1

HEWLETT-PACKARD 9820A CALCULATOR

WHY THIS BOOK?

The Operating and Programming Manual supplied with your Calculator describes the Calculator, very completely,
in a formal way. Being the ‘formal’ manual, it includes essentially all operating and programming procedures for
the Calculator. When the manuals for earlier HP calculators were written they were organized to serve the dual
purpose of teaching the user how to operate and program the calculator, and of acting as quick-reference
manuals. That type of organization required that, in each manual, much of the material be repeated in several
places. Obviously, if the same technique were to be applied to the manual for a calculator as sophisticated as the
9820, the size of the manual would become ridiculous.

The formal manual is, therefore, organized as a text-book; which means that you may well have to read many
pages before you learn to actually do anything. That’s why this book came into being — to enable you to start
using your calculator almost immediately.

This book is arranged into two parts: The first part explains how to make keyboard calculations and how to run

pre-written programs. The second part is an introduction to writing programs for the 9820, based on the
assumption that the reader has never before written a program.

This book (the term ‘manual’ has been deliberately avoided) contains only selected topics, and does not contain
complete operating and programming information for the 9820: for that you must refer to the formal manual.
However, even if you are an experienced programmer, you may well find that an hour or two spent with this
book will pay large dividends when you start to work with the formal manual.

Should you care to comment about this book, there is a prepaid reply card in the operating and programming
manual.

HEWLETT Jip PACKARD

SIMPLIFIED OPERATING INSTRUCTIONS
MODEL 9820A CALCULATOR

Copyright Hewlett-Packard Company 1971

HEWLETT—PACKARD CALCULATOR PRODUCTS DIVISION
F.0. Box 301, Loweland, Colorado BO637, Tel. (303) 667-6000
Rue du Bois-du-Lan 7, CH-1217 Mayrin 2, Geneva, Tel. {022) 41 54 00

TABLE OF CONTENTS
Why This Book? _ _ inside front cover

PART 1: RUNNING THE CALCULATOR
Intraduction to the Calculator . . . | 1
ROM's and the Half-Key Blocks . . . 3
Turn-On Procedure . 4
Loading Printer Paper 6
Initializing the Calculator 8
The Fundamental User-Operation . . 8
Diagnostic Notes . 9
Keying Directions and Numbers . . . 10
Use of CLEAR . . | . 1
Printing waoard-ﬂperatmns 12
Positioning the Decimal Point 13
Making Arithmetic Calculations I
The Arithmetic Operators 16
The Arithmetic Hierarchy 19
Exceeding the Length of the Display 20
Making Corrections 20
The Data Memory 22
Storing Data 24
Implied Z 25

Arithmetic with Registers

Typical Uses of the Data Memory
Fixed- and Floating-Point Numbers
Range of Calculation

Operating the Printar

Programs

Program User-Instructions .

An Example Program

Magnetic Program-Cards

PART 2: PROGRAMMING THE CALCULATOR
Program Writing
The Program Line
The Data Entry Statement
The ‘Go To' Statement
The ‘If* Statement
The STOP and END Statements
The Flags
Operating Programs — A Summary

APPENDIX
The Diagnostic Notes .
Another Example Program — N Factorial
Sales and Service Offices

Part 1
RUNNING THE CALCULATOR

INTRODUCTION TO THE CALCULATOR

The -hp- 9820A Calculator can be used equally well as a simple office machine or as a
sophisticated programmable calculator. It can be tailored, by means of various plug-in ROM'’s
(see Page 3) and peripheral devices, to suit any particular requirements. Even without any such
additions, the basic machine® is still a powerful calculator and is fully programmable.

The basic machine, shown in Figure 1, contains a magnetic card reader and an alphameric
printer as standard equipment. Its memory consists of 179 registers - (see Page 22); calculators
which have Option 001 installed have 256 more registers, giving a total of 436. Lift the lid on
the top of the calculator - if an option has been installed, there will be an identifying decal
located in the indent behind the printer (see Figure 1). The Option 001 decal shows 429
registers, not 435; the reason for this is explained with the description of the memory, later in
this book.

The basic keyboard is shown on the foldout at the back of this manual.

“This book describes only the basic calculator; information for each plugin and peripharal device is contained in its own
manual,

Instruction Ervelope

Option Decal [if amvy)
ROM Slots

Printer Paper

Magretic Cardreader

Printer Window

Display

ON/OFF Switch

3 Blocks of Hall-Keys
[defined by ROM's)
Figure 1. Identifying the 9820A Features

e

el

>

ROM’'S AND THE HALF-KEY BLOCKS

The three blocks of half-keys (not including those along the top of the keyboard) are used with
the optional ‘Read-only-memories’ (ROM's). The ROM's plug into the slots on top of the
calculator (Figure 1). In general, each ROM uniguely determines the meaning of the half-key
block located immediately in front of it; for example, the Mathematics ROM assigns
mathematical functions such as sine, cosine and tangent and a Peripheral Control ROM enables
the calculator to control other devices, such as a plotter and a digitizer (some ROM’s may affect
more than one of the key blocks).

If there is no plug-in ROM installed, the half-keys are used to print or display the characters
which appear on them. Any attempt to use these keys for other purposes results in a diagnostic
note (NOTE 11) being displayed; see Page 9 for an explanation of the diagnostic notes.

Power Connectors
tor Peripheralsy,

NANNE STTIITITIT

110 Connactos ;ﬁ_fr

1 Amp/2 Amp Fuse

Fan Filter

Power Input G Amp Fuse Line Voltage Switches

Figure 2. The 9820A Rear Panel

TURN-ON PROCEDURE

NOTE

Refer to the Operating and Programming manual for complete
information regarding power and grounding requirements, fuses,
and so on. Instructions to run the calculator's exerciser program
are included in the Model 20 Systerm Electrical Inspection booklet.

The calculator operates with power-line voltages of {nominally} 100, 120, 220 or 240 volts.
Table 1 indicates the operating range, and the fuse required, for each nominal voltage. Before
turning on the calculator, ensure that the two slide-switches on the rear panel are correctly set

to the voltage whose operating range covers the line-voltage in your area lalso ensure that the
correct fuse is installed). Figure 2 shows the location of the switches, Figure 3 shows the setting
of the switches for each nominal voltage.

Table 1. Power-Line Voltages

NOMINAL OPERATING RANGE
VOLTAGE | {—10%, +6% of nominal)

100 volts 90 to 105 volts
120 volts 108 to 126 volts
220 volts 198 to 231 volts
240 volts 216 to 252 volts

. a

100 volts 120 volts 220 volts
Figure 3. Switch Settings for Nominal Power-Line Voltages

1. If the calculator is not plugged in: Plug one end of the power cord into the lowest of the
four sockets at the back of the calculator (Figure 2); plug the other end of the cord into a
suitable power outlet, such as a wall-socket. Plugs and connectors are keyed, they cannot be
connected improperly.

2. If the calculator is switched off: The OFF/ON switch is located on the front of _tha
calculator, below the keyboard and to the right (Figure 1). Set the switch to the ON position;
when the following display appears, the calculator is ready to operate.

(@é: END ~)

LOADING PRINTER PAPER

The paper key advances the printer paper as long as the key is being pressed. Do not
press PAPER if the printer is printing or if a program is running. PAPER is purely a mechanical
key; it cannot be operated from the program.

Printer paper is loaded into the well underneath the flap on top of the calculator. Three rolls.of
paper are supplied with the calculator; extra rolls can be ordered from HP using the following
part numbers:

Pack of six rolls — -hp- Part No. 9281—0401-008
Case of sixty rolls — -hp- Part No. 9281-0401—060

To load a new roll:

1. Lift the bail {see Figure 4); remove and discard the paper core from the previous roll {if
any).

2. Remove the first layer of paper from the new roll and insert the roll, with the free end
positioned as shown in Figure 4, into the printer. Lower the bail.

3. Hold the PAPER key pressed until the paper emerges from behind the printer window. The
paper is now loaded and the printer ready to use.

To remove an unfinished roll:
1. Unroll the paper until the roll can be lifted out of the printer.

2. Hold the roll firmly and pull it up and forward; the paper guide will tear the paper off
cleanly.

3. Press the PAPER key to push out the remaining paper.

Figure 4. Loading Printer Paper

INITIALIZING THE CALCULATOR

The ERASE key has the same effect as switching the calculator off and then on again; it
erases all stored data and programs from memory, and clears the results of any previous
calculation or operation.

THE FUNDAMENTAL USER-OPERATION

Communication with the calculator is through the display. In general, there are two basic steps

to follow when performing operations:
1. You "write’ a set of directions into the display (by pressing the appropriate keys} and then

2. You instruct the calculator to follow these directions; the result of any numerical operation
is automatically displayed. When making keyboard calculations, step 2 consists solely of pressing
the EXECUTE key.

These two basic steps form the ‘fundamental user-operation; with some few exceptions, all
operations — making calculations, loading or running programs, giving directions to the printer,
etc. — consist of some variation of the ‘fundamental user-operation’. (Numerous examples
appear in this book; almost all of tham can be cited as examples of the fundamental
user-operation.)

DIAGNOSTIC NOTES

In addition to displaying numhbars, directions, and the results of operations, the calculator also
displays diagnostic notes to inform you of operational errors or of special situations. The basic
notes are numbered from 01 to 16 (higher numbered notes are associated with the various
plug-in ROM's); the note number indicates the type of error or situation. For example, NOTE
01 indicates that you gave the calculator a direction which it could not understand; NOTE 16
indicates that the printer has run out of paper. A list of the basic notes and a brief description
of their meanings is given in the appendix.

When a ‘note’ condition occurs in a program, the program stops; as well as showing the note,
the display also shows the number of the program line in which the note condition occurred;
e'g'l

| HOTE @2 ITH 4

indicates that a note 02 condition occurred during line 4.

KEYING DIRECTIONS AND NUMBERS

Directions are written into the display by pressing the appropriate keys. Suppose, for example,
that you want to add 2 to 4 and print out the result; you press keys PRINT 2 + 4. The
calculator does not, however, follow your directions until it is instructed to do so, by your
pressing EXECUTE. It then prints (and displays) the result, 8.

(As you have not yet been shown how to initialize the display — see Pasitioning the Decimal
Point, on Page 13 — the printout from the above keying sequence will probably consist of 6
followed by the decimal point and some zeros; also, it may end with ‘E 00".)

Numbers are keyed into the display, as on any standard office-machine, by pressing the number

keys (0 through 9) and the decimal point key in the required order. If a number is negative the
‘minus sign’ should be keyed first before the number is keyed. Use of commas (such as in
32,341.6) is not allowed. (See ‘Making Arithmetic Calculations’ for examples of typical keying
sequences.)

As is the case with a direction, even though the keyad number is displayed, it will not be
‘executed’ by the calculator until the EXECUTE key is pressed (step 2 of the Fundamental User
Operation]. An executed number may appear in a different form from the original number,
although it will still have the same value; the reason for this is explained under ‘Fixed- and
Floating-Point Numbers’ on Page 30. You would not, of course, normally want to executa just a
single number; the number would be included in some set of directions and then the directions
would be executed.

USE OF CLEAR

The CLEAR key clears the display; it operates immediately and does not have to be followed
by EXECUTE. An ‘end of line’ symbol (|-} appears in the display when CLEAR is pressed; this
indicates that the calculator is ‘idle’.

It is not necessary to clear the display before keying the next direction as long as the previous
direction has been executed; in this case use of CLEAR is optional. If no subseguent execution
has taken place since the last direction was keyed, then CLEAR must be used.

NOTE

As indicated on the inside front-cover, there is a great deal of
information about the 9820A Calculator which is not included in
this book. It is, therefore, conceivable that you might inadvertent-
ly press some combination of keys which sets off some internal
activity that ‘locks-out’ the keyboard — the display may blank and
even the CLEAR key may have no effect!

If this should occur, keyboard operation can be retumed by
pressing ERASE; or if you do not wish to erase data and programs
stored in the memory, by first pressing STOP and then pressing
CLEAR.

PRINTING KEYBOARD-OPERATIONS
To make a printed record of your keyboard-operations, press the following key sequence:

This establishes the 'trace’ mode so that, as you perform subsequent operations, the printer
prints the operations performed, and the result, each time the EXECUTE key is pressed. (A few
keys, such as CLEAR, are not printed.)

To discontinue tracing, press the key sequence:

that operation will be printed and then tracing will cease.

POSITIONING THE DECIMAL POINT

The FIXED N key, followed by any one of number keys O through 9, establishes the number of
digits to be seen to the right of the decimal point when the result of a calculation is displayed
or printed. For example, if you are working with whole numbers you will not want to see any
digits to the right of the decimal point; in this case press

mwn (0) o)

If you are working with dollars and cents, two digits are sufficient:

o= (2) ()

or, if hundredths of a cent are to be seen,

e () G)

Often you will see a number which contains the letter ‘E’; this type of number is known as a
‘floating-point’ number, discussed on Page 30.

MAKING ARITHMETIC CALCULATIONS

For arithmetic, the fundamental user-operation consists of writing an arithmetic expression into
the display and then pressing the EXECUTE key, to instruct the calculator to evaluate that
expression.

NOTE

Keying examples are included in the text for you to perform if
you wish to do so; the EXECUTE key is not shown in every case.
When a complete expression has been written into the display,
press the EXECUTE key if you want the calculator to evaluate
that expression. If you do not execute an expression, remember to
press CLEAR before keying the next one.

If you make an error when keying an expression either press the
CLEAR key or refer to ‘Making Corrections’ on Page 20.

Before starting the examples, initialize the display by pressing the

following keys:

s 5 () (o)

An arithmetic expression is written into the display by pressing keys in the same order as they
would be written on paper, one key per character or symbol.

OISO ETE)

| eamceme [

12,88]
(O E0MOEEED Carsisis-2])

Cown) 4. 60

THE ARITHMETIC OPERATORS

Apart from the number keys the following operational keys are available for writing arithmetic
expressions (press EXECUTE after each expression).

(3)(+]) (e}

NSO

2. Unary minus (negative of a quantity):
=)
0= 0]

a Multiplication:

I (DEEME

WEHEEO®HOOEE D
Division:

THE ARITHMETIC OPERATORS (Continued]

1. Grouping: as in the above examples, quantities in parentheses are treated as one quantity.
Thus +/{445) is equivalent to +/D, whereas, /445 adds 5 to the square root of 4,

2. Implied Multiplication: 4{3+2) is the equivalent of 4+(3+2}); in this case use of the
‘multiply’ sign is optional.

Parentheses can be nested (i.e., parentheses inside parentheses, inside parentheses, etc.) but they

“ must always be balanced, that is, there must be the same number of left-handed parentheses as
there are right-handed.

DOOEHHOOUDOEEEDBHEO®E

(16,66)

Notice that the preceding example contains too many keystrokes to be displayed all at one time
and that the display shifts left to accomodate the ‘extra’ keystrokes.

THE ARITHMETIC HIERARCHY

When an arithmetic expression contains more than one operator, as do several of the preceding
examples, there is a prescribed order of execution; an expression must be properly written or
the answer will be wrong. The order of execution, known as the ‘hierarchy’, is exactly the same
as the order commonly used in standard arithmetic;

Mathematical Functions {only the square root on the basic calculator);
Implied multiplication;
Multiplication and division:

Addition and subtractiaon.

Where an expression contains two or mare operators at the same level in the hierarchy, they will
be executed in order from left to right.

The use of parentheses enables the order of execution to be changed; thus in the +/{4 + 5} the
“+* is executed before the /" even though the '+’ occupies a lower level in the hierarchy.

EXCEEDING THE LENGTH OF THE DISPLAY

The length of an expression is not limited to the length of the display. When you keyed the last
example under The Arithmetic Operators (Page 18), you saw that the expression contained too
many symbols to be displayed at one time; as each ‘excess’ symbol was keyed, the display
shifted left to make room. The maximum allowable length for an expression varies between 35
and 69 keystrokes, depending upon the nature of the expression. If too many keys are pressed,
the display shows ‘NOTE 09’ (see the Appendix); depending upon the nature of the expression,
the note may appear either before or after the EXECUTE key is pressed. In either case, press
CLEAR and write a shorter expression.

MAKING CORRECTIONS

The BACK and FORWARD keys enable a displayed expression to be altered or corrected
without re-keying the entire sequence,

1. If a wrong key is pressed when writing an expression, it can be corrected immediately by
pressing the BACK key and then pressing the correct kay.

D=0 E=

2. A displayed expression can be blanked, key by key in reverse order, by pressing BACK once
for each displayed key. The blanked keys can then be returned to the display one at a time by
pressing FORWARD. If an expression contains a wrong key, press BACK until that key is
blanked, press the correct key and then press FORWARD to return each subsequent key (or, if
extra keystrokes are required, key in the remainder of the expression). For example, suppose
the number 123456789 is keyed incorrectly into the display:

)G @E) () (244473

To correct, press:

(1234

and then press:

5)(s)mmmmms (12245670)

3. If the incorrect expression has been executed but no key has since been pressed, the
expression can be returned to the display (by pressing BACK), corrected as before, and then
again executed.

THE DATA MEMORY

The calculator's memory serves the dual purpose of storing data-numbers and of storing
programs. The memory-map of Figure 5 shows that the memory is divided into rows, referred to
as ‘registers’. Six registers are given alphabetic names and have their own keys (A, B, C, X, Y, Z).
The rest have alphameric names — R (for ‘register’) followed by numbers, starting with zero; the
R-registers do not have their own keys but are selected by pressing the R{) key and following it
by the appropriate number keys.

Programs start in
/:/ highest numbes register

A172 [7
428 in / ;
Crption 001 !

Program and
data storape

Data storege only

Figure 5. The Memory Map

o e L e et e

The basic calculator contains 179 registers: six alphabetic and 173 R-registers (RO through
R172). Calculators with the Option 001 memory installed have an additional 256 R-registers
{R173 through R428) giving a total of 435 registers (the decal shows 429 because it does not
includa the six alphabetic registers),

Some of the ROM blocks (see Page 3) require part of the memary for their own use. When
one of these ROM's is installed, it automatically takes the required registers, starting at the
highest numbered register and working downwards. Those registers are then temporarily not
available for program or data storage, until the ROM is removed.

When programs are stored they start in the highest-numbered available R-register and sequen-
tially fill the memory downwards; programs cannot be stored in the alphabetic registers. It is,
therefore, most convenient to store data first in the alphabetic registers and then in the lower
numbered R-registers. If the memory contains no program (i.e. at turn-on, or if ERASE has
been pressed), then all registers (except those required by a ROM) will be available for data
storage. If the memory does contain a program, then the higher-numbered registers will not be
available for data; ‘NOTE 06" will be displayed if you attempt to store data in a register which
is not available.

The number of available R-registers can be determined at any time by pressing CLEAR LIST
STOP. The printer will start to list the program (the STOP saves having to wait for the whole
program to be listed); at the bottom of the list will be a number preceded by the letter R,
indicating the number of R-registers available. (The lowest-numbered register is RO; subtract 1
from the number printed to obtain the name of the highest-numbered register available for data
storage).

STORING DATA

One register can contain one data-number. It is not necessary to clear a register before storing a
number in it because the number being stored automatically substitutes for the existing stored
number. The entire memory is, however, cleared at turn-on or if ERASE is pressed.

Storing data requires use of the ‘goss into’ key:

BEOE®H® =)

stores the value (12.6) in the A register. Similarly,

O

stores 6 into register X and

WEH®OEC=D

stores 19 into R12.

If you wish to see a stored number, use either the DISPLAY or the PRINT keys:

s (1) (o)

displays the number currently stored in A; the number remains stored in A.

o (1) (1) (2] (oo)

prints the contents of R12; the number remains stored in R12.

IMPLIED Z

In general, if a stored number is to be kept for any length of time it should not be stored into
the Z register because of the ‘implied Z' feature. The result of any arithmetic expression is
automatically stored in Z if no other place is specified; thus

() () (2] (T)

is equivalent to

W@ OERHE)

both expressions display 14.2 and also store it in Z. Similarly,

QIDIDINIDIOIRIDIEDS
HHU®HHEOEHREHC=]

is equivalent to

ARITHMETIC WITH REGISTERS

Arithmetic expressions can be written using register names instead of actual numbers. When the
expression is executed, the values currently stored in those registers will be automatically
substituted for the register names in order to evaluate the expression. For example, if you have
just performed the examples under ‘Storing Data’ (Page 24), the following numbers should be
currently stored in the memory:

126 in A
6 in X
19 in R12

With the above values stored, keying

WHEOEEEC=)

would be equivalent to keying

OHOEHOEEE D

Other values stored in these registers would, of course, give a different result for the same
expression.

Numbers and register-names can be mixed in an expression:

HEOHOEE G

would be the equivalent of keying

HEHOHEEOE®®EE G

{again assuming that the values previously stored in A and X have not been changed).

TYPICAL USES OF THE DATA MEMORY

Following are two examples illustrating the type of calculation which you can make using the
memory.

Example 1. Storing a value which is to be used many times.

Suppose the unit-price of some item is $132.57 and you are 1o calculate the cost of buying
various quantities. To save keying in the price for esch calculation, you can store it and then
refer to it by register-name.

Assume you have the following list of quantities: 47, 29, 36, etc.

First store the unit-price into the memory {say in register A):

glololelolololole N

TYPICAL USES OF THE DATA MEMORY (Continues)
Now make the calculations for each quantity in turn using the price stored in A:

DOWC=) C EEENED
()W | EEEEPEED
CE®C= (C a7rE.52)

and so on for each quantity.

Example 2, Accumulating a total.
Suppose you have a (long) list of numbers to be added: 9, 36, 25,

The total can be accumulated, one number at a time, in a storage register. Be sure that the
register is first cleared (store zero) or the final total may be wrong.

(o IEE =) | 3.60)

EOHOHEEE=D .00)

EHEEHEHE =] (45, 5e)
BB EEE) =T EREED

and so on for each number on the list. The accumulative total will be displayed and stored in
register-B at each step.

Because of the ‘implied Z* the above sum can also be made as follows:

(0 3 (Cmm])
DEEE)
olololole=s
ololololes

the total will be displayed and stored in Z. (Page 40 contains a program which shows how to
even further simplify totalling a list.)

FIXED- AND FLOATING-POINT NUMBERS

Numbers can be keyed into the display and displayed in either of two forms: ‘fixed-point” or
‘floating-point’,

‘Fixed-point’ means that the number appears as commonly written, with the decimal point
correctly located (e.g. 123.45).

‘Floating-point” numbers are written with the decimal point immediately following the first digit
(discounting leading zeros) and with an exponent. The exponent, which represents a positive or
negative power of ten, indicates the direction, and the number of places, that the decimal point
should be moved, to express the number as a fixed-point number. In the calculator the
exponent can be any integer within the range —99 to +99.

Examples:
FIXED FLOATING

a. 12345 = 1.2345 X 10°
b 0.0012345 - 12345 X 10-5 2—
c. 12345 =1.2345 X 100

(exponent)

selects fixed-point display of (executed) numbers. The letter N indicates that the key
must be followed by one of the number keys (0 through 9) to select the number of digits to be
displayed to the right of the decimal point.

For example:
s (4) (o)
DEBHEOONEEDEE (123455787)

(o) (153, 4565)

notice that the last displayed digit is automatically rounded up from 7 to 8 because the next
{non-displayed digit) is greater than 5. Even though it was rounded in the display, the number
was not changed:

@ (6] (o) [73.45678%)

FLOAT N (and its associated numeric key) operate in the same way as FIXED N {and
its numeric key) except that floating-point display is selected. (When the calculator is first
turned on, FLOAT 9 is automatically assumed.)

For example: {with the number from the previous example in the display)

() (wen) ((Ll.234567520E @2)

FIXED— AND FLOATING—POINT NUMBERS icontinued!

The ‘E’ indicates that the next two digits constitute the exponent. If the exponent is negative
the minus sign follows the E.

G D DE0EE @) (1.zzs0o0e08E-63)

NOTE
No more than ten significant digits can be displayed; therefore, if
a number becomes too large to be properly displayed as a
fixed-point number, it will be automatically displayed as a
floating-point number. If the number becomes too small, only
zeros are displayed but the number can still be seen if ‘floating’ is
then selected.

E ‘Enter Exponent’ is used to designate the E {exponent}) when numbers are being keyed

in floating-point form.

@(=
() EEE)= C 5. SELO0E BF)
HOOEEOE =) 4. 7EORE-BZ)

When keying numbers in floating-point, the decimal point need not always be keyed immediate-
ly after the most significant digit; for example, 12345 could be keyed in many different ways,
here are a few of them:

HDEE®E
DOERGOEE A
DEHEHOLEEE

RANGE OF CALCULATION

The range of the calculator is from +10-99 to +9.999998999 X 1099 when this range is
exceeded during a calculation, "NOTE 10" is displayed. Calculations which normally result in
zero, such as subtracting a number from a number equal to itself, do not exceed the range.

OPERATING THE PRINTER
Refer to ‘Loading Printer Paper’ on Page 6.

Refer to ‘Printing Keyboard Operations’ on Page 12,

Lists programs stored in the memory; see ‘An Example Program’ on Page 40.

The print key is used to print both numerical values and messages. The form of a
numerical printout is changed by the FIXED N and FLOAT N keys in the same way as the
display is changed {see ‘Positioning the Decimal Point’, on Page 13).

To print numbers:

To print the result of a calculation:

= () (£) (0} () (2) Comee

To print the contents of a storage register:
OEEEEE
INIETD 456,06
Similarly or = (m) (1) (s)

To print an alphanumeric message: This requires the use of the ‘quote’ key (") to both start
and end the message (the ‘quote’ symbol is not printed):

=)OO0C0WA0 C@Q ﬁ@-

HE%@HQ@‘»‘ m, i

No more than sixteen characters (including spaces) can be printed on one line of a message;
each line must be enclosed in quotes. When following the same PRINT instruction, lines must be
separated by commas; for example:

prints two lines.

OPERATING THE PRINTER ({Continued)
If messages and values are to be mixed, they must be separated by a comma:

DEEEG)
=0 ()W EHOOM G

B Followed by number keys (any one of the set O through 15) causes the printer to space
vertically (line-feed). The number key specifies the number of lines spaced.

= (O WO G
e (2] (o]
@ (4) (o)

When used in a message, most keys result in the character printed being the same as the
character on the key; following are the exceptions:

(™ prints one blank character-space.
prints i
prints :
prints |
prints

The following keys either cannot be used in a message or they result in some meaningless
character being printed:

1. All of the half-keys at the top of the keyboard and the four blank keys in the left-hand
keyblock.

2. These three large keys: [e) { s oo)
3. These keys in the right-hand keyblock:)

PROGRAMS

A program enables the calculator to automatically execute the keys necessary to solve a
particular problem. First the program must be loaded into the calculator's memory; this
‘teaches’ the calculator which key sequences are required and the order in which they are to be
executed. Once loaded, the calculator can ‘remember’ that program until a new one is loaded
over it or until the calculator is switched off.

A program need not be keyed into the calculator more than once because a loaded program can
be recorded on magnetic cards; recorded programs can then be loaded back into the memaory
any time in the future. Magnetic cards are a convenient way of permanently storing programs
because they enable even long programs to be loaded back into the memory in seconds.

When the program has been loaded, you run it by initializing it in some way and then by

pressing the RUN PROGRAM key to start it running. Most programs have one or more halts in
them to enable you to key in any required data numbers.

PROGRAM USER-INSTRUCTIONS

The versatility of the calculator and the variety of programs makes it impractical to give here a
precise set of instructions which will enable you to run all programs. User-instructions to load
and run a particular program should be provided by whoever writes the program. Without

user-instructions, the user who knows nothing about programming would find it imposs_,ible to
determine the steps necessary to run the program; even an experienced programmer might, in

many cases, find it easier to write a new program rather than try to run an existing one without
any user-instructions!

Following are some general guidelines to the type of information which a set of user-instructions
should contain (these guidelines assume that the program has already been recorded on a
magnetic card and that it is known to work properly):

1. What the program does.
2. How many magnetic program cards are to be loaded and how they are identified.

3. Where, and how, to start loading the program. . . usually this will be at the beginning of
memory, but not always.

4. Where, and how, to start running the program. . . usually program execution will start at
the beginning of the program, but, again, not always,

5. When to key in data numbers and when to press RUN PROGRAM.
6. How to interpret the display or printout and where to look for results.
7. Any other special information you may need (such as which ROM’s should be installed).

8. A set of data numbers with known results which you can use to test-run the program and
check that you are interpreting and following the instructions properly.

AN EXAMPLE PROGRAM

The purpose of this program is to show you the type of operation which you will have to
perform to run programs. It is also used to demonstrate use of the magnetic cards.

Before the program can be demonstrated it must first be keyed into the calculator’s memory;
use the following key sequences to do this. As you will see, the program consists of lines, which
are loaded one at a time; before pressing the STORE key at the end of each line, check the
display to ensure that the line has been keyed correctly — if necessary the BACK, FORWARD
and CLEAR keys can be used as before to correct a line before it is stored. If you need to
correct a line after it has been stored, wait until you have stored all of the remaining lines. The
incorrect line can then be recalled by pressing

(G0 E.ine Number

Correct the line as before, and press STORE to re-store it (even though the corrected line may
have been lengthened or shortened, it will not be necessary to move any subsequent stored lines
to compensate for the correction; the calculator does this automatically).

To load the program; first initialize the calculator: (mst)

NOTE

A keyed line is not loaded until the STORE key is pressed; after
pressing STORE, do not press CLEAR before starting to key the
next line — if you do, then the next line will erase the previous
line.

Load line 0:

@ (2) ()) @E =) (@ Pt Zigser)

Notice that the line number (0) and the end-of-line symbol (i) were added when STORE was

pressed,

Load line 1:
=)000EO8CO0eO5O0®=)

Load line 2:

UHOEOO0O®OC)

Load line 3:

=AOWHEREOOC)

AN EXAMPLE PROGRAM (continued)

Load line 4:
=()OOCO0O00EC=)

The program is now loaded.

Load line b:

To check that the program has been loaded correctly
print a ‘listing’ (shown opposite) and compare that to
the keying sequence used:

(the R-number at the end of the list will probably differ
from that shown, because of different calculator con-
figurations).

The program just loaded enables you to total any list of numbers (as was done manually in
Example 2, on Page 28); as each number is keyed, it is printed automatically; then, at the end

of the program, the total is printed and identified. The program has been arranged so that the
list of numbers can be any length.

Before running the program, position the decimal point so that you will obtain the desired

(o)
Start the program: (HE®T HUMBER B

(Using the same list of numbers as before, 9, 36, 25,) key in the first number from the list and

printout. For example:

press RUN PROGRAM. When that number has been printed, key in the next number and again
press RUN PROGRAM; continue in the same way for all remaining numbers. When all numbers
have been printed, press RUN PROGRAM, without pressing any other key, so that the program
will print (and display) the final total. The program has now ended; it can be started again for a
new list of numbers by pressing END RUN-PROGRAM and then keying the list as before. (If
you cannot re-run the program, press STOP and CLEAR, and then press END RUN-PROGRAM.)

IR 2ty C e e

Here is the printout from the example program, using the
list of numbers given above.

MAGNETIC PROGRAM-CARDS

Figure 6 shows a magnetic card, which is used to permanently {(or temporarily) store programs
or data. The card has two sides, identified by the word ‘SIDE’, space being left for you to write
any other identifying information. The sides are used independently, somewhat in the same way
as the two sides of a tape are used in a standard tape-recorder.

PROGRAM

I
> '\ Protect Tab

[74] EALCULATOR PROGRAM CARD
£l REALETT-PACKARD

Protect Tab
\D

L SIDE PROGRAM

Figure 6. Magnetié Program Card

Once a recording has been made on a card-side, that card-side can be protected from erasure by
tearing out the protect tab (see Figure 6). The recording on a protected card-side cannot be
changed, so never protect a recording until you have ensured that the recording is correct —

load the program back into memory and run it.

Figure 7. Inserting the Card

Figure 7 shows a card being inserted into the card reader, either for recording or for loading;
the printed face faces the keyboard and the card-side to be used is the side with the arrow
pointing down (notice that the card is leaned slightly towards the keyboard). Always start the
card-reader motor {keying sequences given below) before inserting the card. When the card is
about an inch into the slot it will be automatically pulled through the card reader and partially
ejected from the lower slot. When the card stops moving, remove it from the slot.

MAGNETIC PROGRAM—CARDS (Continued)

This procedure enables you to record the example program {Page 40), load it into the memory,
and run it, to ensure that it is loaded correctly. Press:

() Coom) 9 (e)

The card-reader motor will start; insert an unprotected card into the card reader; when the card
stops, the recording is completed.

To load the program from the card into the memory, first clear the memory:

Then press:

() G) 2 (Coem)

and insert the card (with the arrow on the card-side containing the program pointing down) into
the card reader. When the card stops moving, the program is loaded and ready to run as before
{press END RUN-PROGRAM).

The procedure given above is intended specifically for the example program. :rhe same
procedure will, however, apply to most other programs which start at line 0 and which do not
require more than one card-side.

Other ways of recording and loading programs and data are included in the Operating and

Programming Manual. The loading procedures for specific (pre-recorded) programs should be
included in those programs’ user-instructions (see Page 38).

Notes 12 through 15 (see Appendix) apply to magnetic card operations.

Part 2
PROGRAMMING THE CALCULATOR

PROGRAM WRITING

Writing programs for the 9820A Calculator is, in general, easier than you might expect. It
consists of writing ‘statements’ (such as the arithmetic expressions, instructions to the printer,
data storage instructions, etc., used earlier in this book) and then combining them with other
special (programming) statements, in some logical order, to form a program.

Program writing can be considered as having three main steps:

1. Define the objectives of the program — the problem to be solved, how the results are to be
presented, etc.

2. Decide what operations are necessary, and the order in which they are to be performed, in
order to achieve the objectives.

3. Write precise instructions, in a manner which the calculator can understand, instructing it to
perform the required operations.

PROGRAM WRITING (Continued)

To illustrate the three steps described above, consider the program from Page 40.

1. Define program objectives:

The program is to be used to total any list of numbers; each number in the list is to be printed
and then the final total is to be printed and identified.

2. Decide necessary operations:

This step is best achieved by means of a ‘flowchart” — a diagramatic representation of the
operations to be performed. Figure 8 is the flowchart of the example program; the arrows
indicate the order of operations, the ovals represent user operations, and the rectangles
calculator operations. The diamond represents a question which the calculator must ask in order
to decide which way to ‘branch’. The calculator itself makes this decision, whether to branch
back around the ‘loop’, or whether to branch out of the loop and finish the program; in this
case the decision is based on whether or not a new number was keyed in. Notice, in particular,
that there is considerable similarity between the operations shown on the flowchart and the
operations which you might perform in order to total a list of numbers on paper.

NOTE

It is perhaps anly fair to point out to the novice programmer that
a final flowchart (such as that shown) usually results only after
several attempts to produce it.

START
1. PRESS: END
2. PRESS: RUN PROGRAM

SET TOTAL =0

REQUEST
NEXT NUMBER

ADD NUMBER 1. KEY NEXT NUMBER (if any}
TO TOTAL 2. PRESS: RUN PROGRAM

PRINT
NUMBER

Figure 8. Example Flowchart

PROGRAM WRITING
3. Write the program:

(Continued)

From the program listing it can be seen that a program
consists of numbered lines (of varying length}; in this
program the lines are numbered O through 5. (One
‘program line’ may occupy more than one ‘printed ling’
because the printer can print no more than sixteen
characters on a line.) A line’s number is assigned auto-
matically, in numerical sequence, when the line is stored
into the calculator’s memory. When the loaded program
is run, the lines will be executed in the same numerical

order, unless special instructions (see ‘The Go To State-
ment’ on Page 59) are included to change that order.

Each line consists of one or more statements; the
statements on any one line are separated from each other
by means of the semi-colon. Several of the statements in
the sample program will already be quite familiar to you
while others will be new — the following discussion
concentrates mostly on the types of statement which are
new. While reading this material, correlate the operations
shown in the flowehart with the statements of the
program.

NOTE

The ‘end-of-line’ symbol (i) is automatically added to each line
when the line is stored (by pressing the STORE key).

Line O contains two familiar statements:

SPC 2 (not shown in the flowchart) advances the printer paper two lines; this separates the
printout for this program from any previous printout.

0 - B stores zero into register B so that the initial total for the list is zero.

Line 1 contains an ‘enter’ statement (a request for data); this halts the program to enable the
user to key in a number and then press RUN PROGRAM to continue running the program. This
particular ‘enter’ statement consists of two parts, separated, as is proper, by the comma: the
characters in quotation marks (NEXT NUMBER) will be displayed when the program halts; the
part following the comma is a register name (in this case A} — the keyed number will be
automatically stored in that register as soon as program execution resumes.

Line 2 contains an ‘if’ statement, which enables the calculator to ask the question showp in the
diamond in the flowchart. A more complete explanation of the ‘if’ is given later in this -book;
for the present, it is sufficient to know that if a new number has just been keyed (YES in the

PROGRAM WRITING (Continued)

flowchart) then the program will ignore the rest of line 2 and go on to the next line, line 3; if
no new number was keyed {NO in the flowchart) then the calculator will execute the GTO 4
(go to line 4) so that program execution continues at line 4 (instead of the next sequential line,
line 3).

Line 3 contains three statements; these (1) cause the value currently stored in A (the last keyed
number) to be printed; (2) add the value in A to the current total of the list, stored in the B
register; and (3) ‘unconditionally’ branch the program back to line 1. The branch is
unconditional because there is no ‘if’ statement preceding the GTO 1; the calculator is not able
to exercise any option in this case, it must make the branch and continue program execution at
line 1. The program will continue to ‘branch around the loop’ (do line 1, ignore the ‘go to” in
line 2, do line 3, do line 1, and so on) until such time as the user reaches the end of the list
and so presses RUN PROGRAM without first keying any number. When this occurs, then the
‘conditional’ branch (GTO preceded by an ‘if’ statement) in line 2 will be executed, so that
program execution then resumes at line 4.

Line 4 is an ordinary ‘print’ statement, enabling the final total, in register B, to be identified
(TOTAL =) and printed. Again notice the use of the comma to separate the two parts of a
single statement.

Line 5 contains the ‘end’ statement to indicate that the program is finished and to stop program
execution.

THE PROGRAM LINE

Even though the lines of a program are stored in the same memory as is data (see The Data
Memory, Page 22), the length of individual lines bears no relationship to the length of a register;
the calculator simply uses however many registers are necessary to accommodate a particular
line.

The length of a line is determined by the programmer and depends upon the requirements of his
program; however, the length is limited by machine requirements, in the same way that an
individual expression is limited (see Exceeding the Length of the Display, Page 20). NOTE 09
appears, either before or after STORE is pressed, if the line is too long. When NOTE 09 occurs,
press CLEAR and key in a completely new (shortened) line; do not attempt to shorten an

existing line once it has been stored and NOTE 09 has appeared — it is easier to rewrite the
line.

Line numbers are automatically assigned, by the calculator, in strict numerical sequence,
beginning with line 0. You do not have to key the line number (in fact, you cannot) when you
are keying in the line, but you must know what numbers will be assigned if there are any ‘go
to’ statements (see Page 59) in your program.

The line numbers are not strictly a part of the program because they will automatically change
if the program is moved to a different location in memory. For example, suppose a program
{No. 1) is a ten-line program (lines O through 9) and is already stored in the memory. If a
second program {No. 2) is now loaded below program No. 1, then No. 2’s first line will be line

THE PROGRAM LINE (Continued)

10, whereas, if No. 2 had been the only program in the memory, then its first line would have

been line 0. (Any ‘go to’ statements must be corrected, by the programmer, to reflect any such
line number changes.)

A line can have one or more statements, separated by semi-colons. The actual number of
statements on any one line is generally not significant, it being more important to have the
statements in the correct order rather than on a particular line. Position of a statement does
become significant where a line contains an ‘if’ statement (Page 60) or where a branch is to be
made. In the former case, those statements which are to be conditionally executed must be on
the same line as the ‘if’ statement and must come after the ‘if’. In the latter case, a branch is

always made to the beginning of a line; therefore, the first statement to be executed after a
branch must be the first statement of the line to which the branch is made.

It is recommended that you do not put too many statements on one line because a short line is
easier to change (once stored) than is a long line.

THE DATA ENTRY STATEMENT

Enter statements are used to halt the program so that the user can key in data (the program
shown on Page 52 contains a typical ‘enter’ statement). The simplest statement contains only a
register name; the program then halts with that name displayed. The data keyed during the halt
is stored, into the register designated, when RUN PROGRAM is subsequently pressed. For
example:

EHT Hs

results in the keyed data being stored in register A.

An enter statement may contain more than one register name (these must be separated by
commas); the program will then halt for each register in turn. For example:

ERT AsELIZ: RS
is the equivalent of the three separate statements
EMT HIEMT ELZsEMT i
A ‘label’ (followed by a comma) may precede the register name; in this case the label will be
displayed, instead of the name, when the halt occurs:

EHT "H=%"s Hai
displays A=? and stores the subsequent data entry into register A.

THE DATA ENTRY STATEMENT (Continued)

AN IMPORTANT NOTE

When the calculator halts for a data entry, it remains in the ‘enter’
mode until the requirements for the entry are properly satisfied.
Failure to complete the entry will cause NOTE 01 to appear if
any subsequent program activity is attempted, even though certain
keyboard activities, such as executing an arithmetic expression,
can be performed normally. To avoid confusion (which may not
occur until several hours later!), always complete a data entry; any
one of the following ways may be used:

1. Key a number and press RUN PROGRAM.
2. Press RUN PROGRAM.

3. If you do not wish to resume running the program, press
STOP.

Remember: always satisfy the requirements of an ‘enter’
statement.

THE ‘GO TO’ STATEMENT

Program lines are normally executed in numerical sequence; however, some statements cause t.he
sequence of execution to be changed. This is known as ‘branching’; instead of the program going
to the next sequential line, it branches to some other (specified) line and continues program
execution there. The branching statement consists of the GO TO key followed by numerical
keys to specify the line number, for example:

LTO A5 or LTI 1553

(Other types of branching statements are described in the Operating and Programming manual.)
The example program on Page 52 contains two ‘go to’ statements.

In a program, the ‘go to’ statement causes program execution to continue with the line whose
number is specified.

From the keyboard and followed by RUN PROGRAM, the ‘go to’ statement causes program
execution to start at the line whose number is specified.

From the keyboard and followed by EXECUTE, the ‘go to’ statement causes the ca[cqlator to
go to the line specified but not to start program execution. Any subsequent activity then
depends upon the next key pressed.

A line number is valid only if a currently stored program has a line identified by that number,
or if it is the next higher number after the number identifying the last stared line. Al! other
numbers are non-valid and, if used in a ‘go to’ statement, will cause NOTE 08 to be displayed.

THE ‘IFP STATEMENT

The ‘if’ statement enables the calculator to decide whether or not to execute the succqeding
statement(s) on the same line as that ‘if’ statement. The general form of the ‘if’ statement is:

I F [condition] &

For example:

IF HA=3s
tells the calculator to check the truth of the condition “the value in the A register is equal to
3" and to act accordingly. If the condition is true (YES), the rest of the current line is
executed; if false (NO), the rest of the line is ignored and the next line is executed.

The ‘conditions’ all use one of the following keys:

‘‘—greater than—""

@ "—less than or equal to—"

@ "—equal to—"'
"—not equal to—""

thus, the general form of the ‘if’ statement can be written as:

one of
=

I F |thing i thing | 3
=

where the ‘thing’ parts of the statement can be values, register names, arithmetic expressions or
flags (explained later). Typical ‘if’ statements might be:

IF F=33
[F Rids (4R+21 761

When the calculator makes the check, it substitutes the appropriate value for any register name

or for any arithmetic expression, just as it does in other types of statement.

The most common use of the ‘if’ is to make conditional branches (that is, to conditionally
execute a ‘go to’ statement). Consider this line, taken from an imaginary program:

18: IF 4xvsvy+1+¥iGTO FF
As long as Y is less than 4, the condition is true; the program then adds 1 to Y and‘branches
back to line 7. The program will continue to ‘loop’, executing lines 7, 8, 9 and 10 until the test
is made when Y has a value of 4; now the condition is no longer true so the program goes on to
line 11. In this example, line 10 also acts as a counter and counts the number of times the

branch (GTO 7) will be made; if Y is initially equal to zero, then the branch will be made four
times (so that lines 7, 8 and 9 will be executed five times).

THE STOP AND END STATEMENTS

M The STOP key, used as a statement in a program or pressed while a program is running,

stops program execution. STOP should be used only to ‘abort’ a program {in the sense
that you no longer wish to run the program, or that you wish to stop it and start again at the
beginning).

u END serves the dual purpose of stopping program execution and of initializing the
calculator ready to start program execution at line O.

THE FLAGS

SET
AR

The calculator has sixteen ‘flags’; these are selected by the FLAG N key, followed by numeric
keys to designate one of the set: 0 through 15. For example:

E‘:) {mnemonic 1. 0)

selects flag 4. Flags are used mostly as part of an 'if’ statement to enable the user to define
some special condition.

The basic concept of ‘flagging’, although quite simple, is sometimes difficult to grasp; an analogy
may be helpful: imagine, as the driver of a car, that you are given these instructions; ‘““Half a

mile down the road is a flagman; if his flag is raised, turn right; if his flag is lowered, turn left.”
The programmer’s ‘flag’ is just that — a flag! Notice that the condition — a raised or lowered
flag — does not specify any particular reason for the state of the flag; in this case, the flag could
be raised for road repairs, for floods, or for stock on the road. The flags in the calculator are
somewhat like this; you select any reason you wish for raising or lowering them.

The calculator terminology used to describe flags is quite simple: If you raise a flag, you SET it;
a set flag is considered to have the value 1. If you lower a flag, you CLEAR it; a cleared flag is
considered to have the value 0.

Flags are set and cleared by means of the SET/CLEAR FLAG N key; press once to ‘set’, twice

to ‘clear’: —_
(l) 2) (mnemonic SFEG 1)

sets flag 12; (mnemonic "z 7))

clears flag 7. Once set, a flag remains set until it is deliberately cleared; however, all flags are
automatically cleared at turn-on, or when MEMORY ERASE is pressed, or when an END
statement is executed.

The following program lines illustrate a typical use of the flag:

THE FLAGS (Continued)

In this case the purpose is to execute lines 5, 6 and 7 twice and then to go on to line 9. A flag
is set in line 4 so that the first time line 8 is reached the ‘if' condition is true; therefore the
branch back to line 5 is made. Before the branch is made, the flag is cleared so that, the second
time line 8 is reached, the condition is not true and the program will go on to line 9.

As long as no program is being executed, the state of any flag can be determined by using this

) o) ()

key sequence:

The state (value) of the flag will be displayed; a 1 for a set flag or a zero for a cleared flag.
(The test will not change the state of any flag.)

In addition to their normal use, flags O and 13 also have a special purpose.

Flag 0 can be set from the keyboard while a program is actually running, by pressing the
SET/CLEAR FLAG N key.

Flag 13 — set automatically if the program halts for an ‘enter’ statement and RUN PROGRAM
is then pressed without any data being keyed (this feature is used to advantage in the example
program shown on Page 40).

OPERATING PROGRAMS - A SUMMARY

1. To clear the memory, press:

2. Before loading, set the calculator to the beginning of memory, press:

END ‘ EXECUTE

3. Load the program by keying one line at a time, in numerical sequence; at the end of each
line press STORE. Statements can be corrected by means of the BACK and FORWARD keys.

4. To obtain a printout of the program, press:

=

5. To correct a line after it has been stored, press:
Eu}j\ G_ine Numbea RECail]

Then correct the program by means of the BACK and FORWARD keys and re-store it. Even
though the line length may have been changed it will not be necessary to change any subse_quent
lines to compensate; the calculator automatically moves the subsequent lines up or down in the
memory. ,

OPERATING PROGRAMS — A SUMMARY (continued}
6. To start the program, press:

To check a program, set the printer to the ‘trace’ mode; press:

o5 (o

and then run the program. As each line is executed, the printer will print the line number and
the numerical result (if any) of that line. This enables you to see where a numerical error
occurred, or where, for some reason, lines were not executed in the expected order.

7.

Appendix

THE DIAGNOSTIC NOTES

The purpose of the diagnostic notes is described on Page 9.

In order to keep the following list reasonably short, it has been made ‘one-way’ only, in that it
is intended to be used only when some note appears. The list contains guidelines to enable you
to determine specifically what caused that note to be displayed at that time. The list does not
contain sufficiently exhaustive information to enable you to predict in all cases which note will
be displayed in any given set of circumstances.

The explanation of items marked with the symbol ‘t” is beyond the scope of this book; refer to
the Operating and Programming manual for full details.

RHOTE @i
In view of the preceding keys, the last key pressed does not make sense to the calculator: for

example, a ‘multiply’ following the R() key. Note 01 is the most commonly seen note and
generally occurs as soon as the ‘wrong’ key is pressed.

Appendix

MOTE &2
An attempt to execute an instruction which is followed by an improper value; for example, the
FIX N key followed by a number larger than 9.

Taking a square root is a special case:
a. +/— causes NOTE 01 when ‘minus’ is pressed.

b. +/(—4) or /A (where A contains a negative number} when executed cause NOTE 02 to
appear.

MOTE @3

Statement has an extra left-hand parenthesis [{] or a missing right-hand parenthesis [}].
PUITE e

Statement has an extra right-hand parenthesis [)] or a missing left-hand parenthesis [(].
MOTE oo

a. Attempt to use a non-existent, or a non-available, R-register as a value in an expression.

b. Attempt to designate a flag other than one of Flags O through 15.

Appendix

MOTE &5

a. Attempt to store into a non-existent, or a non-available, R-register.
b. Attempt to enter a number whose exponent has an absolute value greater than 99.

MOTE @7
Attempt to execute a RET not preceded by a matching GSB.

MOTE @83
Attempt to execute a GTO followed by a non-valid line number or label(t). Also applies to
GSB(T) and JMP(T).

HOTE @89

a. Writing, or executing, or storing too long an expression or program line.

b. Nesting subroutines{t) too deeply.

HOTE 18

An intermediate or final result of a calculation exceeded the range of the calculator.

Appendix

Milihk 14

a. Pressing any half-key in the three left-hand keyblocks when:
1) It is not part of a quote field; e.g. PRT *. . .."” and
2) The key is not defined by some plug-in ROM.

b. Attempt to execute an ‘enter’ statement from the keyboard instead of in a program.

MOTE 12
a. Storing a program line [or loading a program or data(t) from a magnetic card] and
exceeding the memory.

b. (f)No GTO or GSB preceding LOD when loading a program (from a magnetic card) under
the control of the existing program.

RMOTE 13
Attempt to record on a protected magnetic card.
MOTE 140

An additional card side is required when recording on, or loading from, a magnetic card. Press
EXECUTE and insert the next card-side.

Appendix

MOTE 151

Appearing after a program has been loaded from a magnetic card, indicates that the calculator
does not have the same ROM'’s installed (in the same slots) as it did when the card (or cards)
was recorded. This will not affect the running of the program as long as the particular ROM's

required for that program are installed in the same slots (press CLEAR and run the program in
the normal way).

Recordings made when no ROM’S are iné‘tailed, do not result in NOTE 15 when they are loaded
into calculators which do have ROM’s installed.

HOTE 1e
Attempt to use the printer when there is no paper in the printer. To continue using the

calculator without printer paper: If the ‘print” instruction came from the keyboard, press
CLEAR; if from the program press STOP RUN-PROGRAM.

Appendix

ANOTHER EXAMPLE PROGRAM - N FACTORIAL

This program calculates N factorial (N!) for any positive
integer value of N from zero to 69 (70! exceeds the
range of the calculator).

NI = 1 +2-3- N
6l=1-2+3" 4 5 6 =720
0! = 1 (by definition)

Load the program at the beginning of memory. To run
the program, press END RUN-PROGRAM; then enter a
value for N and press RUN PROGRAM. The program
automatically prints the values of N and NI, as shown
below.

1fwxg BEPD ap
ﬁi”ﬂw “HEN H"‘ﬁ%

;inﬁiieCi
: .3 "-,: B

o FF“‘E:: GTD 6!"

a9
ff%F CSHEGIG EF
.ga+1&ﬁyac+s,sTm

Appendix

START

1. PRESS: END
2. PRESS: RUN PROGRAM

REQUEST NEXT NUMBER

!

1. KEY NUMBER {N)
2. PRESS: RUN PROGRAM

!

1. STORE N — A A = Current value for N
2. PARTIALN! =1 =8B B = Partial result of NI (1, then 1-2, then 1-2-3, etc.)
3. MULTIPLIER=1~C C = Current multiplier term {1, then 2, then 3, etc,]

1. PRINT N (A}
2. PRINT NI (B}

1. NEXT MULTIPLIER C+1-=¢C
2. NEXT PARTIAL N! BC B

L

MEMCRY

—DECIMAL—

The 9820A Keyboard

ERASE F@ﬂ @ PAPER [——
[1_-':‘ i (FrER)

;A E EDIT s DISPLAY lNFm,Jourvur "HOGRAM-—\.
rormaL] [THACK oeete] [insert] [(Recaw [Baer_ [CLean] (Enter) [owpuaw] [Famr) svncﬂ‘ @ 1oAD) [RECORD)]
FI T Awd AL w0 Ay 3 03 24 L5 2% i on % 3 5

® ® ®

T [Y i Coy 1Y vy (5 P
by A0 T Ml A3 @ ‘ol @ @ Gj {\AJ GI I:;P,} gj

o 53‘ I [? A 54 eyl Ao

B CED oy O oY T (ﬁn‘m)

SEF % Sk BOIGI01016 D) E
A0 443 T [4] 1o A ~ ,(e’? A% w23

D (R L I T TN A g p

re |2 | 22| OOOO0 @Dﬂmw
c \
A0F 224 [L] &53' % <4 72 AL 3~=

5y 8 8y C1 C&Y (V) Y L) o o

e % T80 FEr Ty (+) (1) (2)(3) () RO | # ﬁw\
AAT _S,EJ . Ik A
A0 iy §4 6% is VER I [”

Ty (SPASEy CHY (R Ry WY - B

¥4 Lo INT THE AL AT t\- 0 j J [EXECUTE) RUN PROGRAM ‘ sTap (STORE :J
i R o ‘ _ | Py Y3 AT e nA

HEWLETT-PACKARD SALES AND SERVICE OFFICES

To obtain servicing information and order replace-
ment parts, contact the nearest Hewlett-Packard
Sales and Service Office in HP Catalog, or contact

the nearest regional office.

IN THE UNITED STATES

CALIFORNIA
3939 Lankershim Blvd.
North Hollywood 91604
(213) 8T7-1282

GEORGIA
P. 0. Box 28234
450 Interstate North
Atlanta 30328
(404) 436-6181

ILLINOIS
5500 Howard Street
Skokie 60076
(312) 6T7-0400

NEW JERSEY
W. 120 Century Road
Paramus 07652
(201) 265-5000

IN CANADA

QUEBEC
Hewlett-Packard (Canada) Ltd.
275 Hymus Blvd.
Pointe Claire
(514) 697-4232

IN EUROPE

SWITZERLAND
Hewlett-Packard S. A.
7 rue du Bois-du-Lan
1217 Meyrin 2, GE
(022) 41 54 00

INTERCONTINENTAL SALES REGION

Hewlett- Packard Company
3200 Hillview Avenue

Palo Alto, California 94304
(415) 326-7000

(]

