}‘{EWLETT-PAC‘KARD

\ g . N

2

Technical Reference Manual

Handheld Industrial
Computer

HP-94 Handheld Industrial

Computer
-}

Technical
Reference Manual

[/ paciarc

Edition 1 February 1987

. Reorder Number
82521-90001

I
Notice

Hewlett-Packard makes no warranty of any kind with regard to this material, including, but not lim-
ited to, the implied warranties of merchantability and fitness for a particular purpose. Hewlett-
Packard shall not be liable for errors contained herein or for incidental or consequential damages in
connection with the furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

Copyright © Hewlett-Packard Company, 1985, 1986.
This document contains proprietary information, which is protected by copyright. All rights are
reserved. No part of this document may be photocopied, reproduced, or translated to another language

without the prior written consent of Hewlett-Packard Company. The information contained in this
document is subject to change without notice.

Epson RTC-58321 Data Sheet © Epson America, Inc., 1986.
All rights reserved. Reprinted by permission.

Hitachi HD61102A Data Sheet © Hitachi America, Ltd. 1986
All rights reserved, reprinted by permission

Ms®-DOS is a U S. registered trademark of Microsoft Corp.

NEC uPD70108 (V20) Data Sheet © NEC Electronics, Inc., 1985.
All rights reserved. Reprinted by permission.

OKI MSMB82C51A Data Sheet © OKI Semiconductor, Inc., 1984.
All rights reserved. Reprinted by permission.

Smartmodem™ is a trademark of Hayes Microcomputer Products, Inc.
UNIX®is a registered trademark of AT&T in the U.S.A. and other countries.
Portable Computer Division

1000 N.E. Circle Blvd.
Corvallis, OR 97330, U.S.A.

Printing History Edition 1 February 1987 Mfg. No. 82521-90002

Contents

‘l

o
)
-+
b

introduction to the Technical Reference Manual

Operating System

|-t|

Introduction to the Operating System

Chapter 1

RO NN ==

wh wh wh =b
J

ok wh b
]
w =k b

Memory Management

Hardware Overview
Software Overview
Memory Organization
Reserved Scratch Space
Directory Table

File System

Data Files

Free Space

Scratch Areas

Logical ROMs

System ROM

Memory Integrity Verification

Chapter 2

2-1
2-2
2-5
2-8
2-10

Program Execution

Running Programs

Cold Start and Warm Start
Ending Programs

Program Structure
Program Restrictions

]
Chapter 3

3-1
33
3-4
3-5
3-7

3-10

3-12

3-14

3-16

User-Defined Handlers

Handler Structure

Channel Input and Output
Types of Handlers

Handler Information Table
Passing Parameters to Handlers
Handler Linkage Routines
Handler Routine Descriptions
CLOSE

10CTL

3-20 OPEN
3-22 POWERON

3-25 READ
3-27 RSVD2
3-28 RSVD3
3-29 TERM

3-31 WARM
3-33 WRITE

Y
Chapter 4 Operating System Functions

4-1 Operating System Function Usage
4-1 Operating System Function Descriptions

4-2 BEEP
4-3 BUFFER_STATUS
4-4 CLOSE

46 CREATE

4-8 CURSOR

49 DELETE
4-11 DISPLAY_ERROR
4-12 END_PROGRAM
4-14 FIND FILE
4-16 FIND_NEXT
4-19 GET CHAR
421 GET LINE
423 GET MEM
425 MEM_CONFIG
427 OPEN
429 PUT CHAR
430 PUT LINE

4-32 READ
4-35 REL MEM
4-36 ROOM
4-37 SEEK

439 SET INTR
4-41 TIMEOUT
4-43 TIME DATE
4-45 WRITE

Chapter 5 Hardware Control and Status Registers

§-2 Main Control and Status Registers
§-3 Interrupt Control and Status Registers
$-5 Copies of Write-Only Control Registers

]
Chapter 6

CPU

Chapter 7

7-1

Interrupt Controller

Procedure for Using a Hardware Interrupt
Interrupt Control and Status Registers
When the Operating System Disables Interrupts

7-3
7-5
7-6
T

Operating System Functions
Chapter 8 Keyboard
8-1 Keyboard Shift Status
8-2 Display Backlight Control
8-2 KeyBuffer
8-2 Waiting for a Key
8-3 Keyboard Scanning
8-5 Keyboard Control and Status Registers
8-6 Operating System Functions
R
Chapter 9 Display
9-1 Display Backlight Control
9-2 LCD Controllers
9-2 Writing Dots to the Display
9-2 Display Control and Status Registers
9-3 Writing Characters to the Display
9-4 Operating System Functions
9-5 User-Defined Characters
I
Chapter 10 Serial Port
10-1 Signal Levels
10-1 Enabling or Disabling the Serial Port
10-2 Initializing the Serial Port
10-2 Processing the Serial Port Data Received Interrupt
10-2 Serial Port Control and Status Registers
10-5 Built-in Serial Port Handler
10-9 Operating System Functions

|
Chapter 11 Bar Code Port

11-1 Bar Code Port Power and Transition Detection
11-1 Bar Code Timer

11-1 Initializing the Bar Code Port

11-2 Processing the Bar Code Port Transition Interrupt
11-2 Bar Code Port Timing Constraints

11-3 Bar Code Port Control and Status Registers

Y
Chapter 12 Timers

12-1 System Timer

12-3 Bar Code Timer

12-4 Timer Control and Status Registers
12-7 Operating System Functions

Chapter 13 Power Switch

13-1 Power Control and Status Registers
13-2 Operating System Functions

Chapter 14 Batteries

14-1 Main Nickel-Cadmium Battery Pack
" 14-2 Backup Lithium Batteries - -

14-2 Battery Control and Status Registers

14-4 Operating System Functions

Chapter 15 Real-Time Clock

15-1 Real-Time Clock Control and Status Registers
15-1 Operating System Functions

Chapter 16 Beeper

16-1 Beeper Control and Status Registers
16-2 Operating System Functions

Chapter 17

Reset Switch

Chapter 18
18-1
18-1
18-1
18-2
18-2
Part 2

Other Hardware

Read/Write Memory (RAM)
System ROM

Custom Gate Array
Earphone Jack

External Bus Connector

BASIC Interpreter

Introduction to the BASIC Interpreter

Chapter 1

BASIC Program and Data Structure

BASIC Program Organization
BASIC Program Outline
Intermediate Code

Operand Codes

Variable Area

Data Structure

Control Information Save Area

Chapter 2

Operation Stacks

Operation Stack Area

Control Stack

Numeric Operation Stack
Character Operation Stack
Parameter Table (only for %CALL)

Chapter 3

3-1
3-2
3-6

Assembly Language Subprograms (Keywords)

Program Structure
BASIC Call and Return
Access to BASIC Interpreter Ultility Routines

&z
Chapter 4

BASIC Interpreter Utility Routines

BASIC Interpreter Utility Routine Descriptions
ERROR
GETARG
IOERR
SADD
SDIvV
SETARG
SMUL
SNEG
SPOW
SSUB
TOBIN
TOREAL

Chapter 5

1/0 Statements and Handlers

Input Keywords (GET #, INPUT #, INPUTS)
Output Keywords (PRINT #, PRINT # . .. USING, PUT #)

Hardware Specifications

Introduction to the Hardware Specifications

Chapter 1

Electrical Specifications

Chapter 2

Mechanical Specifications

Physical Specifications

Serial Port Connector Specifications
Bar Code Port Connector Specifications
Memory Port Connector Specifications
External Bus Connector Specifications
Earphone Connector Specifications
Battery Pack Connector Specifications

™
Chapter 3

Environmental Specifications

Accessory Specifications

40K RAM Card Specifications
ROM/EPROM Card Specifications
Battery Pack Specifications
Recharger Specifications

Level Converter Specifications
Cables

Bar Code Readers

Chapter 4
4-1
4-2
4-3
4-4
4-5
4-7
4-10
A
Chapter 5

Data Sheets

NEC pPD70108 (V20) Microprocessor Data Sheet
OKI MSM82C51A UART Data Sheet

Hitachi HD61102A LCD Column Driver Data Sheet
Epson RTC-58321 Real-Time Clock Data Sheet

Appendixes

A-3
A-4
A-6
A-7
A-8
A-9
A-10
A-11
A-12
A-13

Resident Debugger

Command Syntax

Xumogrr—ou

Errors
Keyboard Layout

Roman-8 Character Set

Display Control Characters

F-1

G-1

H-1

J-1

K-1

L-1
1-7
L-14

M-2

M-3

M-5

M-8
M-10
M-14
M-18
M-20
M-22
M-34
M-36
M-38
M-40
M-42
M-44
M-46
M-49
M-51

Memory Map

Control and Status Register Addresses
Hardware Interrupts

Operating System Functions

BASIC Interpreter Utility Routines
Program Resource Allocation
Hewlett-Packard Bar Code Handlers

HNBC Low-Level Handler for Bar Code Port
HNSP Low-Level Handler for Serial Port
HNWN High-Level Handler for Bar Code Handlers

Disc-Based Utility Routines

Utility Routine Descriptions
BLINK.ASM
EQUATES.ASM
FINDOS. ASM
INTERNAL.ASM
IOABORT.ASM
IOWAIT.ASM
ISOPEN.ASM
LLHLINKG.ASM
NOIOWAIT.ASM
READCTRL.ASM
READINTR.ASM
SCANKYBD.ASM
SETCTRLASM
SETINTR.ASM
VERSION.ASM
XIOCTL.ASM
XTIMEOUT.ASM

lllustrations

Part 1

Operating System

3-13

5-2
5-3
5-4
5-5

7-3
7-4
7-5
7-5

8-1
8-3

Figure 1. HP-94 Hardware Block Diagram

Figure 1-1.
Figure 1-2.
Figure 1-3.
Figure 1-4.
Figure 1-5.
Figure 1-6.
Figure 1-7.
Figure 1-8.
Figure 1-9.

Figure 1-10.
Figure 1-11.
Figure 1-12.
Figure 1-13.
Figure 1-14.
Figure 1-15.
Figure 1-16.
Figure 1-17.

Figure 2-1.
Figure 2-2.
Figure 2-3.

Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.

Figure 5-1.
Figure 5-2.
Figure 5-3.
Figure 5-4.

Figure 7-1.
Figure 7-2.
Figure 7-3.
Figure 7-4.

Figure 8-1.
Figure 8-2.

Memory Map of the HP-94
Memory Map of Main Memory
Memory Map of the HP82411A 40K RAM Card
Memory Map of Reserved Scratch Space
Directory Table Header Contents
Directory Table Entry Contents
File Movement During Data File Expansion
Example of Data File Expansion
Use of Free Space in Main Memory
Defining Scratch Area Data Structure
Blocking a Released Scratch Area
Coalescing Adjacent Released Scratch Areas
Memory Map of the HP82412A ROM/EPROM Card
Possible Logical ROM Configurations
Memory Map of a 32K Logical ROM in Directory 2
HP 82412A ROM/EPROM Card Circuit Board
Memory Map of the System ROM

Program Headers
BASIC Keyword Structure
Defining Scratch Area Data Structure

Handler Header and Jump Table

Relationship Between High- and Low-Level Handlers
Example of Reading Handler Information Table Entries
Register Save Area

Main Control Register
Main Status Register
Interrupt Control Register
Interrupt Status Register

Interrupt Control Register
Interrupt Status Register
Interrupt Clear Register
End of Interrupt Register

HP-94 Keyboard
HP-94 Keycodes

8-5
8-6

9-1
9-3
9-3
9-3

10-3
10-3
10-3
10-3
10-4
10-4
10-4
10-7
10-8
10-8

11-3
11-4
11-4
11-4
11-4
11-5
11-5
11-5
11-5
11-6

12-4
12-4
12-5
12-5
12-5
12-6
12-6
12-6
12-6
12-6

13-2
13-2
13-2
13-2

14-3
14-3

Figure 8-3.
Figure 8-4.

Figure 9-1.
Figure 9-2.
Figure 9-3.
Figure 9-4.

Figure 10-1.
Figure 10-2.
Figure 10-3.
Figure 10-4.
Figure 10-5.
Figure 10-6.
Figure 10-7.
Figure 10-8.
Figure 10-9.

Keyboard Control Register
Keyboard Status Register

6 x 8 Character Cell

Keyboard Control Register
Right LCD Driver Data Register
Left LCD Driver Data Register

Interrupt Control Register
Interrupt Status Register
Interrupt Clear Register

Baud Rate Clock Value Register
Main Control Register

Main Status Register

Serial Port Data Register

Baud Rate - Parameter Byte 1
Data Format - Parameter Byte 2

Figure 10-10. Terminate Character - Parameter Byte 3

Figure 11-1.
Figure 11-2.
Figure 11-3.
Figure 114,
Figure 11-5.
Figure 11-6.
Figure 11-7.
Figure 11-8.
Figure 11-9.

Interrupt Control Register

Interrupt Status Register

Interrupt Clear Register

Bar Code Timer Data Register

Bar Code Timer Data Register

Bar Code Timer Control Register

Bar Code Timer Value Capture Register
Bar Code Timer Clear Register

Main Control Register

Figure 11-10. Main Status Register

Figure 12-1.
Figure 12-2.
Figure 12-3.
Figure 12-4.
Figure 12-5.
Figure 12-6.
Figure 12-7.
Figure 12-8.
Figure 12-9.

Interrupt Control Register

Interrupt Status Register

Interrupt Clear Register

System Timer Data Register

System Timer Control Register

Bar Code Timer Data Register

Bar Code Timer Data Register

Bar Code Timer Control Register

Bar Code Timer Value Capture Register

Figure 12-10. Bar Code Timer Clear Register

Figure 13-1.
Figure 13-2.
Figure 13-3.
Figure 13-4,

Figure 14-1.
Figure 14-2.

Interrupt Control Register
Interrupt Status Register
Interrupt Clear Register
Power Control Register

Interrupt Control Register
Interrupt Status Register

14-3
14-4

16-1

Part 2

Figure 14-3. Interrupt Clear Register
Figure 14-4. Main Status Register

Figure 16-1. Main Control Register

BASIC Interpreter

1-1
1-2
1-2
1-3
1-3
1-6
1-7
1-8
1-8
1-10
1-10
1-11
1-12
1-13
1-13
1-14
1-14
1-15
1-15
1-16

2-1
2-2
2-2
2-3
2-4
2-5
2-5
2-6
2-6
2-7
2-7
2-8
2-8

3-1
3-3
3-3
3-5

Figure 1-1. BASIC Program Organization

Figure 1-2. Program Header

Figure 1-3. Program Code

Figure 1-4. Variable Descriptor Table

Figure 1-5. Variable Descriptor Type Byte

Figure 1-6. Variable Reference

Figure 1-7. Parameters in the Variable Descriptor Table
Figure 1-8. Line Reference

Figure 1-9. DATA Statement Linking

Figure 1-10. Variable Area Allocation

Figure 1-11. Allocating and Releasing Variable Areas
Figure 1-12. Program Code and Variables

Figure 1-13. BASIC Program and Variable Relationships
Figure 1-14. Real Numeric Data in the Variable Area
Figure 1-15. Integer Numeric Data in the Variable Area
Figure 1-16. Character Data in the Variable Area

Figure 1-17. Array Data in the Variable Area

Figure 1-18. Array Data Example: DIM A(2,3)

Figure 1-19. Array Data Example: OPTION BASE 0 : DIM B3$6(4)
Figure 1-20. Format of the Control Information Save Area

Figure 2-1. Operation Stack Area

Figure 2-2. Control Stack Operation

Figure 2-3. Control Stack During Subprogram Execution

Figure 2-4. GOSUB Control Element

Figure 2-5. FOR...NEXT Control Element

Figure 2-6. Numeric Operation Stack

Figure 2-7. Real Numeric Data on the Numeric Operation Stack
Figure 2-8. Integer Numeric Data on the Numeric Operation Stack
Figure 2-9. Numeric Operation Stack Example: A + B* C— D
Figure 2-10. Character Operation Stack

Figure 2-11. Character Operation Stack Example: “ABC” + “DE”
Figure 2-12. Parameter Table Format

Figure 2-13. Parameter Table Type Byte

Figure 3-1. Assembly Language Subprogram Structure

Figure 3-2. Parameter Table Format

Figure 3-3. Parameter Table Type Byte

Figure 3-4. %CALL Example: Calling an Assembly Language Subprogram

Part 3

Figure 4-1. GETARG Parameter Processing
Figure 4-2. GETARG Result Flags (Register CL)
Figure 4-3. SETARG Parameter Processing

Hardware Specifications

N

Appendixes

Figure 1. HP-94 Hardware Block Diagram

Figure F-1. Memory Map of the HP-94

Figure L-1. HNBC Valid Data Flag — Parameter Byte 1
Figure L-2, HNBC Baud Rate — Parameter Byte 2

Figure L-3. HNBC Parity ~ Parameter Byte 3

Figure L-4. HNBC Key Abort ~ Parameter Byte 4

Figure L-5. HNBC Good Read Beep — Parameter Byte 5
Figure 1.-6. HNBC Terminate Character — Parameter Byte 6
Figure L-7. HNSP Valid Data Flag — Parameter Byte 1
Figure L-8. HNSP Baud Rate ~ Parameter Byte 2

Figure 1.-9. HNSP Parity — Parameter Byte 3

Figure L-10. HNSP Key Abort — Parameter Byte 4

Figure L-11. HNSP Good Read Beep — Parameter Byte 5
Figure L-12. HNSP Terminate Character — Parameter Byte 6
Figure 1.-13. HNWN Valid Data Flag — Parameter Byte 1
Figure L-14. HNWN Escape Sequences — Parameter Byte 2
Figure L-15. Serial Port Configuration Escape Sequence

Part1

Tables

Operating System

6-2

7-1
7-2
7-3
7-6

8-4
8-5
8-6

9-3
9-4
9-5

10-2

Table 1-1.
Table 1-2.
Table 1-3.
Table 1-4.
Table 1-5.
Table 1-6.
Table 1-7.
Table 1-8.
Table 1-9.

Table 2-1.
Table 2-2.
Table 2-3.
Table 2-4.

Table 3-1.
Table 3-2.
Table 3-3.
Table 3-4.
Table 3-5.
Table 3-6.

Table 5-1.
Table 5-2.

Table 6-1.

Table 7-1.
Table 7-2.
Table 7-3.
Table 7-4.

Table 8-1.
Table 8-2.
Table 8-3.

Table 9-1.
Table 9-2.
Table 9-3.

HP-94 Memory Configurations

Summary of Memory Information

Directory Table Sizes

Addresses for All Logical ROM Sizes in Directories 1-4
Different Organizations of a 96K Application

Placing a 96K Application Into Three 32K ICs

Placing a 96K Application Into Two 64K ICs

Memory Integrity Errors

Configuration Map for Valid Memory Configurations

HP-94 Status at Cold and Warm Start

Cold Start Status of BASIC Programs

Ending a Program With END_PROGRAM or FAR RET
HP-94 Status in Command Mode

Channel Number Assignments

Handler Information Table Entries
Interpreting the Valid Data Flag

Register Usage By Handler Linkage Routines
Reserved IOCTL Function Codes

Functions Allowed in POWERON Routine

I/0 Addresses for Control and Status Registers
Copies of Primary Control Registers

Intel 8088 and NEC V20 Instruction Mnemonics

HP-94 Hardware Interrupts

Using Hardware Interrupts

Interrupt Control and Status Registers
Interrupt-Related Operating System Functions

ASCII Characters and Keycodes for Each Key
Keyboard Control and Status Registers
Keyboard-Related Operating System Functions

Display Control and Status Registers
Display Control Characters
Display-Related Operating System Functions

Table 10-1. Serial Port Control and Status Registers

10-4
10-6
10-7
10-7
10-9
10-9

11-3

12-1
12-1
12-4
12-7

13-1
13-2

14-1
14-3
14-4

15-1
15-1

16-1
16-2

Part 2

Table 10-2. Baud Rate Clock Values

Table 10-3. Behavior of Built-in Serial Port Handler

Table 10-4. Errors Reported by Built-In Serial Port Handler
Table 10-5. Built-in Serial Port Handler Baud Rate Values
Table 10-6. Control Line Behavior

Table 10-7. Serial Port-Related Operating System Functions

Table 11-1. Bar Code Port Control and Status Registers

Table 12-1. HP-94 Timers

Table 12-2. Events Checked By System Timer Interrupt Routine
Table 12-3. Timer Control and Status Registers

Table 12-4. Timer-Related Operating System Functions

Table 13-1. Power Control and Status Registers
Table 13-2. Power Switch-Related Operating System Functions

Table 14-1. Activities Halted During Default Low Battery Behavior
Table 14-2. Battery Control and Status Registers
Table 14-3. Battery-Related Operating System Functions

Table 15-1. Real-Time Clock Control and Status Registers
Table 15-2. Real-Time Clock-Related Operating System Functions

Table 16-1. Beeper Control and Status Registers
Table 16-2. Beeper-Related Operating System Functions

BASIC Interpreter

Part 3

Table 1-1. Variable Descriptor Length Byte
Table 1-2. Intermediate Code

Table 1-3. Intermediate Code Groups
Table 1-4. Operand Codes

Table 4-1. Codes for ERROR Utility Routine
Table 4-2. GETARG Result Flag (Register CL)

Table 5-1. Response of Input Keywords to Handler-Generated Errors
Table 5-2. Response of Output Keywords to Handler-Generated Errors

Hardware Specifications

Table 1-1. Principal Integrated Circuits
Table 1-2. Electrical Specifications

l . 2-1 Table 2-1. Physical Specifications

| 2-2 Table 2-2. Serial Port Connector Pin Assignments
2-2 Table 2-3. Serial Port Mating Connectors
2-2 Table 2-4. Bar Code Port Connector Pin Assignments
2-3 Table 2-5. Bar Code Port Mating Connectors
2-4 Table 2-6. Memory Port Connector Pin Assignments
2-6 Table 2-7. External Bus Connector Pin Assignments

3-1 Table 3-1. Environmental Specifications

4-1 Table 4-1. HP-94 Hardware Accessories
4-2 Table 4-2. ROM and EPROM Specifications
4-2 Table 4-3. ROM and EPROM Manufacturers
4-3 Table 4-4. HP82430A Rechargeable Battery Pack Specifications
4-5 Table 4-5. HP 82431 Recharger Specifications
4-6 Table 4-6. HP82470A RS-232-C Level Converter Pin Assignments
4-6 Table 4-7. Line Receivers That Do Not Require Level Converter
4-7 Table 4-8. HP-94 to Modem Cable
4-8 Table 4-9. HP-94 to Printer Cable
4-8 Table 4-10. HP-94 to Level Converter Cable
4-9 Table 4-11. HP-94 to Vectra Cable
4-9 Table 412. Vectra or IBM PC/AT to Level Converter Cable
4-10 Table 4-13. IBM PC or PC/XT to Level Converter Cable
4-11 Table 4-14, HP-94 Serial Port to Smart Wand Cable

. Appendixes

A-1 Table A-1. Resident Debugger Commands
A-2 Table A-2. Resident Debugger Keyboard Map

B-2 Table B-1. Operating System Errors
B-3 Table B-2. BASIC Interpreter Errors

C-1 Table C-1. ASCII Characters and Keycodes for Each Key
E-1 Table E-1. Display Control Characters

G-1 Table G-1. I/O Addresses for Control and Status Registers
H-1 Table H-1. HP-94 Hardware Interrupts

I-1 Table I-1. Operating System Function List

J-1 Table J-1. BASIC Interpreter Utility Routine List

K-1
K-2

L-2
L-3
L-4
L-§
L-6
L-7
L-9
L-10
L-11
L-11
L-14
L-15
L-16
L-18
L-19
L-19
L-21

M-1
M-14
M-15
M-15
M-22

Table K-1.
Table K-2.

Table L-1.
Table L-2.
Table L-3.
Table L-4.
Table L-5.
Table L-6.
Table L-7.
Table L-8.
Table L-9.

Table L-10.
Table L-11.
Table L-12.
Table L-13.
Table L-14.
Table L-15.
Table L-16.
Table L-17.

Table M-1.
Table M-2.
Table M-3.
Table M-4,
Table M-5.

Error Number Usage
Hewlett-Packard Handler Resource Usage

HNBC Statistics
Behavior of HNBC
Errors Reported by HNBC
HNBC Baud Rate Values
HNBC Parity Values
HNSP Statistics
Behavior of HNSP
Errors Reported by HNSP
HNSP Baud Rate Values
HNSP Parity Values
HNWN Statistics
Behavior of HNWN
Errors Reported by HNWN
Beeps From HNWN for Smart Wand Escape Sequences
Smart Wand Baud Rate
Smart Wand Parity Values
Status Request Escape Sequence Parameter

Utility Routines on Technical Reference Manual Disc

Low Battery Interrupt Routine Behavior During 1/0

Power Switch Interrupt Routine Behavior During 1/0

Timeout Interrupt Routine Behavior During I/0O

Handler Linkage Routine List .

Introduction to the Technical Reference Manual

The HP-94 Technical Reference Manual provides software and hardware reference information about
the HP-94 Handheld Industrial Computer. This information should allow software developers to write
assembly language programs for controlling the HP-94 hardware resources, and hardware developers
to design accessories that connect to the machine. This manual assumes a certain level of familiarity
with the HP-94 and 8088 assembly language programming, and that the user will be using Microsoft
assembly language development tools (MASM and LINK) or their equivalents. It is a supplement to
the HP 82520A HP-94 Software Development System (SDS), which includes other information neces-
sary to fully understand the product, as well as software utilities needed to convert and transfer assem-
bly language programs to the machine. The manual is divided into four major parts:

s Qperating System

m BASIC Interpreter

m Hardware Specifications
m Appendixes

The first section describes the built-in operating system, which manages and provides programmatic
access to the HP-94 hardware: memory, interrupt system, keyboard, display and backlight, serial port,
bar code port, internal timers, power switch and power control, low battery detection, real-time clock,
and beeper. This section includes topics such as memory management, program execution, writing
user-defined handlers (device drivers) for controlling the serial and bar code ports, and using operating
system functions to simplify hardware control from assembly language programs.

The second section describes the internal operation of the built-in BASIC interpreter, which provides
the ability to execute BASIC programs that were developed on a development system computer using
the HP-94 SDS. This section does not discuss the syntax of the BASIC language, or the operation of
each BASIC keyword; that information is contained in the BASIC Language Reference Manual. Instead,
the section discusses the structure and operation of BASIC programs, data structure of BASIC vari-
ables, writing new BASIC keywords, and using BASIC interpreter utility routines to simplify the
interaction of BASIC and assembly language programs.

The third section contains hardware specifications for the HP-94 in four categories: electrical (voltage
and current levels, HP-94 operating conditions), mechanical (dimensions and connector pinouts),
environmental (conditions under which the HP-94 will perform properly), and accessory (electrical and
mechanical characteristics of plug-in cards, level converter, cables, etc.).

The final section is appendixes containing summaries of reference information for developers. This
includes documentation for the utility subroutines on the disc with this manual, and for the built-in
assembly language debugger.

Introduction to the Technical Reference Manual 1

) Part 1

Operating System

Introduction to the Operating System

This section of the HP-94 Technical Reference Manual describes the built-in operating system, which
manages and provides programmatic access to the HP-94 hardware. This section includes topics such
as memory management, program execution, writing user-defined handlers (device drivers) for con-
trolling the serial and bar code ports, and using operating system functions to simplify hardware control
from assembly language programs.

This section also describes the HP-94 hardware: what major hardware elements are present in the
machine, what they do, and how to operate them under software control. The major hardware ele-
ments are as follows:

m System ROM

m Read/Write Memory (RAM)

m Control and Status Registers

m CPU

m Interrupt Controller

m Keyboard

m Display with Electroluminescent Backlight
Serial Port

Bar Code Port

m Timers

m Power Switch

m Nickel-Cadmium (NiCd) Battery Pack
m Lithium Backup Batteries

m Real-Time Clock

= Beeper

m Reset Switch

All these items will be discussed in subsequent chapters. The following is a block diagram showing the
major hardware elements and their relationships.

introduction to the Operating System 1

Memory Management

Contents

I
Chapter 1

Memory Management

Hardware Overview
Software Overview
Memory Organization
Main Memory
40K RAM Card
ROM/EPROM Card
Reserved Scratch Space
Directory Table
File System
File Names
File Types
Erasing and Loading Files
Reserved File Names
Maximum Number of Files
Data Files
File Size
Size Increment
End-of-Data Address
File Access Pointer
Deleting Data Files
Interrupts During File Operations
File Expansion Example
Free Space
Usage in Command Mode
Usage at Run Time ’
Scratch Areas
Allocating Scratch Areas
Releasing Scratch Areas
Number of Scratch Areas
Optimum Memory Use With Scratch Areas
Logical ROMs
Logical Structure of the ROM/EPROM Card
Combining Logical ROMs of Different Sizes
Selecting a Logical ROM Size
Physical Layout of the ROM/EPROM Card
Selecting an IC Size
Placing Logical ROMs Into Physical ICs
System ROM
Memory Integrity Verification
Checksums Computed at Power Off
Memory Integrity Tests at Power On

b

Memory Management

This chapter describes memory in the HP-94: its possible configurations, how it is organized, and the
memory management software.

I
Hardware Overview

The HP-94 is available in three memory configurations: HP-94D with 64K RAM, HP-94E with 128K
RAM, and HP-94F with 256K RAM. Inside the 94 is a single slot for optional memory accessories. The
94D and 94E allow either the HP 82411A 40K RAM Card or HP 82412A ROM/EPROM Card (hold-
ing 32 to 128K of ROM or EPROM) to be plugged in. In addition, the 94E can be expanded to 256K
(equivalent to a 94F) with the HP 82410A 128K Memory Board (service upgrade only), which also
occupies the accessory slot. The 94F cannot be expanded. The following table summarizes HP-94
memory configurations.

Table 1-1. HP-94 Memory Configurations

Built-In 40K RAM ROM/EPROM 128K Memory

Machine RAM Card Aliowed Card Allowed Board Allowed
HP-94D 64K Yes Yes No
HP-94E 128K Yes Yes Yes
HP-94F 256K No No No

The maximum total user memory in the HP-94, RAM and ROM/EPROM combined, is 256K. This
limit is imposed by both hardware and software.

1
Software Overview

The memory management software in the HP-94 provides a directory structure for major contiguous
blocks of memory, such as built-in memory and plug-in memory (RAM and ROM/EPROM cards).
Within each directory is a file system that supports four different file types and files in RAM or ROM.
BASIC programs (type B), assembly language programs (type A), and user-defined 1/O port handlers
(type H) execute in place, whether in RAM or ROM. Data files (type D) can be created and deleted
dynamically while programs are running, and expand when written to in fixed- or variable-length incre-
ments. The operating system also provides for allocation and release of scratch areas, and verifies
memory integrity using checksums at power off and power on.

Memory Management 1-1

Memory Organization

HP-94 memory is organized into contiguous blocks called directories. The directories fall into three
major categories: main memory (built-in memory plus the 128K memory board), plug-in memory
(40K RAM and ROM/EPROM cards), and system ROM (built-in operating system and BASIC inter-
preter). Each block of memory has a fixed-length table at the beginning that describes each file in that
block of memory. Since the directory table is fixed-length, the maximum number of files that the direc-
tory can contain is also fixed. The directory table also identifies what type of memory it is (main,
plug-in RAM, plug-in ROM) and how much memory is encompassed by the directory. Below is a table
summarizing important information about HP-94 memory. followed by a memory map that shows the
organization of all memory in the HP-94. Note that in the map, the main memory RAM quantities
include the RAM for the smaller memory configurations, and the ". . ." indicates unused address space.

Table 1-2. Summary of Memory Information

Name of Memory | Directory | Max. No. | Min. System
Memory Area Size Number(s) of Files Overhead
Main Memory 64K 0 63 3.5K*
128K 0 63 3.5K*
256K 0 127 45K*
40K RAM Card 40K 1 31 0.5K
ROM/EPROM Card 32K 1-4 31 0.5K
64K 1-3 31 0.5K
96K 1-2 63 1K
128K 1 63 1K
* If a BASIC program is running, there will be an additional 2K used by the BASIC interpreter, plus
space for the data in the BASIC program variables.

1-2 Memory Management

. FFFFFh

32K Built-In
System ROM
F8000h
3FFFFh 3FFFFh
32K Piug-In
ROM/EPROM
38000h
32K Plug-In
ROM/EPROM
256K Built-In
RAM (HP-94F) 30000h
32K Plug-In
ROM/EPROM
29FFFh
28000h
. 40K Plug-in 32K Plug-In
RAM ROM/EPROM
20000h 20000h 20000h
40K RAM Card ROM/EPROM Card
128K Built-In
RAM (HP-94E)
10000h
64K Built-In
RAM (HP-94D)

00000h
» Main Memory

Figure 1-1. Memory Map of the HP-94

‘ Memory Management 1-3

Main Memory

Main memory is the first major block of memory, and is called directory 0. It can be 64, 128, or 256K,
depending on the memory configuration (94D, 94E, or 94F). Even though the 128K memory board that
is used in the 94F or added to the 94E occupies the accessory slot, it is still treated as main memory
because it cannot be installed or removed by the user the way the plug-in cards can. The number of
files main memory can contain are 63, 63, and 127 respectively for the three memory configurations.

Below is a map of main memory. The pointers on the right side of the memory map correspond to seg-
ment addresses maintained in the directory table header (the first entry in the directory table), and will
be discussed under "Directory Table".

256K: (3FFF:000F) 3FFFFh
128K: (1FFF:000F) 1FFFFh

64K: (OFFF:000F) OFFFFh End of Main Memory
Scratch Areas
End of Free Space Pointer
Free Space
Start of Free Space Pointer
Data
Files
End of Program Files Pointer
Program
Files
256K: (0120:0000) 01200h
64K or 128K: (00E0:0000) 00EQCH Start of Files Pointer
Directory Table
(00A0:0000) 00AQ0N Start of Directory Table
Reserved
Scratch Space

(0000:0000) 00000h Start of Reserved Scratch Space

Figure 1-2. Memory Map of Main Memory

1-4 Memory Management

. The major blocks of memory shown in the memory map are described briefly below. They will each be
the subject of a separate section of this chapter.

m Reserved Scratch Space
This area contains the interrupt vectors for the hardware and software interrupts for the CPU.
This area is also used by the operating system to maintain information about the current state of
the 94, and for pointers into that information. This area comprises 2.5K of the system overhead.

m Directory Table
This block describes main memory and all the files contained in it. Files begin immediately after
the end of the directory table. This area comprises 1K or 2K of the system overhead, depending on
the memory configuration.

m Program Files
This block is where all non-data files are stored; that is, file types A, B, and H. All program files
appear first in the file system. The size of this block changes while programs are loaded, but does
not expand or contract at run time.

m Data Files
This block is where data files are stored. Data files expand by allocating memory from free space,
expanding toward higher addresses. When data files are deleted, all their space is returned to the
free space area.

m Free Space
This block is the pool of available memory from which data files are created and expanded and
scratch areas are allocated.

m Scratch Areas
Scratch areas are requested by the built-in BASIC interpreter and by user-written assembly
‘ language programs and handlers, and are created by allocating memory from free space, building
toward lower addresses. When scratch areas are released, they are returned to free space. Scratch
areas are only created in main memory, regardless of which directory contains the program
requesting the scratch area. They comprise any additional system overhead requirements.

40K RAM Card

The HP 82411A 40K RAM card is one of the two types of plug-in memory, and is called directory 1. It
is 40K long, and can contain a maximum of 31 files. The organization of the RAM card is a subset of
the main memory organization — it contains only a directory table, files, and free space. No scratch
areas are available, since scratch areas are only allocated in main memory.

Here is a memory map of the 40K RAM card. The pointers on the right side of the map have the same
meaning as for main memory.

’ Memory Management 1-5

(2A00:0000) 2A000h End of Free Space Pointer ‘

(29FF:000F) 29FFFh End of 40K RAM Card
Free Space
Start of Free Space Pointer
Data
Files
End of Program Files Pointer
Program
Files
(2020:0000) 20200h Start of Files Pointer
Directory Table
(2000:0000) 20000h Start of Directory Table

Figure 1-3. Memory Map of the HP 82411A 40K RAM Card

The major blocks of memory shown in the memory map are de$cribed below.

m Directory Table
This block describes the RAM card and all the files contained in it. Files begin immediately after
the end of the directory table. This area comprises the 0.5K RAM card overhead.

m Program Files
This block is where all non-data files are stored; that is, file types A, B, and H. All program files
appear first in the file system. The size of this block changes while programs are loaded, but does
not expand or contract at run time.

m Data Files
This block is where data files are stored. Data files expand by allocating memory from free space,
expanding toward higher addresses. When data files are deleted, all their space is returned to the
free space area.

s Free Space
This block is the pool of available memory from which data files are created and expanded.

1-6 Memory Management

ROM/EPROM Card

The HP 82412A ROM/EPROM card is the other type of plug-in memory, and can contain directories
1 through 4. Files can be put in ROM or EPROM in blocks of four different sizes: 32, 64, 96, and 128K.
The number of files each block can contain is 31, 31, 63, or 63 respectively, depending on the ROM or
EPROM size. The memory map of the ROM/EPROM card will be discussed in detail under "Logical
ROMs" (a logical ROM is a ROM in one of the different possible sizes, not necessarily related to the
physical IC size actually placed on the ROM/EPROM card).

The organization of each of the four directories within the ROM/EPROM card is similar to the RAM
card. They each contain only a directory table, files, and free space. No scratch areas are available,
since scratch areas are only allocated in main memory (and could not be allocated in ROM or
EPROM anyway).

The memory map of an individual ROM within the ROM/EPROM card is essentially the same as for
the 40K RAM card. Unlike the RAM card, data files can only be read — they cannot be created,
deleted, or written to. Also, the free space in a ROM or EPROM cannot be used.

The pointers that are shown on the RAM card memory map have the same meaning for an individual
ROM or EPROM, but their values vary depending on the size and directory number of the ROM. This
will also be discussed in "Logical ROMs".

|
Reserved Scratch Space

The reserved scratch space is the first 2.5K of main memory. The first 0.5K contains interrupt vectors
for CPU, hardware, and software interrupts. It also contains pointers to the next 2K, which is the
operating system scratch space. Here is a memory map of the reserved scratch space. The "..." indi-
cates unused interrupt vector locations.

Memory Management 1-7

(00A0:0000) 00ADOh Start of Directory Table

OS Scratch Space
(0020:0000) 00200h Start of OS Scratch Space
(0016:003E) 0019Eh End of OS Pointer Table
OS Pointer Table
(0016:0000) 00160h Start of OS Pointer Table
Interrupt Type 57h
(0000:015C) 0015Ch
interrupt Type 56h
(0000:0158) 00158h
Interrupt Type 55h
(0000:0154) 00154h
Interrupt Type 54h
(0000:0150) 00150h
Interrupt Type 53h
(0000:014C) 0014Ch
Interrupt Type 52h
(0000:0148) 00148h
Interrupt Type 51h
(0000:0144) 00144h
Interrupt Type 50h
(0000:0140) 00140h Start of Hardware Interrupt Vectors
(0000:0074) 00074h End of Software Interrupt Vectors
Interrupt Type 1Ch
(0000:0070) 00070h
(0000:006C) 0006Ch
Interrupt Type 1Ah
(0000:0068) 00068h Start of Software Interrupt Vectors
(0000:0010) 00010h End of Dedicated interrupt Vectors
Breakpoint
(0000:000C) 0000Ch
NMI
(0000:0008) 00008h
Single Step
(0000:0004) 00004h
Zero Divide
(0000:0000) 00000h Start of Dedicated Interrupt Vectors

Figure 1-4. Memory Map of Reserved Scratch Space

1-8 Memory Management

The major items in the reserved scratch space are described below. The information at the end of each
description are the chapters or appendixes where further information can be found about that inter-
rupt. General information about the hardware interrupts (types 50h-57h) is in the "Interrupt Con-
troller" chapter.

= Zero Divide
Dedicated interrupt vector for divide-by-zero condition. Points to the same location as the break-
point interrupt vector (appendix A).

m Single Step
Dedicated single step interrupt vector used for single-stepping the resident debugger (appendix A).

m NMI
Dedicated non-maskable interrupt vector used to invoke the resident debugger. Points to the same
location as the breakpoint interrupt vector (appendix A).

= Breakpoint
Dedicated breakpoint interrupt vector used for breakpoints in the resident debugger (appendix A).

m Interrupt Type 1Ah
Software interrupt vector used to invoke the operating system functions (chapter 4).

w Interrupt Type 1Ch
Software interrupt vector used for the one-second background timer (chapter 12).

w Interrupt Type 50h
Hardware interrupt vector for system timer (chapter 12).

m Interrupt Type 51h
Hardware interrupt vector for bar code port timer (chapters 11 and 12).

m Interrupt Type 52h
Hardware interrupt vector for bar code port transitions (chapter 11).

m Interrupt Type 53h
Hardware interrupt vector for serial port (82C51 data received) (chapter 10).

m Interrupt Type 54h
Hardware interrupt vector for low main battery voltage (chapter 14).

m Interrupt Type 55h
Hardware interrupt vector for power switch pressed (chapter 13).

m Interrupt Type 56h
Reserved hardware interrupt vector 1 (chapter 7).

m Interrupt Type 57h
Reserved hardware interrupt vector 2 (chapter 7).

= OS Pointer Table
These are pointers to various parts of the operating system scratch space. The main pointer of
interest to assembly language programmers is the one that points to the handler information table.
Refer to the "User-Defined Handlers" chapter for details.

m OS Scratch Space
This is the space in which the operating system keeps important information about the current state
of the HP-94. This area is 2K long. The operating system stack is in this area. It varies in length as
it is used, up to a maximum of approximately 600 bytes.

Memory Management 1-9

CAUTION The operating system does not initialize or use the overflow interrupt (dedicated
interrupt vector 04h, at address 04h * 4 = 00010h). A program that uses the INTO
instruction (interrupt on overflow) must initialize this interrupt vector to a location in
its own program space.

|
Directory Table

The directory table is organized as a series of 16-byte entries, one per file. The first entry is the direc-
tory table header. It identifies the directory, the type of memory (main memory, 40K RAM card, or
ROM/EPROM card), and the total amount of memory encompassed by the directory. The header also
contains the pointers shown on the memory maps. Since all memory areas start and end on paragraph

boundaries (a paragraph is a block of 16 bytes), pointers are stored in the directory table as segment
addresses only.

The contents of the directory table header are shown below. The numbers on the left are hex offsets
relative to the start of the header.

10h
Directory Table
Checksum
OEh
End of Free
Space Pointer
0Ch
Start of Free
Space Pointer
0Ah
End of Program
Files Pointer
08h
Start of
Files Pointer
06h ,
Directory
Type
05h
Directory
Identifier
00h

Figure 1-5. Directory Table Header Contents

Refer to the memory maps to see the areas of memory that the pointers refer to.

1-10 Memory Management

s Directory Identifier
The directory identifier always contains the characters X DIR*. The operating system uses this to
help verify memory integrity.

= Directory Type
The directory type is the character M for main memory, A for a 40K RAM card, or O for a
ROM/EPROM card.

m Start of Files Pointer
This segment address points past the end of the directory table, and is the beginning of all files.
Program files always appear first in the file system.

= End of Program Files Pointer
This segment address points past the end of the program files, which is the beginning of the data
files. Nothing below this address within the directory will move at runtime.

m Start of Free Space Pointer
This segment address points past the end of the data files, which is the beginning of the free space.
Free space is used for data files and scratch areas in main memory, for data files only in a RAM
card, and is not available for use in a ROM or EPROM.,

m End of Free Space Pointer
This segment address points past the end of free space. For main memory, it also marks the begin-
ning of scratch areas available for assembly language programmers. If no scratch areas have been
allocated, this pointer points past the last byte in main memory — to 1000:0000 (64K), 2000:0000
(128K), or 4000:0000 (256K).

For the 40K RAM card, this pointer points past the end of the card, since there are no scratch
areas. For the same reason, in a ROM, this pointer points past the end of the logical ROM.

. s Directory Table Checksum
This is where the checksum of the directory table is saved when the machine is turned off.

The other entries in the directory table identify the different files. The contents of the directory table
entries for files is shown below. Again, the numbers are hex offsets from the start of the entry.

. Memory Management 1-11

10h

File
Checksum
OEh
Size
Increment
oCh
End-of-Data
Address
09h
Start
Address
07h
File
Size
05h
File
Type
04h
File
Name
00h

Figure 1-6. Directory Table Entry Contents

= File Name
This is the name of the file. File names are 1-4 characters long, padded with blanks. If the file had
a checksum error at power on, the high bit is set in the first character of the file name (except in
ROM files). If a directory table entry is unused, the first byte of this field is set to null (00h).

m File Type
This is either an A, B, D, or H.

m File Size
This is the current length of the file in paragraphs. All files are padded with nulls (00h) to the
nearest paragraph boundary.

wm Start Address
This segment address is the location where the file starts.

® End-of-Data (EOD) Address
For data files, this is the offset of the end-of-data within the file, relative to the start of the file. For
program files, this is a pointer to the end of the program, which may not be the end of the file
because of the null padding. The EOD address is a 24-bit value stored as a two-byte offset and a
one-byte segment (low word followed by high byte).

m Size Increment
For data files, this is the expansion increment, in paragraphs, used when data is written past the
end-of-file. It is O for program files in RAM and for all files in ROM.

1-12 Memory Management

m File Checksum
This is where the checksum of the file is saved when the machine is turned off.

The space reserved for the directory table is fixed-length, and varies with the total amount of memory.
Because the first entry is always reserved for the directory table header, there will be space for one less
user file than the size of the directory table would otherwise indicate. The directory sizes and number
of files available are shown below.

Table 1-3. Directory Table Sizes

Name of Memory Directory Number
Memory Area Size Table Size of Files
Main Memory 64K 1K 63
128K 1K 63
256K 2K 127
40K RAM Card 40K 0.5K 31
ROM/EPROM Card 32K 0.5K 31
64K 0.5K 31
96K 1K 63
128K 1K 63

R
File System

The HP-94 file system allows for multiple files of different types to coexist simultaneously. User files
can reside in any of the five user directories (0-4), whether RAM or ROM.

File Names

Each file is identified by a 1-4 character name. File names are composed of uppercase alphabetic
characters and numbers only, and must start with a letter. A file name can only exist once in any direc-
tory. It is not possible to have the same name but a different type in the same directory. However, the
same file name can exist in different directories, with either the same or different type.

File Types
There are four possible file types:

m Assembly Language Program — Type A
Assembly language programs are either new BASIC keywords, invoked with the %CALL state-
ment, or are entire assembly language applications.

= BASIC Program — Type B

BASIC programs are a collection of "tokens" that are can be executed by the BASIC interpreter.
They are produced by HXC from a BAS file during the file conversion process.

Memory Management 1-13

m Data File — Type D
Data files are simply contiguous blocks of memory.

m User-Defined Handler — Type H
A handler is a special assembly language program that controls the I/O ports, such as the serial and
bar code ports. It has a structure similar in concept to a UNIX or MS-DOS device driver.

Erasing and Loading Files

When files are erased from command mode with the E (erase) operating system command, their
memory is returned to free space, and files higher in memory move down to fill in the hole. When files
are loaded with the C (copy) operating system command, existing files with the same name are erased
first, and the memory they occupied is reclaimed for other uses. Then memory for the new file is allo-
cated from free space (assuming there is enough room). This ensures that neither file space nor free
space are fragmented while erasing or loading files. When data files are deleted with the DELETE
function (14h), the memory they occupied is also reclaimed.

Reserved File Names
There are four files with reserved names that must not be used for anything except their current use:
m SYBI — built-in BASIC interpreter
m SYBD — BASIC debugger
m SYFT — user-defined font
@ SYOS — built-in operating system

When the BASIC interpreter searches for user-defined keywords with $CALL, the 12 built-in key-
words starting with SY will be not be overridden by new keyword files of the same name (SYAL,
SYBP, SYEL, SYER, SYIN, SYLB, SYPO, SYPT, SYRS, SYRT, SYSW, and SYTO).

In general, Hewlett-Packard uses SY as the first two characters of all its assembly language utilities,
and HN as the first two characters of all its user-defined handlers. If you use file names starting with
SY or handler names starting with HN, you may have a name conflict. Consequently, you should not
use names starting with those characters.

Maximum Number of Files

The maximum number of files that can be placed in any directory was indicated in "Memory Organiza-
tion" and "Directory Table". The maximum total number of files would occur in a 94D or 94E with a
ROM/EPROM card containing four 32K ROMs — 63 files for main memory plus 4 * 31 files for the
ROM/EPROM card, for a total of 187 files.

1-14 Memory Management

I
Data Files

Data files are contiguous blocks of memory with a 1-4 character file name name, and file type D. They
have no explicit record structure associated with them — it is the responsibility of the application pro-
gram to impose any record structure needed, and read and write data from the appropriate position
within the file. They always appear after all program files in whichever directory the data file resides
— between the end of program files pointer and the start of free space pointer.

Data files are created using the CREATE function (11h). When a data file is created, the space
requested is taken from free space at the end of the current data files, the directory table header
pointers are adjusted, and one entry in the directory table is used to identify the file. Once a file is
created, it must be opened with the OPEN function (OFh) before data can be read or written. Data
files are automatically closed at cold start. Data files that were open when the machine was turned off
remain open at warm start.

Data files have two characteristics that are defined by the program that creates them (file size and size
increment) and two that are defined automatically (end-of-data address (EOD) and file access pointer).

File Size

This is the initial size of the file, which is the amount of memory that will be reserved for the file when
it is created. It is specified in paragraphs and ranges from 0000h to FFFFh (although the maximum file
size is limited by available memory). The space used for the file is automatically initialized to all nulls
(00h). A file size of 0 means that the file initially occupies no space, even though the directory table
entry still exists to identify the file.

Data files cannot be created in a ROM or EPROM, or in any read-only directory (main memory or the
40K RAM card may be set to be read-only if a checksum error occurred in their directory tables at
power on).

Data files can also be created on the development system. Like all development system files, they are
converted to Intel MDS format by HXC for transmission to the 94. When no file size is specified,
HXC automatically sets it to the actual file size on the development system, rounded up to the nearest
paragraph boundary. The 0 to 15 bytes needed to pad the file are automatically set to nulls (00h).

For RAM data files, HXC allows specifying a file size that is larger than the actual size. That way a file
could be defined to have a certain amount of data in it, and a fixed amount of unused space in the file.

This option is not available for ROM data files, since a program cannot write to unused space in a
ROM or EPROM.

Size Increment

This is the expansion increment used to increase the file size when the WRITE function (13h)
attempts to write past the end of the file (that is, when the current file size is exceeded). It is specified
in paragraphs, and ranges from 0000h to FFFFh (although the maximum expansion is limited by avail-
able memory). When a program writes to a data file, and there is no room for the data being written,
the operating system will attempt to expand the file by the number of size increments needed, and then
the data will be written to the file. For example, a file with a size increment of three (3) paragraphs
will expand by as many three-paragraph blocks of memory (48 bytes) as needed to accommodate the

Memory Management 1-15

data being written.

Note that the 94 may run out of memory during any of the expansions, leaving a file that has been
expanded, but not enough to hold the data to be written. In this situation, no data will be written to the
file — data is only written to a file if there is enough room for all it.

When a data file expands, all data files higher in memory move up to accommodate the increased file
size. This is illustrated below.

High Addresses
Free Space
N5-X Bytes
Free Space
N5 Bytes
Data File 4
N4 Bytes
Data File 4
N4 Bytes Data File 3
N3 Bytes
Data File 3
N3 Bytes
Data File 2
N2 +X Bytes
Data File 2
N2 Bytes
Data File 1 Data File 1
N1 Bytes N1 Bytes
Low Addresses
Before File 2 Expanded After File 2 Expanded

Figure 1-7. File Movement During Data File Expansion

Expansion space added to the file is automatically initialized to all nulls (00h). A size increment of 0
means no expansion will take place — the file will never grow past its allocated size. A size increment
of 0 can be specified for any RAM data file; HXC automatically sets it to 0 for ROM data files, since
they cannot expand.

1-16 Memory Management

File writes are not buffered — they immediately modify the file, provided space is available.

End-of-Data Address

The EOD address is a pointer in the directory table to the location in the data file just past the last byte
of data. It is usually not equal to the end of the file (EOF) because files always end on a paragraph
boundary. For data files from the development system, HXC sets the EOD address past the last byte of
data, even if there is padding to the paragraph boundary or unused space specified beyond the actual
file size.

Every time a file write operation writes data past the current EOD or EOF, the EOD is automatically
adjusted to reflect the new end-of-data location.

File Access Pointer

This is the single pointer to the current read/write position in the file. The pointer is set to 0 (the start
of the file) when the file is opened, and is updated after every file read or write operation. Every time a
read or write occurs, the pointer is changed to point past the last byte read or written. Subsequent file
read or write operations will begin reading or writing from that updated position. The pointer can be
explicitly moved to an arbitrary position between the start of the file and the EOD, or set to the EOD
by using the SEEK function (15h). Moves beyond the EOD give an error. It is also possible to force
the EOD to be equal to the current file access pointer by performing a zero-length write using the
WRITE function (13h). This renders any data after that point inaccessible, but does not collapse the
file.

Deleting Data Files

Data files are deleted with the DELETE function (14h), and must be open before they can be deleted.
When data files are deleted, all the space occupied by the file is returned to free space. All data files
higher in memory move down to fill in the hole. The file space is then available for new data file crea-
tion, data file expansion, or scratch area allocation.

interrupts During File Operations

The power switch and low battery interrupts are disabled during file create, read, write, and delete
operations, so they are guaranteed to complete and not be corrupted (unless the reset switch is pressed
or the machine turns off automatically because of very low battery). The interrupts are reenabled after
the file operation is completed. This disabling and enabling does not change the interrupt status
defined by the SET INTR function (OAh). What it does is defer the processing (or ignoring) of those
interrupts until after the file operation has been completed.

The system timeout only occurs during read operations for channels 0-4 and read/write operations for
channels 1-4, so it will not occur during file operations, which use channels 5-15.

Memory Management 1-17

File Expansion Example

Assume a data file exists with a current size of 2 paragraphs (32 bytes) and a size increment of 3 para-
graphs (48 bytes). The file already contains 25 bytes of data, leaving the EOD at offset 25 relative to
the start of the file (the first byte of the file is at offset 0, and the EOD points past the last byte of
data). For this example, assume the file access pointer is also at EOD.

When a program tries to write 66 bytes at the file access pointer, there is no room — there are only 7
bytes available. The amount of space required is 66 - 7 = 59 bytes, or 4 paragraphs. Since the size
increment is 3, two expansions of 3 paragraphs each will be performed, with a resulting file size of 2 +
2 * 3 = 8 paragraphs (128 bytes). Once the expansion has been completed, the data will be written. The
EOD (and the file access pointer) will be moved to offset 25 + 66 = 91, leaving 37 bytes of unused
space available at the end. This change to the data file is illustrated below (both decimal and hex
offsets are shown).

128 (80h) New EOF
Unused Space
37 Bytes (25h)
91 (5Bh) New EOD
Old + New Data
32 (20h) Oid EOF 25+66=91 Bytes (5Bh)
Unused Space
7 Bytes (07h)
25 (19h) Old EOD
Old Data
25 Bytes (19h)
0 (00h) File Start 0 (00h) File Start
Before File Expanded After File Expanded

Figure 1-8. Example of Data File Expansion

If the file access pointer had been at the start of the file before the write operation, only a single 3-
paragraph expansion would have been needed to accommodate 66 - 32 = 34 bytes.

-
Free Space

Free space is the pool of available memory from which data files are created and expanded in RAM
(main memory and 40K RAM card) and scratch areas are allocated (main memory only). Free space
is not available for any use in a ROM or EPROM. It starts at the start of free space pointer in any
directory, which is the end of all data files, and ends at the end of free space pointer, which will be at
the end of the directory (for main memory only, it could also be at the start of the scratch areas).

1-18 Memory Management

In any directory, data files are created and expand by allocating the required memory from the bottom
of free space, expanding toward higher addresses. In main memory, scratch areas are created by allo-
cating the required memory from the top of free space, building toward lower addresses, as shown
below.

High Addresses End of Main Memory

Scratch Areas

End of Free Space Pointer

Free Space
T Start of Free Space Pointer
Data Files
Low Addresses End of Program Files Pointer

Figure 1-9. Use of Free Space in Main Memory

When the free space goes to zero from either direction, the 94 is out of memory. No data files can be
created or expanded, and no more scratch areas can be allocated. The ROOM function (0Eh) reports
the amount of free space in any directory; in main memory, it will take into account any existing scratch
areas.

Usage in Command Mode

Whenever the operating system enters command mode, all scratch areas in main memory are elim-
inated, allowing the free space in directory 0 to extend to the end of main memory. The available
memory for all directories is then just the size of the free space.

When any RAM file is erased with the E (erase) command, the space occupied by that file is returned
to free space, and all files higher in memory, regardless of type, are moved down to fill in the hole.
When a new file is loaded using the C (copy) command, a previously existing file with the same name is
erased, and the memory it occupied is reclaimed. Then space for the new file is allocated from free
space, and the new file is loaded. If the file loaded is a program file, all files above the end of program
files pointer are moved up to make room for the program. If the file loaded is a data file, it is added at
the end of the existing data files, and other files do not need to move.

Memory Management 1-19

Usage at Run Time

During a running program, there may be scratch areas allocated in main memory, so free space in
directory 0 extends only up to the start of the scratch areas. The available memory for other directories
is still just the size of the free space.

At run time, program files do not move — only data files and scratch areas interact with free space at
run time. When a RAM data file is deleted programmatically, the space occupied by that file is
returned to free space, and all data files higher in memory are moved down to fill in the hole. When a
new data file is created programmatically, its memory is allocated from free space at the end of the
existing data files. When a data file expands because of a write past its end-of-file, the expansion space
is allocated from free space, and all data files higher in memory are moved up to make room for the
expanded file.

When a scratch area is created, its memory is allocated from free space. When scratch areas are
released, their memory is returned to free space only if the area is adjacent to the top of free space.
See "Releasing Scratch Areas” for more details.

T
Scratch Areas

Scratch areas are blocks of memory that a program can reserve for its own use. The built-in BASIC
interpreter allocates scratch areas to hold BASIC program variables and subprogram calling informa-
tion. User-written assembly language programs and user-defined handlers can allocate scratch areas
for parameters, status, configuration information, buffer space, space for data returned by operating
system functions, or whatever other purpose is required.

Allocating Scratch Areas

The operating system GET MEM function (0Bh) provides the ability to allocate scratch areas in sizes
from 0001h to FFFFh paragraphs (although the maximum expansion is limited by available memory),
and returns the segment address of the scratch area. Scratch areas are allocated in main memory only,
regardless of which directory contains the program requesting the scratch area: directories 0-4, RAM
or ROM. Scratch areas start at the end of main memory and use the space required from free space,
building down toward lower addresses. They can also use previously-released scratch areas that have
not been returned to free space. This will be discussed later.

Scratch areas are automatically initialized to all nulls. They are all released at cold start, but are
preserved at warm start.

When a handler allocates a scratch area during its OPEN routine, the operating system saves the
scratch area address in a table based on the channel number of the handler. When the other routines
in the handler are called (such as READ, WRITE, etc.), the operating system passes the scratch area
address to the routine. (The handler must save this address in the handler information table if it will
be needed for an interrupt service routine.)

If a handler allocates more than one scratch area, only the address of the last one allocated will be
saved and automatically passed to handler routines. Therefore, when multiple scratch areas are allo-
cated by a handler, the allocation order is important. A handler can allocate scratch areas so that the
last one allocated is the one whose address should be passed to handler routines. Alternatively, the

1-20 Memory Management

handler can call GET MEM with the channel number set to 0, and the operating system will not save
that scratch area address or pass it to handler routines.

When an assembly language program allocates scratch areas, it is responsible for keeping track of the
locations of its scratch areas. The operating system saves scratch area addresses only for user-defined
handlers.

The assembler provides the ability to define the offsets within an external scratch area using the SEG-
MENT AT directive, as shown below.

SCR_AREA segment at O :Addresses start at 0

PARAM1 db 6 dup(?) ;First parameter needs 6 bytes
PARAM2 db 00 ;Second parameter needs a byte
PARAM3 dw 0000 ;Third parameter needs a word
SCR_AREA ends

Figure 1-10. Defining Scratch Area Data Structure

The SEGMENT AT directive provides an address template that can be imposed on the scratch area.
SEGMENT AT causes no code to be generated for the uninitialized data defined within that program
segment (in this case, the SCR_AREA segment).

Releasing Scratch Areas

Scratch areas are released using the REL, MEM function (0Ch). The program supplies the address of
the scratch area to be released. An error will occur if the program tries to release a scratch area that
does not exist by supplying an address that does not point to any defined scratch area.

When a scratch area is released, the operating system will attempt to return the area to free space. This
can only occur if the scratch area is adjacent to free space. Consequently, it may not be possible to
return a scratch area to free space because of the order that the scratch areas were allocated.

For example, if a handler is opened in a BASIC subprogram, and allocates a scratch area, the area will
be adjacent to free space, and will be lower in memory than the scratch area allocated by the subpro-
gram for its variables. When the subprogram ends, the scratch area used for its variables will be
released, but will not be returned to free space. It is blocked from being adjacent to free space because
of the handler’s scratch area. This area is flagged as a free block, available for scratch area allocation,
but not for data file creation or expansion since it is not part of free space.

In the diagram below, scratch area 3 was allocated for variables for a BASIC subprogram, and scratch
area 4 by a handler.

Memory Management 1-21

High Addresses

Scratch Area 1 Scratch Area 1
N1 Bytes N1 Bytes
Scratch Area 2 Scratch Area 2
N2 Bytes N2 Bytes

Scratch Area 3 Free Block 1
N3 Bytes N3 Bytes
Scratch Area 4 Scratch Area 4
N4 Bytes N4 Bytes
Free Space Free Space

Low Addresses

Before Area 3 Released After Area 3 Released

Figure 1-11. Blocking a Released Scratch Area

Scratch area 4 prevents released scratch area 3 from being returned to free space. Scratch area 3
becomes the first free block. It will not be returned to free space until scratch area 4 is released.

To allow this newly-available free block to be reused, regardless of the order in which scratch areas
were allocated and released, it will be combined with any adjacent free blocks formed when other
trapped scratch areas were released. This coalescing process attempts to form a few large available free
blocks, rather than many small ones. This is illustrated below.

1-22 Memory Management

High Addresses

Scratch Area 1 Scratch Area 1
N1 Bytes N1 Bytes
Scratch Area 2
N2 Bytes
Free Block 1
N2+ N3 Bytes
Free Block 1
N3 Bytes
Scratch Area 4 Scratch Area 4
N4 Bytes N4 Bytes
Free Space Free Space
Low Addresses
Before Area 2 Released After Area 2 Released

Figure 1-12. Coalescing Adjacent Released Scratch Areas

When scratch area 2 is released, it forms a new free block that cannot be returned to free space. The
coalescing process combines this new block with free block 1 that already exists, forming a single free
block whose size is the sum of the two smaller blocks. This keeps the number of free blocks to a
minimum, since the operating system can only keep track of 20 free blocks.

Subsequent allocation of new scratch areas will use the first free block that is large enough among all
those available before allocating additional memory from free space. Only as much of the free block
will be used as is required. The remainder will be flagged as a smaller free block.

Data files cannot use free blocks until they are returned to free space — only scratch areas can reuse
free blocks. Consequently, free space can go to zero and leave no room for data files creation or
expansion, even though there may be free blocks available for reuse when allocating scratch areas.

There is no facility to pack the free blocks together, since many tables and handlers keep track of the
segment address of the their scratch areas. Only allocation and release of scratch areas in careful order
can help prevent fragmentation of free blocks.

After the coalescing has been completed, if there is an available free block adjacent to free space, it is
returned to free space for other uses (data file allocation and expansion or new scratch area allocation
when the available free blocks are not large enough).

Memory Management 1-23

When the 94 cold starts, all scratch areas and free blocks are automatically returned to free space. This
will occur the next time the machine is turned on after a program calls the END _PROGRAM function
(00h) and specifies a subsequent cold start. This also occurs whenever the operating system enters
command mode, whether because of a program error or because of an explicit call to
END_PROGRAM. If a program calls END _PROGRAM and specifies a subsequent warm start, all
scratch areas and free blocks are preserved the next time the machine is turned on.

Number of Scratch Areas

A maximum of 34 scratch areas can be allocated in main memory. An error will occur when a scratch
area is allocated if 34 scratch areas are already in use.

The BASIC interpreter allocates scratch areas for its own use, for BASIC variables, and for control
information. In this sense, the BASIC interpreter can be thought of as another assembly language pro-
gram, using the facilities within the operating system for scratch space management.

When a BASIC main program is run, two scratch areas are allocated immediately:
= One scratch area for the BASIC interpreter scratch space (2K long).

® One scratch area for the BASIC program variables. The length of this area is shown as "Variable
Space Required" in the BMP file produced by HXC (although the length is rounded up to the
nearest paragraph boundary). This area will not be allocated in the case of a BASIC main program
with no variables.

This leaves a total of 32 scratch areas available for other uses. After that, every time a BASIC subpro-
gram is called with the CALL statement, two scratch areas are allocated:

® One scratch area for the control information save area that contains information passed between
programs (32 bytes).

m One scratch area for the BASIC subprogram variables (length shown in the BMP file, not allocated
if no variables).

This is why BASIC subprograms can only be nested a maximum of 16 levels deep — scratch area allo-
cation limits permit 32 scratch areas beyond those used for the main program.

Fewer scratch areas may actually be available for BASIC subprogram nesting, since user-defined
handlers and assembly language programs can allocate scratch areas also. A high-level and low-level
handler combination, for example, may have three scratch areas allocated between them: one for
configuration passing and two for scratch and buffer space (one for each handler). Assembly language
programs generally allocate one scratch area for scratch and buffer space, but may allocate a second
one for configuration passing to handlers. Consequently, BASIC subprogram nesting may be restricted
to less than 16 levels.

Optimum Memory Use With Scratch Areas

To allow the most efficient use of memory, scratch areas should be allocated and released in such a
way that they do not block other scratch areas from being returned to free space. Long-term scratch
areas that must remain in place throughout program execution (such as handler scratch areas) should
be allocated when the program begins executing. Short-term scratch areas should be released as soon
as they are not needed.

1-24 Memory Management

This is particularly important for BASIC programs. BASIC programs should attempt to do tasks that
allocate long-term scratch areas in the main program, rather than in subprograms, where they will trap
short-term subprogram-related scratch areas. Whenever possible, tasks requiring short-term scratch
space should be isolated within a subprogram.

-
Logical ROMs

The HP 82412A ROM/EPROM card accommodates ROMs or EPROMs of different sizes: 32, 64, 96,
or 128K. These different sizes are considered to be "logical ROMs" for two reasons:

m A logical ROM of size N does not have to contain N bytes of program and data files; it can contain
less than N bytes. For example, a 64K logical ROM may only contain 44K of program and data
files.

m A logical ROM of size N does not have to be placed in a ROM or EPROM integrated circuit (IC)
of size N. For example, a 96K logical ROM can be contained in either three 32K ICs or two 64K
ICs.

Logical Structure of the ROM/EPROM Card
Below is a memory map of the ROM/EPROM card.

(3FFF:000F) 3FFFFh End of ROM/EPROM Card

Directory 4

(3800:0000) 38000h Start of Directory 4
Directory 3

(3000:0000) 30000h Start of Directory 3
Directory 2

(2800:0000) 28000h Start of Directory 2
Directory 1

(2000:0000) 20000h Start of Directory 1

Figure 1-13. Memory Map of the HP 82412A ROM/EPROM Card

This memory map illustrates an important aspect of logical ROMs. Each directory begins on a 32K
address boundary within the ROM/EPROM card address space (20000h to 3FFFFh). Each logical
ROM is assigned a directory number corresponding to the 32K address boundary where the ROM will
start. A logical ROM larger than 32K will span more than one 32K block of addresses. The pointers in

Memory Management 1-25

the directory table header created by HXC will reflect that the starting address is on a 32K boundary,
and that the logical ROM space for large ROMs spans multiple 32K blocks. (For ROMs that span
more than one directory, the directory number specified when the ROM is created is the starting direc-
tory number.)

For example, a 96K logical ROM starting at directory 1 will span directories 1, 2, and 3, leaving one
32K block of addresses, directory 4, available for a single 32K logical ROM. Similarly, a 64K logical
ROM starting at directory 3 will span directories 3 and 4, leaving two 32K block of addresses, direc-
tories 1 and 2, available. These can be filled by either another 64K logical ROM starting at directory 1,
or two 32K logical ROMs, one starting at directory 1, and the other starting at directory 2. A 96K logi-
cal ROM could not start at directory 3, nor could a 64K logical ROM start at directory 4, because they
would have to span into a 32K block of addresses not available to the ROM/EPROM card.

Combining Logical ROMs of Different Sizes

Logical ROMs of different sizes can be combined in many different ways, subject to the following res-
trictions:

m The total number of logical ROMs cannot exceed four.
m The total number of directories spanned by all the logical ROMs cannot exceed four.

m The total space required by all logical ROMs, regardless of the amount of code they contain, can-
not exceed 128K.

This is illustrated by the following diagram, which shows the possible logical ROM combinations for
filling 128K of ROM space. Of course, a ROM/EPROM card does not have to be full — that is, it
can contain fewer than four logical ROMs, span fewer than four directories, and contain less than 128K
total ROM.

1-26 Memory Management

Directory 1 | Directory 2 | Directory 3 | Directory 4
32K 32K 32K 32K
32K 32K 64K
32K 64K 32K
32K 96K
64K 32K 32K
64K 64K
96K 32K
128K

Figure 1-14. Possible Logical ROM Configurations

The memory map of an individual ROM within the ROM/EPROM card is essentially the same as for
the 40K RAM card. The major difference is the values of the pointers — these can vary depending on
the starting directory number, the directory table size, and the logical ROM size. Below is a memory
map of a 32K logical ROM starting at directory 2.

Memory Management

1-27

(3000:0000) 30000h End of Free Space Pointer .

(2FFF:000F) 2FFFFh End of Logical ROM
Free Space
Start of Free Space Pointer
Data
Files
End of Program Files Pointer
Program
Files
(2820:0000) 28200h Start of Files Pointer
Directory Table
{(2800:0000) 28000h Start of Directory Table

Figure 1-15. Memory Map of a 32K Logical ROM in Directory 2

Rather than provide memory maps for all the possible logical ROMs in directories 1-4, the addresses
of the start and end of the logical ROM and for the start of program files (end of directory table) are
shown in the following table.

Table 1-4. Addresses for All Logical ROM Sizes in Directories 1-4

Logical Directory Start of Start of Program End of Free
ROM Size | Number Logical ROM Files Pointer Space Pointer
32K 1 2000:0000 2020:0000 2800:0000

2 2800:0000 2820:0000 3000:0000
3 3000:0000 3020:0000 3800:0000
4 3800:0000 3820:0000 4000:0000
64K 1 2000:0000 2020:0000 3000:0000
2 2800:0000 2820:0000 3800:0000
3 3000:0000 3020:0000 4000:0000
96K 1 2000:0000 2040:0000 3800:0000
2 2800:0000 2840:0000 4000:0000
128K 1 2000:0000 2040:0000 4000:0000

1-28 Memory Management

Selecting a Logical ROM Size

From the different possible logical ROM sizes, select those best for a specific application based on its
particular needs. Some of the items to consider are the total number of program and data files needed,
maximum file size, total ROM space required for directory tables (which decreases available ROM for
the application), and segmentation of code into blocks of different sizes. Below is a comparison of the
differences in organizing a 96K application in three different ways: three 32K ROMs, one 64K ROM
and one 32K ROM, or one 96K ROM.

Table 1-5. Different Organizations of a 96K Application

Logical Total Number | Maximum | Directory Table Segmentation
ROM Sizes of Files File Size Overhead Required
332K ROMs 3*31 =93 31.5K 3*5=15K three separate groups of
files that each fit in 32K
1 64K ROM + 31 + 31 =62 63.5K, 5+ 5=1K one group of files that
1 32K ROM 31.5K fits in 64K and one group
of files that fits in 32K
1 96K ROM 63 95K 1K none

The same reasoning can be applied to other size applications and other logical ROM choices. The
results of this analysis should be matched up against the requirements of the application to select the
best way to organize it.

ROM and EPROM IC selection is another factor to consider, and will be discussed later.

Physical Layout of the ROM/EPROM Card,

The ROM/EPROM card contains a circuit board with three sockets on it for ROM or EPROM ICs.
The sockets can accommodate either 32K ICs or 64K ICs (a jumper on the board selects which IC size
is being used). Different IC sizes cannot be mixed and matched — the board can hold either up to
three 32K ICs or up to two 64K ICs. A diagram of the card is shown below.

Memory Management 1-29

Alignment Holes

Socket
Socket Socket

. 1]

32K/64K Jumper

[T

Figure 1-16. HP 82412A ROM/EPROM Card Circuit Board

The socketed jumper on the board selects between 32K ICs and 64K ICs. Underneath the jumper are
the legends and [512], meaning 256 Kbits (32 Kbytes) or 512 Kbits (64 Kbytes). To select the 32K
ICs, insert the jumper so its solid metal strips connect jumper pins whose mating holes on the board
are marked with the symbol. (This is the configuration shown in the diagram.) To select 64K ICs,
insert the jumper to use the holes marked with the [§12] symbol.

Each socket on the board begins on a 32K address boundary within the ROM/EPROM card address
space corresponding to the 32K blocks of address space in which logical ROMs reside. Socket 1
corresponds to directory 1, 2 to 2, and 3 to 3. A 32K IC can therefore be placed in any socket on the
board (1, 2, or 3). A 64K IC will span more than one 32K block of addresses. Consequently, 64K ICs
can be placed only in sockets 1 and 3. Placing a 64K IC in socket 3 gives access to the fourth 32K block
of addresses — this is the "fourth" socket on the board for directory 4.

This means that using 32K ICs, 96K of physical ROM space is the maximum available, and using 64K
ICs, the full 128K is available.

Selecting an IC Size

The directory numbers selected for the different logical ROMs will depend on where the logical ROMs
will be placed on the board in the ROM/EPROM card. Some of that will depend on which IC size is
chosen. The following items should be considered when making an IC size selection:

= Application size
m Price

Availability

Correct electrical specifications

Supported by EPROM programmer (EPROMs only)

Refer to the "Hardware Specifications” for information about electrical and environmental
specifications and manufacturers for the different IC sizes.

1-30 Memory Management

Placing Logical ROMs Into Physical ICs

In addition to the previous restrictions on combining logical ROMs, and the fact that IC sizes cannot
be mixed, there is one more restriction that applies when placing logical ROM:s into physical ICs: the
physical IC must be placed in the socket on the board which corresponds to the directory number for
the logical ROM contained in that IC.

Logical ROMs and physical ICs can both span 32K address boundaries, but this spanning is indepen-
dent of each other (with the above restriction). This fact yields two important results. First, a logical
ROM can cross physical IC boundaries; if it could not, logical ROMs larger than 32K would not be
possible. Second, it does not matter what part of a logical ROM occupies a given physical IC as long as
the logical ROM’s starting directory number corresponds with the socket it occupies on the board, and
the different pieces of the logical ROM are kept in the proper order.

Continuing the previous example of a 96K application, below are the ways that the logical ROMs could

be placed in physical ICs. Each row of the tables represents a different way to place the particular logi-
cal ROM in the ICs.

Table 1-6. Placing a 96K Application Into Three 32K ICs

Which Part of Which Part of Which Part of
Logical Logical ROM Put in | Logical ROM Put in | Logical ROM Put In
ROM Sizes | 32K IC In Socket 1 32K IC in Socket 2 32K IC In Socket 3
3 32K ROMs one entire one entire one entire
32K ROM 32K ROM 32K ROM
1 64K ROM+ first half of last half of entire
1 32K ROM 64K ROM 64K ROM 32K ROM
entire first half of last half of
32K ROM 64K ROM 64K ROM
1 96K ROM first third of middle third of last third of
96K ROM 96K ROM 96K ROM

Memory Management

1-31

Table 1-7. Placing a 96K Application Into Two 64K ICs

Which Part of Which Part of
Logical Logical ROM Put In Logical ROM Put In
ROM Sizes 64K IC In Socket 1 64K IC In Socket 3
First Haif of IC | Last Half of IC | First Haif of IC | Last Half of IC
3 32K ROMs one entire one entire one entire
32K ROM 32K ROM 32K ROM
one entire one entire one entire
32K ROM 32K ROM 32K ROM
one entire one entire one entire
32K ROM 32K ROM 32K ROM
one entire one entire one entire
32K ROM 32K ROM 32K ROM
1 64K ROM + first half of last half of entire
1 32K ROM 64K ROM 64K ROM 32K ROM
first haif of last half of entire
64K ROM 64K ROM 32K ROM
entire first half of last half of
32K ROM 64K ROM 64K ROM
first half of last half of entire
64K ROM 64K ROM 32K ROM
entire first half of last half of
32K ROM 64K ROM 64K ROM
entire first half of last halif of
32K ROM 64K ROM 64K ROM
1 96K ROM first third of middle third of last third of
96K ROM 96K ROM 96K ROM
first third of middie third of last third of
96K ROM 96K ROM 96K ROM

As the tables indicate, the segmentation of an application across logical ROM boundaries has no bear-
ing on the way the ROMs are segmented to fit into physical ICs, as long as the starting directory
number corresponds with the socket number, and the different pieces of the logical ROM are kept in
the proper order.

The same reasoning can be applied to other size applications and other logical ROM choices. The
results of this analysis should be matched up against the requirements of the application to select the
best way to organize it.

|
System ROM

The system ROM is 32K of EPROM located in directory 5 in the upper 32K of the CPU address space.
While this directory can be examined in command mode, it cannot be referenced by number or by any
of its files during a running program. During a running program, the OPEN, FIND FILE, and
FIND NEXT functions (OFh, 16h, and 17h) will only find files in directories 0-4. The system ROM

1-32 Memory Management

‘ contains four major blocks, shown in the memory map below.

(FFFF:000F) FFFFFh End of System ROM
Character Set
(FFC3:0000) FFC30h Start of Character Set
Operating
System
(FC00:0000) FCO00h Start of Operating System
BASIC
Interpreter
(F803:0000) F8030h Start of BASIC Interpreter
Directory Table
. (F800:0000) F8000h Start of Directory Table

Figure 1-17. Memory Map of the System ROM

= Directory Table
This contains only three entries: directory table header, BASIC interpreter file entry (SYBI), and
operating system file entry (SYOS).

m BASIC Interpreter
This is file SYBI.

m Operating System
This is file SYOS.

m Character Set
This is the dot pattern for the Roman-8 character set.

S
Memory Integrity Verification

The operating system computes and saves checksums of various areas of memory when the 94 is turned
off. When the 94 is turned back on, the checksums are recomputed and compared with the saved
values. Any changes indicate that memory integrity has not been preserved, and an error message is
issued. Checksums are computed such that the sum of all words in the block being verified, plus the

. Memory Management 1-33

checksum, will equal zero.

The major blocks of memory for which checksum errors are reported are directory tables, files,
reserved scratch space, and free space. In addition, a checksum is made of the system ROM, and the
reserved scratch space is tested extensively. These operations are discussed below.

Checksums Computed at Power Off

At power off, checksums for all RAM areas (main memory and 40K RAM card) are computed and
saved. Checksums for ROM/EPROM card are not computed, since they are fixed in ROM, but they
are saved in the reserved scratch space for comparison at power on. The system ROM checksum is
also not computed.

Memory Integrity Tests at Power On

At power on, the operating system checks the main NiCd battery voltage. If it is below the low battery
interrupt level, the machine is immediately turned off. If the voltage is OK, integrity tests are per-
formed in the order shown in the following table. If any of the first three tests fail, the machine will not
enter command mode. If any of the other tests fail, the machine will enter command mode and issue an
error message. Any program run at that time will cold start.

Table 1-8. Memory Integrity Errors

Integrity Test Main Memory 40K RAM Card ROM/EPROM
Performed Error Error Card Error

System ROM low beep — —
Checksum
Reserved Scratch high beep - —
Space Read /Write
Valid RAM high beep and — —

| Configuration memory map

[Directory Table 212 and 213 and —
Header Consistency require I0 require I1
Reserved Scratch 214 — —
Space Checksum *
Free Space 215 — —
Checksum *
Directory Table 212 and 213 and 213
Checksums * make type O make type O
File 216 and 217 and 217
Checksums * set MSB of name | set MSB of name

* Not computed at power off or power on if power turned off by pressing the reset switch or by

automatic turn-off 2-5 minutes after the low battery interrupt.

These tests and their results are described below.

1-34 Memory Management

. m System ROM Checksum
If the stored checksum in the system ROM does not match the computed checksum, the operating
system will issue a continuous low tone beep, and will not enter command mode.

m Reserved Scratch Space Read/Write
If every byte in the reserved scratch space cannot be read and written, the operating system will
issue a continuous high tone beep, and will not enter command mode.

m Valid RAM Configuration
The RAM configuration is checked by reading and writing the first word of every RAM IC. If
there is any other configuration of built-in RAM than 64K, 128K, 256K, or the RAM card has other
than 40K, the operating system will issue a continuous high tone beep, and will not enter command
mode.

In addition, a memory configuration map will be displayed indicating the incorrect RAM ICs. The
map is in the form "Error " followed by eight hex characters. The bits in each character represent
individual RAM ICs. Reading from right to left, each bit will be a 1 if the IC was present, and a 0 if
the IC was not present. For example,

Error FFFFFFDF

indicates that the sixth RAM IC was not present (the last 8 bits of the map are 11011111). Shown
below is what the memory configuration map would be if the different configurations were correct.
(These patterns will never appear, because only an incorrect pattern will be displayed.)

Table 1-9. Configuration Map for Valid Memory Configurations

Memory Configuration Map if
‘ Configuration Configuration Correct
64K Error OOOOOOFF
128K Error OOOOFFFF
256K Error. FFFFFFFF
64K + 40K RAM Card Error O01FOOFF
128K + 40K RAM Card Error OO1FFFFF

After this test, the operating system will check the keyboard. If any keys are down other than
[CLEAR] and [ENTER], the machine will turn back off immediately. This is to prevent accidental turn
on (while in a full briefcase, for example).

= Directory Table Header Consistency
This verifies the consistency of the directory table headers for main memory and the 40K RAM
card. The *DIR* directory identifier must be intact and the different pointers must point to suc-
cessively higher addresses. If not, error 212 or 213 is issued, and the directory table is flagged such
that the user must initialize the directory with the I (initialize) command (I0 or I1). This also
occurs if the size of main memory has changed (by adding or removing the 128K memory board).

m Reserved Scratch Space Checksum
This is the checksum of the interrupt vector area and the operating system scratch space. If this
checksum error occurred, error 214 will be issued.

m Free Space Checksum
This is the checksum of the free space (and scratch areas, if any) — everything higher in main
memory than the end of free space pointer. If this checksum error occurred, error 215 will be
issued.

‘ Memory Management 1-35

= Directory Table Checksums
These are the checksums of the directory tables in any directory. If a directory table checksum
error occurred for main memory or the 40K RAM card, error 212 or 213 will be issued, and the
directory type in the directory table header will be changed to O (ROM directory). This makes the
directory read-only, allowing the data to be retrieved, but not changed. To make the directory table
type M or A again, the user must initialize the directory with the I command (I0 or I1) after
retrieving any desired data.

For the ROM/EPROM card, only the error (213) will be issued — the directory type is already
type O. Any checksum error in a ROM or EPROM (especially an EPROM) implies that the IC
had one or more bits change state, and the IC should be replaced.

The operating system recognizes that a card has been plugged in or removed, or that ROMs were
changed on the ROM/EPROM card, because the number and contents of the directory tables has
changed. When these conditions occur, they will not cause a checksum error, but will cause the
machine to cold start.

m File Checksums
These are the individual checksums for each file in any directory. If a file checksum error occurred
for main memory or a RAM card, the MSB of the first character of the file name will be set. This
will cause the file names to be displayed with a leading asterisk (*) when the D (directory) or M
(memory) operating system commands are executed. If a file name has already been flagged as
being corrupted, its checksum will not be computed at power on.

If a file checksum error occurred in a ROM/EPROM card, the file name will not be altered, so no
asterisk will appear when using the D or M commands. Any checksum error in a ROM or EPROM
(especially an EPROM) implies that the IC has had one or more bits change state, and the IC
should be replaced.

Even with the MSB set in the file name, all normal file operations can still be performed: open,
close, read, write, delete, find, execute, etc. All these operations are risky (especially running cor-
rupted programs) because the state of the file is unknown. Unless the program or the user has the
ability to reconstruct corrupted data, the safest action would be to erase the corrupted files and
either replace them (program files) or recreate them (data files).

After all memory integrity tests have been performed, the operating system checks the lithium backup
battery voltages. If the voltages are too low, the machine will enter command mode, and issue error
210 (main memory) and/or 211 (128K memory board or 40K RAM card).

1-36 Memory Management

@ 2

Program Execution

Contents

L]
Chapter 2

2-1
2-1
2-1
2-1
2-2
2-2
2-4
2-4
2-4
2-5
2-35
2-6
2-8
2-8
2-9
2-10
2-10
2-11
2-11

Program Execution

Running Programs

Autostart

In-Place Execution of Programs

Behavior at Run Time

Behavior of Reserved Files
Cold Start and Warm Start

When Cold Start Occurs

When Warm Start Occurs

Operating System Activities During Cold Start

Operating System Activities During Warm Start
Ending Programs

Operating System Activities When Entering Command Mode
Program Structure

Program Headers

BASIC Keyword Structure
Program Restrictions

Valid EXE Format

Use of Operating System Stack

Programs in ROM or EPROM

2

Program Execution

This chapter describes program execution in the HP-94: behavior at run time, cold start and warm
start, program structure, and restrictions.

_
Running Programs

Program files are any of the non-data files — file types A, B, or H. They can reside in RAM or
ROM/EPROM, and have some characteristics that are described here. Details on new BASIC key-
words (type A) and user-defined handlers (type H) are in the BASIC interpreter and handler sections
of this manual. BASIC programs are discussed in the BASIC interpreter section of this manual, as well
as in the BASIC Language Reference Manual.

Autostart

When the HP-94 cold starts (discussed later), the operating system will automatically run the first file
called MAIN that it finds. It searches directories 0-4 in ascending order, and if the first MAIN file
encountered is type A or type B, it will be run; if not, an error will be issued. This search order allows
a MAIN program in directory 0 (main memory) to override a MATIN file in directories 1-4 (40K RAM
card or ROM/EPROM card).

Programs can also be run using the S (start) operating system command. Programs run with S will
always cold start.

Iin-Place Execution of Programs

Program files are executed in place, regardless of where they are located in memory. Programs in
ROM do not have to be copied into RAM before being executed. Space for BASIC program variables
and scratch areas for assembly language programs and handlers are allocated from main memory,
regardless of which directory the program resides in.

Behavior at Run Time

Program files always appear first in the file system for each directory, as illustrated in the memory
maps. This placement occurs regardless of the order in which files are loaded. The C (copy) command
ensures that all RAM-based program files are located before any data files. HXC ensures the same
condition for ROM-based programs.

This is important because program files do not move at run time. All files lower in memory than the

Program Execution 2-1

end of program files pointer will not move at run time. However, because the order programs are
loaded may vary, it is not known until run time exactly where each file may be located (and therefore
what the initial CS will be). There is no segment fixup performed as is true for MS-DOS programs.
Consequently, all references to addresses within program files must be relative to the start of the file
— there can be no far calls or far jumps. This is particularly important for assembly language pro-
grams; HXBASIC and HXC handle this for BASIC programs.

Data files, however, can move at run time, since they can expand and be deleted. Since the operating
system assumes that programs do not move at run time, data files must appear after all program files
so that data file expansion and deletion will not change the location of programs.

Behavior of Reserved Files
There are four files with reserved names that must not be used for anything except their current use:

m SYBI — built-in BASIC interpreter
If this file is run with the S (start) command, the operating system will immediately return to com-
mand mode.

m SYBD — BASIC debugger
If this file is run with the S command, the operating system will immediately return to command
mode (with the side effects shown in Table 2-3 for a FAR RET).

m SYFT — user-defined font
If this file is run with the S command, the data in the file will be treated as code, which will have
unpredictable (and possibly harmful) side effects.

m SYOS — built-in operating system
If this file is run with the S command, the operating system will immediately turn the machine off,

When the BASIC interpreter searches for user-defined keywords with $CALL, the 12 built-in key-
words starting with new keyword files of the same name SY will be not be overridden by new keyword
files of the same name (SYAL, SYBP, SYEL, SYER, SYIN, SYLB, SYPO, SYPT, SYRS,
SYRT, SYSW, and SYTO).

1
Cold Start and Warm Start

The HP-94 supports two methods of running programs when the machine is turned on: cold start and
warm start. The fundamental difference is where the program starts running,

At cold start, the program starts running at the beginning. All conditions are reset to their default state.
At warm start, the program continues running from the point at which it turned the power off. Most
conditions are preserved in the state they were in while the program was previously running, although a
few are reset to their default state. The warm start state is seen by user-defined handlers when their
WARM routines are called.

The details of what state the machine is in at cold and warm start are described below. Notice that
there are several items at the beginning of the table that behave identically, regardless of cold or warm
start. This is particularly important for handlers. In the WARM routine of a handler, the handler must
restore I/O devices to their required state (power, interrupt vector addresses, and interrupt
enable/disable status) since they are always set to their default state, even at cold start.

2-2 Program Execution

Table 2-1. HP-94 Status at Cold and Warm Start

item Status at Cold Start Status at Warm Start
Display Cleared Cleared
input/Output Halted Halted
Interrupt Vector Addresses Set to Default * Set to Default *
Interrupt Enable/Disable Status Set to Default ¢ Set to Default
Copy of Main Control Register 00h 00h
Copy of Interrupt Control Register 3tht 31ht
Serial Port Power Off Off
Built-in Serial Port Buffer Cieared Cleared
Bar Code Port Power Off Off
Bar Code Port Transitions Disabled Disabled
Key Buffer Cleared Cleared
Beeper Turned Off Turned Off
User-Defined Characters Available Available
Access to Directory 5 Disabled Disabled
MAIN Program Starts at Beginning —
Current Program — Restarts at Power Off Point
System Timeout Value 120 s Unchanged
Display Backlight Timeout Value 120 s Unchanged
Display Backlight Turned Off Unchanged
Cursor Status On Unchanged
Cursor Type Underline Unchanged
Keyboard Status Unshifted Unchanged
Low Battery Behavior Halt Program With Error 200 | Unchanged
Power Switch Behavior Turn Off Machine Unchanged
Timeout Behavior Turn Off Machine Unchanged
Allocated Scratch Areas Returned to Free Space Preserved
Available Free Blocks Returned to Free Space Preserved
BASIC Variable Contents Lost) Preserved
Open Data Files Closed Left Open
File Access Pointers Reset to Zero Unchanged
Handler Information Table Cleared Unchanged
Open Channei 1-4 Handlers Closed Left Openi
Channel 1-4 Handler Configurations | Lost Preserved {
Channel 1-4 Buffers Lost Preserved
Open Built-In Serial Port Handler Closed Left Open, Serial Port On
Built-In Serial Port Configuration Set to Default § Unchanged
Stack Pointer Points to OS Stack Unchanged

* System timer (50h), serial port data (53h), low main battery voltage (54h), power switch {55h), operating system func-
tion (1Ah), user timer (1Ch), and dedicated (00h-03h} interrupt vectors all point to their operating system interrupt ser-
vice routines. All others point to a dummy FAR RET.

t System timer, low main battery voltage, and power switch interrupts are enabled. All others are disabled.

t Exact warm start behavior depends on user-defined handier. The handier must restore the |/O device to its proper
state (power, interrupt vector addresses, and interrupt enable/disable status).

§ 9600 baud, 7ES, XON/XOFF enabled, no terminate character, null strip disabled.

Program Execution 2-3

When Cold Start Occurs
The 94 will cold start a program under the following conditions:

m After default power off, either because the machine timed out or because the program turned it off
with the END_PROGRAM function (00h) and specified cold start.

m After pressing the reset switch.
m After the automatic power off occurs 2-5 minutes after low battery interrupt.

= If any memory integrity error occurred at power on.

m After entering command mode, either when a program ends or by pressing [CLEAR] and [ENTER] at
power on.

If the program is run using the S (start) operating system command.

m If main memory size changes (128K memory board added or removed).
If 40K RAM card changed to ROM/EPROM card, or vice-versa.

If number or size of directories in ROM/EPROM card changed.

When Warm Start Occurs

The 94 will warm start the program if the program turned the machine off with the END PROGRAM
function and specified warm start, and none of the cold start conditions occurred.

Operating System Activities During Cold Start

When the 94 cold starts, it begins by performing the normal power-on initialization (check memory
integrity, determine memory configuration, etc.). The operating system looks for a file called MAIN by
searching directories 0-4 in ascending order. If MAIN exists, the status defined in the previous table is
set. If no MAIN file is found, or if MAIN is not type A or B, the machine cannot autostart, so it enters
command mode.

If MAIN is type A, the operating system does a FAR CALL to the main entry point of the program —
the segment address of the start of the program and an offset of 6 (past the end of the program
header). This implies that an assembly language program can end with a FAR RET — see the section
on "Ending Programs" for further information.

If MAIN is type B, it will be executed by the BASIC interpreter. The operating system searches for a
BASIC interpreter (SYBI) in directories 0-5 in ascending order. Error 100 is issued if none is found,
or if the one found is not type A. Once the interpreter is found, control is transferred to it. It allocates
and initializes its scratch area and the variable space required by the program, sets default values for
various BASIC program conditions (shown below), and begins interpreting the program.

2-4 Program Execution

Table 2-2. Cold Start Status of BASIC Programs

item Initial Status
BASIC Numeric Variables and Arrays | Setto zero
BASIC String Variables and Arrays Set to null string
SYEL Value 120 seconds
SYER Value Error trapping disabled
SYLB Value Default low battery behavior
SYRS Value * 9600 baud, 7ES, XON/XOFF enabled, no ter-
minate character, null strip disabled
SYSW Value Default power switch/timeout behavior
SYTO Value 120 seconds

* These values override any values specified by the B (baud) operating system command.

Operating System Activities During Warm Start

When the 94 warm starts, it begins by performing the normal power-on initialization (check memory
integrity, determine memory configuration, etc.) and exccutes the WARM routines of any open
handlers. Then the operating system transfers control to where the program was running when the
power was turned off, and the program continues running.

- __________mm
Ending Programs

Assembly language programs can end in one of two ways. They can either turn the power off, or they
can leave the power on and enter command mode. Command mode is where the user can type operat-
ing system commands such as C (copy) or D (directory), and is usually reached by turning on the
machine on while holding down the [CLEAR]| and [ENTER] keys.

The END_PROGRAM function (00h) is used to end a program and turn the power off, specifying that
the next power on be cold or warm start. For warm start, the CPU registers are saved on the operating
system stack for use when the machine next turns on. If the program has used the operating system
stack for its own data, the data will be destroyed when the CPU registers are saved. Therefore, a pro-
gram cannot specify warm start unless it uses its own stack. If it specifies warm start while using the
operating system stack, END_PROGRAM will issue error 219 and enter command mode.

There are two ways to enter command mode from a program. The first way is with a FAR RET, since
the program was executed with a FAR CALL. The second way is to use the END_PROGRAM func-
tion, specifying to enter command mode. There are subtle differences in the operating system behavior
with these two approaches, summarized below.

Program Execution 2-5

Because of these differences, the END PROGRAM function is the preferred method of ending a pro-
gram and entering command mode.

Table 2-3. Ending a Program With END_PROGRAM or FAR RET

Behavior Using

Behavior Using

Item END_PROGRAM FAR RET
CPU interrupt Flag Set (STI) Unchanged
Access to Directory 5 Enabled Disabled
Open Files Closed Not Closed
Handler CLOSE Routines Called Not Called *

enabled.

* The handler will have no opportunity to restore interrupt vectors or status. Power will be
continue to be supplied to the serial port, level converter, and bar code port if they were

Operating System Activities When Entering Command Mode

When the operating system enters command mode, it initializes certain things to their default values, as

shown below.

2-6

Program Execution

Table 2-4. HP-94 Status in Command Mode

item Status

Input/Output Halted *

Interrupt Vector Addresses Unchanged *

Interrupt Enable/Disable Status Unchanged *

Copy of Main Control Register Unchanged *

Copy of interrupt Control Register Unchanged *

Serial Port Power Off *

Built-in Serial Port Buffer Cleared

Bar Code Port Power Off *

Bar Code Port Transitions Disabled *

Key Buffer Unchanged

Beeper Unchanged

User-Defined Characters Not Available

Access to Directory 5 Enabled t

System Timeout Value 120 s

Display Backlight Timeout Value 120 s

Display Backlight Turned Off

Cursor Status On

Cursor Type Block

Keyboard Status Shifted

Low Battery Behavior Halt Program With Error 200

Power Switch Behavior Turn Off Machine

Timeout Behavior Turn Off Machine

Allocated Scratch Areas Returned to Free Space

Available Free Blocks Returned to Free Space

BASIC Variable Contents Lost

Open Data Files Closed

File Access Pointers Reset to Zero

Handler Information Table Cleared

Open Channel 1-4 Handlers Closed

Channel 1-4 Handler Configurations | Lost

Channel 1-4 Buffers Lost

Open Built-in Serial Port Handler Closed t

Built-In Serial Port Configuration Set to Defauilt §

Stack Pointer Points to OS Stack

* Whether or not these conditions are true depends on the what the program does
before it ends and the behavior of the CLOSE routines in any user-defined
handlers in use (assuming the routines are called before the program ends). The
CLOSE routines will be executed automatically when entering command mode
with the END_PROGRAM function (rather than a FAR RET).

t Only if the END_PROGRAM function was used to enter command mode (rather
than a FAR RET).

1 9600 baud, 7ES, XON/XOFF enabled, no terminate character, nuli strip disabled.

Program Execution

2-7

L]
Program Structure

The three different types of programs (types A, B, and H) have a simple structure consisting of a pro-
gram header followed by the code. Assembly language programs (type A) have a six-byte header, then
the executable code. Handlers (type H programs) have a six-byte header, a jump vector table, then the
code pointed to by each of the jump vectors. BASIC programs (type B) have a 16-byte header, then the
program tokens.

Program Headers

Assembly language programs start with a six-byte header, shown below with hex offsets on the left side.
Note that the order of this illustration is with the lowest offset at the top, which is the order the entries
would be placed in the source code for the handler.

00h 00h 00h
Program Length Program Length Program Length
(with header) (with header) (with header)
2 Bytes 2 Bytes 2 Bytes
02h 02h 02h
Internal Handler
Entry Point (Undefined) Identifier
2 Bytes 2 Bytes 2 Bytes
04h 04h 04h
Version Version Version
Number Number Number
2 Bytes 2 Bytes 2 Bytes
06h 06h 06h
Header For New Header For Assy. Header For User-

BASIC Keyword

Lang. Program

Defined Handler

Figure 2-1. Program Headers

There are three fields in the header:

m Program Length
This field is the length of the program, including the length of the header itself.

m Internal Entry Point
For type A programs that are new BASIC keywords, this field is the offset of the processing block
relative to the start of the program. This assumes a particular BASIC keyword structure which will
be described shortly. If a BASIC keyword does not use this structure, this field can be set to point
to the first byte after the header, to a dummy FAR RET instruction, or be used for other purposes.

2-8 Program Execution

® (Undefined)
For type A programs that are not BASIC keywords, the place to start executing the program is
immediately after the header, so the value of the internal entry point field does not matter — it will
never be called by another program. It can therefore either be set to point to the first byte after the
header, to a dummy FAR RET instruction, or be used for other purposes.

m Handler Identifier
The second field in the header has a slightly different meaning for handlers. It contains a two-
character identifier that is returned by the identify handler I/O control function (00h).

= Version Number
This is used for revision control by the programmer. It is a two-byte binary number representing a
decimal fraction of the form ILFF, where the II is the integer part of the version, and the FF is the
fractional part of the version. The statement VERSION dw 0103h would designate a version
number of 1.03, and the statement VERSION dw 0212h would define version 2.18 of the software.
This can also be defined in decimal as db 18,2, where the fractional part precedes the integer part.

For type A programs, the program code starts after the header. For type H programs, the jump vector
table that follows the header defines the locations of the executable code.

BASIC Keyword Structure

BASIC keywords can be written so that they are accessible from both BASIC and assembly language
programs. This requires a keyword structure in which there are two distinct blocks: an I/O block in
which all interaction with BASIC variables occurs, and a processing block in which the function of the
keyword is implemented. Once the 1/O block has read and validated the supplied variables, it calls the
processing block. When the processing block is done, it returns its results to the I/0 block, which then
places them in BASIC variables as appropriate. This structure is shown below.

Program Header
Main Entry Point
(FAR CALLed by $CALL)

Internal Entry Point
(FAR CALLed by assembly
language programs)

CALL Input/Output Block

Processing Block

RET

Figure 2-2. BASIC Keyword Structure

The internal entry point in the program header would point to the start of the processing block. This
allows both BASIC and assembly language programs access to the functionality implemented by the
keyword. BASIC programs execute new keywords with $CALL, which FAR CALLs the main entry
point at the end of the header. Assembly language programs execute the processing block only via the
internal entry point. They find the program, read the internal entry point from the header, set up
appropriate parameters, and FAR CALL the processing block.

Program Execution 2-9

Errors should be reported differently depending on which entry point is called. If the main entry point
is called (which implies the keyword was called by a BASIC program), non-numeric errors should be
reported using the ERROR BASIC interpreter utility routine (offset 34h). This will cause a non-
numeric error to be issued by the BASIC interpreter, and the BASIC program will halt. If the internal
entry point is called (which implies the keyword was called by an assembly language program), numeric
errors should be returned in the AL register (00h if no errors).

The main entry point of a BASIC keyword can also be called from command mode with the S com-
mand. This condition should be recognized by BASIC keywords. If the keyword was called from a
BASIC program using $CALL, the CS register will be the same as the DS register. If the keyword
was called from command mode with the S command, the CS register will be different than the DS
register.

There are two possible ways to handle this condition. One approach is for the keyword to end immedi-
ately if the keyword is called from command mode. Another approach is to implement an
input/output block for interacting with command mode, analogous to the input/output block for
interacting with the BASIC interpreter.

|
Program Restrictions

Programs can start on any paragraph boundary, depending on where the program was loaded and what
other files were loaded or deleted. Once they begin to run, they do not move — there is no run-time
relocation. Consequently, there should be no far calls or jumps to absolute addresses in type A or H
programs. (HXBASIC and HXC ensure this for type B programs.)

Valid EXE Format

When EXE files are created, they should not contain any MS-DOS-style relocation entries. HXC will
reject any EXE file if it contains a relocation table. An EXE file, to be accepted by HXC, must have
the following characteristics:

m EXE file size of 512 bytes or greater.
m Valid EXE identifier.

m 512-byte header.

= No relocation entries.

m Initial CS =0000h.

It is recommended that source files use byte alignment by specifying SEGMENT BYTE at the beginning
of each program segment. The assembler’s default alignment is on paragraph boundaries, causing each
object file to be padded with 1-15 bytes. Byte alignment eliminates this unused space. HXC will pad the
entire EXE file only once, not once for each object file.

2-10 Program Execution

Use of Operating System Stack

A program can use the operating system stack for its own use. The stack varies in length, depending on
how the program was called (from the operating system or from another program), up to a maximum
of approximately 600 bytes. If a program turns off the machine and specifies a subsequent warm start
(see "Cold Start and Warm Start"), it must not use the operating system stack. The END PROGRAM
function (00b) will issue error 219 if the program is using the operating system stack. Consequently, if
a program wants to use the warm start option, it must put its stack in its own data space.

Programs in ROM or EPROM

Programs can be in RAM or ROM, and execute in place in either location. ROM programs have addi-
tional restrictions. There can be no data space in the code itself if the program is to have the option of
running in ROM. The operating system provides scratch area allocation and release functions to allow
ROM programs to get needed data space.

The assembler provides the ability to define the offsets within an external scratch area using the SEG-
MENT AT directive, as shown below.

SCR_AREA segment at O ;Addresses start at 0

PARAM1 db 6 dup(?) ;First parameter needs 6 bytes
PARAM2 db 00 ;Second parameter needs a byte
PARAM3 dw 0000 ;Third parameter needs a word
SCR_AREA ends

Figure 2-3. Defining Scratch Area Data Structure

The SEGMENT AT directive provides an address template that can be imposed on the scratch area.
SEGMENT AT causes no code to be generated for the uninitialized data defined within that program
segment (in this case, the SCR_AREA segment).

Program Execution 2-11

® 3

User-Defined Handlers

Chapter 3

Contents

3-1
3-1
3-1
3-3
3-4
3-4
3-4
3-4
3-4
3-5
3-6
3-6
3-6
3-7
3-7
3-7
3-8
3-8
3-9
3-10
3-10
3-12
3-12
3-13
3-14
3-16
3-17
3-20
3-22
3-23
3-25
3-27
3-28
3-29
3-31
3-33

User-Defined Handlers

Handler Structure
Program Header
Jump Table
Channel Input and Qutput
File Search Order
Types of Handlers
Low-Level Handlers
High-Level Handlers
Who Calls Handler Routines
Handler Information Table
Table Usage While Handlers Are Closed
Table Usage While Handlers Are Open
Table Entry Offsets
Reading and Setting the Handler Information Table
Passing Parameters to Handlers
Passing Parameters in a Parameter Scratch Area
Verifying Parameter Area Existence
Validating the Contents of the Parameter Scratch Area
Passing Parameters After the Handler Name
Restrictions on In-Line Parameters
Handler Linkage Routines
Handler Routine Descriptions
Registers Passed to Handler Routines
High-Level Handler Behavior With Unused Registers
CLOSE
IOCTL
Reserved IOCTL Functions
OPEN
POWERON
HP-94 Status During POWERON Routine
READ
RSVD2
RSVD3
TERM
WARM
WRITE

3

User-Defined Handlers

User-defined handlers, or handlers for short, allow BASIC or assembly language programs simple
access to the HP-94 1/O ports — the devices associated with channels 1-4. In particular, user-defined
handlers can be written for the serial port (channel 1) and bar code port (channel 2); channels 3 and 4
are reserved, and currently have no 1/O port associated with them. Handlers are assembly language
program files that are assembled and linked into EXE files on the development system. Then they are
processed by HXC and given file type H before being copied into the HP-94.

Handlers are similar in concept to UNIX or MS-DOS device drivers. They are a collection of routines
to handle various activities associated with I/O devices, such as initializing the port for use, reading and
writing data to it, and releasing control of the port. Handlers have a special structure that allows the
individual routines to be called, either from BASIC or assembly language, solely by supplying the name
of the handler being used when the channel is opened.

This chapter will discuss handler organization in general, how handlers interact with the channel-
oriented input and output of the HP-94, the different types of handlers, passing configuration parame-
ters and registers to handler routines, and what tasks handler routines perform.

™
Handler Structure

Handlers contain three major components: the program header, the jump table, and the executable
code for each of the handler routines. L

Program Header

Handlers, like all assembly language programs, start with a six-byte header. The first two bytes are the
length of the handler, including the header. The next two bytes are a two-character handler identifier
that is returned by handlers that implement function 00h of the IOCTL routine (discussed later). The
last two bytes of the header are the software version number. It is a two-byte binary number represent-
ing a decimal fraction of the form ILFF, where the II is the integer part of the version, and the FF is
the fractional part of the version. The statement VERSION dw 0103h would designate a version
number of 1.03, and the statement VERSION dw 0212h would define version 2.18 of the software.
This can also be defined in decimal as db 18,2, where the fractional part precedes the integer part.

Jump Table

Immediately following the header is a jump table with 10 entries of three bytes each. Each entry con-
tains a JMP instruction to one of the handler routines. Each routine must end with a FAR RET. The
header and jump table, showing the order in which the jump table must appear in the program, is
shown below. The hex offsets from the start of the program are along the left side. Note that the order

User-Defined Handlers 3-1

of this illustration is with the lowest offset at the top, which is the order the entries would be placed in ‘
the source code for the handler.

00h
Program Header
02h
Handier Identifier
04h
Version Number
06h
JMP to OPEN Routine
0%h
JMP to CLOSE Routine
0Ch
JMP to READ Routine
OFh
JMP to WRITE Routine
12h
JMP to WARM Routine
15h
JMP to TERM Routine
18h
JMP to POWERON Routine
1Bh
JMP to IOCTL Routine
1Eh
JMP to RSVD2 Routine
21h
JMP to RSVD3 Routine
24h

Figure 3-1. Handler Header and Jump Table

The purpose of the different handler routines are listed briefly below.
m OPEN Routine — initializes the port.
m CLOSE Routine — releases control of the port.
® READ Routine — reads data coming into the port.
m WRITE Routine — writes data to the port.
m WARM Routine — allows reinitialization of the port at warm start.
m TERM Routine — allows I/O to be terminated because of the power switch or low battery.
= POWERON Routine — allows initialization at machine power-on.
a TIOCTL Routine — controls actions of handler.
a RSVDZ2 Routine — for future use.
m RSVD3 Routine — for future use.

3-2 User-Defined Handlers

Entries in the jump table are required for all handler routines. However, not all handlers will imple-
ment all routines. If a routine is not implemented, the jump table entry should just JMP to a dummy
FAR RET.

There is no jump table entry for the handler’s interrupt service routine. The address of that routine is
placed in the appropriate interrupt vector in the reserved scratch space. For details on using interrupts,
refer to the "Interrupt Controller" chapter.

The tasks performed by the different handler routines will be discussed later in this chapter. The next
sections will describe general information relevant to all handlers and handler routines.

&
Channel Input and Output

The HP-94 operating system performs input and output through 16 different logical channels, each of
which is associated with different physical devices. The channels being used for 1/O are defined by
opening them. From an assembly language program, this is done with the OPEN function (0Fh); from
a BASIC program, this is done with the OPEN # statement (which calls the OPEN function). Both
the OPEN function and the OPEN # statement take the channel number to open and a file name as
their parameters. The table below summarizes the uses of the 16 logical channels, and the meaning of
the file name for the different channels.

Table 3-1. Channel Number Assignments

Channel Physical File Name
Number Device Meaning
0 Console * Ignored
1 Serial Port Name of User-Defined Handler (Type H)
2 Bar Code Port | Name of User-Defined Handler (Type H)
34 Reserved Name of User-Defined Handler (Type H)
5-156 Data Files Name of Data File (Type D)
* The console is the keyboard for input operations and the display for output operations.

Below is more information about the different channels.

m Channel 0
The console is always opened by the operating system. A program can specify a file name as a
parameter when opening channel 0, but the name will be ignored — user-defined handlers for
channel 0 are not allowed.

m Channel 1
The built-in serial port handler is specified by supplying the null string (") for the file name. If a

user-defined device handler name is supplied and no such handler exists in memory, the default
handler will be used.

m Channels 2-4
There is no default handler for these channels. If the null string is used as the file name, or there is
no handler in memory matching the file name supplied, an error will be reported.

User-Defined Handlers 3-3

& Channels 5-15
When a data file is opened, the file access pointer is reset to the start of the file. Only one channel
at a time can be assigned to a single file. Multiple channels cannot be open to the same file simul-
taneously.

Once a channel has been opened, an error will occur if it is reopened without first being closed.

File Search Order

The OPEN function will search for the specified file name in directories 0-4 in ascending order. If the
file name includes a directory number (e.g., "1 : HNBC"), only that directory will be searched. If the
file name is found, but is an illegal type, (not type H for channels 1-4, or not type D for channels 5-15),
an error will be issued. If it is a legal type, it will be opened.

e
Types of Handlers

There are two types of handlers: high-level and low-level. These support the concept of layered
software, in which successively higher layers become more hardware-independent.

Low-Level Handlers

Low-level handlers interact only with the I/O port hardware. They take care of the characteristics of
the I/0O port on the HP-94 only. An example of this is HNBC, a low-level bar code port handler sup-
plied with the HP-94 Software Development System that does low-level 1/O with the bar code port.
Low-level handlers usually include one or more interrupt service routines for the hardware interrupts
associated with the 1/0 port.

High-Level Handlers

High-level handlers interact only with low-level handlers, not with the 1/O port hardware. They take
care of the characteristics of the external device connected to the port, but not of the port itself. An
example of this is HNWN, a high-level handler that handles the device-specific features of Hewlett-
Packard Smart Wands, but relies on the low-level handlers HNBC or HNSP to perform port-specific
activities. High-level handlers do not have interrupt service routines because they do not interact
directly with the hardware.

Who Calls Handler Routines

The routines in both types of handlers can be called by operating system functions, which in turn are
called by BASIC 1/O keywords, assembly language programs, or by the operating system itself. If a
high- and low-level handler pair are being used, the operating system will think that only the high-level
handler is open. All communication between the two handlers is performed by the high-level handler
using handler linkage routines. These routines are described later in this chapter, and are available as
an include file that can be included with the high-level handler source code (discussed in the appen-
dixes).

3-4 User-Defined Handlers

‘ The relationship between all the layers of software used for 1/O is shown below.

BASIC1/0 Assembly Language Operating
Keywords Programs System

Operating System Functions

High-Level Handler
Interacts With Low-Level Handler

Low-Level Handler
Interacts With |/O Port Hardware

Figure 3-2. Relationship Between High- and Low-Level Handlers

. As this diagram indicates, all that is required to perform I/O to a port is a low-level handler. It is not
necessary to have or use a high-level handler. If external devices will be used with unique characteris-
tics better accommodated on a driver level than an application level (so the application is more device-

independent), then a high-level handler may also be necessary.

Because the high-level handler is totally dependent on the low-level handler to actually move data
through the I/O port, high-level handlers cannot stand alone. A low-level handler can be used by itself,
but a high-level handler must be used as part of a high- and low-level handler pair.

S
Handler Information Table

There is a table in the operating system scratch space where handlers keep information about scratch
area locations. The table contains five two-byte entries, each of which is associated with a specific
channel and has a different meaning depending on whether the handler is closed or open.

‘ User-Defined Handlers 3-5

Table 3-2. Handler Information Table Entries

Entry Which Meaning While Meaning While Used By Which
Offset Channel Handler Closed Handler Open Interrupt
00h Bar Code Port | None Low-Level Handler Bar Code
Scratch Area Address | Timer (51h)
02h Serial Port Parameter Low-Level Handler Serial Port Data
Scratch Area Address | Scratch Area Address | Received (53h)
04h Bar Code Port | Parameter Low-Level Handler Bar Code Port
Scratch Area Address | Scratch Area Address | Transition (52h)
06h Channel 3 Parameter Low-Level Handler Reserved 1 (56h)
Scratch Area Address | Scratch Area Address
08h Channel 4 Parameter Low-Level Handler Reserved 2 (57h)
Scratch Area Address | Scratch Area Address

Table Usage While Handlers Are Closed

When a handler is closed, the handler information table is used for the segment address of the parame-
ter scratch area for that channel. When the OPEN routine in either a high- or low-level handler is
called, it looks at the appropriate table entry to determine if the parameter scratch area exists and if
the information it contains is valid. The procedure for doing this will be discussed later.

Table Usage While Handlers Are Open

Every time a routine in an open handler is called, the operating system automatically passes the seg-
ment address of the handler’s scratch area to the routine in the DS register. However, the operating
system cannot do this when an interrupt causes the handler’s interrupt service routine to be executed.
To allow the interrupt service routine to locate the scratch area, the handler information table is used
for the address of the low-level handler’s scratch area. This is done only when the handler is open, for
this is the only time that interrupts will be enabled for the handler.

After verifying its parameters, the low-level handler’s OPEN routine must save the parameter scratch
area address in the handler’s scratch area, and place the handler’s scratch area address in that table
entry. When the handler is closed, the low-level handler CLOSE routine must restore the original
parameter scratch area address in that table entry.

Table Entry Offsets

The handler information table entry offsets for a particular handler are 2 * the handler channel number.
Once the handler is open, the entry is read during the handler interrupt service routine. This means
that each handler can have one hardware interrupt associated with it. This is not true for the bar code
port, since it has both a transition interrupt and a timer interrupt. The primary interrupt for the bar
code port is the transition interrupt since it occurs on every transition, so it is associated with the entry
for channel 2. The bar code port timer interrupt uses the first entry in the table at offset 0.

3-6

User-Defined Handlers

Reading and Setting the Handler Information Table

The handler information table is located in the first 10 bytes (5 words) of the operating system scratch
space. Using the operating system pointer to locate the scratch space (described in the appendix), the
following code will take the channel number in AL and load the table entry for that channel into ES:

mov si,16h :get segment address of OS pointers

mov ds,si ;put in segment register

xor ah,ah ;clear ah

mov si,ax ;put channel number in si

shl si,1 :2 * channel number

mov ds,ds: [0000h] ;get the segment address of 0S scratch space
mov es,word ptr ds:{sil ;get this channel's table entry

Figure 3-3. Example of Reading Handler Information Table Entries

=
Passing Parameters to Handlers

Parameters are passed to a handler mainly to define its operating configuration (such as baud rate for
the serial port). The handler uses them to set its configuration when its OPEN routine is called.
Parameters can be passed in one of two ways when the handler is opened:

m The parameters can be placed in a parameter scratch area. This can be done from a BASIC pro-
gram with a separate keyword (such as the SYBC keyword that defines parameters for HNBC), or
from an assembly language program that allocates and initializes the parameter scratch area before
opening the handler. This is the approach used for passing parameters to Hewlett-Packard
handlers.

m The parameters can be placed after the handler name that is passed to the OPEN function or the
OPEN # statement (e.g, "LLHN 9600, 7ES"). Thohandler OPEN routine then parses the
parameters from the name string.

Regardless of which approach is used to pass parameters, the low-level handler must save a copy of
them in its scratch area. This is needed by the TOCTL routine of the handler.

Passing Parameters in a Parameter Scratch Area

A parameter scratch area is a one-paragraph scratch area. The upper 8 bytes (bytes 08h-OFh) are
reserved for high-level handler parameters, and the lower 8 bytes (bytes 00h-07h) are reserved for
low-level handler parameters. The first byte of each half is used as a valid data flag (discussed shortly)
to indicate the validity of the parameters. This leaves 7 bytes available for parameters for each high-
and low-level handler.

Handlers verify two aspects of configuration parameters: first, that the parameter scratch area exists,
and second, that it contains valid configuration information.

User-Defined Handlers 3-7

Verifying Parameter Area Existence

High- and low-level handlers determine if the parameter area exists by reading the handler information
table entry for that channel. If the entry is zero, there is no parameter scratch area for the handler. The
handler should then allocate a one-paragraph parameter scratch area and place its address in the table
entry. If the entry is non-zero, the entry contains the segment address of a parameter scratch area that
already exists.

It is important that the address of the parameter area put in the handler information table actually
point to a scratch area. If an assembly language program opens a handler and passes it parameters, the
address put in the table must not point to parameters on the program’s stack, or to fixed parameters
embedded in the program code. This is because if the stack vanishes or the program moves, the
address in the handler information table will no longer point to valid parameters.

CAUTION When a handler is open, the entry in the handler information table will be the
scratch area address of the handler, not of the parameter scratch area (see
“Handler Information Table"). If a separate configuration program is run after the
handler is open, it could misinterpret the handler information table entry, and
modify the handler scratch area by mistake. Configuration programs should
check if the handler is open before examining the handler information table. See
the appendixes for a utility routine that determines if a channel is open or not.

Validating the Contents of the Parameter Scratch Area

High- and low-level handlers validate the contents of the parameter scratch area by looking at the first
byte in their respective parts of the area (upper 8 bytes for high-level handlers, lower 8 bytes for low-
level handlers). This first byte is a valid data flag that is unique for each handler associated with a par-
ticular channel. The valid data flag is set to zero when the scratch area is allocated because the operat-
ing system initializes all scratch areas to zero (00h). The flag is then set to a value either by a handler,
by the program calling the handler, or by a configuration keyword. The action that a handler should
take for different values of the valid data flag is shown below.

3-8 User-Defined Handlers

Table 3-3. Interpreting the Valid Data Flag

Value High-Level Low-Level
of Flag Handler Action Handler Action

Zero Put correct valid data flag | Put correct valid data flag
and default high-evel | and default low-level
handler configuration in | handler configuration in
upper 8 bytes of parameter | lower 8 bytes of parameter
scratch area. scratch area.

Correct for Handler | Use these parameters to | Use these parameters to
define highdevel handler | define low-level handler
configuration. configuration.

Any Other Value Return an error, since the | Return an error, since the
parameters are not valid for | parameters are not valid for
this handler. this handler.

Handlers should use values for the valid data flag in the range 01h-7Fh. Hewlett-Packard uses values in
the range 80h-FFh for its handlers, and 00h is reserved because it indicates uninitialized parameters.
Refer to the "Program Resource Allocation” appendix for information about reserving a valid data flag
that will not conflict with any other flag in use.

Passing Parameters After the Handler Name

If parameters are passed in-line with the handler name, the handler’s OPEN routine must parse and
interpret the handler names and parameters. When the handler OPEN routine executes, ES : BX
points to the start of the entire handler name string. The routine can skip past the handler name in the
string to find the beginning of the parameters, and parse them into whatever internal form is required
for the handler. The syntax of the name string is as follows:

High-level handler name

® One or more spaces

Semicolon
One or more spaces

Low-level handler name

One or more spaces

High-level handler parameters separated by commas

m Low-level handler parameters separated by commas

= Ending null (00h)

This results in handler and parameter strings that look like the following examples:

User-Defined Handlers

3-9

"HNLL 7,2" Low-level handler with parameters

"HNHL 1,3;HNLL 7,2" High- and low-level handlers with parameters
"1:HNHL 1,3;1:HNLL 7,2" Same but with directory numbers

"HNHL ; HNLL" High- and low-level handlers with no parameters

Restrictions on In-Line Parameters

m If the OPEN # statement is used, the maximum length of the handler names and parameters is
255 characters.

m The OPEN # statement uppercases all characters in the name string, so the name string in OPEN
#1,"11hn 7es" will be passed as "LLHN 7ES". If a handler that accepts in-line parame-
ters will be opened with the OPEN # statement, the parameters should not be case-sensitive.

m If a high-level handler that accepts in-line parameters calls a low-level handler that accepts parame-
ters in a parameter scratch area (such as Hewlett-Packard handlers), the high-level handler must
parse its in-line parameters and put them in the form expected by the low-level handler. Then it
must create a parameter scratch area, place the parameters in it, and modify the handler informa-
tion table before calling the low-level handler.

. _________________________ 3
Handler Linkage Routines

If a high- and low-level handler pair are being used, the operating system will think that only the high-
level handler is open. All communication between high- and low-level handlers is performed by the
high-level handler using handler linkage routines. These routines are available as an include file that
can be included with the high-level handler source code (discussed in the appendixes).

Each handler routine has a corresponding linkage routine that it uses to call the low-level handler. To
use the linkage routines, load appropriate values into the registers, put the channel number in AL, and
FAR CALL the routine by name. The activities of each high-level handler routine before and after cal-
ling the linkage routine will be discussed shortly.

The linkage routines are designed to mimic the way the operating system calls handler routines. A
low-level handler will not be able to distinguish that it is being called by a high-level handler rather
than by the operating system. Like the operating system, the caller’s registers (in this case, the high-
level handler’s) are saved in a register save area on the stack when the low-level handler is called.
Upon return, the registers are popped off in exactly the same manner. This means that low-level
handlers must return the error code in AL (00h if no errors), and all other register values in the
appropriate location in the register save area.

Below is a summary of the registers passed to and returned by the linkage routines.

3-10 User-Defined Handlers

‘ Table 3-4. Register Usage By Handler Linkage Routines

Routine Registers Passed Registers Returned
Name Register Contents Register Contents
LLH CLOSE AL Channel number to close AL Error code
LIH IOCTL AL Channel number AL Error code
AH IOCTL function code Others As defined by routine
Others As defined by routine
LLH OPEN AL Channel number to open AL Error code
ES Segment address of low-
level handler name to open
BX Offset address of low-
level handler name to open
LLH_READ AL Channel number to read AL Error code
CcX Number of bytes to read CcX Number of bytes
actually read
ES Segment address of
read buffer
BX Offset address of
read buffer
LLH_RSVD2 AL Channel number AL Error code
Others Not yet defined Others Not yet defined
LLH_RSVD3 AL Channel number AL Error code
Others Not yet defined Others Not yet defined
. LLH_TERM AL Channel number AL Error code
AH* Cause of termination

1 =power switch

0=Ilow battery
LLH_ WARM AL Channel number AL Error code
LLH WRITE AL Channel number to write AL Error code
CX Number of bytes to write CcX Number of bytes
actually written
ES Segment address of
write buffer
BX Offset address of
write buffer
All (supplied DSt | Segment address of low- BP Unchanged from value
automatically) level handler scratch area passed to routine
BP Stack offset address of
register save area
DI Destroyed

* The TERM routine for high- and low-levei handlers will receive the cause of the termination in AL. A high-level handler
must move this value into AH and place the channel number in AL before calling LLH_TERM. LLH_TERM will swap
them back, thereby passing the cause of the termination to the low-level handler in AL.

t Not passed to LLH_OPEN routine.

‘ User-Defined Handlers 3-11

]
Handler Routine Descriptions
Handler routine descriptions consist of the following:
m A brief description of the routine,
= A summary of the parameters passed to the routine.
® A summary of the parameters that the routine must return,
s Details on when the routine is called.

= Supplementary notes and cautions on the use and behavior of the routine.

Registers Passed to Handler Routines

Handler routines are called by the analogous operating system functions. For example, the READ
function will FAR CALL the READ routine in the handler that is open to the channel being read.
When handler routines are called, either by the operating system or by handler linkage routines, all the
registers values that were passed to the operating system function will be passed to the handler routine,
with the following exceptions:

m The DS register contains the segment address of the handler scratch area (except for the OPEN
routine).

m The BP register contains the offset on the stack where all the caller’s registers were saved.
m The DT register is destroyed.

All the caller’s original registers are saved in a register save area on the stack. When the handler rou-
tine ends (with a FAR RET), the caller (operating system function or handler linkage routine) will
automatically pop all the saved registers off the stack except AL, which is used to return error codes,
and BP, which must be unchanged from the value passed to the routine. Consequently, if a handler
wants to return a value in a register other than AL or BP, it cannot just put the value in the register —
the register will be lost when the saved register copies are popped off the stack. Instead, the handler
routine must place values to be returned into the register save area on the stack.

The order that the registers are saved on the stack is shown below, with the hex offsets on the left.

3-12 User-Defined Handlers

@ o

Flags Register

16h

CS Register
14h

IP Register
12h

BP Register
10h

ES Register
OEh

DS Register
0Ch

DI Register
0Ah

SI Register
08h

DX Register
06h

CX Register
04h

BX Register
02h

AX Register
00h SS:BP

Figure 3-4. Register Save Area

CAUTION Do not alter values in the register save area except those that the handler routine
is required to change. Some registers are critical to the proper operation of the
calling routines, and changing them can have significant, detrimental side effects
(including loss of data).

High-Level Handler Behavior With Unused Registers

Routines in high-level handlers must return to their callers all registers returned by the low-level
handler, even if the high-level handler doesn’t use or modify any of those registers. The reason is that
even if the high-level handler doesn’t care about the contents of a particular register, the register may
be important to the caller.

This is particularly true of the TOCTL routine, in which the high-level handler may just pass through,
unmodified, low-level handler IOCTL requests from an application. If the high-level handler does not
similarly pass back the results from the low-level handler, the caller will not see them.

. User-Defined Handlers 3-13

CLOSE

The CLOSE routine in a handler is where the I/O port and the external device are shut down, and
control of the port is released by the handler.

Passed to routine:

AL Channel number to close.

Routine must return:

AL=00h Successful close.
>00h Error code.
BP Unchanged from value passed to routine.

When routine is called:

m By the CLOSE function (10h) if a high- or low-level handler name was specified when the handler
was opened. The CLOSE function can be invoked either by the BASIC CLOSE # statement or
by an assembly language program.

m By a high-level handler using the LLH_CLOSE linkage routine.

m When a program ends and returns to command mode by calling the END PROGRAM function
(00h), the operating system closes all open handlers by calling their CLOSE routines.

Notes:

m Registers specified by the caller of the CLOSE function or the LLH CLOSE linkage routine are
passed to the handler CLOSE routine with the following exceptions:

DS Set to the segment address of the scratch area allocated by the handler.

BP Points to the offset on the stack where all the caller’s registers are saved and where all
returned values except AL must be put.

DI Destroyed.

Cautions:

m When returning to command mode, the operating system calls the CLOSE routines of all open
handlers to close them, but does not set AL to the channel number being used. Make sure AL is
set to the channel number before calling LLH_CLOSE, or the linkage routine will not call the
low-level handler CLOSE routine properly.

If the high-level handler is only valid for one channel, that valid channel number can be placed in
AL before calling LLH _CLOSE. If the high-level handler can be used for more than one chan-
nel, the channel number being used should have been saved in the handler’s scratch area by its
OPEN routine.

3-14 User-Defined Handlers

...CLOSE

Activities of routine:

High-Level Handler
Activities

Low-Level Handler
Activities

Perform device-specific shut down activi-
ties.

Disable hardware interrupts for the 1/0 pont.

Call low-level handier with LLH CLOSE
linkage routine (see caution below).

Disable and power down the | /O port.

Release high-level handler scratch area.

Restore original hardware interrupt vectors
for the i/0 port.

Return an error code if the routine failed
(0Ch if no errors).

Restore parameter scratch area address
from the low-level handler scratch area into
the handler information table.

Deallocate low-level handler scratch area.

Return an error code if the routine failed
(00h if no errors).

User-Defined Handlers

3-15

I0CTL

The IOCTL (I/O control) routine in a low-level handler allows a program to control the handler
operation after the handler has already been opened. This is in addition to providing the handler
configuration parameters at open time. High-level handler TOCTL routines only call their low-level
handler, since most external devices are controlled by command sequences embedded in data sent to
them (via the WRITE function).

Passed to routine: *

AH TOCTL function code.
AL Channel number.
Routine must return; *

AL=00h Successful.

>00h Error code.
BP Unchanged from value passed to routine.
AH ¢ As defined by routine (return in register save area, offset 00h)
BX ¢ As defined by routine (return in register save area, offset 02h)
CX+¢ As defined by routine (return in register save area, offset 04h)
DX ¢ As defined by routine (return in register save area, offset 06h)
SIt As defined by routine (return in register save area, offset 08h)
DI¢ As defined by routine (return in register save area, offset 0Ah)
ESt As defined by routine (return in register save area, offset 0Eh)

When routine is called:
® By a high-level handler using the LLH TOCTL linkage routine.

® By an assembly language program using the TOCTL utility routine (see the appendixes). If a
high-level handler is called, it passes the call on to the low-level handler by calling LLH TOCTL.

m Not called by the operating system. TOCTL is one of the three reserved handler routines whose
use was not defined until after the operating system was developed; the others are RSVD2 and
RSVD3.

Notes:

m Registers specified by the caller of the LLH_TOCTL linkage routine or the IOCTL utility rou-
tine are passed on to the low-level handler IOCTL routine with the following exceptions:

* Because each handler implements different handler control functions within its IOCTL routine, other register requirements
are defined by the handler itself.

t Returned by high-level handler only.

3-16 User-Defined Handlers

@ ...I0CTL

DS Set to the segment address of the scratch area allocated by the handler.

BP Points to the offset on the stack where all the caller’s registers are saved and where all
returned values except AL must be put.

DI Destroyed.

m Routines in high-level handlers must return to their callers all registers returned by the low-level
handler, even if the high-level handler doesn’t use or modify any of those registers. The reason is
that even if the high-level handler doesn’t care about the contents of a particular register, the regis-
ter may be important to the caller. This is particularly true of the TOCTL routine, in which the
high-level handler may just pass through, unmodified, low-level handler TOCTL requests from an
application. If the high-level handler does not similarly pass back the results from the low-level
handler, the caller will not see them.

Cautions:

m The high-level handler must not change the DS register in the register save area from the caller.
Doing so may cause the caller to use the wrong scratch area.

Activities of routine:
High-Level Handler Low-Level Handler
Activities Activities
. Call low-level handler with LLH IOCTL | Perform low-level handler control activities.
linkage routine. Return an error code if the routine failed or if

Return any registers (in the register save | a function code was passed that the handier
area) that may have been used by the low- | does not implement (00h if no errors).
level handler routine to the caller.

Return an error code if the routine failed
(00h if no errors).

Reserved I0CTL Functions

Certain 1/O control functions have been assigned fixed function codes 00h-06h. Each handler may
implement additional functions; refer to the documentation for the particular handler of interest for
details. The "Program Resource Allocation” appendix indicates other function codes that have been
reserved by other handlers. The fixed function codes are listed below in numeric order.

= IDENTIFY (Function OCh) .
The IDENTIFY function returns two pieces of information to identify handlers: the handler
identifier (bytes 2 and 3 of the program header) in CX (byte 2 in CH, byte 3 in CL), and the ver-
sion number in DX (DH=integer part, DL =fractional part). Hewlett-Packard handlers also return
the characters "HP" in BX (BH="H", BL="P"),

m GET_CONFIG (Function 01h)
The GET CONFIG function returns the address of the current configuration in ES: DX. Refer
to the documentation for each handler for details on the format of the configuration.

. User-Defined Handlers 3-17

...IOCTL

The configuration that is returned should be the one saved in the handler’s scratch area during its
OPEN routine. If the CHANGE_CONFIG function has changed the configuration, the changes

would have been made to the saved copy, not the original configuration in the parameter scratch
area.

= CHANGE CONFIG (Function 02h)
The CHANGE_CONFIG function changes the current handler (and possibly port) configuration
while the handler is open. The address of the new configuration is passed in ES : DX. Refer to the
documentation for each handler for details on the format of the configuration.

The configuration that is altered should be the one saved in the handler’s scratch area during its
OPEN routine. The reason is that configuration changes while the handler is open should not
affect the original status defined while it was closed. If a program has initialized a parameter
scratch area with certain values prior to opening the handler, the program expects that set of
parameters to be unchanged the next time the handler is opened.

m RECEIVE_STATUS (Function 03h)
The RECE IVE STATUS function returns the number of bytes in the receive buffer in CX.

m RECEIVE FLUSH (Function 04h)
The RECEIVE FLUSH flushes the receive buffer.

m SEND STATUS (Function 05h)
The SEND_STATUS function returns the number of bytes in the send buffer in CX.

m SEND FLUSH (Function 06h)
The SEND FLUSH flushes the send buffer.

The register usage for these functions is summarized below. The AH register is set to the function
code, and the AL register is set to the channel number. Like all handler routines, all the registers
returned by these functions must be placed in the register save area except AL (for error codes) and
BP (which must be unchanged from the value passed to the routine).

3-18 User-Defined Handlers

...10CTL

Table 3-5. Reserved IOCTL Function Codes

Function Registers Passed Registers Returned
Name Register Contents Register Contents
CHANGE_CONFIG AH 02h AL Error code
(00h if no errors)
AL Channel number
ES Segment address
of configuration
DX Offset address
of configuration
GET_CONFIG AH 01h AL 00h
AL Channel number ES Segment address
of configuration
DX Offset address
of configuration
IDENTIFY AH 00h AL 00h
AL Channel number BX "HP" *
cX Handler identifier
DX Version number
RECEIVE_FLUSH AH 04h AL Error code
(0ooh if no errors)
AL Channel number - Receive buffer cleared
RECEIVE_ STATUS AH 03h AL 00h
AL Channel number CX Number of bytes
in receive buffer
SEND FLUSH AH 06h AL Error code
(00h if no errors)
AL Channel number - Send buffer cleared
SEND_STATUS AH 05h AL 00h
AL Channel number CX Number of bytes

in send buffer

* Returned by Hewlett-Packard handlers.

User-Defined Handlers

3-19

OPEN

The OPEN routine in a handler is where the 1/O port and the external device are initialized and
readied for I/0.

Passed to routine:

AL Channel number to open.
ES Segment address of handler name string to open.
BX Offset address of handler name string to open.
DS Segment address of parameter area (built-in serial port handler only).
DX Number of bytes to write.
Routine must return:
AL=00h Successful open.
>00h Error code.
BP Unchanged from value passed to routine.
When routine is called:

m By the OPEN function if the caller invoking the function specifies a high- or low-level handler
name. The OPEN function can be invoked either by the BASIC OPEN # statement or by an
assembly language program.

m By a high-level handler using the LLH_OPEN linkage routine.

Notes:
® Registers specified by the caller of the OPEN function or the LI.H_ OPEN linkage routine are

passed to the handler OPEN routine with the following exceptions:

BP Points to the offset on the stack where all the caller’s registers are saved and where all
returned values except AL must be put.

DI Destroyed.

m Handlers allocate one or two scratch areas in their OPEN routine: the parameter scratch area for

parameter passing (if not already allocated), and the handler scratch area for its pointers, buffers,
etc. The operating system saves the handler’s scratch area address in an internal table based on the
channel number of the handler (this is not the same as the handler information table). When the
other routines in the handler are called (such as READ, WRITE, etc.), the operating system reads
the appropriate scratch area address from this internal table, and passes it to the routine.

If a handler allocates more than one scratch area, only the address of the last one allocated will be
saved and automatically passed to handler routines. Therefore, when multiple scratch areas are
allocated by a handler, the allocation order is important. A handler can allocate scratch areas so
that the last one allocated is the one whose address should be passed to handler routines. Alterna-
tively, the handler can call GET _MEM with the channel number set to 0, and the operating system
will not save that scratch area address or pass it to handler routines.

3-20 User-Defined Handiers

‘ ...OPEN

Activities of routine:

High-Level Handler
Activities

Low-Level Handler
Activities

Verify that the channel being opened to is
correct for this handler.

Read and verify configuration parameters.
If passed in parameter scratch area, use the
handler information table and the valid data
flag. If passed in-line with the name string,
parse the parameters from the string, and
convert to the form required by the handler.

Read and verify configuration parameters.
If passed in parameter scratch area, use the
handler information table and the valid data
flag. If passed in-line with the name string,
parse the parameters from the string, and
convert to the form required by the handier.

Allocate and initialize parameter scratch
area if necessary.

Allocate and initialize parameter scratch
area if necessary.

Allocate low-evel handler scratch area for
port-specific needs.

Allocate high-level handler scratch area for
device-specific needs.

Save channel number the handler is opened
to in the high-level handler scratch area.
This will be needed by the CLOSE, TERM,
and WARM routines. *

Save parameter scratch area address from
the handler information table in the low-level
handler scratch area. This will be needed by
the CLOSE routine.

Change handler name pointer (ES : BX) to
point to the start of the low-level handler
name. Skip past the directory number and
colon, if any, and any in-line parameters to
find the low-level handler name. Return an
error if there is no low-level handler name.

Save parameters from the parameter
scratch area in the low-level handler scratch
area. This will be needed by the TOCTL
routine.

Save the low-level handler scratch area
address in the handler information table.
This will be needed by the interrupt service
routine.

Call low-level handler with LLH_OPEN link-
age routine. Return an error if no low-level
handler with that name exists.

Perform device-specific initialization activi-
ties.

Take over hardware interrupt vectors for the
1/0 port, and save the previous vector
address in the low-level handler scratch
area.

Return an error code if the routine failed
(ooh if no errors).

Initialize the 1/O port and provide power to
it.

Enable hardware interrupts for the 1/0 port.

Return an error code if the routine failed
(00h if no errors).

* This is only necessary if the high-level handier can be used for more than one channel, such as HNWN. If the
handier can be used for only one channel, that channel number need not be saved, since it will always be known.

User-Defined Handlers 3-21

POWERON .

The POWERON routine allows a handler to perform device or port initialization when the machine is
turned on, even if the handler is not open.

Passed to routine:
Nothing, *

Routine must return:
Nothing, *

When routine is called:

® Only when the HP-94 is turned on, after all memory integrity checks have been performed, and all
battery voltages have been tested. All handlers, whether open or closed, will have their POWERON
routine executed at that time. This includes the low-level handler of a high- and low-level handler
pair, even though the operating system thinks that only the high-level handler of the pair is open.
For this reason, there is no LLH _POWERON linkage routine.

® Not executed if the machine enters command mode because of a memory integrity error or because
the [CLEAR] and [ENTER | keys are held down. (The latter prevents an erroneous POWERON routine
from permanently preventing access to command mode.) This means that if the machine autostarts
MAIN, POWERON will have been executed, but if MAIN is run from command mode using the S
(start) command, POWERON will not have been executed. POWERON will not have been exe-
cuted if the program is always started from command mode (e.g., SCOLL to start a program called
COLL).

Notes:

m If a high-level handler wants to perform device-specific power-on initialization, it must be done
after a low-level handler performs port-specific power-on initialization, or the 1/0 port may not
allow access to the device. The POWERON routines are called in each handler, open or closed, in
directories 0-4 in ascending order. Within each directory, handlers are called in ascending directory
table entry order. This implies that the low-level handler’s POWERON routine would have to be
called before the high-level handler’s. This will only occur if the low-level handler appears earlier
in the same directory as the high-level handler, or in a lower-numbered directory than the high-
level handler.

®m HP-94 status during the POWERON routine is discussed later.

Cautions:

m Power-on initialization of the HP-94 can be completely altered, with significant, detrimental side
effects (including loss or alteration of existing data) if the POWERON routine changes any of the
registers that are passed to it. It is therefore imperative that the POWERON routine save and
restore any registers that it uses.

* Unlike all other handler routines, no registers are saved before calling POWERON, or restored upon its exit. No registers
are passed to the routine, nor are any values expected to be returned by it.

3-22 User-Defined Handlers

...POWERON

Activities of routine:

High-Level Handler
Activities

Low-Level Handler
Activities

Save any registers used by routine.

Save any registers used by routine.

Perform device-specific power-on initializa-
tion activities.

Perform port-specific power-on initialization
activities.

Restore original registers.

Restore original registers.

HP-94 Status During POWERON Routine

The machine status when the POWERON routine is called is identical to the status at warm start, even
if the machine was turned off with cold start specified, with the following exceptions:

m The status of user-defined characters is unchanged. If the machine was turned off during a running
program, they will be available (assuming they were present in the machine) during the POWERON
routine. If the machine was turned off by pressing the power switch in command mode, they will
not be available during POWERON routine.

m Access to directory 5 is enabled. This is the only time when a program is running that directory 5 is
accessible.

= The display backlight will be off.

After the POWERON routine is called, the operating system will perform either cold start or warm
start initialization, depending on how the machine was turned off. If it should cold start, the cold start
status is set, and program MAIN will be autostarted. User-defined characters are located and made
available if they exist, access to directory 5 is disabled, and the backlight remains off. If it should warm
start, the warm status is left unchanged, and the program continues running at its power-off point.
User-defined characters are left in their warm start state, access to directory 5 is disabled, and the
backlight is turned on if it was on when the machine turned off.

Because the cold or warm status is set after POWERON is called, some operating system functions can-
not be used in the routine. For example, if the machine is going to cold start, all open data files will be
closed. If a file was opened during the POWERON routine, it will be closed immediately during cold
start initialization. Here is a list of the operating system functions that can be used in the POWERON
routine:

User-Defined Handlers 3-23

...POWERON

Table 3-6. Functions Allowed in POWERON Routine

Function Function

Name Number
BEEP 07h
BUFFER_STATUS 06h
CURSOR 05h
DISPLAY ERROR 18h
FIND FILE 16h
FIND NEXT 17h
GET_CHAR 01h
GET_LINE 02h
MEM CONFIG 0Dh
PUT_ CHAR 03h
PUT LINE 04h
ROOM OEh
SET_ INTR OAh
TIMEOUT 09h
TIME DATE 08h

3-24 User-Defined Handlers

READ

The READ routine in a handler is where the data coming into the I/O port is read and returned to the
caller.

Passed to routine:

AL Channel number to read.

CX Number of bytes to read.

ES Segment address of read buffer.

BX Offset address of read buffer.
Routine must return:

AL=00h Successful read.

>00h Error code.

BP Unchanged from value passed to routine.

CX The number of bytes actually read (return in register save area, offset 04h).
When routine is called:

m By the READ function if a high- or low-level handler name was specified when the handler was
opened. The READ function can be invoked either by the BASIC GET #, INPUT # or
INPUTS statements, or by an assembly language program.

m By a high-level handler using the LLH_READ linkage routine.
Notes:

m Registers specified by the caller of the READ function or the LLH READ linkage routine are
passed to the handler READ routine with the following exceptions:

DS Set to the segment address of the scratch area allocated by the handler.

BP Points to the offset on the stack where all the caller’s registers are saved and where all
returned values except AL must be put.

DI Destroyed.

Cautions:

m The number of bytes to read must not be greater than the actual read buffer length (although it can
be less).

User-Defined Handlers 3-25

...READ

Activities of routine:

High-Level Handler
Activities

Low-Level Handler
Activities

Call low-level handler with LLH_READ link-
age routine. The read buffer specified can

be either the caller's buffer or one in the

handler's scratch area.

Enable the system timeout. *

Perform device-specific read activities.

- Monitor . system events (system timeout,

power switch, and low battery) while waiting
for incoming data. *

Transfer the data from the high-level
handler’s buffer (if any) into the caller's read
buffer (but no more than the iow-level
handler returned).

Read the data from the 1/0 port.

Return the actual number of bytes read, and
an error code if the routine failed (00h if no
errors).

Transfer the data from the low-level
handler’s buffer (in its scratch area) into the
caller's read buffer (but no more than the
caller requested).

Disable the system timeout. *

Return the actual number of bytes read, and
an error code if the routine failed (00h if no
errors).

* Refer to the appendixes for information about a utility routine to do this.

3-26

User-Defined Handlers

RSVD2

The RSVD2 routine in a handler is the second routine reserved for future use, the first (with a use
now assigned) being TOCTL, and the third being RSVD3.

Passed to routine: *
AL Channel number.
Routine must return: *
AL=00h Successful write.
>00h Error code.

BP Unchanged from value passed to routine.
When routine is called:
® By a high-level handler using the LLH_RSVD2 linkage routine.

m Not called by the operating system or by any utility routines.

Notes:

m Registers specified by the caller of the LLH_RSVD2 linkage routine are passed on to the handler
RSVD2 routine with the following exceptions:

DS Set to the segment address of the scratch area allocated by the handler.

BP Points to the offset on the stack where all the caller’s registers are saved and where all
returned values except AL must be put.

DI Destroyed.

Activities of routine: *

High-Level Handler Low-Level Handler
Activities Activities
Call low-level handier with LLH_RSVD2 | Return an error code if the routine failed
linkage routine. (00h if no errors).

Return an error code if the routine failed
(00h if no errors).

* Because these routines have not yet been defined, other register requirements and activities may be defined at a later date.

User-Defined Handlers 3-27

RSVD3

The RSVD3 routine in a handler is the third routine reserved for future use, the first (with a use now
assigned) being TOCTL, and the second being RSVD2.

Passed to routine: *

AL Channel number.
Routine must return: *
AL=00h Successful write.
>00h Error code.
BP Unchanged from value passed to routine.

When routine is called:
® By a high-level handler using the LLH_RSVD3 linkage routine.
= Not called by the operating system or by any utility routines.

Notes:

m Registers specified by the caller of the LLH_RSVD3 linkage routine are passed on to the handler
RSVD3 routine with the following exceptions:

DS Set to the segment address of the scratch area allocated by the handler.

BP Points to the offset on the stack where all the caller’s registers are saved and where all
returned values except AL must be put.

DI Destroyed. ‘

Activities of routine: *

High-Level Handler Low-Level Handler
Activities Activities
Call low-level handier with LLH_RSVD2 | Return an error code if the routine failed
linkage routine. (00h if no errors).

Return an error code if the routine failed
(00h if no errors).

* Because these routines have not yet been defined, other register requirements and activities may be defined at a later date.

3-28 User-Defined Handlers

TERM

The TERM routine in a handler is used to halt I/O in progress when low battery or power switch inter-
rupts occur.

Passed to routine:

AL Cause of termination (0=1ow battery, 1=power switch pressed).

Routine must return:

AL=00h Successful.
>00h Error code.
BP Unchanged from value passed to routine.
When routine is called:

m By the operating system when low battery occurs.

m By the operating system when the power switch is pressed, unless the program disabled the power
switch using the SET_ INTR function (0Ah).

m By a high-level handler using the LLH_TERM linkage routine.

m Not called by the operating system when the system timeout occurs. Since each handler must moni-
tor the system timeout itself, that handler will be the only one waiting on 1/O when the timeout
expires. Consequently, it is the only one that needs to terminate 1/O.

Notes:

. m Registers specified by the caller of the TERM function or the LLH_TERM linkage routine are
passed on to the handler TERM routine with the following exceptions:

DS Set to the segment address of the scratch area allocated by the handler.

BP Points to the offset on the stack where all the caller’s registers are saved and where all
returned values except AL must be put.

DI Destroyed.

Cautions:

m When low battery or power switch occurs, the operating system calls the TERM routines of all open
handlers, but does not set AL to the channel number being used. Instead, it sets AL to the cause of
the termination (0=1low battery, 1=power switch). Place the cause of the termination into AH, and
make sure AL is set to the channel number before calling LLH_TERM, or the linkage routine will
not call the low-level handler TERM routine properly LLH TERM will swap the values so that
the low-level handler’s TERM routine will reccive the cause of the termination in AL. -

If the high-level handler is only valid for one channel, that valid channel number can be placed in
AL before calling LLH _TERM. If the high-level handler can be used for more than one channel; - -
the channel number being used should have been saved in the handler’s scratch area by its OPEN
routine.

‘ User-Defined Handlers 3-29

...TERM

Activities of routine:

High-Level Handler Low-Level Handler
Activities Activities
Call low-level handler with LLH_TERM link- [Hait /O in progress.
age routine (see caution below).

Clean up incompiete data.

Perform device-specific termination activi-

ties Return an error code if the routine failed

(00h if no errors).

Return an error code if the routine failed
(00h if no errors).

3-30 User-Defined Handlers

WARM

The WARM routine in a handler is where the I/O port and the external device are reinitialized to their
open state and readied for 1/O when the HP-94 warm starts.

Passed to routine:

AL Channel number.

Routine must return:

AL=00h Successful.
>00h Error code.
BP Unchanged from value passed to routine.
When routine is called:

m By the operating system when the HP-94 turns on with a warm start, after the POWERON routine
has been called. The WARM routines of any high- or low-level handlers that were open at power off
are called after the operating system performs all memory integrity tests and sets all warm start
status, just before returning control to the program that turned the power off. Refer to the "Pro-
gram Execution" chapter for details on machine status at warm start.

m By a high-level handler using the LLH_WARM linkage routine.

Notes:

m Registers specified by the caller of the WARM function or the LLH_WARM linkage routine are
passed to the handler WARM routine with the following exceptions:

DS Set to the segment address of the scratch area allocated by the handler.

BP Points to the offset on the stack where all the caller’s registers are saved and where all
returned values except AL must be put.

DI Destroyed.

Cautions:

m At warm start, the operating system calls the WARM routines of all open handlers, but does not set
AL to the channel number being used. Make sure AL is set to the channel number before calling
LLH_WARM, or the linkage routine will not call the low-level handler WARM routine properly.

If the high-level handler is only valid for one channel, that valid channel number can be placed in
AL before calling LLH_WARM. If the high-level handler can be used for more than one channel,
the channel number being used should have been saved in the handler’s scratch area by its OPEN
routine.

User-Defined Handlers 3-31

..-WARM

Activities of routine:

High-Level Handler
Activities

Low-Level Handler
Activities *

Call low-ievel handler with LLH_WARM link-
age routine (see caution below).

Perform device-specific initialization activi-
ties.

Take over hardware interrupt vectors for the
1/O port, and save the previous vector
addresses in the low-level handler scratch
area.

Return an error code if the routine failed
(00h if no errors).

Initialize the 1/O port and provide power to
it.

Enable hardware interrupts for the 1/0 port.

Return an error code if the routine failed
(00h if no errors).

3-32

* The status of 1/O devices at warm start is the same as at cold start. It is the responsibility of the handler to
restore 1/O devices to their proper state (power, interrupt vector addresses, and interrupt enable /disable status).

User-Defined Handlers

WRITE

The WRITE routine in a handler is where the data is sent out the I/O port to the external device.

Passed to routine:

AL Channel number to write.

CcX Number of bytes to write.

ES Segment address of write buffer.

BX Offset address of write buffer.
Routine must return:

AL=00h Successful write.

>00h Error code.

BP Unchanged from value passed to routine.

CcX The number of bytes actually written (return in register save area, offset 04h).
When routine is called:

m By the WRITE function (13h) if a high- or low-level handler name was specified when the handler
was opened. The WRITE function can be invoked either by the BASIC PRINT #, PRINT
#...USING or PUT # statements, or by an assembly language program.

® By a high-level handler using the LLH_WRITE linkage routine.
Notes:

m Registers specified by the caller of the WRITE function or the LLH_WRITE linkage routine are
passed to the handler WRITE routine with the following exceptions:

DS Set to the segment address of the scratch area allocated by the handler.

BP Points to the offset on the stack where all the caller’s registers are saved and where all
returned values except AL must be put.

DI Destroyed.

Cautions:

m The number of bytes to write must not be greater than the actual write buffer length (although it
can be less).

User-Defined Handlers 3-33

---WRITE

Activities of routine:

High-Level Handler
Activities

Low-Level Handler
Activities

{ Perform device-specific write activities.

Enable the system timeout. *

Call low-level handler with LLH WRITE
linkage routine. The write buffer specified
can be either the caller’s buffer or one in the
handler’s scratch area.

Monitor system events (system timeout,
power switch, and low battery) while output-
ting data. *

Return the actual number of bytes written,
and an error code if the routine failed (00h if
no errors).

Write the data to the 1/0 port.

Disable the system timeout. *

Return the actual number of bytes written,
and an error code if the routine failed (00h if
No errors).

* Refer to the appendixes for information about a utility routine to do this.

3-34

User-Defined Handlers

® 4

Operating System Functions

Chapter 4

Contents

a1

a1

a1

a2

43

44

4-6

48

4-9
4-11
4-12
4-14
4-16
4-19
4-21
4-23
4-25
4-27
4-29
4-30
4-32
4-35
4-36
4-37
4-39
441
4-43
4-45

Operating System Functions

Operating System Function Usage

Operating System Function Descriptions
Registers Passed to Operating System Functions

BEEP

BUFFER_STATUS

CLOSE

CREATE

CURSOR

DELETE

DISPLAY_ERROR

END_PROGRAM

FIND FILE

FIND_NEXT

GET_CHAR

GET_LINE

GET_MEM

MEM_CONFIG

OPEN

PUT_CHAR

PUT_LINE

READ

REL MEM

ROOM

SEEK

SET_INTR

TIMEOUT

TIME_DATE

WRITE

4

Operating System Functions

This chapter describes the operating system functions. These functions allow assembly language pro-
" grams to simplify the interaction between assembly language programs and the HP-94 hardware:/
memory, keyboard, display (and display backlight), serial port, bar code port, power switch, low battery
detection, real-time clock, and beeper. The BASIC interpreter also uses these functions to provide
analogous capability to BASIC language programs.

I
Operating System Function Usage
Operating system functions are called by the following procedure:
= Load function code into register AH.
m Load any other function parameters into the corresponding registers.
m Issue a software interrupt 1Ah.

When functions end, they pass results back in the registers listed in the function descriptions.

Operating System Function Descriptions
Function descriptions consist of:
® A brief description of the operating system function.
m A summary of the function call parameters.
m A summary of the function return parameters including any possible returned error codes.
m Supplementary notes and cautions on the use and behavior of the function.
m A list of related operating system functions.

m An example of the use of the operating system function. These examples are provided only to illus-
trate typical use of the various functions. Several of the examples contain data scratch areas
embedded in the code, and consequently will only work if executed in RAM — they will not run in
ROM or EPROM.

Registers Passed to Operating System Functions

Each operating system function saves the contents of all the registers passed to it, and returns those
values to the caller when the function ends. The only registers altered by the functions are those that
explicitly return particular values to the caller — all other registers will retain their original values.
AL is always used to return error codes.

Operating System Functions 4-1

BEEP

Beep a high or low tone for a specified duration.

Call with:

AH=07h BEEP function code.

AL=00h Low tone.

=01h High tone.

BL Length of tone in 0.1 second units (0.1 - 25.5 seconds).
Returns:

Nothing,
Notes:

® When AL is greater than 01h, no action is performed.

Cautions:

= As soon as BEEP starts the beeper, the application program will continue to run; that is, the pro-
gram does not wait for the beep to finish before resuming execution.

= BEEP can be called while the beeper is beeping. If the tone specified is different than the tone in
progress, beeping will continue at the high tone and duration - the high tone and its duration will
always take precedence, regardless of the order in which the tones are spec1flcd If the tone
specified is the same as the tone in progress, beeping will continue at either the remaining duration
or the new duration, whichever is longer.

Related functions:

None.

Example:

The following example will do a one-second low beep.

BEEP equ 07h ;BEEP function code
LOTONE equ 00h
HITONE equ 01h
mov ah,BEEP ;BEEP function code
mov al,LOTONE ;low tone...
mov bt,10 ;for 1 second
int 1Ah ;beep it.

4-2 Operating System Functions

' BUFFER_STATUS

Get the number of bytes in or flush either the key buffer or the receive buffer for the built-in serial port

handler.
Call with:
AH=06h BUFFER_STATUS function code.
AL=00h Flush key buffer.
=01h Get the number of bytes in the key buffer.
=02h Flush the receive buffer for the built-in serial port handler.
=03h Get the number of bytes in the receive buffer for the built-in serial port
handler.
Returns:
DL Number of bytes in the key buffer (AL=01h) or the receive buffer for the
built-in serial port handler (AL=03h).
Notes:

® The operations performed when AL is 02h or 03h only apply to the buffer for the built-in serial port
handler. For user-defined serial port handlers with their own buffers, these operations will not
work.

= When AL is greater than 03h, no action is performed.

. Related functions:

GET_CHAR, GET LINE, READ

Example:

The following example will flush any characters in the key buffer and serial port receive buffer.

BUFFER_STATUS equ 06h ;BUFFER_STATUS function code
KBD_FLUSH equ 0Ch
KBD_STAT equ 01h
SER_FLUSH equ 02h
SER_STAT equ 03h
H initialize the key buffer and serial port receive buffer
mov ah,BUFFER_STATUS ;BUFFER_STATUS function code
mov al,KBD_FLUSH
int 1Ah ; flush keyboard buffer
mov al,SER_FLUSH
int 1Ah ;flush serial port receive buffer

. Operating System Functions 4-3

CLOSE

Close and release an open channel.

Call with:
AH=10h CLOSE function code.
AL Channel number to close.
Returns:
AL=00h Successful close.

=65h (101) Illegal parameter.
=69h (105) Channel not open.

Notes:
When closing channels 1 - 4, CLOSE will transfer control to the CLOSE routine of the user-
defined handler specified when the channel was opened. The same registers passed to the CLOSE
function will be passed to the user-defined handler CLOSE routine with the following exceptions:

DS Set to the segment address of the scratch area allocated by the handler.

BP Points to the offset on the stack where all the caller’s registers are saved and where all
returned values except AL must be put.

DI Destroyed.
Refer to the "User-Defined Handlers" chapter for details.

m When closing channels 1 - 4 and the user-defined handler has returned from its CLOSE routine,
the handler will no longer be in control of the device.

= Once a channel is closed, it may not be accessed until it is reopened.

Cautions:

= This function may not be called from the POWERON routine of a handler.

Related functions:

CREATE, DELETE, OPEN, READ, SEEK, WRITE

4-4 Operating System Functions

...CLOSE

Example:

The following example procedure will close a file.

CLOSE

close

fclose

equ

10h

fclose -- close an open file

call with:

proc
mov
int
or
ret
endp

al = channel #

near

ah, CLOSE
1Ah
al,al

;CLOSE function code

;CLOSE function code
;close the file
;set status for caller

Operating System Functions 4-5

CREATE

Allocate initial storage for a data file and build the directory table entry for the file.

Call with:
AH=11h CREATE function code.
ES Segment address of file name to create.
BX Offset address of file name to create.
cX Initial allocated size in paragraphs.
DX Size increment in paragraphs.

Returns:
AL=00h Successful create.

=65h (101) Hlegal parameter.
=66h (102) Directory does not exist.
=68h (104) Too many files. The directory is full.
=6Ch (108) File already exists.
=6Dh (109) Read-only access.
=6Fh (111) No room for file.
CX Start segment address of the file.
BX Available free space in paragraphs (when AL =6Fh).

Notes:

The file name must be uppercase.
The file name must be terminated by either a null (00h) or a space (20h).
Wild card characters are not allowed in the file name.

If the file name is longer than 4 characters, only the first 4 characters (plus a leading directory
number and colon, if any) will be used.

If the file name contains a directory specifier, the file will be created in that directory. If the file
name does not contain a directory specifier, the file will be created in directory 0 (main memory).

The size increment is the expansion increment used when data is written past the end-of-file.
CREATE will fail if an attempt is made to create a data file in a ROM or EPROM.

A data file must be opened before it can be written to or read from.

Allocated file space is automatically initialized to nulls (00h).

If there is not enough free space in the directory to create a file with the specified number of para-
graphs, CREATE will return 6Fh (111) in AL along with the number of available paragraphs in
BX.

4-6 Operating System Functions

. ...CREATE

Cautions:

m This function may not be called from the POWERON routine of a handler.

Related functions:
CLOSE, DELETE, OPEN, READ, SEEK, WRITE

Example:

The following example procedure will create a file.

CREATE equ 11h :CREATE function code

fcreate -- create a file

H

H

; call with:

; bx = offset address of file name buffer

; cx = initial size in paragraphs

H dx = size increment in paragraphs

’

fcreate proc near
mov ah,CREATE ;CREATE function code
push cs ;segment address of file name to ES
pop es

‘ int 1Ah ;create the file

or al,al :set status for caller
ret

fcreate endp

l Operating System Functions 4-7

CURSOR

Move the display cursor or obtain its current position.

Call with:

AH=05h CURSOR function code.

AL=00h Get the current display cursor position.

=01h Move the display cursor.

CL Cursor column position 0 - 19 (for move cursor).

CH Cursor row position 0 - 3 (for move cursor).
Returns:

CL Current cursor column position 0 - 20 (for get cursor).

CH Current cursor row position 0 - 3 (for get cursor).
Notes:

m When AL is greater then 01h, no action is performed.

= When an attempt is made to move the cursor outside the range of the display window, no action is
performed.

m When a character is displayed in the last column of the display, the cursor will remain in that

column until another character is displayed. In this case, it is considered to be in column position
20.

Related functions:

PUT_ CHAR, PUT LINE

Example:

The following example will move the cursor to column 0 of the current line.

CURSOR equ 05h sCURSOR function code
mov ah, CURSOR ;CURSOR function code
mov al,00h ;to get current cursor position
int 1Ah ;get cursor position
mov cl,00h ;set to column 0
mov al,0th ;to set cursor position
int 1Ah ;and set the new position

4-8 Operating System Functions

DELETE

Delete a currently open data file. The area occupied by the file will be returned to the free space in
the directory containing the file.

Call with:
AH=14h DELETE function code.
AL Channel number of the open file to delete.
Returns:
AL=00h Successful delete.
=65h (101) Illegal parameter. This error will also occur for deletes of channels 0 - 4.
=69h (105) Channel not open.
=6Dh (109) Read-only file.
=6Eh (110) Access restricted.
Notes:

m The released area is merged with the other free space in the directory each time a file is deleted.

® An automatic CLOSE occurs after a DELETE.

Cautions:

m This function may not be called from the POWERON routine of a handler.

Related functions:

CLOSE, CREATE, OPEN, READ, SEEK, WRITE

Operating System Functions 4-9

...DELETE

Example:

The following example will delete a file by first opening and then deleting it.

DELETE equ 14h ;DELETE function code
OPEN equ OFh ;OPEN function code
mov ah, OPEN ;OPEN function code
mov al,5 ;use channel 5
push ds ;put fname segment address into ES
pop es
; fname address offset into BX
mov bx,offset byte ptr fname
int 1Ah ;open the file
or al,al ;successful open?
jne open_err ;no -- handle the open error
mov ah,DELETE ;DELETE function code
mov al,5 ; the open channet
int 1Ah ;delete the file
or al,al ;successful delete?
jne ‘del_err ;no -- handle the delete error

4-10 Operating System Functions

DISPLAY_ERROR

Display the specified numeric error code. The displayed message will be of the form Error nnn,
where nnn is the decimal value of the error code.

Call with:
AH=18h DISPLAY ERROR function code.
AL Error code.

Returns:

Nothing.

Notes:

m The error number in the displayed message will always be three decimal digits. For error codes less
than 64h (100), leading zeroes will be added.

m Before displaying an error message the cursor is moved to the first column of the next line in the
display. After displaying the message, the cursor will be placed in the first column to the right of
the error message.

m A beep will occur when the error message is displayed.
Related functions:

None.

Example:

The following example will display error 101 (illegal parameter).

DISPLAY_ERROR equ 18h ;DISPLAY_ERROR function code
mov ah,DISPLAY_ERROR ;DISPLAY_ERROR function code
mov al,101 ;illegal parameter error code
int 1Ah ;and display the error message

Operating System Functions 4-11

END_PROGRAM

Terminate an application program. The application program can turn off the HP-94, specifying either
cold or warm start at the next power on, or return to command mode.

Call with:
AH=00h END_PROGRAM function code.
AL=00h Cold start.
=01h Warm start.
>01h End application program and enter command mode.
Returns:
Nothing.
Notes:

m When cold start is selected, the HP-94 will be turned off. When power is turned back on, the pro-
gram MATN will be run if it exists, or command mode will be entered.

®m When warm start is selected, all registers and flags will be stored by the HP-94 before turning off
power. When power is turned back on, the registers and flags will be restored and program execu-
tion resumed.

Cautions:

®m Warm start may not be used by an application program which uses the HP-94 operating system’s
stack. An application which is initialized from command mode must allocate its own stack area in
order to do a warm start END_PROGRAM. If a warm start is attempted using the operating
system’s stack, error 219 will be generated and control will return to command mode.

= This function may not be called from the POWERON routise of a handler.

= A FAR RET can also be used to end a program, but there are some subtle side effects. Refer to
"Program Execution" for details.

Related functions:

None.

4-12 Operating System Functions

...END_PROGRAM

Example:

The following example will end the program and return to command mode.

END_PROGRAM equ
COLDSTART equ
WARMSTART equ
CMDMODE equ
mov
mov
int

00h ;END_PROGRAM function code
00h
Oth
02h

ah,END_PROGRAM ;END_PROGRAM function code
al ,CMDMODE :to enter command mode
1Ah

Operating System Functions 4-13

FIND_FILE

Find the first file to match a file name pattern. Wild card characters may be included in the file name.

Call with:

AH=16h FIND_FILE function code.

ES Segment address of the search file name.

BX Offset address of the search file name.

DS Segment address of the file information buffer.

DX Offset address of the file information buffer.
Returns:

AL=00h Successful FIND FILE.

=65h (101) Illegal parameter.
=66h (102) Directory does not exist.
=67h (103) File not found.

CX Segment address of the directory table entry for the matched file.
DX Offset address of the directory table entry for the matched file.
Notes:

The search file name must be uppercase.

There is one wild card character, “*”, which matches any character at that position and all subse-
quent positions in the file name.

If the search file name contains a directory specifier, only that directory will be searched. If it does
not contain a directory specifier, directories 0 - 4 will be searched in ascending order. The system
directory (directory 5) will not be searched by FI ND_ FILE.

If the file name is longer than 4 characters, only the first 4 characters will be used.

The file information buffer consists of 14 bytes formatted as follows:

Bytes Data

00h-06h | Name of first file found which

matches the search file name.
07h File type

08h - 0gh Start segment address of the file

0Ah -0Bh | Low word of the end-of-data address
0Ch High byte of the end-of-data address
0Dh NUL (00h)

4-14 Operating System Functions

...FIND_FILE

File names are of the form “d : name” where “d” is the directory number and “name” is the 1 -
4 byte file name terminated by a null (00h).

Related functions:
FIND NEXT

Example:

The following example will search for the first file which matches a specific file name. It is part of the
example included with the FIND_NEXT function. Since the code contains a scratch buffer and the
file information buffer, it will not work in ROM.

FIND FILE equ 16h ;FIND_FILE function code
mov ah,FIND_FILE ;FIND_FILE function code
push cs ;ES:BX address of scratch buffer
pop es
mov bx,offset buffer
push cs ;DS:DX address of file info buffer
pop ds
mov dx,offset fbuffer
int 1Ah ;find the first file
call errchk ;check for error
buffer db BUFSIZ+1 dup (?) ;read buffer
;must be in RAM
fouffer db 14 dup (?) ;find filename dest buffer

;must be in RAM

Operating System Functions 4-15

FIND_NEXT

Find the next file to match a file name pattern set up by a FIND _FILE function call.
Call with:

AH=17h FIND NEXT function code.
Returns:
AL=00h Successful FIND NEXT.
=67h (103) File not found.
CcX Segment address of the directory table entry for the matched file.
DX Offset address of the directory table entry for the matched file.
Notes:

® The format of the file information buffer is the same as that of the FIND FILE function.
m The FIND FILE function must be executed before FIND NEXT.
= FIND NEXT will return data in the area specified by the last FIND FILE function call.

Cautions:

m FIND NEXT will search only in the directory in which FIND FILE found the first matching
file name.

Related functions:
FIND FILE

Example:

The following example will prompt for a file name and use FIND_FILE and FIND NEXT to find
and display all the files which match that file name. Since the code contains a scratch buffer and the
file information buffer, it will not work in ROM,

GET_CHAR equ 01h JGET_CHAR function code
ECHO equ 00h
NOECHO equ 01h
GET_LINE equ 02h ;GET_LINE function code
PUT_LINE equ O4h sPUT_LINE function code
FIND_FILE equ 16h ;FIND_FILE function code
FIND_NEXT equ 17h ;FIND_NEXT function code
DISPLAY_ERROR equ 18h ;DISPLAY_ERROR function code
BUFSIZ equ 80
code segment

assume cs:code,ds:code
prog proc far
start:

dw prgmend-start

dw 0006h ;offset of internal entry point

db 0100h ;version 1.00

push cs ;set DS to CS

pop ds

4-16 Operating System Functions

...FIND_NEXT

dots01:

nodot:

loop01:

pause01:

exit:

prog

; display "DIR> " prompt

mov bx,offset DIR

call puts

; get name of file

mov bx,offset buffer

mov al,BUFSIZ

catl gets

call errchk

: null out the terminating CR

sub dh,dh ;clear out dh

mov di,dx ;and put it into di

mov byte ptr buffer{di],00h;null out last byte

: go through buffer and substitute ":' for ".V

sub dx,dx :clear out dx

mov di,dx ;and put it into di

mov al,byte ptr buffer[dil;get the next character
cmp al,n." ;is it a dot?

jne nodot :no, dontt swap it

mov al, " ;get a ":"

mov byte ptr bufferl[dil,al;and save it

inc di ;increment di

or al,al ;is al nutl?

jne dots01 ;no, check next byte

mov ah,FIND_FILE ;FIND_FILE function code
push cs ;ES:BX address of buffer
pop es

mov bx,offset buffer

mov dx,offset fbuffer ;DS:DX address of file info buffer
int 1Ah ;find the first file

call errchk ;check for error

mov byte ptr lent,5 ;reset display line counter
dec byte ptr lent ; decrement line counter
jne pause01 ;not 0 -- don't pause

mov ah,GET_CHAR ;GET_CHAR function code
mov al ,NOECHO ;don't echo

int 1Ah ;get a character

mov byte ptr lent,é4 ;reset the counter (less this line)
cmp dL, " ;was it a dot?

jne pause01 ;no -- leave the counter as is
mov byte ptr lent,1 ;only 1 line

; display file name from fbuffer

mov bx,offset CRLF ;display a cr/lf

call puts

mov bx,offset fbuffer

call puts

mov ah, FIND_NEXT ;FIND_NEXT function code
int 1Ah ;find the next file

or atl,al ;returned a 0?

je Loop01 :yes -- display the file (if found)
mov al,GET_CHAR ;GET_CHAR function code
mov ah,NOECHO ;don't echo

int 1Ah ;wait for a key

ret ;if no more files, done.
endp

Operating System Functions 4-17

...FIND_NEXT

]
puts proc
mov
push
pop
int
ret
puts endp
gets proc
mov
push
pop
int
ret
gets endp
errchk proc
or
je
mov
int
add
jmp
errret:
ret
errchk endp
lent db
DIR db
CRLF db
buffer db
fbuffer db
prgmend:
code ends
end

near
ah,PUT_LINE
cSs

es

1Ah

near
ah,GET_LINE
cs

es

1Ah

near

al,al

errret
ah,DISPLAY_ERROR
1Ah

sp,2

exit

?

“DIR> ", OFh,00N
0Dh, 0Ah, 00h
BUFSIZ2+1 dup (?)

14 dup (?)

4-18 Operating System Functions

;PUT_LINE function code
;segment address of buffer to ES

;display it

sGET_LINE function code
;CS to ES

;get a line

;return code 0?

;yes -- just return
;DISPLAY_ERROR function code
;display the error message

;pull off the near return address
;terminate program

;prompt, alpha mode

;er/Lf

;read buffer

;must be in RAM

;find filename dest buffer
;must be in RAM

GET_CHAR

Get one character from the key buffer and optionally echo it to the display.

Call with:
AH=01h GET CHAR function code.
AL=00h Echo the character being read.
>00h Do not echo the character being read.
Returns:
AL=00h Successful read.
=76h (118) Timeout. A timeout occurred before a key was pressed.

=77h (119) Power switch pressed.
=C8h (200) Low battery.
DL Character read from the key buffer and optionally echoed to the display.

Notes:
m When the key buffer is empty, GET CHAR will wait for a key.
m The key cannot be read.

m The keys ,[=], and , return the codes 18h, 7Fh, and ODh respectively. They are
never echoed to the display, nor are any control codes (00h-1Fh) or user-defined characters (80h-
8Fh), the first 16 of which correspond to user-defined keys.

m The following behavior only applies when echoing to the display: When a character is echoed to
the last column of a line in the display, the cursor will remain over that character. The display will
be scrolled, if necessary, and the cursor moved to the first column of the next line before echoing
the next character.

Related functions:
BUFFER_STATUS, GET_LINE

Operating System Functions 4-19

...GET_CHAR

Example:

The following example will wait for the key to be pressed.

GET_CHAR equ 0th
ECHO equ 0Ch
NOECHO equ 01h
entwait:
mov ah,GET_CHAR
mov al ,NOECHO
int 1Ah
or al,al
jne rd_err
cmp dl,0Dh
jne entwait

4-20 Operating System Functions

;GET_CHAR function code

;GET_CHAR function code

;don't echo the character read
;read a character

;read error (al <> 0)?

;yes -- process read error

; [ENTER] key?

;no -- wait for another key

GET_LINE

Get a character string from the keyboard buffer and echo it to the display.

Call with:
AH=02h GET _LINE function code.
AL Maximum number of bytes to read (1 - 255 bytes).
ES Segment address of the read buffer.
BX Offset address of the read buffer.
Returns:
AL=00h Successful read.
=76h (118) Timeout. A timeout occurred before a key was pressed.

=77h (119) Power switch pressed.
=C8h (200) Low battery.
DL Number of characters read from keyboard buffer.

Notes:
m If the key buffer does not contain an , GET LINE will wait until is pressed.

m The terminating will not be echoed to the display. The cursor will be left at the column to
the right of the character before the .

. m The buffer must contain enough space for the maximum number of bytes to read (register AL), as
well as one byte for the terminating .

m The character count returned in DL does not include the terminating .
m The buffer returned by GET LINE will contain the terminating (ODh).

® When AL characters have been read and [ENTER] has not been pressed, subsequent characters will
be discarded, and a low beep issued, until [ENTER] is pressed.

m GET LINE processes [~]and separately. If there are any characters in the buffer, [—] will
remove the last character from the input buffer, erase the character from the display and move the
display cursor back one character position. will clear the entire input buffer and erase the
entire input line from the display.

®m When a character is displayed in the last column of a line in the display, the cursor will remain over
that character. The display will be scrolled, if necessary, and the cursor move to the first column of
the next line before displaying the next character.

= If timeout, power switch, or low battery interrupts occur, the buffer will contain any characters
already entered. The DL register will contain the number of characters actually read.

Cautions:

m GET_LINE will not check for wraparound of the read buffer’s offset address.

' Operating System Functions 4-21

...GET_LINE

Related functions:
BUFFER_STATUS, GET_CHAR

Example:

The following example will read in a 20-character string. Since the code contains the read buffer for
GET_LINE, it will not work in ROM.

GET_LINE equ 02h ;GET_LINE function code
BUFSIZ equ 20
buffer db BUFSIZ+1 dup (?2) ;must be in RAM
mov ah,GET_LINE ;GET_LINE function code
mov al ,BUFSIZ ;size of buffer
push ds ;set ES to DS
pop es
mov bx,offset buffer ;buffer offset to BX
int 1Ah ;read string
or al,al ;read error (al <> 0)?
jne rd_err ;yes -- process read error

4-22 Operating System Functions

GET_MEM

Allocate a scratch area of memory.

Call with:
AH=0Bh GET_MEM function code.
AL Channel number if the request is being made by a handler.
=00h If the request is not being made by a handler.
BX Size of the requested area in paragraphs.
Returns:
AL=00h Successful allocation.

=65h (101) Illegal parameter. Invalid channel number.
=6Eh (110) Access restricted. No scratch areas available or main memory not initialized.

=71h (113) No room for scratch area.

CX Segment address of scratch area.
DX Length in paragraphs of scratch area.
Notes:

= A maximum of 34 scratch areas may be allocated.
m Scratch memory is automatically initialized to nulls (00h).

= Handlers should set AL to the channel number to which they are open, or to zero, depending on
whether or not they want the operating system to pass this scratch area address to all their routines.
See the "User-Defined Handlers" chapter for details.

Cautions:
m This function may not be called from the POWERON routine of a handler.
Related functions:
REL_MEM

Operating System Functions 4-23

...GET_MEM

Example:

The following example will allocate a 10-paragraph (160-byte) scratch area.

GET_MEM equ 0Bh ;GET_MEM function code
SCRSIZ equ 0Ah ;scratch area size (10 paragraphs)
mov ah,GET_MEM ;GET_MEM function code
mov al,00h scallied by an application (not a handler)
mov bx,SCRS1Z ;size of scratch area
int 1Ah
or al,al ;error?
jne get_mem err ;yes -- handle it
; CX=segment address of scratch area initialized to nulls
; DX=length of allocated scratch area (0Ah)

4-24 Operating System Functions

MEM_CONFIG

Get the current memory configuration of the HP-94.

MEM_CONFIG returns 5 bytes of configuration information. Bytcs 0 - 4 describe the contents of
directories 0 - 4 respectively as follows.

Value Meanin
Hex | ASCII 9
00h NUL No memory installed
4Dh M Main memory
41h A 40K RAM card
4Fh o) ROM/EPROM card
Call with:
AH=0Dh MEM_CONFIG function code.
ES Segment address of the 5-byte configuration buffer.
BX Offset address of the 5-byte configuration buffer.
Returns:
AL Number of directories with memory installed. This value is the same as the
number of bytes in the configuration buffer which contain a non-zero value.
Related functions:
ROOM

Operating System Functions 4-25

...MEM_CONFIG

Example:

The following program will display the number of installed directories followed by the type of each
directory. Since the code contains the configuration buffer, it will not work in ROM.

MEM_CONF1G
PUT_CHAR
END_PROGRAM
CMDMODE
code

mem
start:

mem01:

notzero:

prgmend:

code

equ
equ
equ
equ
segment
assume
proc

dw
dw
dw

endp
ends
end

0Dh
03h
00h
02h

cs:code,ds:code
far

prgmend-start
0006h
0100h

ax,cs
ds, ax

es,ax

bx,offset membuf
ah,MEM_CONFIG
1Ah

al ’ IIOII
ah,PUT_CHAR

1Ah

al'u:u
ah,PUT_CHAR

1Ah

ax,of fset membuf
di,ax

cX,5

al,byte ptr [di]
al,00h

notzero

al'll.ll

ah,03h

1Ah

di

memQ1
ah,END_PROGRAM
al,CMDMODE

1Ah

5 dup (?)

4-26 Operating System Functions

sMEM_CONFIG function code
sPUT_CHAR function code
;END_PROGRAM function code

;offset of internal entry point
;version 1.00

;set DS to CS

;set ES to segment addr of membuf
;set BX to offset addr of membuf
;MEM_CONFIG function code

;get it

sturn al into a number

;PUT_CHAR function code

;display it

;display a ":»

;set DI to offset addr of membuf
;number of bytes to check

;get it

;is it OOh?

;no, leave it alone
;change it to a m-»

;PUT_CHAR function code
;display it

;increment offset (DI)
;and do the next character
;enter command mode

;must be in RAM

OPEN

Open a data file or handler and assign it to a specific channel.

Call with:

AH=0Fh OPEN function code.

AL Channel number to open.

ES Segment address of file or handler name string to open.

BX Offset address of file or handler name string to open.

DS Segment address of parameter area (built-in serial port handler only).

DX Offset address of parameter area (built-in serial port handler only).
Returns:

AL=00h Successful open.

=65h (101) Illegal parameter.

=66h (102) Directory does not exist.

=67h (103) File or handler not found.

=6Ah (106) Channel already open.

=6Bh (107) File or handler already open.

=6Eh (110) Access restricted. The specified file is not a data file or handler.
. CX Segment address of the data file or handler.

Notes:

m The OPEN function will search for the file (type D) or handler (type H) with the specified name in
directories 0 - 4 in ascending order, or only in a specified directory (e.g., "2 : ABCD").

m Channel 0 (keyboard for read operations, display for write operations) is always open. If channel 0
is opened, AL will always return zero. The handler name string is ignored when opening channel 0.

m When opening channels 1 - 4, if the handler is not found, or if a null string was specified as the
handler name, the default handler will be used. For channel 1, the default handler is the built-in
serial port handler. For channels 2 - 4, there is no built-in handler, and the OPEN function will
report error 65h.

Once the handler is found (either user-defined or built-in), the OPEN function will transfer control
to the OPEN routine of the handler. The handler will then become associated with the device, and
the CLOSE, READ, and WRITE functions will transfer control to the CLOSE, READ, and
WRITE routines of the handler. The same registers passed to the OPEN function will be passed
to the user-defined handler OPEN routine with the following exceptions:

BP Points to the offset on the stack where all the caller’s registers are saved and where all
returned values except AL must be put.

DI Destroyed.
Refer to the "User-Defined Handlers" chapter for details.

‘ Operating System Functions 4-27

...OPEN

m If the name string is longer than 4 characters, only the first 4 characters (plus a leading directory
number and colon, if any) will be used by the OPEN function. The entire handler name string
(pointed to by ES : BX) will be passed to the OPEN routine of user-defined handlers. This name
string can include a high- and low-level handler pair (such as "HNWN ; HNBC"), or in-line param-
eters if the handler allows them (e.g., "RSHN 9600, 7ES").

m Alphabetic characters in the name string must be uppercase.

® The file or handler name part of the name string must be terminated by either a null (00h) or a
space (20h).

= The wild card character “*” is not allowed in the file or handler name part of the name string,

m The parameter area address (DS : DX) is only used when the built-in serial port handler is opened.
The meanings of the parameters are defined in the "Serial Port" chapter. Refer to the "User-

Defined Handlers" chapter for a discussion of passing configuration parameters to user-defined
handlers using the handler information table.

Cautions:
= This function may not be called from the POWERON routine of a handler.
Related functions:
CLOSE, CREATE, DELETE, READ, SEEK, WRITE

Example:

The following example will open the serial port (channel 1) with the built-in handler.

OPEN equ OEh ;OPEN function code
spmode db 1 ;9600 baud
db 00001101b ;XON/XOFF, 7 bits, even parity,
;1 stop, null strip disabled
db 0Dh ;terminate on CR
nutl db 00h ;the null string
mov ah,OPEN ;OPEN function code
mov al,1t ;serial port channel
push cs ;use default handler (ES:BX = null string)
pop es
mov bx,offset null
push cs ;DS:DX = port config buffer
pop ds
mov dx,offset spmode
int 1Ah ;open the port
or al,al ;error?
jne open_err ;yes -- process the error

4-28 Operating System Functions

PUT_CHAR

Display one character on the display and move the cursor one column to the right.

Call with:

AH=03h PUT_ CHAR function code.
AL Character to display.
Returns:
Nothing.
Notes:

m When a character is written to the last column of a line in the display, the cursor will remain over
that character. The display will be scrolled, if necessary, and the cursor moved to the first column
of the next line before writing the next character.

Cautions:

m While processing the display control character that homes the cursor and clears the screen (OCh),
interrupts are disabled for ~45 ms. This time may be important to serial and bar code port
handlers.

Related functions:
CURSOR, PUT_ LINE

Example:

The following example will turn on the backlight, change the keyboard into alpha mode and display a
prompt character.

PUT_CHAR equ 03h ;PUT_CHAR function code
ELON equ 1Eh
ELOFF equ 1Fh
ALPHMODE equ OFh
NUMMODE equ OEh
mov ah,PUT_CHAR ;PUT_CHAR function code
mov al ,ELON ;turn on backiight
int 1Ah
mov al ,ALPHMODE ;alpha mode keyboard
int 1Ah
mov al, "> ;prompt character
int 1Ah

Operating System Functions 4-29

PUT_LINE

Display a character string on the display.
Call with:
AH=04h PUT LINE function code.

ES Segment address of the write string,
BX Offset address of the write string.

" Returns:
Nothing,

Notes:

® The write string must be terminated with a null character (00h); the null will not be displayed. Any
other ASCII character, including display control characters, may be embedded in the string.

m When a character is written to the last column of a line in the display, the cursor will remain over
that character. The display will be scrolled, if necessary, and the cursor moved to the first column
of the next line before writing the next character.

Cautions:

= While processing the display control character that homes the cursor and clears the screen (0Ch),
interrupts are disabled for ~45 ms. This time may be important to serial and bar code port
handlers.

m PUT_LINE will not check for wraparound of the write buffer’s offset address.
Related functions:
CURSOR, PUT_CHAR

4-30 Operating System Functions

¢ ...PUT_LINE

Example:

The following program will display the message “Hello world”.

PUT_LINE equ 04h ;PUT_LINE function code
END_PROGRAM equ 00h ;END_PROGRAM function code
CMDMODE equ 02h
code segment
assume cs:code,ds:code
hiwortd proc far
start:
dw prgmend-start
dw 0006h ;offset of internal entry point
dw 0100h ;version 1.00
push cs ;set DS to CS
pop ds
mov ah,PUT_LINE ;PUT_LINE function code
push ds ;set ES to DS
pop es
mov bx,offset msg sbuffer offset to BX
int 1Ah ;write string to LCD
I mov ah ,END_PROGRAM ;enter command mode
mov al,CMDMODE
int 1Ah
prgmend:
hiworld endp
msg db ijel lo worlid",0Dh,0Ah,00h
code ends
end

Operating System Functions 4-31

READ

Read data from an open channel.

Call with:

AH=12h READ function code.

AL Channel number to read.

CX Number of bytes to read.

ES Segment address of read buffer.

BX Offset address of read buffer.
Returns:

AL=00h Successful read.

=65h (101) Illegal parameter.

=69h (105) Channel not open.

=73h (115) Short record detected.

=74h (116) * Terminate character detected.
=75h (117) End of data.

=76h (118) Timeout. A timeout occurred before the read was completed.
=77h (119)+ Power switch pressed.

=C8h (200)t Low battery.

=C%1(201)t Receive buffer overflow.

=CAh (202) * Parity error.

=CBh (203) * Overrun error.

=CCh (204) * Parity and overrun error.

=CDh (205) * Framing error.

=CEh (206) * Framing and parity error.

=CFh (207) * Framing and overrun error.

=DOh (208) * Framing, overrun and parity error.

cX The number of bytes actually read.

* Can only occur when reading from channels 1 - 4. Whether these errors occur for a user-defined handler depends on the
handler.

1 Can only occur when reading from channels 0 - 4. Whether these errors occur for a user-defined handler depends on the
handler.

4-32 Operating System Functions

...READ
|

Notes:

m When reading data from channels 1 - 4, READ will transfer control to the READ routine of the
user-defined handler specified when the channel was opened. The same registers passed to the
READ function will be passed to the user-defined handler READ routine with the following excep-
tions:

DS Set to the segment address of the scratch area allocated by the handler.

BP Points to the offset on the stack where all the caller’s registers are saved and where all
returned values except AL must be put.

DI Destroyed.
Refer to the "User-Defined Handlers" chapter for details.

m Timeout, power switch and low battery will cause reads from channels 0 - 4 to be aborted, but will
not interrupt reads from channels 5 - 15. Device 1/O will be halted by these conditions, but file
1/0O will always be completed (unless the reset switch is pressed or the machine turns off automati-
cally because of very low battery).

m When reading data from the keyboard (channel 0), no echoing to the display will occur. All keys
pressed (except will be returned, unlike the GET _CHAR and GET _LINE functions. The
number of bytes to read determines when READ will end, whether or not the key was
pressed.

m When reading data from the built-in serial port handler (channel 1), if a terminate character was
. specified when the channel was opened, READ will stop if the terminate character is received even
though the full read count has not been reached. The terminate character will be placed in the read

buffer, but it will not be included in the returned read length, and error 74h will be reported.

m When reading data from a file (channels 5 - 15), data is read from the current file access pointer
position. After the read is complete, the file access pointer is advanced by the size of the data read.

m Error 65h will occur if the number of bytes to read would cause the read buffer’s offset address to
wraparound.

Related functions:

CLOSE, CREATE, DELETE, OPEN, SEEK, WRITE

Cautions:
m This function may not be called from the POWERON routine of a handler.

m The number of bytes to read must not be greater than the actual read buffer length (although it can
be less).

. Operating System Functions 4-33

.--.READ

L]
Example:
The following example will read from a channel.

READ equ 12h ;READ function code
fread -- read a channel into a buffer

call with:

H

H al = channel #

; ¢x = number of bytes to read

H es = segment address of read buffer

; bx = offset address of read buffer

fread proc near
mov ah,READ ;READ function code
int 1Ah ;read the channel
or al,al ;set status for caller
ret

fread endp

4-34 Operating System Functions

REL_MEM

Release a scratch area obtained via GET MEM.

Call with:
AH=0Ch REL_MEM function code.
cX Segment address of scratch area to release.
Returns:
AL=00h Successful release.
=6Eh (110) Access restricted. No free blocks available.
=72h (114) Scratch area does not exist. Scratch area address does not correspond to a
currently allocated scratch area.
Cautions:

m This function may not be called from the POWERON routine of a handler.

Related functions:
GET_MEM

Example:

The following example will free a the scratch area addressed by the current extra data segment (ES).

REL_MEM

equ 0Bh ;REL_MEM function code

mov cx,es ;segment address of scratch area into cx
mov ah,REL_MEM ;REL_MEM function code

int 1Ah

or al,al ;error?

jne rel_mem_err :yes -- handle it

Operating System Functions 4-35

ROOM

Identify available room in a directory.

Call with:
AH=0Eh ROOM function code.
AL Directory number (0 - 4).
Returns:
AL=00h Successful request.

=65h (101) Illegal parameter. Invalid directory number.
=66h (102) Directory does not exist.

BX The available directory free space in paragraphs.

CcX Segment address of directory table.

DX Total memory in directory in paragraphs, not including directory table.
Notes:

Related functions:
MEM_ CONFIG

Example:

The following example will get the remaining space in main memory.

ROOM equ 0Dh ;ROOM function code
mov al,0 ;directory 0
mov ah, ROOM ;ROOM function code

int 1Ah

BX=available free space in paragraphs
CX=segment address of directory table
DX=total memory in directory 0 in paragraphs

@ 8 me we we w2

4-36 Operating System Functions

SEEK
@

Move the file access pointer of an open file, or get the current pointer position.

Call with:
AH=15h SEEK function code.
AL Channel number.
BL=00h Read the current file access pointer position.
=01h Seek relative to the start of the file.
=02h Set the file access pointer to EOD.
CX High byte of 24-bit seek offset — CH ignored (for BL.=00h or 01h).
DX Low word of 24-bit seek offset (for BLi=00h or 01h).
Returns:
AL=00h Successful seek.

=65h (101) Illegal parameter. This error will also occur for seeks on channels 0 - 4.
=69 (105) Channel not open.

CcX High byte of the current 24-bit file access pointer (CH always set to zero).
DX Low word of the current 24-bit file access pointer.
Notes:
. m Seeks past EOD will generate error 65h.

m The 24-bit seek offset and file access pointer are relative to the start of the file. The first byte of
the file has a seek offset and file access pointer position of 0.

w The file access pointer is set to 0 when the file is opened.

Cautions:
m This function may not be called from the POWERON routine of a handler.
Related functions:
CLOSE, CREATE, DELETE, OPEN, READ, WRITE

‘ Operating System Functions 4-37

...SEEK

Example:

The following example will seek to EOD to get the current true file size.

SEEK equ
channel db

int
or
jne

’
’
7
]

4-38 Operating System Functions

15h
5

ah, SEEK
al,channel
bl,02h

1Ah

al,al
seek_err

;SEEK function code
;channel to seek on

;channel to seek on
;SEEK to EOD
;SEEK...

;SEEK error?

;yes, process it.

CX,DX now contain the exact number of bytes in the file,
regardless of padding to the nearest paragraph boundary.

SET_INTR

Two system interrupts may put under program control — the power switch/system timeout and low
battery interrupt. In addition, the power switch interrupt may be disabled or enabled.

Call with:

AH=0Ah SET_INTR function code.
AL=00h Define a power switch/system timeout interrupt routine.
=01h Define a low battery interrupt routine.
=02h Disable the power switch interrupt.
>02h Enable the power switch interrupt.
BX The data segment to be used for the interrupt routine. This value will be
loaded into DS before the interrupt routine is activated (for AL=00h or 01h).
CX Segment address of interrupt routine (for AL=00h or 01h).
DX Offset address of interrupt routine (for AL=00h or 01h).
Returns:
Nothing.
Notes:

m An interrupt can be restored to its default behavior by calling SET_INTR with both CX=00h and
DX =00h.

m When the power switch/timeout interrupt routine is called, the AL register will be set to 76h (118)
if a timeout occurred, or 77h (119) if the power switch was pressed.

Cautions:

m The offset address specified in DX must be non-zero for the operating system to properly interpret
the existence of user-defined interrupt routines.

Related functions:

None.

Operating System Functions 4-39

...SET_INTR

Example:

The following example will set up a power switch interrupt routine.

SET_INTR equ OAh ;SET_INTR function code
mov ax,ds ;put DS in BX
mov bx, ax
mov ax,cs ;put CS in CX
mov cX,ax
mov dx,offset psint ;put routine offset into DX
mov ah,SET_INTR sSET_INTR function code
mov al,00h ;set power switch interrupt routine
int 1Ah ;set it
psint proc far power switch interrupt routine

H
; interrupt routine for
; power switch goes here

ret ;return from interrupt
psint endp

4-30 Operating System Functions

‘ TIMEOUT

Set the display backlight timeout and system timeout intervals. The timeouts may be as short as 1
second, as long as 1800 seconds, or disabled.

Call with:

AH=0% TIMEOUT function code.

AL=00h Set the display backlight timeout interval.

=01h Set the system timeout interval.

BX Number of seconds to set timeout to (1 - 1800). A value of 0 may be used to
disable the timeout completely, in which case the backlight will never turn off
or the system will never timeout (turn itself off).

Returns:

Nothing.

Notes:

m The initial value at cold start for both timeout intervals is 120 seconds.
m If AL is greater then 01h, no action is performed.
m If BX is greater than 1800 (0708h), no action is performed.

m Setting the display backlight timeout only sets the interval — it does not turn on the backlight. The
. backlight is turned on programmatically by writing the display control character 1Eh to the display.

Cautions:

m Leaving the backlight on continuously or for long periods of time (greater than 5 minutes) will
reduce the life of the backlight.

m If the backlight is on and a new timeout interval is set, the backlight must be turned off (either pro-
grammatically or by timeout) before the new timeout interval will be in effect.

Related functions:

None.

. Operating System Functions 4-41

...TIMEOUT

Example:

The following example will set the display backlight timeout interval to 3 minutes, and disable the sys-

tem timeout.

TIMEOUT equ 0%h

mov ah, TIMEOUT

mov al,00h
mov dx, 180
int 1Ah
mov al,01h
mov dx, 00h
int 1Ah

4-42 Operating System Functions

;TIMEOUT function code

;TIMEOUT function code
;display backlight timeout
;3 minutes (180 seconds)
;set it

;system timeout interval
;disable timeout

;set it

TIME_DATE

Read or set the time and date of the real-time clock. The time and date is read into or set from a 17-
byte fixed-length buffer. The format of the buffer is:

MM/DD/YY,hh:mm:ss
Symbol | Value | Range | Symbol Value Range
MM Month 01-12 hh Hour 00-23
DD Date 01-31 mm Minute 00-59
YY Year 00-99 ss Second 00-59
Call with:
AH=08h TIME_DATE function code.
AL=00h Set time and date.
=01h Read time and date.
ES Segment address of the time and date buffer.
BX Offset address of the time and date buffer.
Returns:
. Nothing.
Notes:

s When AL is greater than 01h, no action is performed.

Cautions:

® The validity of the time and date is not checked. If times and dates are set outside the above ranges,
the clock wil be set to unpredictable values.

Related functions:

None.

4-43

Operating System Functions

...TIME_DATE

Example:

The following program will read the current time and date and write it to the display. Since the code
contains the read buffer for TIME_DATE, it will not work in ROM.

TIME_DATE
PUT_LINE
END_PROGRAM
CMDMODE
TDBUFLEN
code

mem
start:

buffer
prgmend:

code

int

int

08h
04h
00h
02h
17

cs:code,ds:code
far

prgmend-start
0006h
0100h

ax,cs
ds, ax

ah, TIME_DATE
al,01h

ds

es

bx,offset buffer
1Ah

ah,PUT_LINE

1Ah

ah,END_PROGRAM
al , CMDMODE
1Ah

TDBUFLEN dup (?)
0Dh, 0Ah, 0Ch

4-44 Operating System Functions

;TIME_DATE function code
;PUT_LINE function code
;END_PROGRAM function code

;offset of internal entry point
;version 1.00

;set DS to CS
s TIME_DATE function code

;get date
;set ES to DS

;get the time and date
;PUT_LINE function code
;display it

;enter command mode

;must be in RAM

WRITE

Write data to an open channel.

Call with:
AH=13h WRITE function code.
AL Channel number to write.
CX Number of bytes to write.
ES Segment address of write buffer.
BX Offset address of write buffer.
Returns:
AL=00h Successful write.
=65h (101) Illegal parameter.
=69h (105) Channel not open.
=6Dh (109) Read-only access.
=70h (112) No room to expand file.
=76h (118) * Timeout. A timeout occurred before the write was completed.
=77h (119) * Power switch pressed.
=C8h (200) * Low battery.
. =DAh (218) * Lost connection while transmitting. The Clear to Send (CTS) control line was
lowered.
cX The number of bytes actually written.
Notes:

m When writing data to channels 1 - 4, WRITE will transfer control to the WRITE routine of the
user-defined handler specified when the channel was opened. The same registers passed to the
WRITE function will be passed to the user-defined handler WRITE routine with the following

exceptions:

DS Set to the segment address of the scratch area allocated by the handler.

BP Points to the offset on the stack where all the caller’s registers are saved and where all
returned values except AL must be put.

DI Destroyed.
Refer to the "User-Defined Handlers" chapter for details.

* Can only occur when writing to channels 1 - 4. Whether these errors occur for a user-defined handler depends on the

handler.

Operating System Functions 4-45

---WRITE

= Timeout, power switch and low battery will cause writes to channels 1 - 4 to be aborted, but will not
interrupt writes to channels S - 15. Device I/O will be halted by these conditions, but file 1/O will
always be completed (unless the reset switch is pressed or the machine turns off automatically
because of very low battery).

m When writing data to the built-in serial port handler (channel 1), if a terminate character was
specified, the terminate character will be written after writing the data in the write buffer.

m When writing data to a file (channels 5 - 15), data is written from the current file access pointer
position. After the write is complete, the file access pointer is advanced by the size of the buffer
written.

m A write of 0 bytes to a data file will cause the EOD to be set equal to the current file access
pointer. This has the effect of truncating the data in the file to the current pointer position, even
though the file size will remain unchanged.

m Error 65h will occur if the number of bytes to write would cause the write buffer’s offset address to
wraparound.

Cautions:
m This function may not be called from the POWERON routine of a handler.

m The number of bytes to write must not be greater than the actual write buffer length (although it
can be less).

Related functions:
CLOSE, CREATE, DELETE, OPEN, READ, SEEK

Example:

The following program will append one data file to another. If the destination file does not exist, it will
be created. The program illustrates the use of the OPEN, CLOSE, CREATE, READ, WRITE and
SEEK functions. Since the code contains the buffer address and length, it will not work in ROM.

GET_LINE equ 02h sGET_LINE function code
PUT_CHAR equ 03h ;PUT_CHAR function code
PUT_LINE equ 04h sPUT_LINE function code
GET_MEM equ 08h ;GET_MEM function code
REL_MEM equ OCh sREL_MEM function code
OPEN equ OFh ;OPEN function code
CLOSE equ 10h ;CLOSE function code
CREATE equ 11h ;CREATE function code
READ equ 12h sREAD function code
WRITE equ 13h sWRITE function code
SEEK equ 15h ;SEEK function code
DISPLAY_ERROR equ 18h ;DISPLAY_ERROR function code
BUFSIZ equ 4 ;4 paragraphs
code segment

assume cs:code,ds:code
prog proc far
start:

dw prgmend-start

4-46 Operating System Functions

-..-WRITE

crbig:

crfile:

dw
dw

push
pop

0006h
0100h

cs
ds

; initialize storage

sub
mov

ax, ax
word ptr bufaddr,ax

; allocate buffer memory

mov
mov
call
call
mov
mov
shi
mov

push
pop
mov
call
call
call
mov
call
call

push
pop
mov

call
call
call

call
cmp

bx,BUFS1Z

al,0

alloc

errchk

word ptr bufaddr,cx
cl,é

dx,cl

word ptr buflen,dx

cs

es

bx,offset FROM
puts

gets

errchk

al,15

fopen

errchk

cs

es

bx,offset TO
puts

gets

errchk

ah, SEEK
al,15
bl,02h
1Ah

cX,CX
crbig
dx, 15
crbig
cl,4
dx,cl
cx,dx
dx, 1
crfile

cx,1000h
dx, 10h

ax,word ptr bufaddr
es,ax

bx, bx

fcreate

al,6Ch

;offset of internal entry point
;version 1.00

;set DS to CS

;clear AX
;and clear buffer address

;size of buffer to allocate

;not associated with a handler

;allocate memory

;call error check

;store away buffer address

;turn buffer size from paragraphs to bytes

;store away buffer length

;ES:BX address of "From" message

;channel number for input file
;open the file

;ES:BX address of “To" message

;SEEK function code

;infile channel

;seek to EOD

;seek to EOD to find file size
;(could also use FIND_FILE)

;is the file big (> 64k) (cx > 0)?
:yes -- use a default big size
;to round up # of paragraphs

;if we had a carry it is big file
;shift dx &4 bits right

;to turn from bytes to paragraphs
sinitial size allocation to dx
;size increment

;and create the file

:file is >= 10000h bytes (64K) long
;use a large increment

;segment address of buffer

;to ES

;offset address of buffer

;create the file if it does not exist
;file already exist?

Operating System Functions 4-47

---WRITE
. m

je nocrerr ;ignore the error
or al,al ;set status for caller
call errchk ;check for any other create errors

nocrerr:
sub bx, bx ;offset address of buffer

;(clobbered by CREATE)

mov al, 14 ;channel number for outfile
call fopen ;open the file
jnz errexit1 ;error -- close infile
mov ah, SEEK ;SEEK function code
mov al,15 ;channel number for infile
mov bl,01h ;seek absolute
sub €X,CX ;to start of file (000000h)
sub dx,dx
int 1Ah ;seek to start of infile
mov al,14 ;channel number for outfile
mov bl,02h ;seek to EOD
int 1Ah ;seek to EOD to append to outfile
push cs ;ES:BX address of CRLF
pop es
mov bx,offset CRLF
call puts

loop:
mov ax,word ptr bufaddr ;ES:BX buffer address
mov es,ax
sub bx, bx ;offset of buffer is O
mov cx,word ptr buflen ;buffer size
mov al,15 ;infile channel #
call fread ;read infile
cmp al,73h ;short record error?
je norderr ;not an error
cmp al,75h ;EOD?
je closefiles syes -- finish up
or al,al ;any other read error?
jnz errexit ;yes -- exit

norderr:
mov al, 14 ;outfile channel #
call furite ;write outfile (rest already set up)
inz errexit ;error? -- exit
mov ah,PUT_CHAR ;PUT_CHAR function code
mov at,n.»
int 1Ah ;display a #.n
jmp loop

closefiles:
sub al,al ;no error (al=0)

errexit: ;close both infile and outfile
push ax ;save error code
mov al,14 ;joutfile channel #
call fclose ;close the file (ignore error code)
pop ax ;restore error code

errexitl: ;only close infile
push ax ;save error code
mov al,15 ;infile channel #
call fclose ;close the file (ignore error code)
pop ax ;restore error code

dsperr:
or al,al ;error?
jz noerr ;jno -- don't display an error message
mov ah,DISPLAY_ERROR ;DISPLAY_ERROR function code

4-48 Operating System Functions

.--WRITE

noerr:

nofree:

prog

me we we we ws we

puts

puts

ets

@ % e “u we wu we we

okbuffer:

dot loop:

int 1Ah :display it

mov cx,word ptr bufaddr ;get segment address of buffer
or cX,CcX ;=0?

jz nofree ;yes -- no buffer to free

call free :free the buffer

ret ;exit program

endp

puts -- write a line to the LCD

call with:

es = segment address of string
bx = offset address of string
proc near
mov ah,PUT_LINE ;PUT_LINE function code
int 1Ah ;display it
ret
endp

gets -- Read a line from the keyboard into buffer.
Turn trailing CR into a NUL.
Turn '.!' into ':!

call with:

nothing.
proc near
mov ax,word ptr bufaddr ;get segment address of buffer
mov es,ax ;set ES to it
sub bx, bx ;offset address to buffer
mov ax,word ptr buflen ;size in bytes
or ah,ah ;bigger than 256?
jnz okbuffer ;no -- we will use the actual size
mov al,255
dec al ;leave room for the CR
mov ah,GET_LINE ;GET_LINE function code
int 1Ah :get string
or al,at :set status for catller
jnz getsret serror? -- return now
; save away registers
push ax
push cx
push dx
push di
sub dh,dh ;clear high byte of dh
add dx, bx ;address of last byte
mov di,dx ;length to index register
mov byte ptr es:[di],00h;null out CR
; change '.' to ':!
mov di, bx ;offset of string into offset register
mov ah,es: [di] ;get the next character
cmp ah, u.n ;is it a dot?
jne nodot ;no -- don't change it.

Operating System Functions 4-49

.--WRITE

|
mov ah,":n ;replace it with a %:»
mov es: [dil,ah
nodot:
inc di
or ah, ah ;is it a NUL (end of string)
jnz dotloop
; restore registers
pop di
pop dx
pop cx
pop ax
getsret:
or al,al ;set status for caller
ret
gets endp
errchk proc near
or al,al ;return code 0?
jnz err01 ;yes -- display an error
ret ;no -- just return
err01:
add sp,2 ;pull off the near return address
jmp dsperr ;display the error & exit program
errchk endp

alloc -- allocate a scratch area

call with:

M S Se %o ms ws w0

al = channel number for handler, 0 for others
bx = size of area in paragraphs
Lloc proc near

mov ah,GET_MEM ;GET_MEM function code

int 1Ah ;allocate scratch area

or al,al ;set status for caller

ret

altoc endp

free -- free a scratch area

H

H

; call with:

H ¢cx = segment address of scratch area

I

free proc near
mov ah,REL_MEM sREL_MEM function code
int 1Ah ;release scratch area
or al,al ;set status for caller
ret

free endp

fopen -- open a file

call with:

’

H al = channel #

; es = segment address of file name buffer
; bx = offset address of file name buffer
; dx = offset address of parameter area

; (built-in serial port only)

’

fopen proc near

4-50 Operating System Functions

...WRITE

. mov ah,OPEN ;OPEN function code

int 1Ah ;open the file
or al,al ;set status for caller
ret

fopen endp

fclose -- close an open file

call with:
al = channel #

close proc near
mov ah,CLOSE ;CLOSE function code
int 1Ah ;close the file
or al,al ;set status for caller
ret

fclose endp

fcreate -- create a file

call with:

H es = segment address of file name buffer

; bx = offset address of file name buffer

H cx = initial size in paragraphs

: dx = size increment in paragraphs

fcreate proc near
mov ah,CREATE :CREATE function code
int 1Ah ;create the file
or al,al ;set status for caller
ret

. fcreate endp

; fread -- read a channel into a buffer

H call with:

; al = channel #

H cx = number of bytes to read

; es = segment address of read buffer

; bx = offset address of read buffer

fread proc near
mov ah,READ ;READ function code
int 1Ah :read the channel
or al,al :set status for caller
ret

fread endp

furite -- write a buffer into a channel

call with:

I’

1

H

; al = channel #

; cx = number of bytes to write

; es = segment address of write buffer

; bx = offset address of write buffer

’

furite proc near
mov ah,WRITE :WRITE function code
int 1Ah ;write the buffer
or al,al ;set status for caller

. Operating System Functions 4-51

...WRITE

]
ret
furite endp
FROM db “From: ",0Ffh,00h
T0 db 0Dh,0Ah,"To: ",0Fh,00h
CRLF db ODh, 0Ah, 00h
bufaddr dw ? ;must be in RAM
buflen dw ? ;must be in RAM
prgmend:
code ends
end

4-52 Operating System Functions

® 5

Hardware Control and Status Registers

Contents

|
Chapter 5
5-2

5-3
5-5

Hardware Control and Status Registers

Main Control and Status Registers
Interrupt Control and Status Registers
Copies of Write-Only Control Registers

S

Hardware Control and Status Registers

The HP-94 has control and status registers that allow a program to control the various hardware dev-
ices and determine their status. The control and status registers are in the CPU 1/O space, so pro-
grams interact with them using the IN and OUT instructions. The details of these registers are dis-
cussed in the appropriate device chapters. The table below summarizes the 1/0 addresses for all the
control and status registers.

Table 5-1. 1/0 Addresses for Control and Status Registers

12h Right LCD Driver Control
12h Right LCD Driver Status
13h Right LCD Driver Data

14h Left LCD Driver Control

1/0 Register Read/
Address Name Write
00h interrupt Control w
00h Interrupt Status R
0th Interrupt Clear w
0th End of Interrupt R
02h System Timer Data R/W
03h System Timer Control W
04h Bar Code Timer Data (lower 8 bits) R/W
05h Bar Code Timer Data (upper 4 bits) R/W
06h Bar Code Timer Control w
07h Bar Code Timer Value Capture w
08h Bar Code Timer Clear w
0Ah Baud Rate Clock Value w
0Bh Main Control W
0Bh Main Status R
0Ch Real-Time Clock Control w
oCh Real-Time Clock Status/Data R
0Eh Keyboard Control w
OEh Keyboard Status R
10h Serial Port Data R/W
11h Serial Port Control w
11h Serial Port Status R
W
R
R/W
W
R
R/W
W

14h Left LCD Driver Status
15h Left LCD Driver Data
1Bh Power Control

Hardware Control and Status Registers 5-1

Two primary control registers are particularly important to programs: the main control register (0Bh) ;
and the interrupt control register (00h), ‘

L
Main Control and Status Registers

The main control and status registers are at I/O address 0Bh. The uses of these registers to control
specific hardware devices and determine their status are discussed in the appropriate device chapters.
All the uses of these registers are summarized below.

7 6 5 4 3 2 1 0

X[X]|X

LTJ_ [11: Low Tone

Beeper Control | 01: High Tone
| 00: Off

Serial Port [1: Enable
Power Control | O Disable
Bar Code Port | 1: Enable
Power Control i 0: Disable

Bar Code Port 1: Enable
Transition Control | 0: Disable

X = don't care

Figure 5-1. Main Control Register (/0 Address 0Bh, Write)

5-2 Hardware Control and Status Registers

1: Light
0: Dark

L Bar Code Port Status {

1: Not Detected

Carrier Detect Status [0: Detected

Main Memory 1: Voltage OK
Backup Battery Status | 0: Low Voltage

Memory Board or RAM Card | 1: Voltage OK
Backup Battery Status 0: Low Voltage

1: Voltage OK
0: Low Voltage

Main Battery Status [

X = ignore

Figure 5-2. Main Status Register (1/O Address 0Bh, Read)

B
Interrupt Control and Status Registers

The interrupt control and status registers are at I/O address 00h. The uses of these registers to enable
specific hardware interrupts and determine which interrupts occurred are discussed in the "Interrupt
Controller” chapter. All the uses of these registers are summarized below.

Hardware Control and Status Registers 5-3

1: Enable

. System Timer Interrupt [0: Disable

. 1: Enable
Bar Code Timer Interrupt |:0: Disable
Bar Code Port 1: Enable
Transition Interrupt | 0: Disable

Serial Port Data 1: Enable
Received Interrupt | 0: Disable

Low Main Battery | 1: Enable
Voltage Interrupt 0: Disable

1: Enable
0: Disable

Power Switch Interrupt [

1: Enable
0: Disable

Reserved Interrupt 1 [

1: Enable
0: Disable

Reserved Interrupt 2 {

Figure 5-3. Interrupt Control Register (1/O Address 00h, Write)

5-4 Hardware Control and Status Registers

1: Interrupted
0: Did Not Interrupt

L System Timer Interrupt 1i

1: Interrupted

Bar Code Timer Interrupt [0: Did Not interrupt

Bar Code Port 1: Interrupted
Transition Interrupt | 0: Did Not Interrupt

Serial Port Data 1: Interrupted
Received Interrupt | 0: Did Not Interrupt

Low Main Battery | 1: Interrupted
Voltage Interrupt 0: Did Not Interrupt

1: Interrupted
0: Did Not Interrupt

Power Switch Interrupt [

1: Interrupted
0: Did Not Interrupt

Reserved Interrupt 1 [

1: Interrupted
0: Did Not Interrupt

Reserved Interrupt 2 [

Figure 5-4. Interrupt Status Register (1/O Address 00h, Read)

-
Copies of Write-Only Control Registers

Control of the HP-94 1/0O devices and interrupts is accomplished by using two primary control regis-
ters: the main control register and the interrupt control register. These are both write-only as far as
controlling the devices and interrupts is concerned, and reading them back yields different results.
Reading the main control register obtains other hardware status, and reading the interrupt control
register indicates which interrupt occurred.

To allow the operating system and assembly language programs to know what status was set using
these two registers, the operating system writes a copy of the register values to two locations in the
operating system scratch space. When hardware or interrupt status is changed, the operating system
uses the following procedure to ensure that hardware devices or interrupts unaffected by the change
remain in their current state:

m Read the copy of the register being changed.

m Change the bits needed to cause the status to change.
m Write the updated value back to its original location.
= Output the updated value to the control register.

When a program uses the operating system functions and utility routines, these copies will be updated
automatically. If a program changes the device or interrupt status independent of the operating system,

Hardware Control and Status Registers 5-5

it is the program’s responsibility to mimic the operating system action. That is, the program must
make the change correctly while preserving the state of unaffected devices, and must update the copies
of the control registers for use by the operating system and other programs.

The status of these registers at cold and warm start is shown below. Refer to appendix L for informa-
tion about the utility subroutines for reading and saving copies of the control registers.

Table 5-2. Copies of Primary Control Registers

Control 1/0 Initial Meaning of Utility
Register Name | Address | Value Initial Value Subroutines
Main Control 0Bh 00h Beeper off, serial { READCTRL.ASM

port power off, bar | SETCTRL.ASM
code port power off,
bar code port transi-
tions disabled

Interrupt Control 00h 31h System timer, low | READINTR.ASM
battery, and power | SETINTR.ASM
switch interrupts
enabled

5-6

Hardware Control and Status Registers

CPU

6

CPU

The HP-94 CPU is the NEC uPD70108 (V20) microprocessor. This is a CMOS microprocessor that is
compatible with the Intel 8088 and provides a standby mode for reduced power consumption. Pro-
grams written for the 8088 can be run on the V20 with no modifications.

The V20 provides a superset of the 8088 instruction set. Some 8088 instructions have been enhanced,
and new instructions have been added. All the changes are described in the CPU data sheet in the
"Hardware Specifications”. The enhancements and additions are only available if NEC assembly
language development tools are used. Contact NEC for information on these if using the V20 features
is important to your applications.

The HP-94 CPU runs at an operating frequency of 3.6864 MHz, which is 0.27 us/clock cycle. Note,
however, that the V20 instruction timing is different than the 8088 instruction timing. The V20 timing
should be used whenever determining the number of clock cycles for specific operations. The instruc-
tion timing is shown in the CPU data sheet using NEC mnemonics. These are similar but not identical
to 8088 mnemonics, as shown in the next table.

CPU 6-1

Table 6-1. Intel 8088 and NEC V20 Instruction Mnemonics

intel NEC intel NEC intel NEC Intel NEC

8088 V20 8088 V20 8088 V20 8088 V20
AAA ADJBA JA BH Jz BE.BZ REPE REPE
AAD CvIDB JAE BNC,BNL || LAHF MOV REPZ REPZ
AAM CVTBD JB BC,BL LDS MOV REPNE REPNE
AAS ADJBS JBE BNH LEA LDEA REPNZ REPNZ
ADC ADDC JC BC,BL LES MOV RET RET
ADD ADD Jexz BCWZ LOCK BUSLOCK || ROL ROL
AND AND JE BE,BZ LODS LDM ROR ROR
CALL CALL JG BGT LODSB LDM SAHF MOV
CBW CVTBW JGE BGE LODSW LDM SAL SHL
CLC CLR1 JL BLT LOOP DBNZ SAR SHRA
CLD CLR1 JLE BLE LOOPE DBNZE SBB SUBC
cu DI JMP BR LOOPNE DBNZNE SCAS CMPM
CcMC NOT1 JNA BNH LOOPNZ DBNZNE SCASB CMPM
CMP CMP JNAE BC,BL LOOPZ DBNZE SCASW CMPM
CMPS CMPBK JNB BNC,BNL || MOV MOV SHL SHL
CMPSB CMPBK JNBE BH MOVS MOVBK SHR SHR
CMPSW CMPBK JNC BNC,BNL || MOVSB MOVBK STC SET1
CWD CVTWL JNE BNE,BNZ |l MOvsw MOVBK STD SET1
DAA ADJ4A JNG BLE MUL MULU ST El
DAS ADJ4S JINGE BLT NEG NEG STOS ST™M
DEC DEC JNL BGE NOP NOP STOSB ST™M
DIV DIVU JNLE BGT NOT NOT STOSW ST™
ESC FPO1 JNO BNV OR OR suB SuB
HLT HALT JINP BPO ouT ouT TEST TEST
DIV DIV JNS BP POP POP WAIT POLL
IMUL MUL JINZ BNE,BNZ || POPF ::| POP XCHG XCH
IN IN JO BV PUSH PUSH XLAT TRANS
INC INC JP BPE PUSHF PUSH XOR XOR
INT BRK JPE BPE RCL ROLC
INTO BRKV JPO B8PO RCR RORC
IRET RETI Js BN REP REP

62 CPU

® 7

Interrupt Controller

Contents

Chapter 7

7-1
7-3
7-5
7-6

Interrupt Controller

Procedure for Using a Hardware Interrupt
Interrupt Control and Status Registers

When the Operating System Disables Interrupts
Operating System Functions

7

Interrupt Controller

The HP-94 interrupt controller receives interrupt requests from eight different HP-94 hardware dev-
ices. It prioritizes these interrupts, and informs the CPU of the highest priority interrupt. The CPU
then locates the interrupt vector for that interrupt and transfers control to the interrupt service routine.
The hardware interrupts and their priority are shown below:

Table 7-1. HP-94 Hardware Interrupts

Interrupt interrupt
Type Name
50h System Timer Highest
51h Bar Code Timer
52h Bar Code Port Transition \L
53h Serial Port Data Received —
54h Low Main Battery Voltage Interrupt Priority
55h Power Switch \L
56h Reserved Interrupt 1
57h Reserved Interrupt 2 Lowest

Information about the behavior of interrupt service routines for the different hardware devices are in
the appropriate device chapters.

At both cold and warm start, the system timer, serial port data received, low main battery voltage, and
power switch interrupt vectors all point to their operating system interrupt service routines. They are
all enabled except for the serial port data received interrupt. The other hardware interrupt vectors
point to a dummy interrupt service routine which clears the interrupt, reads the end of interrupt regis-
ter, and returns (with an {RET). Reserved interrupts 1 and 2 are for future use.

3
Procedure for Using a Hardware Interrupt
There are four control registers available for controlling interrupt behavior:

m Interrupt Control Register
This is used to enable or disable any of the hardware interrupts.

m Interrupt Status Register
This indicates which hardware devices have issued interrupt requests. The interrupt status register
will indicate that an interrupt request occurred even if the interrupt was disabled. This is useful for
polling device status.

Interrupt Controller 7-1

m Interrupt Clear Register
Once a hardware interrupt has occurred, another interrupt of the same type will not be processed
by the interrupt controller until that interrupt has been cleared.

w End of Interrupt Register
This is read at the end of an interrupt service routine to allow the interrupt controller to generate
new interrupts of any type.

There are several things that must be done to use a hardware interrupt. Some must be done when the
interrupt is initialized, and others during an interrupt service routine. These are summarized below:

Table 7-2. Using Hardware Interrupts

Control or Required Required
Action Status During In Service
Register Used Initialization Routine
Disable interrupt Interrupt Control No * No
Take Over interrupt Vector — Yes No
Enable Interrupt Interrupt Control Yes No
Set CPU Interrupt Flag (STI) — Yes Not
Verify Interrupt Source Interrupt Status No No *
Clear Interrupt Interrupt Clear No * Yes
Read End of Interrupt Register End of Interrupt No * Yes
Return from Interrupt (IRET) — No Yes
* Not required, but can be done as defensive programming. For example, it is unlikely when enabling an interrupt that
a previous interrupt request of the same type is present, requiring that the interrupt be cleared before it can occur
again. The same reasoning can be applied to the other items that reference this footnote.
t Set automatically by IRET.

When taking over an interrupt, the interrupt vector location is the two words starting at address T * 4,
where T is the interrupt type. This is at addresses 00140h-0015Ch for the hardware interrupts. The
instruction pointer (IP) offset of the interrupt service routine should be stored at the first word, and
the code segment (CS) address of the routine should be stored at the second word.

The existing interrupt vector should be saved when the interrupt is taken over, then restored when the
program gives up the interrupt.

If the interrupt service routine is in a user-defined handler, the program should save the segment
address of the handler scratch area in the handler information table. See the "User-Defined Handlers"
chapter for details.

Software interrupt 1Ah for calling operating system functions is discussed in the "Operating System
Functions" chapter, and software interrupt 1Ch for the background timer is discussed in the "Timers"
chapter.

7-2 Interrupt Controller

N
. interrupt Control and Status Registers

The interrupt control and status registers are shown below. A copy of the main interrupt control regis-
ter is maintained in the operating system scratch space for reference. Refer to the "Hardware Control
and Status Registers" chapter for further information.

Table 7-3. Iinterrupt Control and Status Registers

Register 1/0 Bits Read/

Name Address Used Write
interrupt Control 00h 0-7 w
Interrupt Status 0ch 0-7 R
Interrupt Clear 01h 0-7 w
End of interrupt 0th None R

1: Enable
0: Disable

L System Timer interrupt {

1: Enable
0: Disable

Bar Code Port 1: Enable
‘ Transition interrupt | O: Disable

Serial Port Data [1: Enable

Bar Code Timer Interrupt [

Received Interrupt | 0: Disable

Low Main Battery | 1: Enable
Voltage Interrupt 0: Disable

1: Enable
0: Disable

Power Switch Interrupt [

1: Enable
0: Disable

Reserved interrupt 1 {

1: Enable
0: Disable

Reserved Interrupt 2 [

Figure 7-1. Interrupt Control Register (/O Address 00h, Write)

. interrupt Controller 7-3

1: Interrupted
0: Did Not Interrupt

L System Timer Interrupt [

1: interrupted

Bar Code Timer Interrupt [0: Did Not Interrupt

Bar Code Port 1: Interrupted
Transition Interrupt | 0: Did Not Interrupt

Serial Port Data 1: Interrupted
Received Interrupt | 0: Did Not Interrupt

Low Main Battery | 1: Interrupted
Voltage Interrupt 0: Did Not Interrupt

1: Interrupted
0: Did Not Interrupt

Power Switch Interrupt [

1: Interrupted
0: Did Not Interrupt

Reserved Interrupt 1 {

1: Interrupted
0: Did Not Interrupt

Reserved Interrupt 2 [

Figure 7-2. Interrupt Status Register (1/0 Address 00h, Read)

7-4 Interrupt Controller

1: Leave Unchanged

L System Timer interrupt [0- Clear

Bar Code Timer Interrupt [1: Leave Unchanged

0: Clear
Bar Code Port 1: Leave Unchanged
Transition Interrupt | 0: Clear

Serial Port Data 1: Leave Unchanged
Received Interrupt | 0: Clear

Low Main Battery | 1: Leave Unchanged
Voltage Interrupt 0: Clear

1: Leave Unchanged
0: Clear

Power Switch Interrupt [

1: Leave Unchanged
0: Clear

Reserved Interrupt 1 [

1: Leave Unchanged

Reserved Interrupt 2 [

0: Clear
. Figure 7-3. Interrupt Clear Register (/O Address 01h, Write)
7 6 5 4 3 2 1 0
X X[X X
X = ignore

Figure 7-4. End of Interrupt Register (1/0 Address 01h, Read)

|
When the Operating System Disables Interrupts

The operating system disables interrupts by clearing the CPU interrupt flag (CLI) at two times that
may be important to time-critical interrupt service routines:

m While processing the display control character that homes the cursor and clears the screen (0Ch),
interrupts are disabled for ~45 ms. This may be important for serial and bar code port handlers.

m While checking to see if the beeper needs to be turned off, interrupts are disabled for ~50 ps. This
may be important for bar code port handlers.

‘ Interrupt Controller 7-5

|
Operating System Functions

The interrupt software implements the following operating system functions:

Table 7-4. Interrupt-Related Operating System Functions

Function Function
Name Code
TIMEOUT 0%h
SET_INTR OAh

7-6 Interrupt Controller

® s

Keyboard

Chapter 8

Contents

8-1
8-2
8-2
8-2
8-3
8-5
8-5
8-6

Keyboard

Keyboard Shift Status
Display Backlight Control
Key Buffer
Waiting for a Key
Keyboard Scanning
Keyboard Scanning at Turn On
Keyboard Control and Status Registers
Operating System Functions

® 8

Keyboard
I
The HP-94 keyboard has 34 keys, arranged as shown below.

Power Switch

Reset Switch Contrast

/

*
A B C D _ SHIFT
f1 7 13 f4 #
E F G H] Jd CLEAR
15 16 7 7 s 9
K L]] 0 P
—
f8 9 10 4 5 6
Q R 3 T U v E
f11 f12 f13 1 2 3 N
T
w X Y Z SPACE] E
14 f15 16] 00 - R

Figure 8-1. HP-94 Keyboard

I
Keyboard Shift Status

The symbols on the upper left corner of each key are in orange and can be entered when the keyboard
is shifted. The symbols on the lower right corner of each key are in white and can be entered when the
keyboard is unshifted. Keys with only one centered symbol are in white and can be entered whether
the keyboard is shifted or not.

. Keyboard 8-1

The keys labelled f1 through f16 are the user-defined keys, and have no predefined action associated
with them. When the keyboard is unshifted, they return ASCII 80h-8Fh which corresponds to the first
16 user-defined characters (see the "Display” chapter for details).

The key toggles between unshifted and shifted keys. The keyboard shift status is indicated by
the shape of the cursor. An underscore cursor indicates unshifted (white keys), and a block cursor indi-
cates shifted (orange keys).

1
Display Backlight Control

The key controls the display backlight. If the key is held down for one second, the display
backlight will be turned on (or off if it was already on). When the backlight is toggled by holding down
for one second, the keyboard status and cursor type will be unchanged.

The backlight will turn off automatically after two minutes (120 seconds). This timeout can be set
under program control between 0 (never turn off) and 1800 seconds. The display backlight can be
turned on or off from a program by writing the appropriate display control character to the display:
1Eh turns on the backlight, and 1Fh turns off the backlight. The keyboard control register has a bit to
turn on and off the backlight.

CAUTION Leaving the display backlight on continuously or for long periods of time (greater
than 5 minutes) will reduce the life of the backlight.

.|
Key Buffer

There is an eight-character key buffer where the ASCII equivalents of each scanned key (not the key-
codes) are placed. A short, low tone beep will be issued when a key is placed in the key buffer (note
that this beep cannot be disabled). A long, high tone beep will be issued when a key is pressed after
the buffer is full — the key will be discarded. When the key is pressed, it is processed for
changing keyboard shift status and the backlight control, but is not placed in the key buffer.

|
Waiting for a Key

While waiting for a key to be pressed, the keyboard software puts the CPU into its standby mode to
save power, and monitors the system timeout. The timeout is restarted every time a key is pressed.
When the timeout expires, the default behavior is to turn the machine off. If a program has defined a
power switch/timeout interrupt routine using the SET INTR function (0Ah), that routine will be
executed with a FAR CALL when the timeout expires. This will only occur in a running program, not in
command mode.

8-2 Keyboard

S
Keyboard Scanning

. The keyboard is scanned by the operating system software every 5 ms. Keys are debounced for 25 ms.
When a key has been held down for 675 ms, it begins to repeat every 115 ms until it is released.

The keyboard control register has a bit for each column to be scanned. The keyboard is scanned by
clearing the bit corresponding to the column to be scanned, and reading the keyboard status register to
see which row(s) have a key down. If a key is down, the bit corresponding to that row will be set. The
correspondence between the keyboard and the bits in the keyboard control and status registers are
shown below.

Keyboard Control Register (I/O Address OEh, Write)
7 6 5 4 3 2 1 0

off |
On

. . 1
Display Backlight {0: 0

1 Keyboard Status
2 Register

{1/0 Address
3 OEh, Read)

4

Figure 8-2. HP-94 Keycodes

If multiple columns are selected for scanning, the program will not be able to distinguish which key was
pressed. It will only be able to identify that a key in a particular row was held down.

The operating system scans the keyboard columns from right to left, and checks the rows from top to
bottom. The first key found down in that scanning sequence will be reported as a keycode (shown
above in hex). Other keys to the left or below the first key found will be ignored (the {CLEAR| and
sequence to enter command mode is scanned as a special case). The keycode will be translated
into an ASCII character according to the keyboard shift status and the following keyboard map.

' Keyboard 8-3

Table 8-1. ASCIl Characters and Keycodes for Each Key

Shifted Shifted Unshifted Unshifted
Key (orange) Character Key (white) Character Keycode

A (41h) (unmarked) user-defined (80h) 01h
B (42h) (unmarked) user-defined (81h) o6h
C (43h) (unmarked) user-defined (82h) 0Bh
D] D (44h) (unmarked) user-defined (83h) 10h
(E] E (45h) (unmarked) user-defined (84h) 02h
F (46h) (unmarked) user-defined (85h) 07h
[G] G (47h) (unmarked) user-defined (86h) 0Ch
H (48h) 7 (37h) 11h
i | (49h) 8 (38h) 16h
J (4Ah) (9] 9 (39h) 1Bh
K (4Bh) (unmarked) user-defined (87h) 03h
L (4Ch) (unmarked) user-defined (88h) 08h
M] M (4Dh) (unmarked) user-defined (83h) 0Dh
[N] N (4Eh) [4] 4 (34h) 12h
o] O (4Fh) (5] 5 (35h) 17h
[P] P (50h) 6] 6 (36h) 1Ch
Q] Q (51h) (unmarked) user-defined (8Ah) 04h
[R] R (52h) (unmarked) user-defined (8Bh) 0sh
S (53h) (unmarked) user-defined (8Ch) OEh
[T T (54h) 1(31h) 13h
U (55h) 2] 2 (32h) 18h
V] V (56h) [3) 3 (33h) 1Dh
(W] W (57h) (unmarked) user-defined (8Dh) 05h
X (58h) (unmarked) user-defined (8Eh) 0Ah
Y (59h) (unmarked) user-defined (8Fh) OFh
(2] Z (5Ah) (0] 0 (30h) 14h
=] * (2Ah) [#] # (23h) 15h
(space) (20h) 00 (30h 30h) 19h
= — (2Dh) = — (2Dh) 1Ah
LJ . (2Eh) 0 . (2Eh) 1Eh
(SHIFT] (none) (none) 1Fh
[CLEAR] (CAN) (18h) (CAN) (18h) 20h
(DEL) (7Fh) (DEL) (7Fh) 21h
ENTER (CR) (0Dh) ENTER (CR) (0Dh) 22h

Refer to the appendixes for a utility routine that scans the keyboard and returns the keycode of the first

. Keyboard Scanning at Turn On

When the machine turns on, the operating system checks the keyboard after performing the first three
memory integrity checks (system ROM checksum, reserved scratch space read/write, and valid RAM
configuration). If any keys are down other than [CLEAR] and [ENTER] , the machine will turn back off
immediately. This is to prevent accidental turn on (while in a full briefcase, for example).

-}
Keyboard Control and Status Registers

The keyboard control and status registers are summarized below.

Table 8-2. Keyboard Control and Status Registers

Register 1/0 Bits Read/

Name Address Used Write
Keyboard Control OEh 0-7 W
Keyboard Status OEh 0-4 R

L Column 7 Select [é g;:gzded
. L Column 6 Select [8 g;teiggc"ed
coum s [19585
Column 4 Select —; g;teiggaed
Column 3 Select _(1) g;;it‘:'gc‘ed
cumso [1525
Column 1 Select :(1) g;ﬁggmed
Display Backlight Control [(’) 8’;

Figure 8-3. Keyboard Control Register (1/0 Address OEh, Write)

' Keyboard 8-5

: Key Down

Row 1 Scan : No Key Down

m
O - O =

: Key Down
: No Key Down

Row 2 Scan

: Key Down

Row 3 Scan : No Key Down

O -

: Key Down
: No Key Down

O —

Row 4 Scan

: Key Down

Row 5 Scan : No Key Down

O -

X = ignore

Figure 8-4. Keyboard Status Register (1/O Address OEh, Read)

|
Operating System Functions

The keyboard software implements the following operating system functions:

Table 8-3. Keyboard-Related Operating System Functions

Function Function
Name Code
GET_CHAR 0th
GET_LINE 02h
PUT_CHAR 03h
PUT_LINE 04h
BUFFER_STATUS 06h
READ 12h

8-6 Keyboard

Display

Chapter 9

Contents

9-1
9-2
9-2
9-2
9-3
9-4
9-5
9-5
9-6

Display

Display Backlight Control
LCD Controllers
Writing Dots to the Display
Display Control and Status Registers
Writing Characters to the Display
Operating System Functions
User-Defined Characters
Structure of SYFT Font Definition File
Relationship to User-Defined Keys

9

Display
=

The HP-94 has a liquid crystal display (LCD) with an electroluminescent backlight. The display is a
continuous dot-matrix of 120 columns and 32 rows, yielding 4 lines of 20 characters each, where each
character is in a 6 x 8 character cell. The built-in Roman-8 character set places characters in a 5 x 8
cell, leaving the right column of the 6 x 8 cell blank. It uses the eighth dot for descenders only. The
orientation of a character cell is shown below. The filled-in boxes are the dot positions used by the
built-in character set.

7 6 5 4 3 2 1 0

8 dots

Lllllllll

(IIIIIIII

Column Dot Definition For 1: On
6 dots

User-Defined Characters 0: Off
Figure 9-1. 6 x 8 Character Cell

All characters are mapped upside-down. The upper dot of a column of a character is bit 0 of the byte
containing the bit pattern for that column. There are 6 bytes per character, one per column from left

to right.

]
Display Backlight Control

The key controls the display backlight. If the key is held down for one second, the display
backlight will be turned on (or off if it was already on). When the backlight is toggled by holding down
for one second, the keyboard status and cursor type will be unchanged.

Display 9-1

The backlight will turn off automatically after two minutes (120 seconds). This timeout can be set
under program control between 0 (never turn off) and 1800 seconds. The display backlight can be
turned on or off from a program by writing the appropriate display control character to the display:
1Eh turns on the backlight, and 1Fh turns off the backlight. The keyboard control register has a bit to
turn on and off the backlight.

CAUTION Leaving the display backlight on continuously or for long periods of time (greater
than 5 minutes) will reduce the life of the backlight.

1
LCD Controliers

There are three LCD controllers. The row driver is a Hitachi HD61103A. It is not accessible to
software — the rows are driven automatically by the hardware.

The column driver is a Hitachi HD61102A. Since the column driver can only support 64 columns, two
are used. The left half driver controls columns 0-63 (counting from the left), and the right half driver
controls column 64-119. Columns 120-127 are ignored. The details of the column driver hardware,
operation, and usage are described in the Hitachi HD61102A data sheet in the "Hardware
Specifications".

1
Writing Dots to the Display

Programs writing directly to the display hardware can write an 8-dot pattern to any column in the LCD.
As with characters, the dots in the column being written are represented upside-down in the byte con-
taining that dot pattern. A program cannot write individual dots to the display — the display control
registers only allow writing columns of data. (Since a program can read individual columns of data, it
could read a column, change a dot, and write the column back. This would have the effect of writing an
individual dot.)

L m
Display Control and Status Registers

The display control and status registers are shown below.

9-2 Display

. Table 9-1. Display Control and Status Registers

Register iI/0 Bits Read/
Name Address Used Write
Keyboard Control OEh 7 w
Right LCD Driver Control 12h 0-7* w
Right LCD Driver Status 12h 0-7* R
Right LCD Driver Data 13h 0-7 R/W
Left LCD Driver Control 14h 0-7* w
Left LCD Driver Status 14h 0-7* R
Left LCD Driver Data 15h 0-7 R/W
* For the meaning of the bits in these registers, refer to the Hitachi HDE1102A data
sheet in the “Hardware Specifications".

1: Off
0:On

Display Backlight Control [

Figure 9-2. Keyboard Control Register (1/0O Address OEh, Write)

Figure 9-4. Left LCD Driver Data Register (1/0 Address 15h, Read/Write)

R
Writing Characters to the Display

The display software performs the generation of characters from the built-in Roman-8 character set.
The first half of the character set (characters 00h-7Fh) consists of standard U.S. ASCII characters. The
second half (80h-FFh) contains special characters, including those used by other languages. The
display software also displays user-defined characters in the range 80h-9Fh. These will be discussed
shortly.

Cursor shape, status, movement, and blinking is also controlled by the display software. The cursor
shape is a block to represent shifted keyboard status and an underline to represent unshifted status.
The cursor can be either on or off. When on, it is blinked every 500 ms (0.5 s).

. Display 9-3

Power switch and low battery interrupts can occur while writing data to the display using operating sys-
tem functions. The system timeout does not occur when writing to the display (channel 0). ‘

The display software processes display control codes for the following actions:

Table 9-2. Display Control Characters

Hex Value Meaning

01h (SOH) Turn on cursor.

02h (STX) Turn off cursor.

06h (ACK) High tone beep for 0.5 second.

07h (BEL) Low tone beep for 0.5 second.

08h (BS) Move cursor left one column. When the cursor reaches the left
end of the line, it will back up to the right end of the previous line.
When the cursor reaches the top left corner, backspace will have

no effect.

0Ah (LF) Move cursor down one line. If the cursor is on the bottom line, the
display contents will scroll up one line.

0Bh (VT) Clear every character from the cursor position to the end of the
current line. The cursor position will be unchanged.

0Ch (FF) Move cursor to upper left corner and clear the display.

0Dh (CR) Move cursor to left end of current line.

OEh (SO) Change keyboard to numeric mode (underline cursor).

OFh (S1) Change keyboard to alpha mode (block cursor).

1Eh (RS) Turn on display backlight.
1Fh (US) Turn off display backlight.

Control codes not listed in this table are ignored — that is, no character is displayed for those codes.

NOTE While processing the display control character that homes the cursor and clears the
screen (OCh), interrupts are disabled for ~45 ms. This time may be important to
serial and bar code port handlers.

L
Operating System Functions
The display software implements the following operating system functions:

9-4 Display

Table 9-3. Display-Related Operating System Functions

Function Function
Name Code
PUT_CHAR 03h
PUT_LINE 04h
CURSOR 05h
WRITE 13h
DISPLAY ERROR 18h

]
User-Defined Characters

The HP-94 allows the font for 32 characters to be redefined: character codes 80h-9Fh, the control
codes for the upper 128 characters of the built-in Roman-8 character set. The operating system will
use these redefined characters only when a program is running — they will not be used in command
mode. When a program is executed (either with the S (start) command or by autostarting), the
operating system searches for a type A font definition file named SYFT. If this file is found, and is the
correct type, then the dot pattern for characters 80h-9Fh will be taken from it. If SYFT does not exist,
characters in that range will be displayed as blanks.

Character mapping will occur whenever characters 80h-OFh are displayed on the LCD using the
PUT_CHAR and PUT _LINE functions, or the WRITE function for channel 0 (functions 03h, 04h,
and 13h). PUT CHAR and PUT_LINE are used by the BASIC I/O keywords PRINT, PRINT
USING, PRINT #, PRINT #...USING, and PUT #.

Structure of SYFT Font Definition File

The SYFT font file must contain definitions for 32 characters. If it does not, some characters will be
constructed from the contents of the file immediately following SYFT (higher in memory). While this
will not have any harmful side effects, it is unlikely to provide useful characters. Unlike type A pro-
gram files, SYFT does not require a program header.

There are six bytes per character in SYFT, one for each of the six columns of data to be defined in the
character’s 6 x 8 character cell. All six bytes can be used for dot information. The built-in Roman-8
character set leaves the rightmost column of each character blank to provide intercharacter spacing,
but that is not required.

All characters are mapped upside-down. The upper dot of a column of a character is bit 0 of the byte
containing the byte for that column. This is illustrated in the earlier picture of a 6 x 8 character cell.

To create SYFT, enter the dot patterns (upside-down) into an assembly language source file, then
assemble and link the file. Run HXC on the resulting EXE file, specifying file type A and handheld
file name SYFT.

Display 9-5

Relationship to User-Defined Keys

The HP-94 has 16 keys which have no predefined use: the alphabetic keys whose unshifted keycaps
(lower right corner) are unmarked. These are shown as f7-f716 on the keyboard layout in the "Key-
board" chapter, and correspond to character codes 80h-8Fh, half of the control codes for the upper 128
characters of the built-in Roman-8 character set.

Whether or not these keys cause the corresponding user-defined character to be echoed to the display
depends on which operating system function was used to read the keyboard. GET _CHAR and READ
for channel 0 (functions 01h and 12h) do not echo user-defined characters, while GET _LINE (02h)
does. The only BASIC I/O statements that echo to the display while accepting keyboard input are
INPUT and INPUT #, and they both use GET LINE.

Even when echoing of keyboard input occurs, it will still track the behavior of user-defined characters
— that is, echoed as blanks if no SYFT exists or if the machine is in command mode, and echoed as
user-defined characters if SYFT exists and a program is running,

9-6 Display

@ 10

Serial Port

Contents

O
Chapter 10 Serial Port

10-1 Signal Levels

10-1 Enabling or Disabling the Serial Port

10-2 Initializing the Serial Port

10-2 Processing the Serial Port Data Received Interrupt
10-2 Serial Port Control and Status Registers

10-5 Built-in Serial Port Handler

10-5 Built-in Serial Port Handler Capabilities
10-7 Parameters at OPEN Time
10-8 Control Line Behavior

10-9 Operating System Functions

10

Serial Port

The HP-94 serial port is a read/write port controlled by an OKI MSM82C51A Universal Asynchro-
nous Receiver Transmitter (UART). This is a CMOS UART compatible with the Intel 8251A. (It is
actually a USART, but the 94 does not provide the additional hardware needed for synchronous opera-
tion.) The details of the UART hardware, operation, and usage are described in the Oki MSM82C51A
data sheet in the "Hardware Specifications” elsewhere in this manual.

N
Signal Levels

The serial port signal levels are 0 to V, (~0-5) volts. Not all devices can operate at those levels, and
may require the HP 82470A RS-232-C Level Converter. The converter changes the 0 to V,, signal lev-
els into +9 to -9 volts for those devices that require it. Refer to the "Hardware Specifications" for
details on the signal levels as well as the connector pinouts for the serial port and the level converter.

|
Enabling or Disabling the Serial Port

The 82C51 can be enabled or disabled under software control. Power is supplied to the level converter
only when it is enabled; it is only at this time that serial port has any power consumption. When the
82C51 is enabled, the 94 provides a baud rate clock at 16 times the desired baud rate. Before a pro-
gram transmits or receives with the 82C51, the UART must be set in 16x mode. When the 82C51 has
received an entire byte of serial data (including the start and stop bits) and checked for errors (parity,
framing, and UART overrun), the serial port data received interrupt (type 53h) will be issued.

|
Initializing the Serial Port

Below are the things that must be done to initialize the serial port in the OPEN routine of a user-
defined serial port handler.

m Take over the existing serial port interrupt vector.
m Set the baud rate clock value.

m Turn on power to the serial port, and wait 60 ms to allow the level converter to power up. This
turn-on delay may not accommodate the turn-on or reset time required by the RS-232 device con-
nected to the serial port.

(Note: when turning off the serial port, the CLOSE routine should wait 60 ms after the 82C51 is
disabled to allow signals to stabilize.)

= Reset the 82C51, and set it to the desired initial state.

Serial Port 10-1

= Enable the serial port interrupt.

]
Processing the Serial Port Data Received Interrupt

When the data received interrupt occurs, the following actions should be taken by the interrupt service
routine. These are in addition to whatever data processing is done in the routine, and to normal inter-
rupt routine overhead such as reading the end of interrupt register.

m Check if an 82C51 error occurred. If so, clear it.

m Read the data from the serial port data register.

NOTE While processing the display control character that homes the cursor and clears the
screen (OCh), interrupts are disabled for ~45 ms. This time may be important to
serial port handlers.

L
Serial Port Control and Status Registers

The serial port control and status registers are summarized below.

Table 10-1. Serial Port Control and Status Registers

Register 1/0 Bits Read/
Name Address Used Write
Interrupt Control 00h 3 W
Interrupt Status 00h 3 R
Interrupt Clear 0th 3 w
Baud Rate Clock Value 0Ah 0-2 w
Main Control 0Bh 2 W
Main Status 0Bh 2 R
Serial Port Data 10h 0-7 R/W
Serial Port Control 11h 0-7* w
Serial Port Status 11h 0-7* R
* For the meaning of the bits in these registers, refer to the Oki MSM82C51A data
sheet in the "Hardware Specifications".

10-2 Serial Port

Serial Port Data 1: Enable
Received interrupt | 0: Disable

Figure 10-1. Interrupt Control Register (/O Address 00h, Write)

Serial Port Data 1: Interrupted
Received Interrupt | 0: Did Not Interrupt

Figure 10-2. Interrupt Status Register (1/0 Address 00h, Read)

Serial Port Data 1: Leave Unchanged
Received Interrupt | 0: Clear

. Figure 10-3. Interrupt Clear Register (1/O Address 01h, Write)

t Baud Rate (see table for meaning)

X = don’t care

Figure 10-4. Baud Rate Clock Value Register (/0 Address OAh, Write)

. Serial Port 10-3

Table 10-2. Baud Rate Clock Values

Baud Rate Baud Frequency
Clock Value Rate (kHz) *
0 19200 ¢ 307.2
1 9600 153.6
2 4800 76.8
3 2400 38.4
4 1200 19.2
5 600 9.6
6 300 4.8
7 150 24
* The actual clock frequency is 16 times the desired baud rate.
t Available but not supported.

Serial Port 1: Enable
Power Control | 0: Disable

X = don'’t care

Figure 10-5. Main Control Register (I/O Address 0Bh, Write)

1: Not Detected

L Carrier Detect Status [0: Detected

X = ignore

Figure 10-6. Main Status Register (I/O Address 0Bh, Read)

Figure 10-7. Serial Port Data Register (I/O Address 10h, Read /Write)

10-4 Serial Port

I
Built-In Serial Port Handler

The built-in serial port handler is the one used when the serial port is opened and the null string ("")
is provided as the handler name. This handler is always used by the C (copy) operating system com-
mand and by the resident debugger when using the serial port as the console, even when user-defined
handlers are available. The handler is designed for use with general serial devices that do not perform
hardware handshaking.

Built-In Serial Port Handler Capabilities
The built-in serial port handler provides the following capabilities:

m Full Duplex Communications
Two-way simultaneous communications.

m Received-Data Buffering
Received data is placed in a 64-byte buffer. There is no transmit buffer.

m Speeds
Speeds can be set from 150 to 9600 baud (19200 baud is available but not supported).

m Data Bits
Seven or eight.

m Parity
0dd, even, or no parity.

m Stop Bits
One or two stop bits.

m XON/XOFF Software Handshaking
When enabled, this option allows received XON (11h) and XOFF (13h) characters to start and stop
HP-94 transmissions, and causes XON and XOFF characters to be sent to start and stop host
transmissions.

m Null Stripping
When enabled, this option causes any received NUL characters (00h) to be stripped from and not
counted as received data, and not placed in the receive buffer.

= Terminate Character Control
When defined, a received terminate character will end the wait for a fixed-length block of data,
even if all the data has not been received. A terminate character will be sent after sending every
block of data.

s Control Lines
RTS and DTR are raised when the serial port handler is opened, and lowered when the handler is
closed. CTS is monitored indirectly by checking if the TXRDY status bit in the 82C51 goes high
within three byte-times after attempting to transmit a byte. In addition, Vi (switched V) is sup-
plied to power the level converter when the handler is opened, and not supplied when the handler is
closed.

The table below describes how the built-in serial port handler behaves. It shows the action taken by
the handler routines as well as during its interrupt service routine, not including normal handler activi-
ties described in the "User-Defined Handlers" chapter. Note that certain actions, such as sending an
XON or responding to a received terminate character, will only occur if the appropriate options were
enabled when the handler was opened.

Serial Port 10-5

Table 10-3. Behavior of Built-In Serial Port Handler

Routine Activities
CLOSE Complete transmission of current byte
Disable interrupt 53h
Flush receive buffer
Lower RTS and DTR
Wait 60 ms for signals to stabilize
Disable 82C51 and turn off power to serial port
IOCTL Do nothing

OPEN Flush receive buffer

Enable 82C51 and supply power to level converter

Wait 60 ms for level converter turn on

Initialize operating configuration *

Raise RTS and DTR

Enable interrupt type 53h

Send single XON

Ignore parity, framing, overrun, and receive buffer overflow errors
POWERON | Do nothing

READ Monitor and report low battery, power switch, and timeout errors

Report errors detected in interrupt service routine
Send XON when receive buffer emptied
End and report error 74h (116) if terminate character detected
Return data from receive buffer
RSVD2 Do nothing
RSVD3 Do nothing
TERM Do nothing
WARM Perform all OPEN routine activities except sending XON
WRITE Monitor and report low battery, power switch, and timeout errors t
Monitor CTS indirectly and report error DAh (218) if lost
Write data to 82C51
Send terminate character at end of data
Interrupt Monitor parity, framing, overrun, and receive buffer overflow errors
Service Read data from 82C51 and accumulate data into receive buffer
Disable transmission when XOFF received

Enable transmission when XON received

Send XOFF for each byte when buffer 3/4 full

Strip nulls (00h)

* Baud rate, data format, XON/XOFF handshaking, null stripping, and terminate character.
t System timeout restarts after each byte received or transmitted.

The errors reported by the built-in serial port handler are shown in the following table.

10-6 Serial Port

Table 10-4. Errors Reported by Built-In Serial Port Handler
Routine Errors

CLOSE None

JOCTL None

OPEN 65h

POWERON | None

READ 74h,76h,77h,C8h,C9h,CAh,CBh,CCh,CDh,CEh,CFh,DOh

RSVD2 None

RSVD3 None

TERM None

WARM None

WRITE 76h,77h,C8h,DAQ

interrupt Coh,CAh,CBh,CCh,CDh,CEh,CFh,DOh

Service *

t Detected by interrupt service routine, but reported by READ routine.

Parameters at OPEN Time

When the built-in serial port handler is opened, DS : DX must point to a three-byte parameter area.
The meanings of the parameters are shown below. In these figures, the offsets are from DS : DX.

4 3 2 1 0

7 6 5
. o|o|o0|O|O
1—‘1— Baud Rate (see table for meaning)

Figure 10-8. Baud Rate — Parameter Byte 1 (Offset 00h)

Table 10-5. Built-In Serial Port Handler Baud Rate Values

Baud Rate

19200 *
9600
4800
2400
1200
600
300
150

* Available but not supported.

VYalue

N s WN—-O

10-7

Serial Port

1: Enabled
0: Disabled

L XON/XOFF Handshaking {

, 1:8
Data Bits [07
1: Enabled
0: Disabled

Parity Checking [

. 1: Even
Parity Type * [0: Odd

1:2
0:1

Stop Bits [

Null Stripping [(1) [E)?sz?)'ﬁec(ji

X = don’t care

Figure 10-9. Data Format — Parameter Byte 2 (Offset 01h)

Figure 10-10. Terminate Character { — Parameter Byte 3 (Offset 02h)

The default values for the parameters are 01h (9600 baud), 0ODh (XON/XOFF enabled, 7 data bits,
parity checking enabled, even parity, one stop bit, and null stripping disabled), and 00h (no terminate
character).

Control Line Behavior

The 82C51 can monitor or control only a subset of the standard RS-232 control lines. Of those lines
not monitored, one can be monitored indirectly, and one can be monitored using other HP-94
hardware. Not all these hardware capabilities are actually used by the built-in serial port handler. The
usage is summarized below.

* The parity type is ignored if parity checking is disabled.
t To disable use of the terminate character, set it to zero.

10-8 Serial Port

Table 10-6. Control Line Behavior

Control Line Monitored or Monitored or
Controlled By Controlled By
Symbol Name Hardware Built-in Handler
CTS clear to send monitored * monitored *
DSR data set ready monitored not monitored
DCD data carrier detect monitored not monitored
RTS request to send controlled controlled
DTR data terminal ready controlled controlied
* Monitored indirectly by checking if the TxRDY status bit in the 82C51 goes high within three
byte-times after attempting to transmit a byte.

A user-defined serial port handler could use all the lines supported by the hardware. Refer to the
"User-Defined Handlers" chapter for details on how to write a user-defined serial port handler.

When the serial port is disabled, the control lines are turned off (set to 0 volts).

Y
Operating System Functions

The serial port software implements the following operating system functions:

Table 10-7. Serial Port-Related Operating System Functions

‘ Function Function
Name Code
BUFFER_STATUS 06h
OPEN OFh
CLOSE 10h
READ 12h
WRITE 13h

. Serial Port 10-9

® 11

Bar Code Port

Contents

Chapter 11

11-1
11-1
11-1
11-2
11-2
11-3

Bar Code Port

Bar Code Port Power and Transition Detection
Bar Code Timer

Initializing the Bar Code Port

Processing the Bar Code Port Transition Interrupt
Bar Code Port Timing Constraints

Bar Code Port Control and Status Registers

11

Bar Code Port
T

The HP-94 bar code port is a read-only port designed to connect to bar code scanning devices such as
wands. The port provides power to the external device. Interrupt control, timing for light and dark
transitions, and light or dark state is available to programs reading bar code data.

]
Bar Code Port Power and Transition Detection

The main control register is used to enable power to the bar code port (and to the device attached to
it) and, independently, to enable transition detection at the port. Once the port is powered and detect-
ing transitions, interrupt type 52h will be issued whenever a transition occurs at the port — either
light-to-dark or dark-to-light. When the interrupt occurs, the light or dark state is indicated by reading
the main status register.

-
Bar Code Timer

The bar code timer is a 12-bit count-up timer with a 26 us interval. This resolution allows timing inter-
vals from 26 us to 106.7 ms. Because it is a count-up timer, it must be set using the complement of the
desired number of intervals. When the timer overflows (counts up to zero), interrupt type 51h is gen-
erated. This is usually used to indicate the end of a scan.

When the timer reaches zero, it is automatically reset to its starting value and restarted. If the count
value has to be set to a specific value, the timer must be stopped first. Unlike the system timer, the bar
code timer can be reset to zero while it is still running,

When the bar code port transition interrupt occurs, the timer value can be captured (i.c., placed in the
timer data registers where it can be read) to indicate how long the bar code port has been at the
current state. Then the timer can be reset to zero to continue counting up for the next transition. The
value can be captured while the timer is still running,

I
Initializing the Bar Code Port
Below are the things that must be done to initialize the bar code port.
m Take over the existing bar code port transition and timer interrupt vectors.
= Turn on power to the bar code port, and enable transition detection.
m Set the bar code timer to the desired initial value (or clear it), and start the timer.
m Enable the bar code port transition and timer interrupts.

Some of the initialization activities will be done in the OPEN routine of a bar code port handler, while

Bar Code Port 11-1

others will be done in the READ routine. This will be discussed shortly.

[
Processing the Bar Code Port Transition Interrupt

When the transition interrupt occurs, the following actions should be taken by the interrupt service rou-
tine. These are in addition to whatever data processing is done in the routine and to normal interrupt
routine overhead such as reading the end of interrupt register.

= Capture the current timer value into the timer data registers (04h and 05h) by writing to the timer
value capture register (07h).

m Read the captured timer data from the timer data registers.

m Reset the timer to the desired value. If it is a specific value, stop the timer with the timer control
register (06h), set the values, and restart it. If it is only necessary to clear the timer, do so by writing
to the timer clear register (08h).

= Determine if the state after the transition is light or dark by reading the main status register (0Bh).

e a
Bar Code Port Timing Constraints

The bar code port transition interrupt occurs on every transition. This requires an order of magnitude
more processing time than the serial port, since its interrupt occurs only after the 82C51 has received
10-12 transitions (bits) of serial data. Experience has shown that it is unlikely that a bar code port
handler can be run "in the background" to simply fill a receive buffer. When other interrupts occur, the
CPU interrupt flag will be cleared while the corresponding interrupt service routine executes. This
results in periods of time when bar code port transition interrupts occur but cannot be processed, and
therefore may be missed.

To deal effectively with these timing constraints, a bar code port handler should only process bar code
data during its READ routine. The transition and timer interrupts should only be enabled then, and
certain other interrupts should be disabled to prevent transitions from being missed. The machine
should essentially become dedicated to the sole task of reading bar code transitions for the duration of
the READ operation. This is in contrast to a serial port handler, which can run "in the background",
save data in its receive buffer when interrupts occur, and return the data in the buffer when its READ
routine is called.

The particular interrupts that should be disabled are the system timer (50h) and serial port data
received (53h). The latter has the side effect that data cannot be received by the serial port while bar
code labels are being scanned. The former has the side effect that the events paced by the system timer
will not occur for the period of time that the timer interrupt is disabled. Refer to the "Timers" chapter
for details. There are utility routines available to perform some of these tasks (scan keyboard and
blink cursor) without clearing the CPU interrupt flag. Refer to the appendixes for details.

The low main battery voltage (54h) and power switch (55h) interrupts should remain enabled, since
those events need to be monitored by the handler to determine if it should abort a read operation.

11-2 Bar Code Port

NOTE While processing the display control character that homes the cursor and clears the
screen (OCh), interrupts are disabled for ~45 ms. While checking to see if the beeper
needs to be turned off, interrupts are disabled for ~50 us. These times may be impor-
tant to bar code port handlers.

R
Bar Code Port Control and Status Registers

The bar code port control and status registers are shown below.

Table 11-1. Bar Code Port Control and Status Registers

Register 1/0 Bits Read/
Name Address Used Write
interrupt Control 00h 1-2 w
Interrupt Status 00h 1-2 R
Interrupt Clear 01h 1-2 w
Bar Code Timer Data 04h 0-7 R/W
Bar Code Timer Data 05h 0-3 R/W
Bar Code Timer Control 06h 0 w
Bar Code Timer Value Capture 07h None w
Bar Code Timer Clear 08h None w
Main Control 0Bh 34 w
Main Status 0Bh 0 R

. 1: Enable
Bar Code Timer Interrupt [0: Disable
Bar Code Port 1: Enable
Transition Interrupt | O: Disable

Figure 11-1. Interrupt Control Register (/O Address 00h, Write)

Bar Code Port 11-3

1: Interrupted

Bar Code Timer Interrupt [0: Did Not Interrupt

Bar Code Port 1: Interrupted
Transition Interrupt | 0: Did Not Interrupt

Figure 11-2. Interrupt Status Register (/O Address 00h, Read)

Bar Code Timer Interrupt [1: Leave Unchanged

0: Clear
Bar Code Port 1: Leave Unchanged
Transition Interrupt | 0: Clear

Figure 11-3. Interrupt Clear Register (1/0 Address 01h, Write)

Figure 11-4. Bar Code Timer Data Register * (1/0 Address 04h, Read/Write)

7 6 5 4 3 2 1 0
XX | X]|X

X = ignore

Figure 11-5. Bar Code Timer Data Register { (1/0 Address 05h, Read /Write)

* Lower 8 bits of the 12-bijt timer value.
t Upper 4 bits of 12-bit timer value.

11-4 Bar Code Port

X = don’t care

Figure 11-6. Bar Code Timer Control Register (1/O Address 06h, Write)

1: Start

L Start/Stop [0_ Stop

X = don’t care

Figure 11-7. Bar Code Timer Value Capture Register (I/0 Address 07h, Write)

7 6 5 0
X1 X X
X = don't care
. Figure 11-8. Bar Code Timer Clear Register (I/O Address 08h, Write)
7 6 5 0
X XX

X = don't care

Figure 11-9. Main Control Register (1/0 Address 0Bh, Write)

Bar Code Port | 1: Enable
Power Control | 0: Disable

Bar Code Port 1: Enable
Transition Control | 0: Disable

Bar Code Port 11-5

1: Light

L Bar Code Port Status [0- Dark

X = ignore

Figure 11-10. Main Status Register (/O Address 0Bh, Read)

11-6 Bar Code Port

® 5

Timers

Chapter 12

Contents

12-1
12-2
12-2
12-3
12-3
12-4
12-7

Timers

System Timer
System Timeout
Display Backlight Timeout
Background Timer
Bar Code Timer
Timer Control and Status Registers
Operating System Functions

12

Timers
O

The HP-94 has two timers available other than the real-time clock: the system timer and the bar code
timer. These use a different time base than the real-time clock, and their accuracy is +0.1%.

Table 12-1. HP-94 Timers

Timer No. of Time Timer | Overflow | Overflow | Maximum

Name Bits interval | Type interval Interrupt Time

System 8 0.417ms up 5ms 50h 106.7 ms
Bar Code 12 26 us up — 51h 106.7 ms

* Not defined by the operating system. Defined only by bar code port handler.

|
System Timer

The system timer is an 8-bit count-up timer with an interval of 0.417 ms. It is initialized to -12 (-0Ch),
so it overflows (counts up to zero) every S ms (12 * 0417 = 5 ms, complemented because it is a count-
up timer). When the system timer overflows, interrupt type 50h is generated. This interrupt is used to
pace six different events in the operating system, shown below. While these events are checked and
appropriate action is taken, interrupts are enabled except during the beeper event.

Table 12-2. Events Checked By System Timer Interrupt Routine

Timing How Often How Often
Event Event Checked Action Taken

Scan Keyboard 5ms Put key into key buffer after 25 ms debounce
Start key repeat if key still down after 675 ms
Repeat key every 115 ms

Turn Off Beeper 10 ms Turn beeper off after current beep time expires

Blink Cursor 100 ms Blink cursor every 500 ms

System Timeout 1s Turn off machine or execute user-defined
power switch/timeout routine after current
system timeout expires

Display Backlight 1s Turn off backlight after current backlight

Timeout timeout expires

Background Timer 1s Execute background timer interrupt routine
every1s

Timers 12-1

NOTE While the beeper is checked to see if it needs to be turned off, interrupts are disabled
for ~50 ps. This time may be important to bar code port handlers.

System Timeout

The system timeout is the time after which the machine will automatically turn off. It can be set from
0-1800 seconds using the TIMEOUT function (09h). The timeout is in effect while the machine is
waiting for keyboard input or for data to be received at the serial or bar code ports. It will abort read
operations from channels 0-4 and write operations to channels 1-4. It will not abort create, read, write,
or delete operations for channels 5-15. The operating system will take one of the following actions
when the system timeout expires:

m Turn off the HP-94.
This is the default behavior if the program has not defined a power switch/timeout routine using
the SET_INTR function (OAh). The next time the machine is turned on, it will cold start.

® Execute the user-defined power switch/timeout interrupt routine.
If the program has defined a power switch/timeout routine with SET INTR, that routine will be
executed with a FAR CALL (and therefore must end with a FAR RET). The AL register will be set
to 76h, the timeout error, and the DS register will be set to the value specified when SET INTR
was called. This will only occur during a running program, not in command mode. When timeouts
are monitored during I/O by a user-defined handler, the handler must execute the user-defined
interrupt routine.

m Ignore the system timeout.
If the program has disabled the system timeout by setting the timeout value to 0 with TIMEOUT,
the operating system will ignore the system timeout.

The TERM routine of any open user-defined handlers will not be executed. Since each handler must
monitor the system timeout itself, that handler will be the only one waiting on 1/0 when the timeout
expires. Consequently, it is the only one that needs to terminate I/0.

Display Backlight Timeout

The display backlight timeout is the time after which the machine will automatically turn off the display
backlight. This timeout is in effect whenever the backlight is on. It can be set from 0-1800 seconds
using the TTMEOUT function.

When the display control code is processed to turn on or off the display backlight, the operating system
controls the backlight state when keyboard scanning is done. If the system timer is disabled, no scan-
ning is done, so the backlight will not be controlled. If a program disables the system timer, it must
turn on the backlight explicitly using the keyboard control register, and then turn the backlight off
explicitly after the timeout expires.

12-2 Timers

CAUTION Leaving the display backlight on continuously or for long periods of time (greater
than 5 minutes) will reduce the life of the backlight.

Background Timer

The background timer is a one-second heartbeat timer that the machine provides for assembly
language programs to use. Once a second, the operating system will issue a FAR CALL to the address in
interrupt vector 1Ch, the background timer interrupt.

To take over the background timer interrupt, the program must do the following:

m Read the background timer interrupt vector (address 1Ch * 4 = 00070h), and save it in the
program’s scratch area.

m Write the address of the program’s background timer interrupt routine into the vector location. The
instruction pointer (IP) offset should be stored at the first word, and the code segment (CS)
address should be stored at the second word.

To use the background timer interrupt, the program must do the following:
®m When the interrupt routine is called, perform whatever processing is necessary.

m At the end of the routine, execute a FAR JMP to the address of the previous background timer
interrupt routine.

The FAR JMP has the effect of daisy-chaining all the background timer interrupt routines together,
allowing different programs to share the same interrupt. The last routine in the chain is the default
routine, which is simply a FAR RET to end the aggregate background timer interrupt.

If the background timer does not provide enough resolution (1 second) for the program, the program
can take over the system timer interrupt (vector at address 50h * 4 = 00140h) in the same manner
(save the current interrupt vector, and FAR JMP to it at the end of the interrupt routine). This will
provide a 5 ms timing resolution.

CAUTION The background timer routine must not clear the CPU interrupt flag (CLI). Doing
so may cause interrupts from hardware devices to be delayed long enough that
time-critical interrupt service routines (for open user-defined handlers) may miss
their data.

- |
Bar Code Timer

The second timer is the bar code timer, a 12-bit count-up timer with an interval of 26 us. It is reserved
for use by bar code port handlers, so it is never initialized to any value by the operating system. Like
the system timer, it must be set using the complement of the desired number of intervals. When it
overflows, interrupt type 51h is generated.

When either timer reaches zero, the timer is automatically reset to its starting value and restarted. If

Timers 12-3

the count value has to be set to a specific value, the timer must be stopped first. The bar code timer
can be reset to zero or have its current value captured while it is still running,

R
Timer Control and Status Registers

The timer control and status registers are shown below.

Table 12-3. Timer Control and Status Registers

Register 1/0 Bits Read/
Name Address Used Write
interrupt Control 00h 0-1 w
Interrupt Status 0Ch 0-1 R
Interrupt Clear 01h 0-1 W
System Timer Data 02h 0-7 R/W
System Timer Control 03h 0 w
Bar Code Timer Data 04h 0-7 R/W
Bar Code Timer Data 05h 0-3 R/W
Bar Code Timer Control 06h 0 w
Bar Code Timer Value Capture 07h None W
Bar Code Timer Clear 08h None w

1: Enable
0: Disable

1: Enable
0: Disable

System Timer Interrupt [

L Bar Code Timer Interrupt {

Figure 12-1. Interrupt Control Register (/O Address 00h, Write)

1: Interrupted
0: Did Not interrupt

—— System Timer Interrupt [

1: Interrupted

Bar Code Timer Interrupt { 0: Did Not Interrupt

Figure 12-2. Interrupt Status Register (I/O Address 00h, Read)

12-4 Timers

.

1: Leave Unchanged
0: Clear

L System Timer interrupt [

1: Leave Unchanged

Bar Code Timer Interrupt [0: Clear

Figure 12-3. Interrupt Clear Register (/O Address 01h, Write)

X X[X | X|X
1: Start
L Start/Stop [0: Stop
. X = don'’t care
Figure 12-5. System Timer Control Register (1/0 Address 03h, Write)

. Timers 12-5

XX | XX

X = ignore

Figure 12-7. Bar Code Timer Data Register { (I/O Address 05h, Read /Write)

1. Start
0: Stop

L Start/Stop [

X = don't care

Figure 12-8. Bar Code Timer Control Register (I/O Address 06h, Write)

X | X XXX X|X]|X

X = don'’t care

Figure 12-9. Bar Code Timer Value Capture Register (1/0 Address 07h, Write)

X| X[X[|X]X]|X

X = don'’t care

Figure 12-10. Bar Code Timer Clear Register (1/0 Address 08h, Write)

* Lower 8 bits of the 12-bit timer value.
t Upper 4 bits of 12-bit timer value.

12-6 Timers

e
. Operating System Functions

The timer software implements the following operating system functions:

Table 12-4. Timer-Related Operating System Functions

Function Function
Name Code
TIMEOUT 09h
SET_INTR 0OAh

‘ Timers 12-7

@ 13

Power Switch

Contents

Chapter 13

13-1
13-2

Power Switch

Power Control and Status Registers
Operating System Functions

13

Power Switch

The HP-94 power switch provides software control for turning the machine off. When the HP-94 is off,
pressing the power switch turns the machine on. When the machine is on, pressing the power switch
generates interrupt type 55h. The power switch interrupt will abort read operations from channels 0-4
and write operations to channels 1-4. It will not abort create, read, write, or delete operations for
channels 5-15. The operating system will take one of the following actions in response to this interrupt:

m Turn off the HP-94.
This is the default behavior if the program has not defined a power switch/timeout interrupt rou-
tine using the SET INTR function (OAh). The next time the machine turns on, it will cold start.

m Execute the user-defined power switch/timeout routine.
If the program has defined a power switch/timeout interrupt routine with SET_INTR, that rou-
tine will be executed with a FAR CALL (and therefore must end with a FAR RET). The AL register
will be set to 77h, the power switch error, and the DS register will be set to the value specified
when SET _INTR was called. This only occurs when the power switch is pressed during a running
program, not in command mode.

m Ignore the power switch.
If the program has disabled the power switch with SET _INTR, the operating system will respond
to the interrupt but take no action, thereby ignoring the power switch.

In the first two cases, the TERM routine of any open user-defined handlers will be executed before the
action is taken.

To turn the machine off, the operating system writes to the power control register.

-
Power Control and Status Registers

The power control and status registers are shown below.

Table 13-1. Power Control and Status Registers

Register i/0 Bits Read/

Name Address Used Write
interrupt Control 00h 5 w
interrupt Status 00h 5 R
interrupt Clear 01h 5 w
Power Control 1Bh None w

Power Switch 13-1

1: Enable
0: Disable

Power Switch Interrupt [

Figure 13-1. Interrupt Control Register (1/0 Address 00h, Write)

1: Interrupted
0: Did Not Interrupt

Power Switch Interrupt [

Figure 13-2. Interrupt Status Register (/O Address 00h, Read)

1: Leave Unchanged
0: Clear

Power Switch Interrupt {

Figure 13-3. Interrupt Clear Register (1/O Address 01h, Write)

X = don’t care

Figure 13-4. Power Control Register (I/O Address 1Bh, Write)

1
Operating System Functions

The power switch software implements the following operating system functions:

Table 13-2. Power Switch-Related Operating System Functions

Function Function
Name Code
END_ PROGRAM 00h
SET_INTR OAh

13-2 Power Switch

® 14

Batteries

Contents

L
Chapter 14
14-1
14-2
14-2
13-4

Batteries

Main Nickel-Cadmium Battery Pack
Backup Lithium Batteries

Battery Control and Status Registers
Operating System Functions

14

Batteries

The HP-94 contains two types of batteries: nickel-cadmium batteries as the main power source, and
lithium batteries for memory backup. Details about the characteristics of these batteries is in the
"Hardware Specifications" elsewhere in this manual.

|
Main Nickel-Cadmium Battery Pack

The main power source for the machine is a rechargeable nickel-cadmium (NiCd) battery pack with a
nominal capacity of 900 mAh. The machine operating voltage (which is slightly below the battery pack
voltage) is continuously checked by the low battery detection circuitry whenever the machine is on.
When the operating voltage drops to 4.6 + 0.05 volts or below, interrupt type 54h is generated. The
low battery interrupt will abort read operations from channels 0-4 and write operations to channels 1-4.
It will not abort create, read, write, or delete operations for channels 5-15. The operating system will
take one of the following actions in response to this interrupt:

m Halt all machine activities, issue error 200, and wait for the user to press the power switch to turn
the machine off.
This is the default behavior if the program has not defined a low battery interrupt routine using the
SET INTR function (OAh). The following activities are halted:

Table 14-1. Activities Halted During Default Low Battery Behavior

Activity Action

or Device Taken
Cursor Turned Off

Interrupts Disabled
System Timer Turned Off
Bar Code Timer Turned Off
Beeper Turned Off

Keyboard Disabled
Display Backlight Turned Off

Serial Port Disabled
Serial Port Power Turned Off
Bar Code Power Turned Off

Bar Code Transitions | Disabled

The next time the machine is turned on, it will cold start.

= Exccute the user-defined low battery routine.
If the program has defined a low battery interrupt routine with SET INTR, that routine will be
executed with a FAR CALL (and therefore must end with a FAR RET). The DS register will be set
to the value specified when SET_INTR was called. This only occurs during a running program,

Batteries 14-1

not in command mode.

In both cases, the TERM routine of any open user-defined handlers will be executed before the action
is taken. SET INTR does not allow disabling the low battery interrupt.

The low battery interrupt only occurs once, when the main battery voltage drops below 4.6 volts. At
that point, the program has 2-5 minutes left before the battery voltage drops so low that the machine
turns itself off automatically without warning. The low battery interrupt will not occur again until the
machine has been turned off and back on. If the battery remains below 4.6 volts while the 94 is off, the
machine will not turn back on again until the battery has been recharged enough to bring its voltage
above that level (~4.8 volts). (The machine actually turns on, but the operating system turns it off
before any memory integrity tests are performed if the voltage is too low.)

The actual amount of time available depends on what is happening when the low battery condition
occurs. For example, the display backlight takes more power, as does the HP 82470A RS-232-C Level
Converter (if one is connected to the serial port), so less operating time will be available if these are
on. The time also depends on how much the battery was charged during its last charging cycle, the
ambient temperature, and many other factors. Because the remaining operating time is variable, the
program should respond to the low battery interrupt as rapidly as possible by ending its activities (shut
off I/O and powered devices, complete file updates that were in progress, etc.), notifying the user that
it is necessary to recharge the main battery, and turning the power off.

If the program continues operating until the machine turns itself off automatically, the effect is as if the
reset switch was pressed. No data in data files will be lost, since the backup batteries will keep memory
intact, but the machine will cold start the next time it is turned on. This means that any data in program
variables or scratch areas that did not get saved in a data file will be lost.

]
Backup Lithium Batteries

The backup power source is user-replaceable 3-volt lithium backup batteries, CR-2032 or equivalent.
There is one lithium battery for each major block of RAM: one for the first 64 or 128K (which also
backs up the real-time clock), one for the 128K memory board, and one for the 40K RAM card. The
mainframe lithium batteries are accessible through the back cover, and the RAM card battery is under
a cover on the card. These batteries are only used to preserve the contents of memory when the main
NiCd battery pack is completely discharged or disconnected (and there is no recharger connected).
They are not used when other power sources are available to preserve memory.

Their state is checked and reported only when the machine is turned on, after all memory integrity
tests are performed. Error 210 is reported at power on to indicate low voltage (2.7 volts) of the battery
for the first 64 or 128K, while error 211 is reported for the memory board or RAM card battery. Both
errors will be reported if both batteries need replacing.

R
Battery Control and Status Registers

The battery control and status registers are shown below.

14-2 Batteries

Table 14-2. Battery Control and Status Registers

Register 170 Bits Read/

Name Address Used Write
Interrupt Control 00h 4 w
Interrupt Status 00h 4 R
Interrupt Clear 01h 4 w
Main Status 0Bh 4-6 R

Low Main Battery { 1: Enable
Voltage Interrupt 0: Disable

Figure 14-1. Interrupt Control Register (1/0 Address 00h, Write)

Low Main Battery | 1: Interrupted
Voltage Interrupt 0: Did Not interrupt

Figure 14-2. Interrupt Status Register (I/O Address 00h, Read)

Low Main Battery | 1: Leave Unchanged
Voltage Interrupt 0: Clear

Figure 14-3. Interrupt Clear Register (/O Address 01h, Write)

Batteries

14-3

Main Memory 1: Voltage OK
Backup Battery Status | 0: Low Voltage

Memory Board or RAM Card | 1: Voltage OK
Backup Battery Status 0: Low Voltage

1: Voltage OK
0: Low Voltage

Main Battery Status [

X = ignore

Figure 14-4. Main Status Register (1/O Address 0Bh, Read)

]
Operating System Functions

The battery software implements the following operating system functions:

Table 14-3. Battery-Related Operating System Functions

Function Function
Name Code
SET INTR 0Ah

14-4 Batteries

® 15

Real-Time Clock

Contents

1
Chapter 15 Real-Time Clock

15-1 Real-Time Clock Control and Status Registers
15-1 Operating System Functions

15

Real-Time Clock
-

The HP-94 contains an Epson RTC-58321 real-time clock. Its quartz crystal operates at 32768 Hz, and
is backed up by the main memory lithium backup battery if the main NiCd battery is completely
discharged or removed. The clock has a one-second resolution, and is accurate to =50 ppm (~2
minutes/month). The clock supports time, date, and day-of-week functions, but the clock software in
the operating system only supports time and date, as well as the T (fime) operating system command.
Leap years are accommodated automatically. The details of the real-time clock hardware, operation,
and usage are described in the Epson RTC-58321 data sheet in the "Hardware Specifications".

The operating system provides the TIME_DATE function (08h) to set or read the time and date. No
syntax checking is performed on the time and date when they are set. It is the responsibility of the
application program to ensure that the time and date are in the proper format when they are set.

|
Real-Time Clock Control and Status Registers

The real-time clock control and status registers are shown below.

Table 15-1. Real-Time Clock Control and Status Registers

Register i/0 Bits Read/
Name Address Used Write
Real-Time Clock Control/Data 0Ch 0-7* w
Real-Time Clock Status/Data 0Ch 0-4* R
* For the meaning of the bits in these registers, refer to the Epson RTC-58321 data
sheet in the "Hardware Specifications".

D
Operating System Functions

The real-time clock software implements the following operating system functions:

Table 15-2. Real-Time Clock-Related Operating System Functions

Function Function
Name Code
TIME_ DATE 08h

Real-Time Clock 15-1

Beeper

Contents

Chapter 16

16-1
16-2

Beeper

Beeper Control and Status Registers
Operating System Functions

® 16

Beeper
|

The HP-94 beeper is a piezoelectric buzzer that is turned on and off using the main control register. If
a program turns the beeper on explicitly, it is responsible for turning it off as well after the appropriate
duration. If a program uses the operating system BEEP function (07h), the operating system will turn
the beeper off automatically after the specified time has elapsed.

The BEEP function allows specifying beep durations from 0.1 to 25.5 seconds, and either high or low
tones. It can be called while the beeper is beeping. If the tone specified is different than the tone in
progress, beeping will continue at the high tone and duration — the high tone and its duration will
take precedence regardless of the order in which the tones were specified. If the tone specified is the
same as the tone in progress, beeping will continue at either the remaining duration or the new dura-
tion, whichever is longer.

|
Beeper Control and Status Registers

The beeper control and status registers are shown below.

. Table 16-1. Beeper Control and Status Registers
Register 1/0 Bits Read/
Name Address Used Write
Main Control 0Bh 0-1 W

t 11: Low Tone
Beeper Control | 01: High Tone

00: Off

X = don’t care

Figure 16-1. Main Control Register (1/O Address 0Bh, Write)

. Beeper 16-1

.
Operating System Functions

The beeper software implements the following operating system functions:

Table 16-2. Beeper-Related Operating System Functions

Function Function
Name Code
BEEP 07h

16-2 Beeper

® 17

Reset Switch

® 17

Reset Switch

The HP-94 has a small reset switch to the left of the power switch. Since the power switch is under
program control, it is possible for a program to inadvertently prevent the user from turning off the
machine. The reset switch is provided to accommodate this situation.

The reset switch is a hardware power off, not a software power off. When the reset switch is pressed,
the machine is turned off immediately. No data in data files will be lost, since the backup batteries will
keep memory intact, but the machine will cold start the next time it is turned on. This means that any
data in program variables or scratch areas that did not get saved in a data file will be lost.

The TERM routine of any open user-defined handlers will not be executed, and no power-off check-
sums will be computed. The next time the machine is turned on, it will not compute power-on check-
sums (although the other memory integrity tests will be performed).

' Reset Switch 17-1

® 18

Other Hardware

Contents

L
Chapter 18 Other Hardware

18-1 Read/Write Memory (RAM)
18-1 System ROM

18-1 Custom Gate Array

18-2 Earphone Jack

18-2 External Bus Connector

18

Other Hardware

The HP-94 has some other hardware elements that will be discussed here: read/write memory
(RAM), system ROM, custom gate array, earphone jack and external bus connector.

I
Read/Write Memory (RAM)

HP-94 read/write memory is Toshiba TC5565FL-15L CMOS static RAM (8K x 8). Refer to the
"Memory Management" chapter for a detailed description of the memory organization. Major
hardware blocks of memory are backed up by user-replaceable lithium backup batteries; refer to the
"Batteries" chapter for details.

T
System ROM

The HP-94 has 32K of EPROM located in the upper 32K of the CPU address space. The system ROM
contains all the HP-94 built-in software. Refer to the "Memory Management" chapter for a detailed
description of the system ROM organization.

. ______________________________;
Custom Gate Array

The HP-94 contains a proprietary Hitachi 611224 custom gate array that combines what would other-
wise be several separate integrated circuits (ICs). The following is a list of the major hardware facilities
provided by the gate array:

m Interrupt controller for HP-94 hardware interrupts.

m Hardware control registers (except for keyboard, display, and 82C51).
= Power off control.

m System timer.

m Serial port power and baud rate clock.
= Bar code port power control, transition detection, and timer.
m Real-time clock control.
® Beeper tone.

m Chip select address decoding.

= Address/data bus latches.

m Status of data carrier detect (DCD) control line.

Other Hardware 18-1

|
Earphone Jack

The earphone jack accepts any standard earphone with a 3.5 mm plug. It allows the user of the
machine to hear the beeper (particularly for applications using bar code) in noisy environments.

T
External Bus Connector

The external bus connector is located on the underside of the HP-94 behind a hard plastic port cover.
It brings out all lines from the internal system bus. Details about the external bus connector (pin
assignments, voltages, currents, and logic levels are described in the "Hardware Specifications".

18-2 Other Hardware

Part 2

BASIC Interpreter

BASIC Program and Data Structure

Chapter 1

Contents

1-1
1-2
1-4
1-4
1-6
1-9
1-13
1-13
1-13
1-14
1-14
1-15
1-16

BASIC Program and Data Structure

BASIC Program Organization
BASIC Program Outline
Intermediate Code
Operand Codes
Explanation of Operand Codes
Variable Area
Data Structure
Real Numeric Data
Integer Numeric Data
Character Data

Array Data
Array Examples
Control Information Save Area

ek

BASIC Program and Data Structure

BASIC application programs (type B) are interpreted by the HP-94 BASIC interpreter (SYBI). The
BASIC application program may be in either RAM or ROM.

]
BASIC Program Organization
The following figure shows the organization of a BASIC program.

<— Paragraph boundary

Program Header

Program Code

Variable Descriptor Table

Figure 1-1. BASIC Program Organization

A variable area is necessary to execute a BASIC program. A control information save area is necessary
when a CALL statement or an interrupt process routine is executed. The variable area and the control
information save area are dynamically allocated in main memory.

BASIC Program and Data Structure 1-1

|
BASIC Program Outline

BASIC programs start with a 10h byte program header. The contents of the header are shown below
with hex offsets listed on the left side and a brief description on the right. The program code and vari-
able descriptor table are also shown to illustrate their location and size.

00h
Program Size 10h+t+v
02h
identifier “BP”
04h
Size of the variable area In paragraphs
06h
Variable Descriptor Table Address|10h + t
08h
First DATA Statement Offset |0 when no DATA statements
0Ah
OPTION BASE Information |0 when OPTION BASE O, otherwise 1
0Ch
Program Name Four characters
10h
Program Code t bytes
10h + t
Variable Descriptor Table v bytes
10h+t+v

Figure 1-2. Program Header

The following figure shows the organization of the BASIC program code.

Length {Line Number Code eol
(1 byte)]| (2 bytes) (n bytes) (1 byte)
eof

Figure 1-3. Program Code

The information contained in a line of program code is:
m Length: number of bytes in a line = 1 + 2 + n + 1 (must be less than 256).
m Line Number: 0 through 32767 (0000h through 7FFFh, least significant 8 bits first).
= col (end of line) and eof (end of file) are the NUL character (00h).

m Some lines, such as comments, generate no program code.

1-2 BASIC Program and Data Structure

Type Length Segment Address Offset Address
(1 byte) (1 byte) (2 bytes) (1 byte)

Figure 1-4. Variable Descriptor Table

The variable descriptor table contains information about the type, length, and address of each variable.
The figure above illustrates the table organization. The meanings of the fields are as follows:

= Type:
7 6 5 4 3 2 1 0
0
arameter [1: formal parameter
P | 0: not formal parameter
. [1: integer
bin | O: real
[1: character
character .
| 0: numeric
arra [1: array variable
y | 0: simple variable
Figure 1-5. Variable Descriptor Type Byte
m Length:
Table 1-1. Variable Descriptor Length Byte
Type Length in Bytes
Integer 2
Real 8
Character Dimensioned size (default 8)
Parameter 5*
Array Size of one array element
* This entry points to another descriptor entry which contains the actual informa-
tion for the variable.

m Segment Address, Offset Address:
The segment address and offset address are a pointer to the variable data in the user variable area.
They are relative to the start of the variable area. The first byte of the segment address field con-
tains the least significant 8 bits of the segment address. The offset address contains values in the
range 00h through OFh. When the parameter bit is 1, the segment and offset addresses are the
address of the variable descriptor entry for the parameter.

BASIC Program and Data Structure 1-3

Intermediate Code
Codes interpreted by the HP-94 BASIC interpreter are called intermediate code.

Table 1-2. Intermediate Code

Ox|ix|2x| 3x 4x |5x|6x 7x 8x | 9x | Ax |Bx|{Cx|Dx|Ex|Fx
x0|eol >=|LET GET SQR |FiXs |DMS
x1 <=|{GOTO |PUT EXP |FIX9 |ARD
x2 | bin <>|GOSUB |PARAM LOG |MAX |ADS
X3 |ral > |RETURN {%CALL TAB LGT [MIN |FIXE
x4 |chr < |FOR DEF XOR SGN |RND |TIM
X5 |var , |NEXT |READ %CURSOR|ABS |EOF |Pi
X6 |prm i |IF DATA %HOME |INT |INPUT${VER
X7 |fnc : |ON RESTORE %DEL LEN [TOD$ |KEY
X8lext [(|# [DIM AND iDX |SIN HEX$
X9iiin |) INPUT OR NUM |COS |SIZE
xXAl{adr |+ PRINT NOT COD |TAN
xB - CALL TO STR$ |ASN
XC |rem | ** END STEP CHR$ |ACS
xD * FORMAT USING ASCS$ |ATN
xE / OPEN MSG MOD |FRC
xF = CLOSE SPACE FIX0 |RAD

Note: A blank entry in the table indicates an unused code.

Table 1-3. Intermediate Code Groups

Code Group Range of Codes
Operand 00h ——17h
Delimiter 18h —— 2Fh

Statement 30h ——47h

Optional Word 73h —— 7Fh

Function 80h —— AgSh

Operand Codes
The symbols and formats for the various members of the operand code group are listed below.

1-4

BASIC Program and Data Structure

. Table 1-4. Operand Codes

Code |Symbol Format Comments
00h eol NUL End of line
02h bin | bin [VALUE (L), (H) | Integer constant
03h ral [ral |real char string [NUL| [Real type constant
04h chr | chr [char string [NUL| |Character constant
05h var [var [ADRS (L), (H) i Variable
06h prm [prm [ADRS (L), (H) | User-defined function parameter
07h fnc [fnc |ADRS (L), (H) | User-defined function

The ADRS after var, prm, and fnc is the
appropriate position in the variable descrip-
tor table

. 08h ext [ext |external procedure name [NUL] |Entry name (CALLand $CALL)

ogh lin [fin {ADDR (L), (H) | Text line address reference

lin is used by FORMAT, GOTO, GOSUB,
and USING.

The ADDR after lin is the relative offset to
another line.

0Ah adr [adr |ADDR (L), (H) | Address of next DATA statement

The ADDR after adr is the relative position
from the start of the program.

0Ch rem | rem |char string [NUL| [Skipped during execution

rem is used for the data in DATA statements
or the format information in FORMAT state-
ments.

‘ BASIC Program and Data Structure 1-5

Explanation of Operand Codes

The meaning of each operand code is as follows:
m eol (end of line)

This indicates the end of a line in a program. Multiple statements within the line are separated
with a colon (2), character code 27h.

= bin (integer constant)

This indicates the following two bytes are an integer constant (-32768 through 32767). The first
byte is the least significant 8 bits.

= ral (real constant)

This indicates a real constant which is stored as a character string. Only positive numbers are
stored in this format. Negative numbers are expressed as a unary expression.

eg -123.4 — -~ ral 12 3. 4NUL
m chr (character constant)

This indicates a character string. It does not include the double quotation marks which specify the
beginning and end of a character string. Two successive double quotation marks (" ") indicate a
double quote (™). Two successive ampersands (&&) indicate an ampersand (&). An ampersand
(&) followed by two hexadecimal digits represents a single byte with that hexadecimal value.

m var (variable)

The two bytes following var are the offset from the start of the variable descriptor table to the vari-
able descriptor table entry. The first byte is the least significant 8 bits.

Start of variable descriptor table —

Offset —
type|length|segment} offset
L. H

(00h through OFh) —

Figure 1-6. Variable Reference

1-6 BASIC Program and Data Structure

. m prm (user-defined function parameter name)
The prm operand code is used for parameters in subprograms and user-defined functions.

The two bytes following prm are the offset from the start of the variable descriptor table to the vari-
able descriptor table entry. The first byte is the least significant 8 bits.

The variable descriptor table entry has a type = 01h (‘parameter’) and length = 05h. The seg-
ment and offset values are relative to the start of the variable area. The variable area indicated by
the variable descriptor table entry contains a variable descriptor table entry which has the correct
type and length for the parameter. The segment and offset values in the latter entry are set to the
actual address of the variable (ot an offset from the start of the variable area).

typellength| segment | offset
oth| o5h | (L), (H)

(in variable area)

type|length

Figure 1-7. Parameters in the Variable Descriptor Table

‘ m fnc (user-defined function)

The two bytes following fnc are the offset from the start of the variable descriptor table to the vari-
able descriptor table entry. The first byte is the least significant 8 bits.

The variable descriptor table entry segment address field is the offset from the start of the program
to the user-defined function definition. The final byte of this entry (offset) is 00h.

If the definition contains one or more arguments, the segment address field points to the first argu-
ment. If the definition does mot contain an argument, the segment address field points to the

equals sign (=) which follows the definition.

DEF FNA=

T

DEF FNA(¥,Y)=

m ext (external program name)

The subprogram name for CALL and $CALL is indicated with ext.

. BASIC Program and Data Structure 1-7

m lin (line reference) .

The two bytes following lin are an offset to the start of a line. The first byte is the least significant 8
bits. The offset is relative to the byte following the offset (the third byte following lin).

lin offset The start of the referenced line is (o) + offset
L, H)
a

Figure 1-8. Line Reference

m adr (address reference)

The adr operand code is used in DATA statements.

Program Header
L | H
First DATA statementl rem DATA |NUL[adr] L] H] eol]
Address
|
[rem DATA |NUL‘ adr[L [H [eol]
Last DATA statement| rem | DATA]NUL] adr] ooh] 00h] eol]

Figure 1-9. DATA Statement Linking
An adr of 0000h indicates the end of the DATA chain.
= rem (non-executed statement)
The rem operand code indicates character strings for the FORMAT and DATA statements.

A line with the rem operand code is not executed.

1-8 BASIC Program and Data Structure

A
Variable Area

The variable area is allocated in main memory when BASIC program execution begins. It is released
when execution ends.

The variable area is allocated or released as a block. The size of the variable area to be allocated is
available in the variable area size field of the BASIC program header. The variable area is not allo-
cated if the variable area size field is zero.

BASIC Program Main Memory

Size of variable area (a)

a variable area

Program Code

Variable Descriptor Table

Figure 1-10. Variable Area Allocation

An example of the process of allocating and releasing variable areas is shown in the following figure.
The example illustrates the main program (MAIN) calling a second program (program B), which in
turn calls a third program (program C). Program C ends, returning control to program B. Program B
also ends, returning control to MAIN. MAIN then ends, returning to command mode.

The control information save areas which are allocated between each variable area are omitted in this
figure.

BASIC Program and Data Structure 1-9

MATIN (step 1) Program B Program C
CALL B (step2) CALL C (step 3)
END (step 6) END (step 5) END (step 4)

Step 1. Start of MAIN

Step 2. Start of Program B

Step 3. Start of Program C

execution execution by CALL B execution by CALL C
Program C variable area
Program B variable area Program B variable area
MATIN variable area MATIN variable area MAIN variable area

Step 4. Completion of

Step 5. Completion of

Program C by END Program B by END
Program B variable area
MATIN variable area MAIN variable area

Step 6. Completion of
MAIN by END

Figure 1-11. Allocating and Releasing Variable Areas

The relationship between the program code, variable descriptor table, and variable area is shown in the

following figure.

1-10 BASIC Program and Data Structure

. start
Program Code

Variable Area

f var |address (start + segment):offset

-{ variable data]

Variable Descriptor Table

-

| type | length |segment| offset '

Figure 1-12. Program Code and Variables
The meaning of the items in italics is listed below.

m var
Operand code for a variable

= address
‘ Relative address in the variable descriptor table

= fype
variable type

= Jength
variable or array element length

= segment
variable segment address relative to start

m offset
variable offset address relative to start

m start
Start of variable area (determined at CALL time)

m variable data
Current value of the variable

. BASIC Program and Data Structure 1-11

An example showing several statements in a BASIC program helps clarify the relationship between

program code and variables. ‘
Program Code
BASIC Program Length Line# ————— Code
10 DIM A(2),BCDSS len,, | 10 |DIM|var 0 (l....ledl
20 LET A(1)=0

30 LET BCD$="ABC"

len,, | 20 |LET|var 0 (l....

g

leny, | 30 |LET|var| 5 |=|....|eol

eof

DIM, LET, (, and = are in intermediate code.
Variable Descriptor Table

Type Length Segment Offset

A(2)|08h| o8h | 000Oh | OOh

Variable Area
BCD$| 04h | 05h | 0001h | 0O3h Array Information

0th 0002h |A (1) [8bytes]|A(2) [8 bytes]
BCDS$ [5 bytes]

Figure 1-13. BASIC Program and Variable Relationships

1-12

BASIC Program and Data Structure

]
Data Structure

There are three data types — real numeric data, integer numeric data, and character data. In addi-
tion, each of the data types can be collected into an array. Information about the array is stored
preceding the elements in the array. The data in an array is stored consecutively.

Real Numeric Data
The format for real numeric data in the variable area is shown below.

1 byte Mantissa part — 7 bytes (14 BCD digits)
7..10

L Position of (implied) mantissa decimal point
1 bit - sign of mantissa: 0 for positive, 1 for negative
7 bits - exponent value

Figure 1-14. Real Numeric Data in the Variable Area

Th% exponent is in two’s complement (binary). Exponent values -64 through 63 indicate 10°* through
10%,

Integer Numeric Data

Integers are stored as two bytes in both the variable area and data files; the first byte contains the most
significant 8 bits, and the second byte contains the least significant 8 bits. The range of an integer is
-32768 through 32767.

high low

Figure 1-15. Integer Numeric Data in the Variable Area

BASIC Program and Data Structure 1-13

Character Data

The format for character data in the variable area is shown below.

n-byte area

Figure 1-16. Character Data in the Variable Area

The default value for n is 8. A DIM statement can be used to assign values 1 through 255 to n. The
value of n is in the variable descriptor table.

If the character string has fewer than n bytes, a NUL (00h) is stored following the last character of the
string,

Only the first nn characters assigned to a character string are stored — excess characters are discarded.

Array Data
— 1 2 * #dimensions e,*e,*...*e, *elementlength [— size in bytes
e, e {.-.-] e, Array elements
l— #dimensions
<— Array information — <— Array data —

Figure 1-17. Array Data in the Variable Area

The maximum size of an array is 65535 (FFFFh) bytes, including both the array information and the
array data. The number of dimensions must be in the range 1 through 255.

In the array information, e, is the number of elements in that dimension. For OPTION BASE O,
the number of elements is the array’s upper bound plus 1. Each e, is stored with the least significant 8
bits in the first byte and the most significant 8 bits in the second byte.

Array elements are stored in row-major order (the right-most subscript varies most rapidly).

1-14 BASIC Program and Data Structure

. Array Examples

The following two examples show how the array information and data would be stored in memory.

Example: DIM A(2,3)

0oh 01h 03h 05h 0Dh 15h
0zh| 0002h | 0003h A(1,1) A(1,2)
15h 1Dh 25h
A(1,3) A(2,1)
25h 1Dh 35h
A(2,2) A(2,3)

Figure 1-18. Array Data Example: DIM A(2,3)

Example: OPTION BASE 0:DIM B$6(4)

‘ 0Ch 01h 03h 09h OFh 15h 1Bh 21h

oth| 0005h | B$(0) B$ (1) BS (2) B$ (3) BS (4)

L Note that this is the number of elements in this subscript.

Figure 1-19. Array Data Example: OPTION BASE 0 : DIM B$6(4)

‘ BASIC Program and Data Structure 1-15

I
Control Information Save Area

The control information save area is used to save the control information of the currently executing

program when a subprogram is called with the CALL statement or when an interrupt causes a jump to
an interrupt routine.

The control information save area is allocated in main memory when a CALL statement or interrupt
occurs. The control information for the currently executing program is saved in the save area. When
the subprogram ends (END) or the interrupt routine ends ($CALL SYRT), the information is
restored to the BASIC interpreter control area.

0Ch
Saved control information pointer
02h
Saved segment of BASIC program
04h
Saved SPTR
06h
Saved segment of Variable Area
08h
Saved SP value for IOERR
0Ah
Saved offset to current program line
0Ch
Saved offset to current program byte
OEh
Saved offset to DATA statement
10h
Saved SYER flag
12h
Saved error variable information
(5 bytes)
16h
Unused (2 bytes)
18h
Saved offset to SYSW interrupt line
1Ah
Saved offset to SYLB interrupt line
1Ch
Unused
(4 bytes)
20h
1-16 BASIC Program and Data Structure

Link to previous control information (0 for main program)

1 if SYER active, 0 if not

Copy of parameter biock entry from $CALL SYER

Figure 1-20. Format of the Control Information Save Area

® 2

Operation Stacks

Chapter 2

Contents

2-1
2-2
2-3
2-4
2-5
2-5
2-6
2-6
2-7
2-7
2-8

Operation Stacks

Operation Stack Area
Control Stack

GOSUB Control Element

FOR ... NEXT Control Element
Numeric Operation Stack

Real Numeric Data

Integer Numeric Data

Numeric Operation Stack Example
Character Operation Stack

Character Operation Stack Example
Parameter Table (only for %CALL)

2

Operation Stacks

The operation stack area is used for:
m Control stack
= Numeric operation stack
m Character operation stack

m Parameter table entries (for ¥CALL)

A
Operation Stack Area

Parameters which are passed by value (constants and expressions) are evaluated, and the result of the
expression is stored in the operation stack area.

The character operation stack pointer is CPTR, and the numeric operation stack pointer is SPTR.

Parameter taile fnlI for ¥CALL)

Character operation stack

[BP].CPTR—
250h bytes
[BP] .SPTR—

T11

Numeric operation stack

Control stack

Figure 2-1. Operation Stack Area

Operation Stacks 21

Control Stack

The control stack i1s used to maintain address and variable information for GOSUB and i
FOR...NEXT loops.

[BP].SPTR—

(Numeric operation stack)

Control element n

Direction of stack growth

Control element 3

Control element 2

Control element 1

00h

Figure 2-2. Control Stack Operation

[BP] .SPTR—

(Subprogram numeric operation stack)

Subprogram control elements

00h

(Main program parameters passed by value)
a—>

Main program control elements

00h

Figure 2-3. Control Stack During Subprogram Execution
Notes:
m o is the SPTR value saved in the control information save area.
m Control stack usage for an interrupt routine is the same as for a subprogram.

s Control elements consist of GOSUB return information and FOR . . . NEXT loop information.

m There is no pointer which separates the numeric operation stack from the control stack.

2-2 Operation Stacks

. GOSUB Control Element

The GOSUB control element block size is 05h bytes.

00h
Type (01h)
01h
Code line address (LPTR)
03h
Code address
05h

Figure 2-4. GOSUB Control Element

Code line address: The start of the code line containing the GOSUB statement.
Code address: The address of the eol or eos which follows the GOSUB statement.

. Operation Stacks 2-3

FOR .. . NEXT Control Element

The FOR. .. NEXT control element block size is 18h bytes.

00h
Type (8Xh)
0th
Code line address (LPTR)
03h
Code address
05h
Control variable segment offset
08h
STEP value (real or integer) [8 bytes]
10h
TO value (real or integer) [8 bytes]
18h
Figure 2-5. FOR . . . NEXT Control Element
Type (8Xh): Indicates the control variable type (80h = real, 82h = integer).
Code line address: The start of the code line containing the FOR statement.
Code address: The address of the eol or eos which follows the FOR statement.

Control variable address:

STEP value:

TO value:

The segment:offset address of the control variable for the FOR ... NEXT
loop. The offset is a single byte.

The value to be added to the control variable when the NEXT statement is
executed. The type of the STEP value matches the type of the control
variable (integer or real).

The value to which the control variable is compared (after adding the
STEP value) when the NEXT statement is executed. The type of the TO
value matches the type of the control variable (integer or real).

The FOR ... NEXT control element is removed from the control stack by the NEXT statement when
the loop terminates. If the FOR loop is exited with a GOTO statement, the control element is left on
the control stack. The FOR statement searches the control stack for FOR loop control elements
before creating a new element. If there is a FOR loop control element with the same variable name,
that control element is reused.

2-4 Operation Stacks

ST —
Numeric Operation Stack

Numeric parameters passed by valse to subprograms are stored on the nusseric operation stack

(including any character values passed by value). The parameter table contains pointers to these
values.

The SPTR and CPTR pointers are compared when pushing a value onto the stack, If SPTR <
CPTR, there is an overflow, and "Error MO" oceurs.

Numeric values on the stack are always 8 bytes, whether reaf or integer type. An integer vaise on the
slack starts with two bytes of 00h,

SPTR—

Valuen [Direction of stack growth

Value 2

Value 1

Contrek stack

Figure 2.6. Numeric Operation Stack

Real Numeric Data
The format for real sumeric data on the numeric operation stack is shown below.

1 byte Mantissa part — 7 bytes (14 BCD dighs)
7.1 @

| | l | E | E

' b Position of (implied) mantissa decimal point
1 bit - sign of mantissa: 0 for posttive, 1 for negative

7 bits - axponent vakie

Figure 2-7. Real Numeric Data on the Numeric Operation Stack

‘The exponent is in two’s complement (bisary}. Exponent values -64 through 63 indicate 10 through
0%

Operation Stacks 2-5

Integer Numeric Data

The range of an integer value is -32768 through 32767.

| I I l

00 00 |00 00|00 00 |low high

| I l |

Figure 2-8. Integer Numeric Data on the Numeric Operation Stack

Numeric Operation Stack Example

A+B*C—D (S meansSPTR)

0. Initial 1.| StackA, 2.| Stack B, 3.| StackC, 4, Call
state Update S Update S Update S SMUL
s—
C
sS—>
B B
sS—>
A A A
sS—>
5. 6. Call 7. 8. Assignthe 9. Sameas
SADD results to D, initial state
S ' Update S
B*C
s—>
A A+B*C
S—

Figure 2-9. Numeric Operation Stack Example:A + B*C — D

2-6 Operation Stacks

. Character Operation Stack

The character operation stack is used by character operators as a temporary storage arca.

The SPTR and CPTR pointers are compared when pushing a value onto the stack. If CPTR >
SPTR, there is an overflow, and “Error MO” occurs.

A 00h byte must always be written at the byte pointed to by CPTR.

BASIC Control area

CPTR—
00h Direction of stack growth

Figure 2-10. Character Operation Stack

Character Operation Stack Example

"ABC " + " DE "
1) "ABC" 2) +"DE"

® . -
B B

c c

CPTR—
ooh D
E
CPTR—
0oh

Figure 2-11. Character Operation Stack Example: “ABC” + “DE”

Operation Stacks 2-7

Parameter Table (only for %CALL)

The operation stack area is used by $¥CALL for the parameter table and for parameters passed by

value.
1 byte 1 byte 2 bytes 1 byte
ES:BX—
Type | Length Segment Offset Information for the first argument
Information for the nth argument
FFh

Figure 2-12. Parameter Table Format

The meanings of the fields in the parameter table are as follows:

= Type:
7 6 5 4 3 2 1 0
0|0]0¢}0O
. [1: integer
bin 0: real
L
[1: character
character | 0: numeric
arra [1: array variable
Y | 0: simple variable or array element

Figure 2-13. Parameter Table Type Byte
Arrays are passed to subprograms with subscript "*".
DIM XYZ (10)

%CA'L'L' ABC(XYZ(*)) : REM pass the entire XYZ array

Numeric and string expressions (including constants) are evaluated by ¥CALL. Numeric values
are put on the numeric operation stack as real numbers even if they could be expressed as an

integer. String characters are moved from the character operation stack to the numeric operation
stack before the subprogram is called.

2-8 Operation Stacks

. ® Length:

Type Length in bytes

integer 2

Real 8

Character | Dimensioned size (default is 8)
Array Size of one array element

m Segment Address, Offset Address:

The segment address and offset address contain the actual address of the variable’s data area. This
is different than in the variable descriptor table, where the address is relative to the start of the vari-
able descriptor table.

The segment address is a two-byte field; the offset address is a one-byte field with values 00h
through OFh.

. Operation Stacks 2-9

® 3

Assembly Language Subprograms (Keywords)

Chapter 3

Contents

3-1
3-2
3-2
3-3
3-5
3-6
3-6
3-8

Assembly Language Subprograms (Keywords)

Program Structure
BASIC Call and Return

BASIC Interpreter %CALL Procedure

Parameter Table Format

%CALL Example

Assembly Language Subprogram Return to BASIC
Access to BASIC Interpreter Utility Routines

Using a Utility from an Assembly Language Subprogram

3

Assembly Language Subprograms (Keywords)

An assembly language subprogram (also called a keyword) is called with the $CALL statement.

The following assembly language subprograms are built into the HP-94: SYAL, SYBP, SYEL,
SYER, SYIN, SYLB, SYPO, SYPT, SYRS, SYRT, SYSW, and SYTO.

In addition, SYBD, SYBI, SYFT, and SYOS are reserved file names which must not be used for
assembly language subprograms.

For assembly language subprograms which are not built into the HP-94, the file name is the subpro-
gram name. In general, Hewlett-Packard uses SY as the first two characters of its assembly language
files, and HN as the first two characters of its user-defined handlers. Names starting with SY and HN
should not be used.

Assembly language subprograms must be written so that they can be executed in ROM.

This chapter assumes an understanding of HP-94 program structure. Refer to the "Program Execu-
tion" chapter in Part 1, "Operating System".

|
Program Structure

An assembly language program has a six-byte header followed by the program code. This structure is
shown below with hex offsets indicated on the left side.

00h <—Paragraph boundary
Program length (len)
02h
Internal entry point
04h
Version number
06h <—%CALL entry point
BASIC entry point
(program code)
len—>

Figure 3-1. Assembly Language Subprogram Structure

See the "Program Execution” chapter in Part 1, "Operating System" for more information.

Assembly Language Subprograms (Keywords) 3-1

N
BASIC Call and Return

A BASIC program calls an assembly language program with the $CALL statement. When the assem-
bly language routine finishes executing, a FAR RET is used to return to the BASIC interpreter.

BASIC Interpreter %CALL Procedure
The BASIC interpreter calls the assembly language subprogram at its entry point with a FAR CALL.
Contents of the CPU registers when an assembly language subprogram is called:

BASIC Interpreter Scratch Area

«—S8S,ES
«—BX
Parameter table
<—BP
Control area
«—sI
System stack (996 bytes available) This area is available to the subprogram
«—SP
Return address Return to ¥ CALL statement (FAR RET)
Assembly Language Subprogram
00h “«—CS,DS
Program header
06h «—IP

Program code

The direction flag is clear (CLD).
Interrupts are enabled (STI).

AX contains the value of SPTR before $CALL built the parameter table (not needed unless the sub-
program uses IOERR; sce TOERR for more information and an example).

The contents of registers which are not shown are not defined.

3-2 Assembly Language Subprograms (Keywords)

. Parameter Table Format

1 byte 1byte 2 bytes 1 byte
ES:BX—
Type | Length Segment Offset Information for the first argument
Information for the nth argument
FFh

Figure 3-2. Parameter Table Format
The meanings of the fields in the parameter table are as follows:

8 Type:
7 6 5 4 3 2 1
ojo0}l0{0 0

. 1: integer
‘ bin [0: real
1: character

character : .
arac [0: numeric

array { 1: array variable

0: simple variable or array element

Figure 3-3. Parameter Table Type Byte
Arrays are passed to subprograms with subscript "*".
DIM XYZ(10)
%CA.L.L. ABC(XYZ(*)) : REM pass the entire XYZ array
Numeric and string expressions (including constants) are evaluated by $CALL. Numeric values
are put on the numeric operation stack as real numbers even if they could be expressed as an

integer. String characters are moved from the character operation stack to the numeric operation
stack before the subprogram is called.

‘ Assembly Language Subprograms (Keywords) 3-3

m Length:

Type Length in bytes

Integer 2

Real 8

Character | Dimensioned size (default is 8)
Array Size of one array element

m Segment Address, Offset Address:

The segment address and offset address contain the actual address of the variable’s data area. This
is different than in the variable descriptor table, where the address is relative to the start of the vari-
able descriptor table.

The segment address is a two-byte field; the offset address is a one-byte field with values 00h
through OFh.

3-4 Assembly Language Subprograms (Keywords)

. %CALL Example

10 INTEGER C

20 DIM A(10),BS$5,C(3,2)

30 D=1

100 $CALL AB(A(*),B$,C(1,2),D)

When line 100 is executed, $CALL creates a parameter table (shown below) in the operation stack
area and passes a pointer to it in ES : BX.

Assume that the BASIC variable area segment address is 1F00h.

Parameter Table

Low-High
ES:BX—
08h | 08h 1Fo1th | 01h {<—A(*) (points to an entire array)
04h | 05h 1FO6h 04h [<—BS$S
o2h |02h| 1Fooh | 07h |[¢<—C(1,2) (pointsto one element)
00h | 08h 1F06h 0oh |[<—D
FFh
. Variable Area
l1F00:07
1F00:00—
o2h| 0003h | 0002n | C(1,1) | C(1,2) | C@1) | CR2) | CB1) | C@B.2)
1F01:01—
01h| 000Ah A(1) (8 bytes) .. A(10) (8 bytes)
1F06:04—>
B$ (5 bytes)
1F06:09—
D (8 bytes)

Figure 3-4. %CALL Example: Calling an Assembly Language Subprogram

Note: The values in jtalics are array information.

. Assembly Language Subprograms (Keywords) 3-5

Assembly Language Subprogram Return to BASIC C

When an assembly language subprogram returns to the BASIC program that called it, the following
conditions should exist.

® The SS, BP, and SP registers must have the same value as when the assembly language subpro-
gram was called.

m The direction flag must be clear (CLD instruction).

® Interrupts must be enabled (ST instruction).

m A FAR RET must be used to return to the BASIC Interpreter.

.
Access to BASIC Interpreter Utility Routines

This section describes how to access BASIC Interpreter utility routines for decimal math, stack mani-
pulation, number conversion, and parameter processing from an assembly language program.

In the following table, CSEG is the segment address of the BASIC interpreter.

An assembly language subprogram can easily determine the value of CSEG by examining the return
stack. The word at SS : SP+2 is the segment address of the BASIC interpreter.

The regular entry point of the BASIC interpreter is CSEG:0. If the interpreter is called at CSEG: 6
(as the operating system S command does), it inmediately returns to the operating system.

If an error is detected by a BASIC interpreter utility routine, either the ERROR routine or the
IOERR routine is called. The line number and the program name displayed in the error message
point to the $CALL keyword.

3-6 Assembly Language Subprograms (Keywords)

CSEG:00h
02h
04h
06h
08h
0Ah
oCh
OEh
10h
12h
14h
18h
1Ch
20h
24h
28h
2Ch
30h
34h
38h
3Ch
40h
44h

51h

BASIC Interpreter Code

JMP CSEG:51h (interpreter start)

Identifier "I P"

Release No. Version No.

JMP CSEG:44h (Exitto O.S.)

Data part size (paragraphs)

Operation stack size (bytes)

Control area size (bytes)

offset from SS : BP to SPTR

offset from SS: BPto CPTR

offset from SS : BPto SYSSTK

BASIC Interpreter Scratch Area

Operation stack (250h)

Control area (1C0h)

System stack (3F0h)

JMP SADD (FAR RET)
JMP SSUB (FAR RET)
JMP SMUL (FAR RET)
JMP SDIV (FAR RET)
JMP SPOW (FAR RET)
JMP SNEG (FAR RET)
JMP TOREAL (FAR RET)
JMP TOBIN (FAR RET)
JMP ERROR (FAR RET)
JMP TOERR (FAR RET)
JMP GETARG (FAR RET)
JMP SETARG (FAR RET)

EXIT (returns to the operating system)

BASIC Interpreter code

Assembly Language Subprograms (Keywords)

NOTE
The scratch area is allocated
in main memory by the BASIC
interpreter after a cold start.

—5S:0

<—SS:BP

<—sS8:s1I

<—-8S:8P

3-7

Using a Utility from an Assembly Language Subprogram .

Many of the utility routines require their data to be on the numeric operation stack. The numeric
operation stack pointer (SPTR) must be set up to use these routines.

BASIC Interpreter Control area Operation stack
code segment

SS:BP—
CSEG:0Eh—>

Offset to SPTR —

data on stack

The SPTR address relative to BP is stored in the BASIC interpreter header at location CSEG:0Eh.

See the "Operation Stack" section for more information about using the numeric operation stack.

3-8 Assembly Language Subprograms (Keywords)

e 4

BASIC Interpreter Utility Routines

Chapter 4

Contents

4-1
4-1
4-2
4-3
4-5
4-7
4-8
4-9
4-10
4-11
4-12
4-13
4-14
4-15

BASIC Interpreter Utility Routines

BASIC Interpreter Utility Routine Descriptions
Registers Passed to BASIC Interpreter Utility Routines

ERROR

GETARG

IOERR

SADD

SDIV

SETARG

SMUL

SNEG

SPOW

SSUB

TOBIN

TOREAL

4

BASIC Interpreter Utility Routines

This chapter describes the BASIC interpreter utility routines. These utilities allow assembly language
subprograms to use the decimal math routines in the BASIC interpreter and simplify the passing of
parameters between BASIC programs and assembly language subprograms. Utility routines are also
available for reporting errors detected in the assembly language subprograms and for converting
between real and integer data.

- |
BASIC Interpreter Utility Routine Descriptions

BASIC interpreter utility routine descriptions consist of the following:
m A brief description of the routine.
= The calling sequence for the routine.
m Notes on the use and behavior of the routine.

m A summary of the parameters passed to the routine and the parameters that the routine must
return.

Registers Passed to BASIC Interpreter Utility Routines

The BASIC interpreter utility routines all expect BP to point to the BASIC interpreter control area.
Other registers which are expected are mentioned in the “Input:” section for each routine.

BASIC Interpreter Utility Routines 4-1

ERROR

Display an error message and return to the operating system command mode.

Calling sequence:

FAR CALL CSEG:34h

Notes:

= If the code in AL is not in the table below, the code is displayed as three decimal digits.
= ERROR returns to command mode after displaying the message.

Input: Output:
AL = code Error CC nnnnn pppp
(See table below) CC: Characters corresponding to the code

nnnnn: Error line number
PPPP: Program name

Table 4-1. Codes for ERROR Utility Routine

Hex |Decimal(CC Meaning

01h 1 SY | Syntax error

02h 2 TY |Data type mismatch

03h 3 CN | Conversion error

04h 4 RT [RETURN or SYRT error

05h 5 DT |Data error

06h 6 ILlllegal argument

07h 7 BR | Branch destination error

08h 8 MO [Memory overflow

09h 9 NF | Program not found

0Ah 10 AR |Array subscript error

0Bh 11 CO | Conversion overflow

0Ch 12 EP |Missing END statement

0Dh 13 DO | Decimal overfiow

0OEh 14 IR |{Insufficient RAM

OFh 15 FN |lllegal DEF FN statement
10h 16 UM {Unmatched number of arguments
11h 17 BM | BASIC interpreter malfunction
12h 18 LN | Nonexistent line

13h 19 IS [lllegal statement

4-2 BASIC Interpreter Utility Routines

GETARG

Convert a numeric parameter from $CALL into a binary value and return the value.

Calling sequence:

FAR CALL CSEG:3Ch

Notes:

m If the parameter is an array or is of character type, Error TY occurs.

m If there is no parameter (type = FFh), Error UM occurs.

m If the parameter is negative and a negative number is not allowed, Error IL occurs.

m If the parameter is out of range, Error IL occurs. The valid range depends on the contents of
register CL, as shown in this table:

Table 4-2. GETARG Result Flag (Register CL)

CL

Length

Positive/Negative

Range of values

word (16 bits)

positive or zero only

0 through 32767

double word (32 bits)

positive or zero only

0 through 2311

word

negative allowed

-32768 through 32767

double word

negative allowed

-231 through 2311

Input: Output:
If destination is a word:
AX = binary value
DX = (undefined)
If destination is double word:

ES : BX points to a parameter table entry
CL is the flag byte (see below)

Parameter Table Entry

1 byte 1byte 2bytes 1byte AX = low word of binary value
ES:BX— DX = high word of binary value
Type |Length|Segment| Offset
Absolute address
Data

Figure 4-1. GETARG Parameter Processing

4-3

BASIC interpreter Utility Routines

...GETARG

1: double word
0: single word

L Length [

1: negative allowed

Positive/Negative [0: positive or zero only

Figure 4-2. GETARG Resuit Flags (Register CL)

4-4 BASIC Interpreter Utility Routines

. I0ERR

If error trapping (¥CALL SYER) is not in effect, display an error message and return to the operat-
ing system command mode.

Calling sequence:

FAR CALL CSEG:38h
Notes:

m Assembly language subprograms must set up certain registers before calling IOERR. Sec the
example program below to set up these registers.

m If error trapping (¥CALL SYER) is in effect, the error number variable is set to the error code.
BASIC execution resumes at the next line (not statement) of the BASIC program. IOERR does
not return to the assembly language routine which called it.

m If error trapping (¥CALL SYER) is not in effect, a call to TOERR has the same effect as a call

to ERROR.
Input: Output:
AL = code Error NNN nnnnn pppp
(See Appendix B) NNN: Error code (3 decimal digits)
BP, SS, and SP unchanged from ¥CALL nnnnn: Error line number
SPTR restored (value was in AX after $CALL) PPPP: Program name
I IOERR_OFFSET equ 038h
SPTR_OFFSET equ OEh
MYSEG segment public 'MYSEG'
assume cs:MYSEG
EXAMPLE proc far
START:
PROG_SIZE du FINISH-START
ASM_ENTRY_ADR dw of fset START_ASM
VERSION dw 0100h ; Version 1.00

r
; This is an outline of an assembly- language subprogram which shows how
; to save and restore the value of SPTR before a call to IOERR.
H
START_ASM:

push ax ; Save SPTR value on stack

H
jRREERRR (yserts code omitted here) *¥wharkx
H

JMP_IOERR: ; AL contains the error code for IOERR

cld : Needed only if code executed a STD

sti ; Needed only if code executed a CLI
pop dx ; Recall SPTR value to DX from stack
pop cx ; Drop BASIC interpreter offset

pop es ; Pop BASIC interpreter segment (CSEG)
push es ; Push CSEG for IOERR entry

mov cx, I0ERR_OFFSET

push cx ; Push offset for IOERR entry

mov si,es:SPTR_OFFSET ; SI = offset of SPTR

. BASIC Interpreter Utility Routines 4-5

...I10ERR

mov ss: [bp+si),dx
ret

’
NORMAL_RETURN:

pop dx
ret
EXAMPLE endp
FINISH:
MYSEG ends
end
4-6 BASIC Interpreter Utility Routines

.
I
.
I

Restore SPTR
Junp to IOERR

Throw away (unused) SPTR value
Return to BASIC interpreter

SADD

Add two numbers on the operation stack.
Calling sequence:

FAR CALL CSEG:14h

Notes:

m The numbers can be either real numbers or integers. The result is an integer only if both numbers
were integers, and the result fits in an integer.

m SADD does not use the operation stack as a scratch area.

Input: Output:
SPTR—
S2
SPTR—
S1 S1+82
S1, S2: numeric values S1+S2: numeric value

BASIC Interpreter Utility Routines 4-7

SDIV

Divide two numbers on the operation stack.

Calling sequence:

FAR CALL CSEG:20h
Notes:

®m The numbers can be either real numbers or integers. The result is always a real number.

m SDIV uses the operation stack as a scratch area.

Input: Output:
(used by SDIV)
SPTR—
S2
SPTR—
S1 S1/S2
S1, S2: numeric values S1/S2: numeric real value

4-8 BASIC Interpreter Utility Routines

. SETARG

SETARG converts a binary value into the type of a numeric parameter from $CALL (either real or
integer) and stores the value into the parameter.

Calling sequence:

FAR CALL CSEG:40h
Notes:

m AX contains the binary value (-32768 through 32767).
m If there is no parameter (type = FFh), Error UM occurs.
m If the parameter is an array or is of character type, Error TY occurs.

m SETARG uses 8 bytes of the operation stack as a scratch area.

Input: Output:

AX is a binary value Contents of AX placed in parameter.
ES : BX points to a parameter table entry

Parameter Table Entry
1byte 1byte 2bytes 1byte
ES:BX—
‘ Type |Length|Segment| Offset
Absolute address
AX = binary value — Data

Figure 4-3. SETARG Parameter Processing

. BASIC Interpreter Utility Routines 4-9

SMUL
L

Multiply two numbers on the operation stack.
Calling sequence:

FAR CALL CSEG:1Ch
Notes:

m The numbers can be either real numbers or integers. The result is an integer only if both numbers
were integers, and the result fits in an integer.

m SMUL uses the operation stack as a scratch area.

Input: Output:
(used by SMUL)
SPTR—
S2
SPTR—
S1 S1*S2
S1, S2: numeric values S1*S2: numeric value

4-10 BASIC Interpreter Utility Routines

SNEG

Change the sign of a number on the operation stack.

Calling sequence:

FAR CALL CSEG:28h

Notes:

= The number can be either a real number or an integer. The result is an integer if the number was
an integer.

m SNEG does not use the operation stack as a scratch area.

Input: Output:

SPTR— SPTR—
S1 -S1

S1: numeric values =S 1: numeric value

BASIC Interpreter Utility Routines 4-11

SPOW

Exponential operation for two numbers on the operation stack.

Calling sequence:

FAR CALL CSEG:24h
Notes:

m The numbers can be either real numbers or integers. The result is always a real number.

m SPOW uses the operation stack as a scratch area.

Input: Output:
(used by SPOW)
SPTR—
S2
SPTR—
s1 s152
S1, S2: numeric values $152; qumeric real value

4-12 BASIC Interpreter Utility Routines

SSuB

Subtract two numbers on the operation stack.

Calling sequence:

FAR CALL CSEG:18h

Notes:

= The numbers can be either real numbers or integers. The result is an integer only if both numbers
were integers, and the result fits in an integer.

m SSUB does not use the operation stack as a scratch area.

Input: Output:
SPTR—
S2
SPTR—
S1 §1-82
S1, S2: numeric values S§1-S52: numeric value

. BASIC Interpreter Utility Routines 4-13

TOBIN

Convert a number at SS : BX to an integer.
Calling sequence:

FAR CALL CSEG:30h
Notes:

m The value is left unchanged if SS : BX points to an integer.
= The fractional part of the real number, if any, is truncated.
®m An error occurs if the real number is not within the range -32768 through 32767.

= TOBIN does not use the operation stack as a scratch area.

Input: Output:

SS:BX— SS:BX—
S1 S1

S1: numeric real or integer data S 1: numeric integer data

4-14 BASIC Interpreter Utility Routines

TOREAL

Convert an integer or real number at SS : BX to a real number.

Calling sequence:

FAR CALL CSEG:2Ch
Notes:

m TOREAL does not use the operation stack as a scratch area.

Input: Output:

SS:BX— SS:BX—
S1 S1

S1: numeric real or integer data S 1: numeric real data

. BASIC Interpreter Utility Routines 4-15

® 5

1/0 Statement and Handlers

Contents

-
Chapter 5 1/0 Statement and Handlers

5-1 Input Keywords (GET #, INPUT #, INPUTS$)
5-4 Output Keywords (PRINT #, PRINT # . . . USING, PUT #)

S

1/0 Statements and Handlers

-

The BASIC Reference Manual has tables associated with the BASIC 1/O keywords (GET #,
INPUT #, INPUTS, PRINT #, PRINT # ... USING, and PUT #) which describe the
interaction between the keywords and the built-in handlers for channels 1 through 4. This chapter
describes the interactions between these BASIC keywords and user-defined handlers for channels 1
through 4.

e I
input Keywords (GET #, INPUT #, INPUTS)
GET #, INPUT #, and INPUTS all process incoming data in a different way.
m GET # reads data directly into the input variables.
s INPUT # reads data into a 256-byte internal buffer, then copies the data to the input variables.

m INPUTS reads data and places it on the character stack. The data is then copied to the variable
with the BASIC assignment operation.

The following table summarizes how each of the input keywords responds to conditions generated by
user-defined handlers.

1/0 Statements and Handlers 5-1

5-2

Table 5-1. Response of Input Keywords to Handler-Generated Errors

Condition

GET #

INPUT #

INPUTS

R received.

Character from ter-

minate character string

received.

Short record detected
(error 115).

Terminate character
detected (error 116).

End of data (error
117).

Timeout (error 118).

Power switch pressed
(error 119).

Low battery (error
200).

Errors 201-208.

N/A.

N/A.

Ends input for that
variable.

Ends input for that
variable.

Ends input for that
variable. *

Input aborted.
Input aborted.

input aborted.

input aborted.

Characters received
from the device
(except the R'r) are
placed in the input
variable. Input is
aborted if no other
characters were
received.

N/A.

The short read error
generates a garbage
byte, and the error is
ignored (input opera-
tion for that variable
not ended).

Ignored (input opera-
tion for that variable
not ended).

Characters read up to
the EOD are placed in
the input variable.
Input is aborted if no
characters were
received before the
EOD.

input aborted.

input aborted.
Input aborted.

Input aborted.

N/A.

Characters received
from the device
(including the ter-
minate character) are
placed in the input
variable.

Ignored (input opera-
tion not ended).

Ignored (input opera-
tion not ended).

Ignored (input opera-
tion not ended). *

Input aborted.
Input aborted.

Input aborted.

Input aborted.

* The behavior of GET # and INPUTS is altered if INPUT # has been used with the channel and the last INPUT #
aborted input due to an EOD.

m GET # is not affected except that program execution continues on the next line of the program (not the next
statement, if GET # is in a multistatement line).

= INPUT$ will abort input after reading one character. Program execution continues on the next line of the program
(not the next statement, if INPUTS is in a muiltistatement line).

1/0 Statements and Handlers

When input is aborted, program execution continues on the next line of the program (not on the next
statement, if the GET #, INPUT #, or INPUTS statement is in a multistatement line).

“Input aborted” has different meanings for GET #, INPUT #,and INPUTS.

GET #:

INPUT #:

INPUTS:

The input operation has been interrupted. When input is aborted, the input operation is
ended, and any characters received up to that point are placed in the input variable,
This may result in part of the previous value of the variable being overwritten. All sub-
sequent variables in the input list are unchanged. This is in contrast to INPUT # and
INPUTS, in which any received data for that variable is discarded.

When input is aborted because of a numeric error, the I/O length reported by SYIN is
set to the number of bytes actually received up to that point, since that data has already
been placed in the input variable.

No data has been received or the input operation has been interrupted. When input is
aborted, the input operation is ended, and any characters received up to that point are
discarded. The current input variable and all subsequent variables in the input list are
left unchanged (note that variables prior to the one at which input was aborted will
already have been changed). This is in contrast to GET #, in which any received data
for that variable is saved.

When input is aborted because of a numeric error, the I/0O length reported by SYIN is
set to 0, since no data is placed in the input variable.

No data has been received or the input operation has been interrupted. When input is
aborted, the input operation is ended, and any characters received up to that point are
discarded. The input variable is left unchanged. This is in contrast to GET #, in which
any received data is saved and the variables are set to 0 or the null string.

When input is aborted because of a numeric error, the 1/0 length reported by SYIN is
set to 0, since no data is placed in the input variable.

1/0 Statements and Handlers 5-3

Output Keywords (PRINT #, PRINT # . . . USING, PUT #)

This table summarizes how each of the output keywords (PRINT #, PRINT # ...

PUT #) responds to errors generated by user-defined handlers.

Table 5-2. Response of Output Keywords to Handler-Generated Errors

USING,

Condition PRINT # PRINT # . . . USING PUT #
Timeout (error 118). Output aborted. Output aborted. Output aborted.
Power switch pressed |Output aborted. Output aborted. Output aborted.
(error 119).

Low battery (error Output aborted. Output aborted. Output aborted.
200).

Errors 201-208. Output aborted. Output aborted. Output aborted.
Lost connection while |Output aborted. Output aborted. Output aborted.
transmitting (error

218).

“Output aborted” means that the output operation has been interrupted. When output is aborted, the
output operation is ended. Subsequent variables in the output list are not output.

When output is aborted, program execution continues on the next line of the program (not on the next
statement, if PRINT #, PRINT # ... USING,or PUT # isina multistatement line).

When output is aborted because of a numeric error, the I/0O length reported by SYIN is set to the
number of bytes actually sent up to that point, since that data has already been written to the device.

5-4

1/0 Statements and Handlers

