader, you should record these
programs in case your dog finds this book. Other methods of
storing the programs include mass storage (IL tape drive) or
extended memory. Extended memory should not be considered as
a permanent storage, however, since it is susceptible to
MEMORY LOST.

DECIMAL TO CHARACTER PROGRAM REGISTERS NEEDED: 8

ROW 1 (1:6)
I

ROW 2 (6:12)
0 0 OO

ROW 3 (13:18)
I
ROW 4 (18: 25)
I
ROW § (25 : 25)

ARt

-171-

LOAD BYTES PAGE 1

OF 1
PROGRAM REGISTERS NEEDED: 31

ROW 1

(1:86)
II||||I|||||||||III||||||I||III|II||IIIIII|I|||||||||||II||IIIIIIII||IIIIIIlIIIIlIIIIIIIlIIlIIHIIIIIIIIIIIIIIIIIIIIIIIIIIIII
A
ROW 3 (15:22)
O 0O A
ROW 4 (22:25)

L

ROW 5 26 : 31)

OO

ROW 6 (32 : 38)

O

ROW 7 (38 : 44)

O

ROW 8 (45 : 53)

0 OO

ROW 9 (53 : 61)

0

|I|| ||||IIIIIIIIIIIIIIIIIIIIIIIIIII|IIIIIIIIIIIII|||I||IIIIIIIIIIIIIIIIIIIIIIIIIII|||||IIIlllIlIIIlIlIIIHIIIIIIIIIIIIIIIIIIIIII
11

||IIIIlIIIlIIIIlIlIIIIIIIIIIIIII|||||I||I||II|IIIII||IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII|IIIIIIIIIIIIIIIIIIIIIIIIIHIIIIIIIIIIIIIII

R

ROW 13 (83 : 88)

O

ROW 14 (88 : 95)

0

ROW 15 (96 : 103)

D 00T

ROW 16 (103 : 110)

O

ROW 17 (110: 112)

O

-172-

LOAD BYTES PAGE 1
(EXTENDED FUNCTIONS VERSION) OF 1

PROGRAM REGISTERS NEEDED: 23

ROW 1 (1:6)
O
ROW 2 (6: 14)
0O
ROW 3 (15 : 21)
O O
ROW 4 (22 : 25)
OO R
ROW 5 (25 : 32)
T
ROW 6 (33 : 42) |
000
ROW 7 (42:51)
T T
ROW 8 (52 : 57)
T
ROW 9 (57 : 65)
0 0 0 0
ROW 10 (65 : 73)
L 0
ROW 11 (73 : 80)
0
ROW 12 (80 : 87)
00
ROW 13 (87 : 88)
0

.

-173-

MAKE KEY ASSIGNMENTS PAGE 1
OF 2

PROGRAM REGISTERS NEEDED: 45

ROW 1 (1:5)

T
O
ROW 3 (12:19)

I 00O A
ROW 4 (19:22)
00O
ROW 5 (23:28)
00
0
ROW 7 (
O
00
O

ROW 10 (48 : 57)
T
ROW 11 (58 : 67)

P A
ROW 12 (68 :77)
00

ROW 13 (78 : 85)
LT

ROW 14 (85 : 93)
L

ROW 15 (93 : 99)

T 0
ROW 16 (99 : 103)
0O
ROW 17 (103 : 108)
00 A
ROW 18 (109 : 116)

-174-

MAKE KEY ASSIGNMENTS PAGE 2
OF 2

ROW 19 (116 : 121)

0 OO
ROW 20 (121 : 128)
0O

ROW 21 (129 : 136)
00O A
ROW 22 (137 : 143)

0 0

ROW 23 (143 : 149)

0 Al
ROW 24 (149 : 154)
0
ROW 25 (154 : 154)

AR

-175-

MAKE KEY ASSIGNMENTS PAGE 1
(EXTENDED FUNCTIONS VERSION) OF 1

PROGRAM REGISTERS NEEDED: 18

ROW 1 (1:

3)
O A
ROW 2 (3: 8)
A

ROW 3 (8 : 14)
A
ROW 4 (14 : 18)
O
ROW 5 (18 : 26)
O
ROW 6 (27 : 31)
A
ROW 7 (31:37)
0
ROW 8 (38 : 41)
0
ROW 9 (41: 48)
O
ROW 10 (49 : 51)

-176-

RAM BYTE COUNTER PAGE 1
OF 1
PROGRAM REGISTERS NEEDED: 23

ROW 1 (1:3)
00
ROW 2 (4: 8)
00O
ROW 3 (8: 14)
T
ROW 4 (15 : 23)
0000 Ol
ROW 5 (23 : 27)
v
ROW 6 (28 : 31)
AR
|||||||I|||||I|II|||I||I||I|||||||I|||I|III||II|I||||II|IIII|I|III|I|||III|I|IIIIII|||II|I|||||I||IIII|||I||I|I|I|II||IIII|I|I|I|II|
|I||IIII|I|I|I|III||||||||I||II||I|III|II|I|||I|||IIII|I|I||II|III|||I|||||I||I||||||||||||I|I|||I|I||II|||II||I|III|||II||IIIIII|I|
AR
ROW 10 (50 : 56)
0 00 Al
ROW 11 (57 : 63)

00 00
ROW 12 (63 : 69)
0000
ROW 13 (70 : 70)

T

-177-

SAVE ALARMS/ RECALL ALARMS PAGa1
OF
PROGRAM REGISTERS NEEDED: 25

ROW 1 (1:6) .
e

ROW 2 (7 : 14)
T
ROW 3 (15 : 23)
T
ROW 4 (23 : 30)
e
ROW 5 (30 : 36)
T
ROW 6 (36 : 41)
e
ROW 7 (41: 49)
T e

ROW 8 (50 : 57)
O
ROW 9 (57 : 63)

O A
ROW 10 (64 : 72)

L
ROW 11 (73 : 81))
T
ROW 12 (82 : 87)
O
ROW 13 (88 : 96)
O
ROW 14 (97 : 99)

A

-178-

EXTENDED FUNCTIONS / TIME PAGE 1
MODULE OF 1

PROGRAM REGISTERS NEEDED: 9

SUSPEND KEY ASSIGNMENTS/ PAGE 1
REACTIVATE KEY ASSIGNMENTS OF 1

PROGRAM REGISTERS NEEDED: 10

-179-

SOLVE f(x) =0 for x PAGE 1

OF 1
PROGRAM REGISTERS NEEDED: 14

ROW 1 (1:2)
O
ROW 2 (2:7)

0 0
ROW 3 (7 : 10)
OO
ROW 4 (10 : 19)
O

ROW 5 (20 : 29)

L

ROW 6 (30 : 39)

L
ROW 7 (40 : 48)
O O
ROW 8 (48 : 49)

O A

CURTAIN UP PAGE 1

OF 1
PROGRAM REGISTERS NEEDED: 10

ROW 1 (1% 5)
000
ROW 2 (5:10)
0
ROW 3 (11:21)
O
ROW 4 (21:29)

0O A
ROW 5 (29 : 35)

0 0
ROW 6 (35 : 35)

A

-180-

INSTRUCTION TIMER PAGE 1
OF 2

PROGRAM REGISTERS NEEDED: 47

ROW 1 (1:8)
i
ROW 2 (8 : 13)
O

ROW 3 (13: 17)
i

ROW 4 (17 : 26)
O OO
ROW 5 (26 : 31)
O 0 0Ol

ROW 6 (31 : 40)
00
ROW 7 (40 : 52)

00 000

ROW 8 (53 : 61)
000 A
ROW 9 (62 : 66)
OO
ROW 10 (66 : 71)

O A
ROW 11 (72: 79)
A

ROW 12 (79 : 85)

N 0O
ROW 13 (86 : 94)
0 A
ROW 14 (94 : 98)
0
ROW 15 (99 : 106)
0 A
ROW 16 (107 : 116)
T
ROW 17 (117 : 124)
0
ROW 18 (124 : 133)
O A

-181-

INSTRUCTION TIMER PAGE 2
OF 2

ROW 19 (134 :

ROW 21 (148 : 155)
ROW 25 (178 : 185)
ROW 26 (185 : 186)

-182-

MORSE CODE PAGE 1
OF 4
PROGRAM REGISTERS NEEDED: 121

ROW 1 (1:3)
R

ROW 2 (4:10)
0O
ROW 3 (11: 18)

00 A A
ROW 4 (18:19)
00Ol
A
i
L
I
A
O O
MWWWMWMmMWmWMWWMMMMMMMMNMWMWNWWMWMM
A
A
A
A
T
O
A

-183~-

MORSE CODE PAGE 2
OF 4

ROW 19 (121

O
ROW 20 (
e e
ROW 21 (132: 137)
00O
T
(143 : 149
O
O
ROW 25 (155 : 160)
OO
ROW 26 (161: 166)
00O
ROW 27 (166 : 173)
OO
ROW 28 (173 : 178)
0 00O
ROW 29 (178 : 183)
OO
ROW 30 (184 : 189)
0O OO O
ROW 31 (189 : 195)
OO
A
ROW 33
T
ROW 34 (207 : 213)
0 0RO
ROW 35 (213:218)
OO
ROW 36 (219 : 224)

-184-

] PAGE 3
MORSE CODE OF 4

-185-

MORSE CODE PAGE 4
OF 4

W 55 (327 :

ROW 60 (355 : 360)
ROW 61 (361 : 366)
ROW 62 (366 : 371)

-186-

INDEX

AbsSolute 1lOCatiON.ceeseseesscessessscssesssnssscsccnsnacssslBO
Biteeoeosooeeeossosssossscsascacassssonssaeasconnsssssesd, 23, 206
Bit MAPScccceeesoccsassnccvssrsssosossssssasesssssall3d, 118, 119
BG (Byte Grabber)..c.ceeceescecesocscsssosssssssarcscnssnssesd
BLDSPEC : ¢ s e eveevsascsesssssssnsassssssnsassassensnsnsscesssdd, 37
Byte...5, 11-14
Byte Grabber...cceeeeececesceesccsscssscsssnsssssnnsasssssb6-9
Byte Jumper.....see PPC Calculator Journal: May and July 1980
Byte Loader, poor man's (also see LB)eeeecsvassanseaesssl7,79
Byte StIUCLUIE@.ccoeeeceescosssosacascssnassssseaseasdl7=—62, 167
Byte TADLE s o eeseooeoeoseossocssssssssosasssssassssnsesssll, 165
Catalog liceeeseeesensesasossosnssssssnnsesnsnsssessbl, 71, 116
Complete MOD funcCtiON..eeeeeeseoecessscsoscosssseaesss.48, 138
CUrtAiNeeeeesesereessssosassssssasssscnsansssasess88, 116, 127
CUrtain MOVAING.eeseesaseosssacssssasasacenssssssllé, 124, 130
Default FUNCLiON.eeeesssossssssssansessscsccocvsscassssassslld
DiSClaAiMEr e eeeeeeoesesosesssacssnssossssssssssvsesessssasesnssll
DiSplay MOAE.cssseeesesssccssnsscasssssssssssassnssssccsessa23
©GOBEEP ¢ ¢ ¢« v oo vesevescccccssassssssssssossssnsssssssnssessl®, 95
Extended Functions Module.........35, 49, 64, 68, 77, 93, 144
Flag register..cecececscccccssscssensess-23, 24, 86, 117, 131
GLOBAL instruction (Alpha LBL or END in Catalog 1).....61, 62
GOlden RAtiO..ceeeeseccsssoansssssossssssassscsssessnssaqd8, 128
HEX TaADLlE@ e eeesoaceassssnnsesseacssssasssssassss.See Byte Table
IND (indirect) .ceeeceseecesesssssasoccsosossassnsssesassessesll
Key assignments, syntheticC......cccevtiinvsreacrceeseessa67=-76
LB -- Load Bytes:

BasicC version "LB" ...etesersecasescscssossascasosasansesd2

PPC ROM version e £

Extended Functions version "LBX"....ceceeeersceascces 65
Line NUMDEIS.eeeeeseeseesesessasesesal2, 28, 94, 103, 118, 124
MASTER CLEAR . «ceeeessacossssosssosasssesesnsscsssossnssssnsacel

-187-

MEMORY LOST:eveecererssscccssnscscsosne

MK -- Make Key assignments:
Basic version
PPC ROM version

Extended Functions version

YMK" et erteenanas

...

" MKX " .

Non-programmable functions.......cc..
NOP (also see TEXT J)eeessssovsosans

NormalizatiON.eeeesesseoocsoscsnense
NULL: e eceesoosososssssososocssscccssas

Plastic card (see QRC)eeeeeeocens

PPC (Personal Programming Center).
PPC CJ (PPC Calculator Journal)..
PPC ROM:coeooeosoosocsscsasancsnns

Prefix Masker (see Byte Grabber).

Printer:

control charactersS..eseeesces

shaded charactersS.eceeesesocascs

invisible characters in listings.

Program pointer...cceeeeeecccacssonones

Q=loader s eveesacssassssnsesnescssonsas

QRC (Quick Reference Card for Synthetic Programming)..ll,
Return addressSeS.ivesceeeeessesesosssssosscsssscssscassaslld,
v ees124-128,
R Y
ees121-124,

ROOt finder...eiieeoseeesececssessonssasssccas
Shaded CharacterSecesvessescssccssssessscnecassse
Stack and ALPHA register analySiS.e..ceecseesss

Starburst character (also called Boxed Star).

Status cardeeecceesecceeses
Status registers.......s...
Suspend Key assignments....
Synthetic Programming......
System scratch registers...
TEXT instruction.....eoeses
TEXT Deeeeeccccesssosnssanes

Wlfe.......................

.

-188-

.

.

e s e 000

ceesesssasees29,

449,

v o0 27,

53,

7¢, 117

R 3
R Y
-3 |
R -1

+eesl5,

38, 39

ceeerrsseaes25
.21,

oo e

oo 00

34,

114,

98-103
IS & §
4, 6, 159
«e.4, 159
o4, 162
ceessesl2

PR ¥ |
- Y |
R Y)
150, 152
77-81
165
115
127
165
123

ceereessl3, 41

- B

seseeees39,

111
111

I &

P §

....see Status Registers
cesrsessarsseseees29-30

ceessessssesesl5,

38, 39

s e s e re e s eresessscssssecesell

ADDENDUM
Errata and Selected Useful Facts

Printer slows execution

Having a printer attached to your HP-41 will slow
execution of your programs, regardless of whether flag 21 is
set or the printer is turned on. Even instructions that are
not intended to involve the printer are slowed.

This speed penalty can be reduced by synthetically
clearing flag 55, the printer existence flag. Any of the
following sequences of instructions will accomplish this:

with "bare" with XFUNCTIONS with PPC ROM:
HP-41: nodule®:
sF 97** RCLFLAG 55
RCL d SIGN FC? 55
CLA STO d RDN
STO M X<> L F8? 55
ASTO M STOFLAG XROM N8
- RDN
X<> M
STO d *this routine was written by Steve Wandzura
RDN **any flag from @0 to ©7 can be used.

As long as your program continues to run without
encountering a printer function, flag 55 will remain clear and
execution will be speeded. If flag 21 is clear, encountering a
printer function will not set flag 55 either. The function
will be ignored just as it would normally.

If flag 21 is set, the behavior depends on the type of
printer present. With an 82143A printer, all printer functions
are disabled until the program halts, at which time flags 21
and 55 are immediately set (even if 21 was clear). With an
HP-IL printer, the set status of flag 21 will cause the
printer function to be executed and flag 55 to be set. Simply

-189-

halting execution will not set flag 55 as for the 82143A
printer, but executing a flag test, VIEW, or related
instruction from the keyboard will set flag 55.

Avoid decompiling

Suppose you record a program on magnetic cards after
executing it once to compile all the GTO's and XEQ's. (Refer
to page 60 for a definition and explanation of compiling.)
When you read the cards back in, the GTO's and XEQ's will
still be compiled, so that no searches for the LBL's are
required. However the branching information contained in the
GTO's and XEQ's will be lost the next time you GTO.. or PACK.
A simple synthetic technique invented by Clifford Stern allows
you to pack without losing this information:

After reading the program into memory, switch to PRGM
mode and BST. This puts you at the .END., which is the last
line of the program. Make sure that there are at least 2 free
registers (.END. REG 92 or greater). Press ENTER+4, STO IND 66,
BST, BG, backarrow twice, and PACK (not GTO..). The IND 66
suffix becomes the first byte of a packed END, which prevents
the processor from clearing the compiled branch information.
No bytes are wasted because the PACK operation removes all
packable nulls from the program. The presence of the new END
elininates the decompiling which would ordinarily follow.

This method applies identically to programs read in from

tape, extended memory, or any other source.

ROM/RAM distinction with STO b

Most RAM program pointers would constitute equally valid
ROM program pointers (see pages 114 and 115). The HP-41
therefore must remember internally with some sort of flag
whether the current location is in ROM or RAM. This flag
cannot be changed by STO b.

Thus STO b can only be used to jump from one ROM location

to another or one RAM location to another. A common mistake is

-194-

to press a STO b assigned key while the program pointer is in
ROM, expecting to jump to a particular location in RAM. This
will not work. Initead you should execute Catalog 1 (it is OK
to R/S immediately) to get back to RAM before pressing STO b.

Q-register shortcuts

When you spell out an ALPHA label name from the keyboard
(while keying in a LBL, a GTO, or an XEQ), the name will be
loaded into the Q register. This fact is helpful when using
eGOBEEP 77 to execute PRP (see page 76). For example, to print
a program that contains LBL"ABC", you can press GTO ALPHA A B
C ALPHA, eGOBEEP 77. An obscure fact, discovered by Robert
Edelen, is that eGOBEEP"name" has the same result as
LBL"name", although this does not work when the printer is
attached.

Another useful shortcut, discovered by Clifford Stern, is
to clear the Q register by pressing XEQ ALPHA backarrow. You
can then obtain a TEXT ¥ instruction by pressing Q-LOAD (MK
inputs 27, ¢) and backarrow. Refer to page 7¢. If you press
eGOBEEP 77 after clearing Q, you will cause the current
program to be printed, just as if you had pressed PRP ALPHA
ALPHA.

Subroutine use of "RA"

I1f "RA" (recall alarms, see page 89) must be called as a
subroutine, replace line 38 (the OFF instruction) with ALMNOW
and RTN. The ALMNOW instruction will reset the Time module's
countdown to the next alarm. Also note that "SA" and "RA"

cannot be used if non-timer I/0 buffers are present.

"EFT" use of PCLPS

The useful PCLPS function can be executed by means of the
"EFT" routine (page 94) as long as "EFT" itself is not cleared
in the process. PCLPS provides the fastest method of clearing

main memory programs.
-191-~

Time module conflicts with "MK" programs

The conflict between Time module alarms and most key
assignment programs was described on page 70. There is,
unfortunately, another type of Time module conflict,
discovered by Bill Childers and analyzed by Clifford Stern.

If, with a Time module present, you use "MK" or Ul to
make an assignment to any key other than rows 1 to 7 of column
1, an undesirable side effect will occur. If you assigned an
unshifted key, any assignment to key 61 (normally +) will be
suspended. If you assigned a shifted key, the assignment to
key ~61 will be suspended. If you lose use of an assignment to
key 61 or -61, just read in a program card to reconstruct the
key assignment bit maps (see page 120) and reactivate the
suspended assignment. Another approach is to clear keys 61 and
-61 before using "MK", and reassign them just before ending
the "MK" session if the assignments were synthetic. When
constructing sets of key assignments, do 61 and -61 last.

These restrictions do not apply to "MKX", since "MKXx"

does not directly manipulate the key assignment bit maps.

Solution to problem 2.8
First create the F@ byte. Key in @1 ENTER*, @2 RCL IND T,
then BST, BG, and backarrow. Key in ©2 RCL IND Z and PACK to

remove nulls. Transform the IND Z suffix into a TEXT 1 prefix
by pressing BST and BG. Backarrow twice to clean up the

leftovers.

Congratulations!

By now you should be well beyond any fear of synthetic
programming, and on your way to becoming an expert. The
sources of information listed in Appendix C will help you get

there, should you decide to learn more.

=192~

“SOUP UP” YOUR HP-41 — It’s Easy and Fun!

Synthetic programming encompasses the creation and use of synthetic
instructions — those instructions that cannot be keyed up by normal means.
Applications of synthetic instructions included expanded key assignment
capability (assign SF 14 or GTO IND X to a key), 21 additional display
characters, and renumbering of data registers under program control.

if you have heard about synthetic programming and want to know more,
or if you have found other sources of information on synthetic programming
confusing or difficult to read, try this book. HP-41 SYNTHETIC PROGRAM-
MING MADE EASY uses all the latest synthetic programs and techniques,
and gives many cross-references to other sources, all of which will be much
more readable after you have been through this book. Barcode for all
programs is included for those readers who have access to an optical wand.
Also included is the handy plastic QUICK REFERENCE CARD FOR
SYNTHETIC PROGRAMMING, a $3.00 value.

If you like your HP-41, you'll like HP-41 SYNTHETIC PROGRAMMING
MADE EASY. Thousands of HP-41 owners have learned synthetic -
programming. Shouldn’t you?

