OPERATING AND PROGRAMMING

HEWLETT-PACKARD 9810A

Copyright Hewlett-Packard Company 1971

HEWLETT-PACKARD CALCULATOR PRODUCTS DIVISION
P.O. Box 301, Loveland, Colorado 80537, Tel. {303) 667-5000
Rue du Bois-du-Lan 7, CH-1217 Meyrin 2, Geneva, Tel. {022) 41 54 00

TABLE OF CONTENTS

KEY INDEX vi

VMIANUAL SUMMARY viil

CHAPTER 1: GENERAL INFORMATION

tntroductory Description 1-1
Supplied Accessories 1-2
Program Pacs 1-3
Keyboard Magazine 1-3
Service Contracts 1-3
Optionat Products 1-3
inspection Procedure 1-5
Power Requirements 1-5
Grounding Requirements 1-6
Fuses 1-6
Turn-on Procedure 1-7
Exerciser Program 1-8
Cleaning the Calculator and Fan-Filter 1-12

CHAPTER 2: SIMPLIFIED OPERATION

Turn-on 21
Freparing the Calculator 2.1
The Display 2.9
Position of the MNecimal Point 2.2
Arithmetic 2.3
Key Functions 2.6
Storing a Constant 27
Accumulating Totals 2.8
Programs 2-10
Program User-lastructions 2-10
An Example Program 2.11
Recording and Loading 214

CHAPTER 3: OPERATING CHARACTERISTICS

Read-Only-Memories 3.1
Secondary Key-Functions 3.2
Key Colors 3.2
The Display 3-2
Floating- and Fixed-Point 3-5

i Guard Digits 3.6

TABLE OF CONTENTS

CHAPTER 3: OPERATING CHARACTERISTICS (conunued)

Register Overflow and Underflow 3-7
Range 3-9
Status 39
Status Conditions 3-10

CHAPTER 4: KEYBOARD
Introduction 4-1
Keying Instructions 4-1

INITIALIZE KEYS
LINE OFF/ON, RUN--PRGM, FLOAT-FIX () 4-3

DATA ENTRY KEYS
0 through 9, CLEAR x, CLEAR, Decimai Point,

CHG SIGN, ENTER EXP, n 4.5
DISPLAY CONTROL KEYS

1,1, Roll T, x 2y 412
ARITHMETIC KEYS

Lo X, F 4.14

VX, X2 /X, INT X 4-20
DATA STORAGE KEYS

Cata Registers 4-24

Direct Storage and Recall 426

Direct Storage-Register Arithmetic 4-30

Indirect Storage and Recall , 4-33

Indirect Storage-Register Arithmetic 4.34

Indirect Register-Addressing 4-35

Short-Form Addressing 4-36

Nesting Indirect Addresses 4-37

CHAPTER 5: PROGRAMMING THE MODEL 10
INTRODUCTION TO PROGRAMMING
What is a Program? 5-1
Writing a Program 5 4

PROGRAM MEMQRY

Locations H8
Program Counter 5-8
Sten Scquence h-B

Addressing the Mamory h-9

TABLE OF CONTENTS

CHAPTER 5: PROGRAMMING THE MODEL 10 icontinued)
PROGRAM MEMORY [continued)

Branching 5-10
Subroutines 5-10
Blanked Display 5-10
Key Codes 5-11
Short-Form Addresses 5-11

PROGRAM KEYS
RUN-PRGM, GO TO, LABEL, CONTINUE, STOP, END,
PAUSE, STEP PRGM, BACK STEP, PRINT/SPACE, FMT 5-12

PROGRAM CPERATION

Load and Run Programs 5-18
Editing Programs 5-20
Correcting Programs 5-23

MAGNETIC PROGRAM CARDS

Capacity of the Card 5-28
Inserting Cards into the Reader 5-28
Protecting the Recording 5-29
RECORD 5-29
LOAD 5-31
Automatic ‘Load and Run’ 5-33
Recording Data 5-34
Loading Data 5-34
PROGRAM KEYS -~ CONDITIONAL BRANCHING
IF x <<y, IF x =y, IF x> vy, IF FLAG h-35
SET FLAG . 5-39
PROGRAM KEYS — SUBROUTINES
SUB/RETURN 5-45
ADVANCED BRANCHING TECHNIQUES 552

CHAPTER 6: OPTION 004 PRINTER
GENERAL INFORMATION

Introduction 6-1
Alpha Printing Capability 6-1
Ordering Paper 6-1
Loading Paper 6-1
Paper Removal 6-2
Printer Window Removal 6-3

Electrical Inspection 6-3

TABLE OF CONTENTS

CHAPTER 6: OPTION 004 PRINTER {continued)
PRINTER OPERATION

Printing Data (PRINT/SPACE) 6-7
Data Entry Symbol («} 6-7
Keylog Mode (KEYLOG) 6-8
Program Listing {LIST) 6-9
Paper Advance (PAPER) . G-10
PROGRAMMING WITH THE PRINTER
Programming PRINT/SPACE Instructions 6-11
Use ot Keylog Mode 6-12
Use of Program Listing 6-12
Adding PRINT/SPACE Instructions 6-13
Linc Space Instructions 6-15
APPENDIX
CHARACTERISTICS
KEY CODES

SALES & SERVICE OFFICES

vi

KEY INDEX

| |

t\‘_ - 1 N ;" \\ {'J‘J |

I ||] ||

| L___,/ \ AN 7_)J‘
|

|CD C' 3 oy

L L

~ — - Definpd hy the - — - -
plug in ROM's [Page 3 1)

STATUS

4.20 4.20
@
417

(paper]

610
——DECIMAL— p MODE v
|[Foat [EIEB; ; RUN_ | [—PRGM_}} ‘(keviog [CusT
! ; : 69
| | I \ ‘ i
@& @ @ @ @
T ’ 43 512— | ¢ o68--

CHG ENTER CLEAR
420 4.6 4.6 4.5 4.8 5-39

-
>
m
n
-

Binlolo

| || | 513
|}
210 (o)
[
\ I : 516
\ |1
| PRINT
s@I ' ' : S
' N N
| | | 1 516, 67
(+)1 | e
I | i RETURN
Logrg 11 T ¥ 514 5.45
30, -34

Refer to the page number{(s} shown for a description
of the individual key functions.

C

PROGRAM ~
;G@ RECORD
| INSERT CARD :
| ®
- 528— — — - - -

(%]
7%
52

=
A&
b

o
=
=

[4)]
[#3]
[&]

5-15

STOP

=
=
2

5-35 5-14

IF BACK
x>y STEP
5-35 5-16

coto PRGM

ol “

~ et T
—_ m
m R}

5-12

L
MANUAL SUMMARY

Chapter 1: General Information.
Information for the owner; includes a list of optional equipment,
turn-on instructions and a procedure tO run an exerciser program.

Chapter 2: Simplified Operation.
Operating information selected especially for the user who wishes to
make only simple calculations or to run pre-recorded programs.

Chapter 3: Qperating Characteristics.
A ’hands-on’ introduction to the calculator high-lighting its important
features.

Chapter 4: Keyboard.
Describes making calculations from the keyboard without reference to
programs (the program-writer will also need this information}.

Chapter 5: Programming the Model 10,
Complete programming information: describes keys and features used
exclusively for programming; how to load and run programs; magnetic
card operations; etc. The first part of this chapter, ‘Introduction to
Programming’, is intended for the novice programmer.

Chapter 6: Option 004 Printer.
Describes operation and use of the optional printer.

NOTE

The additional information required to operate a
calculator with Option 001 is included on Page
4-24; similar information for Options 002 and 003
is included on Page 5-8.

viii

GENERAL INFORMATION

The Hewlett-Packard Model 9810A Calculator is the central unit of the
9800 Calcuiating System; the system includes the basic calculator (the
9810A) and numerous optional plug-in and peripheral devices. A system
can be built to suit your needs and can be added to, or changed, at any
time.

The calculator operates either as a stand-alone unit or as the controller in
a 9800 System. This manual describes the calculator as a stand-alone unit;
separate manuais are supplied with each of the plug-in and peripheral
equipments, detailing their use in the sysiem and the part played by the
calculator in controlling them.

The basic Model 9810A Calculator is shown in the photograph on the title
page of this manuat; its keyboard is shown on Page vi. The half-keys in
the left-hand block of the keyboard enable the basic calculator to be
tailored to your requirements. Operation of these keys is uniquely defined
by each of various optional ‘read-only-memories’ (ROM’s) which plug into
the basic calculator; without the ROM's, the half-keys serve no function.

The basic machine is both a manually operated, and a programmable,
desk-top calculator. It can efficiently solve both simple and complex
problems in a wide range of disciplines, including business, statistics,
education, the sciences, engineering, and so on. Addition of the optional
ROM'’s enables the calculator to further specialize in these disciplines.

The basic calcufator is fully programmable; its computer-like memories
enable both program steps and data to be stored and manipuiated. The
standard program memory can store up to 500 program steps, and the
standard data memory up to 51 data numbers. Programming is simple
hecause the various keyboard operations become the program instructions;
no special janguage need be learned. Standard programming features
include separate data and program memories, conditional and uncondition-
al branching, direct and indirect data storage and register arithmetic,
relocatable programs, subroutines, and the ability to automatically load
magnetic cards containing either program steps or data. An additional
standard feature is program editing, which enables programs to be easily
debugged and corrected, even though they are already stored in the
memory.

CAUTION

PLEASE DO NOT APPLY OPERATING POWER
TO YOUR CALCULATOR UNTIL YOU HAVE
READ THE TURN-ON INSTRUCTIONS ON PAGE
1-7.

1-1

INTRODUCTORY
DESCRIPTION

INTRODUCTORY
DESCRIPTION
(continued)

SUPPLIED

ACCESSDRIES_

GENERAL INFORMATION

in addition to the ROM’s and the peripheral devices previously mentioned,
there are other products which include a printer and additions to the
program and data-storage memories {these must be installed by Hewlett-
Packard personnel). A complete list of optional devices is given later in
this chapter,

The standard accessories supplied with each basic Model 9810A Calculator
are listed in Table 1-1.

Table 1-1. Standard Accessories Suppiied

DESCRIPTION QUANTITY -hp- PART NUMBER
Operating and Programming Manual 2 09810¢-20000
Program Pad 1 09810-90016
Math Pac (programs) 1 09810-70000

E xerciser Program (envelope
containing 2 pre-recorded 1 09810-20021
magnetic cards)

Magnetic Program Card with envelope 10 *See note below.
Power Cord 1 8120-1378
Dust Cover 1 4040-0894

Spare Fuses - all 230V Normal Blow
% in. dia. x 1% in, Ig.

T-amp 1 2110-0001
2-amp 1 21100002
G-amp 1 2110-0056

{1t Option 004 Printer Instailed}

Roll of Printer Paper 3 See Chapter 6

*Additional guantities of magnetic cards may be purchased as follows:

Magnetic prograrn cards:
Package af 10, -hp- Part No. 50602152,

Prices are available, upon request, from any HP Sales and Service Office {addresses are at the back
of this manual).

GENERAL INFORMATION

Program pacs containing programmed solutions to practical problems in a
wide range of disciplines are available for purchase. The Math pac is
shipped with each calculator; for a complete list of other program pacs
and for price information, contact any HP Sales Office.

The ‘KEYBOARD' is a periodic magazine containing general information
about Hewlett-Packard calculators. It includes articles and programs writ-
ten by calculator users; descriptions of new equipment and of new
program pacs; programming tips; and other articles of interest to calculator
users.

Service contracts are available for the calculator, options and other devices
in your 9800 System. For further information contact any HP Sales
Office.

Additions to the basic calculator are classified into two groups: options
which require that the calculator be modified and which must, therefore,
be installed by qualified HP personnel, and products, such as read-only-
memories (ROM's), which can be easily plugged into the calculator, and
removed, by the user. A third group of additions, the peripheral devices,
are additions to the system, rather than to the basic calculator. The items
listed below are those available at the time this manual was printed (the
printing date is on the back cover}; other items will be available in the
future.

NOTE

In the basic calculator:

The program memory contains a total of 500
program steps.

The data-storage memory consists of 51 registers.
The left-hand block of keys is not defined.

1. OPTIONS
(Operation of these options is fully described elsewhere in this
manual).

Option 001: Total of 111 data-storage registers {(product number -hp-
11216A).

Option 002: Total of 1012 program steps (product number -hp-
11217A).

Option 003:Total of 2036 program steps {product number -hp-
11218A).

Option 004: Printer (product number -hp- 11219A}.

{Options 002 and 003 are mutually exclusive.)

PROGRAM
PACS

KEYBOARD
MAGAZINE

SERVICE
CONTRALTS

OPTIONAL
PRODUCTS

1-3

OPTIONAL
PRODUCTS
{eontinued)

GENERAL INFORMATION

When an option is installed the calculator is referred to as a “Model 10
Calculator with Option{s) X X X, etc.” If you order an option after
purchasing your calculator, please quote the product number, instead of
the Option number, on your order,

2. PLUG-IN (ROM’s)
{Operation is described in the separate manuals supplied with each
ROM.)

Some of the ROM’s serve to uniquely define the half-keys in the
left-hand block of the keyboard. Each of these ROM’s has an overlay
which can be placed over the half-keys to identify their functions
when that ROM is installed. The keys, which protrude through the
overlay, are then used in the same way as the other keys on the
calculator. Other ROM's serve special functions, usually in conjunction
with some other device.

ROM’s can be plugged into, or removed from, the calculator in
seconds; no tools are required.

MATHEMATICS ROM — -hp- 11210A:

Adds twenty-six mathematical functions and further programming
features to the basic calculator. These include (among others) log-
arithms and exponential functions, trigonometric functions (in degrees,
radians or grads), coordinate transformation, vector arithmetic, mani-
pulation of complex numbers, automatic rounding to any power,
automatic scaling for X-Y plotting, and a user-definable function.

STATISTICS ROM — -hp- 11214A:

Adds single-keystroke statistical computations to your basic calculator.
These include x2%; t; linear, multi-linear, and parabolic regressions;
random number generation; accumulation of sums, sums of products,
and sums of squares, for up to five variables; maximum/minimum
search; and a ‘correct’ key to remove erroneocus data.

DEFINABLE FUNCTIONS ROM — -hp- 11213A:

Enables up to nine user-definable functions to be stored at one time;
each function can then be executed by a single keystroke. Stored
functions can be easily deleted or changed at will. A ’protect’ feature
saves functions from being accidentally erased or changed when other
programs are entered into the calculator, This ROM also has three
special editing keys, FIND, DELETE and INSERT, which greatly
simplify editing programs (both the definable functions and the
programs in the rest of the calculator's memory).

PRINTER ALPHA ROM — -hp- 11211A:
Enables the 11219A Printer (Option 004) to print alphabetic charac-
ters and messages and to insert mnemonics into program listings.

GENERAL INFORMATION

3. PERIPHERAL EQUIPMENTS:
(Operation of each peripheral is fully detailed in the separate manual
supplied with each device.)

A 9800 System is built to any desired configuration simply by
plugging the peripheral devices into the back of the calculator. The
input/output connector, at the rear of the calculator, can accept up to
four peripheral devices at one time (see Figure 1-1).

MODEL 9860A MARKED CARD READER:

Allows data and program steps to be entered into the calculator fram
pencil-marked cards, bypassing the keyboard. The resultant time saving
is highly desirable in a classroom or other place where many people
may wish to use the calculator,

MODEL 9861A TYPEWRITER:

Facit (modified) Model 3841 Output Typewriter together with inter-
face equipment, allows the calculator to control the typewriter func-
tions and keys. Types formatted data, headings and messages in a
variable field-width (limited only by platen size); also lists prograrns
from the calculator's memory. The typewriter, equipped with a
standard ECMA [l keyboard, can be disconnected from the system and
used as a stand-alone typewriter.

The inspection procedure enables you to confirm that your calculator is in
the best possible condition upon receipt.

The calculator was carefully inspected both mechanically and electrically
before it was shipped to you. It should, therefore, be free of any mars or
scratches and in perfect electrical order (operational) upon receipt. You
should carefully inspect your calculator for physical damage caused in
transit and also check that the accessories listed in Table 1-1 are present.
If there is any physical damage, file a claim with the carrier and notify HP
{addresses of Sales and Service offices are given at the back of this
manual).

To check the operation of the calculator, run the exerciser program {Page
1-8). Do not make this check until you have performed the turn-on
procedure detailed on Page 1-7.

The Model 9810A Calculator has the following power requirements (refer
to Figure 1-1}.

LINE VOLTAGE: Nominally 115 and 230 volts ac and ‘low-line’ laveis
of each voltage. Dual switching enables any of the following four line
voltages to be selected -- 230 or 200, 115 or 100 volts. At each switch
setting, the calculator will operate with the {ine voltage at levels of within
110% of the selected voltage. The operating range is, therefore, from 90 to
126.5 volts and from 180 to 253 volts.

1-5

INSPECTION
PROCEDURE

POWER
REQUIREMENTS

1-6

POWER
REQUIREMENTS
{continued)

GROUNDING
REQUIREMENTS

FUSES

GENERAL INFORMATION

LINE FREQUENCY:: Nominally 50 Hertz and 60 Hertz; the calculator
will operate within the range of 48 to 66 Hertz.

POWER CONSUMPTION: With no peripheral equipments attached, 150
voltamps maximum. There are three ‘piggy-back’ power terminals at the
rear of the calculator to provide power to peripheral devices; no more
than a total of 610 voltamps may be drawn from these three terminals
(see Figure 1-1).

Input/Qutput Connectors Power Qutlets for Selects ‘nominal’ line valtage,
far Peripheral Devices Peripheral Devices 230 or 115V

Power Input Selects “normal” Fan Filter

or ‘low’ line

Figure 1-1 The Rear Panel

To protect operating personnel, the National Electrical Manufacturers’
Association (NEMA)} recommends that the calculator’s keyboard and
cabinet be grounded. The calculator is equipped with a three-conductor
power cable which, when plugged into an appropriate power receptacle,
grounds the cabinet and keyboard of the calculator. The round pin on the
power cable’s three-pronged connector is the ground connection.

The calculator has two fuses iocated on the rear panel (see Figure 1-1); a
6-amp fuse and either a 1-amp fuse for 200V/230V operation, or a 2-amp
fuse for 100/115V operation. Three spare fuses, a 6-amp, a 2-amp and a
1-amp, (listed in Table 1-1) are shipped with each calculator.

GENERAL INFORMATION

CAUTION

BEFORE CHANGING A FUSE, ENSURE THAT
THE CALCULATOR IS DISCONNECTED FROM
ANY POWER SOURCE.

To change a fuse, press on the fuse-holder and, at the same time, twist it
in the direction of the arrow on the fuse-holder: withdraw the fuse and
holder from the socket. Remove the fuse from the holder and substitute
the replacement fuse. To re-install the fuse and holder in the calculator,
reverse the removal procedure.

With the calculator disconnected from any ac power source, verify that
the correct fuse is installed for the line voltage in your area. (Refer to the
preceding paragraph for information regarding the fuses.)

Two slide switches, located on the rear panel (see Figure 1-1), must be set
for the ac line voltage to be used. The switches are set by inserting a
screwdriver into the slot on the switch and then by sliding the switch so
that the white slot is opposite the line which indicates the required
voltage.

a. Set the upper of the two switches to your (nominal) line voltage: in
Figure 1-1 this switch is set to 115V.

b. Set the lower switch to the normal position {115V/230V): the switch
in Figure 1-1 is set to this position.

NOTE

This switch should be set to the low position
(100V/200V} only if the line voltage in your area
proves to be too low; that is, if the calculator
cannot operate properly when the switch is set to
the normal position.

Switch the LINE OFF/ON switch, located on the right front of the
calculator, to the OFF position. Connect the power cord to the power
input connector (see Figure 1-1}) at the rear of the calculator and plug the
other end of the cord into a suitable ac power outlet,

Switch the LINE OFF/ON switch to the ON position; after a few seconds
warm-up, the display will appear and several of the lights on the keyboard
will come on indicating that the calcuiator is ready to operate,

TURN-ON
PROCEDURE

1-8

EXERCISER
PROGRAM

GENERAL INFORMATION

The Exerciser Program tests the performance of the calcutator. If the test
runs properly, then the calculator can be assumed to be operating
correctly. If the test cannot be run properly, and you are certain that
there has been no operating error, then contact any HP Sales Office for
assistance.

The steps of the test program will be loaded into the calculator from the
two magnetic program cards listed in Table 1-1 (the instructions on the
envelope ave a condensed version of those given below).

The exerciser program serves several purposes. 1t may be used as an initial
inspection check. It may be used to initiatly check any options, added at a
later date, which increase program memory or data-storage memory. It
may also be used at any time as a confidence check if you suspect that
your calculator is malfunctioning.

This exerciser program is used to test the basic calculator {with or without
Option 004) and Options 001, 002 and 003. A separate program for
Option 004 (-hp- 11219A Printer) is given in Chapter 6 of this manual.
The exerciser programs for any other devices are included in their separate
manuais.

NOTE

When an option is installed, a decal is attached to
the calculator identifying the particular option num-
ber. To determine which options are in your calcu-
lator, litt the flap on the top cover; the decals, if
any, can be found in the shallow depression under
the flap.

The halves of the two magnetic cards which contain the exerciser program
are numbered in sequence: Side 1, Side 2, Side 3 and Side 4. The sides are
required as follows:

Basic Calculator {with or without Option 004} and
Option 001 - Side 1.

Option 002 - Sides 1 and 2.

Option 003 - Sides 1, 2, 3 and 4.

NOTE

Before running the exerciser program unplug any
peripheral devices or any plug-in ROM’s. Switch the
calculator off while doing this.

1. To set up the calculator to accept the program,press the keys in the
order shown:

GENERAL INFORMATION

9 o) () (o)

2. To load the program into the memary:

PRESS: [ieap | (the INSERT CARD lamp will light)

Insert the first magnetic card, with the printed side facing the
keyboard and the arrow on Side 1 pointing downward, into the card
reader’s upper slot (the card reader is located above the RECORD and
LOAD keys). The card will be automatically pulled through the card
reader and partially ejected from the lower slot. When the card stops
moving, remove it from the card reader.

NOTE

If the calculator has Option 002, do sub-step 2a
(below).

{f the calculator has Option 003, do sub-step 2b.

1f the calculator has neither Option 002 nor QOption
003, go directly to step 3.

a. 1f Option 002 is installed, load Side 2 of the magnetic card; press
LOAD and insert the card, with the arrow on Side 2 pointing
downward, into the upper slot of the card reader.

b. If Option 003 is installed, load the remaining three sides of the
two magnetic cards (Sides 2, 3 and 4, in that arder); for each side,
press LOAD and insert the card, with the arrow on the required
side pointing downward, into the upper slot of the card reader.

NOTE

During the rest of this procedure, if you press a
wrong key, you should start again with step 3.

3. To start the program:

PRESS: | eno

MO E == 2O

1-9

1-10 GENERAL INFORMATION

EXERCISER Regardless of the options installed in your calculator, the following

PROGRAM display will appear.

{continued)
tomprary 2 a. /Total Program
o 3 500. Steps
bt 5t <—Total Data
o : Registers

If you have the basic calculator li.e. none of Options 001, 002 or
003), the display wilt be correct for your calculator; in this case, skip
the next two steps (4 and 5) and go to step 6.

'f your calculator has any of Options 001, 002, or 003, then the
display must be changed so that it- describes your cafculator; in this
case perform the appropriate parts of steps 4 and 5.
4. To correct the number of ‘total program steps’:
a. If your calculator has neither Qption 002 nor Option 003, but it
does have Option 001, then perform only sub-step 5b and then do
step 6.

b. f your calculator has Qption 002:

PRESS: @ @ (1000 appears in the display)

and then do step 5.

¢. If your calculator has Option 003:

—
PRESS: L 4} L;] (2000 appears in the display)

and then do step B.
5. To correct the number of ‘total data registers’:

a. |If your calculator does NOT have Option 001 {that is, if it has
only b1 data-registers}:

PRESS: m (51 appears in the display)

b. If your calculator has Option 001 {that is, it has 111 data-
registers):

PRESS: @ [—1] @ {111 appears in the display)

GENERAL INFORMATION 1-11

6. To run the program and observe the operation of the calculator:

PRESS:

MEZ=——ZCa0

Correct operation of the caiculator is indicated by the following
display (if the display is not correct, refer to step 7): The display will
start to flash, with varying periods of darkness (from 1 to 5 seconds)
between displays. Each display consists of three numbers;

A N N =1 thru Nmax,

accumotator Y 5/.ort/ /. where Nmax = 5,
N 10, or 20.

keyboard X

The middie number, a constant, is the number of data registers in your
caleulator, 51 (basic} or 111 (Option 001). The other two numbers
(N) start as 1 and then increment by 1, each time the display appears,
until @ maximum value (Nmgax) is reached. The value for Nmax
depends upon the total number of program steps in your calculator,
thus:

OPTION | TOTAL PROGRAM STEPS Nmax

Basic 500 5
002 1000 {(nominal) 10
003 2000 (nominat) 20

Once Nmax is reached, the value for N again becomes 1 and the cycle
is repeated. One complete cycle (1 to Nmax) is sufficient to check
operation of the calculator; however, the program will continue to run,
with the display flashing until it is stopped.

To stop this program, hold the PAUSE key pressed until the display
appears and remains fixed. To then continue the program, press
CONTINUE; or, alternatively, to restart the program, stop it and then
repeat the procedure starting at the beginning of step 3.

7. 1f the program cannot be run properly, then the calculator may not be
operating correctly. On the other hand, the procedure for running the
exerciser program is somewhat involved (especially for an operator

1-12

EXERCISER
PROGRAM
(continued)

CLEANING THE
CALCULATOR
AND FAN-FILTER

GENERAL INFORMATION

who is not familiar with the calculator) so there is some possibility
that an operating error may have occurred. To determine which:

a. Check once again which of Qptions 001, 002 and 003 (if any) are
instatled in your calculator.

b. Carefully repeat the entire procedure from the beginning of step 1:
pay particular attention to those steps where a choice must be
made (the choice always being dependent upon which options are
installed in your calculator).

c. If the program still cannot be run properly and you are sure that
there has been no operating error, then it may be assumed that the
caleulator is inoperative. In this case, please contact the nearest HP
Sales and Service Office for assistance.

Clean the calculator with a soft cloth, dampened in clean water or in
water containing a soft soap or mild detergent. Do not use an excessively
wet cloth or allow water to penetrate inside the calculator. In particular,
do not use any abrasive materials, especially on the display window.

The fan-filter {located on the rear of the caiculator) should normally be
cleaned about every three months. Clean it by holding it under a running
water-faucet or by washing it in warm soapy water and then rinsing in
clean water. Dry the filter thoroughly before re-installing it.

The filter can be easity removed by using a small blunt instrument such as
a screwdriver, a paper-knife or a nail file. Insert the instrument into one of
the slots located on either side of the filter; the filter can then be snapped
out by applying pressure toward the center of the filter and, at the same
time, toward the back of the calculator. To replace the filter, snap in first
one side and then the other.

SIMPLIFIED OPERATION

This chapter is written especially for the individual who wishes to perform
only simple arithmetic calculations and to run programs previously
recorded on magnetic cards. Essentially, the calculator is assumed to he
little more than a 10-key adding machine; no consideration is given to
writing programs or performing complicated keyboard calculations.

The chapter contains selected topics, all of which are more fully discussed
elsewhere in this manual.

A glance at the calculator’s keyboard will show that the numerical keys (0
through 9 and the decimal point} closely resemble the layout of the
keyboard of a typical business oriented, adding machine. The ‘5’ key even
has a slight bump, to facilitate touch typing when entering a long list of
numbers into the calculator.

Before you can start to solve problems, there are some facts about the
calculator that you should know; the explanation of these has been kept
as brief as paossible.

The turn-on procedure in Chapter 1 of this manual has instructions for
verifying that the calculator is adjusted to your particular line voltage, that
it has the correct fuse, and so on. If your calculator has already been
working in your office, then you need not be concerned with such details
and the following information will suffice.

1. If the calculator is not plugged-in: Plug one end of the power cord
into the lowest of the four sockets at the back of the calculator; plug
the other end of the cord into a suitable power outlet, such as a
wali-socket. Plugs and connectors are keyed so that they cannot be
connected improperly.

2. If the calculator is switched off (all lights on the keyboard are off and
the display window is completely dark): The OFF/ON switch is
located on the front of the calculator, below the keyboard and to the
right. Set the switch to the ON paosition; several lights on the keyboard
will come on and zeros will appear in the display, indicating that the
calculator is ready to use.

The following steps prepare the calculator for making calculations.

1. Hf there are no numbers visible on the display, or if the display is
flashing, then the calculator is running a program. To stop the
program:

PRESS: @

TURN-ON

PREPARING
THE
CALCULATOR

2-2

PREPARING
THE
CALCULATOR
{continued)

THE
DISPLAY

POSITION OF
THE DECIMAL POINT

SIMPLIFIED OPERATION

2. The calculator must be in the ‘run” mode, otherwise you cannot make
calculations. If the light below the RUN key is not lit:

PRESS:

3. If an Option 004 Printer is not installed, ensure that the light below
the KEYLOG key is out. If the light is on:

PRESS:

{Pressing KEYLOG turns the light on if it was out, or turns it out if it
was on.)

For complete details of printer cperation, refer to Chapter 6.

4. If the display contains numbers other than zeros, you may wish to
clear it. Clearing the display is not usually a necessary operation;
however, it is convenient to start a calculation with a cleared display.

PRESS:

The display consists of three rows of numbers with names beside them.
Each row is referred to as a ‘register’ and its name describes its use:

keyboard X: The numbers appear in this register as the numeric
keys are pressed.

accumulator ¥Y: The results of arithmetic operations ‘accumulate’ in
this register.

temporary <Z: Numbers can be temporarily held here while arith-
metic operations are being performed in the other two registers,

Throughout the rernainder of this chapter the registers will be identified as
the 'X-register’, the 'Y-register’ and the ‘Z-register’ {or, simply, as X, Y
and Z).

The decimal point can be positioned anywhere in the display registers by
pressing the ‘FIX {)’ key and following it with any number key (0
through 9). For example:

a. If you are working only with whole numbers, that is, no decimal
digits,

PRESS: CT,.]

SIMPLIFIED OPERATION

b. |f you are dealing with dollars and cents (e.g. $20.37} then you
will wish to see two decimal digits (the cents).

PRESS: [Fix(T]

or, if you wish to see hundredths of a cent,

PRESS: [Fx(1] El)

Occasionally you may see a number consisting of ten digits {with the
decimal point located after the first digit) and followed by either a space,
or a minus sign, and then two more digits. This type of display is called
‘floating point’; if pressing the ‘FIX {)’ key, followed by a number key,
does not change the ‘floating’ numhber to a normal ‘fixed” number, then
refer to Chapter 3, where the difference between ‘floating’ and ‘fixed-
point’ numbers is described.

All arithmetic consists of four basic steps:

Enter the first number into the X-register.

Move that number into the Y-register.

Enter the second number into the X-register.

Do the calculation; the result appears in the Y-register.

HwN =

{ADD) Y+x —Yy
(SUBTRACT) y—Xx —»Y
(MULTIPLY) yxX X —Y¥
(DIVIDE) y=x —y

Now do examples 1 through 4 below and observe that each example
follows the four basic steps given above.

EXAMPLE 1: ADDITION
18+6=24—>Y

PRESS: C 0)

{continued)

2-3

ARITHMETIC

2-4

ARITHMETIC
{continved)

SIMPLIFIED OPERATION

{Step 1) PRESS:

{Step 2} PRESS:

{Step 3) PRESS:

(Step 4) PRESS:

) (=) &))

DISPLAY: oy 2 7.
accumolalor Y Eq.
keyboard X E.

EXAMPLE 2: SUBTRACTION
$17.40 $6.23=8$11.17 Y

PRESS: @

e (1) (1) () () (o
PRESS: @

ress: (6 () (2) (3)

PRESS: @

DISPLAY: [* a2y gg +—*%
accumaator Y ,I- , 7
hovbowrd x 5.29

TUnIeSs yvou cleared the registers by pressing CLEAR before you started the calculation, the result
of Examnple 1 (24.00) moved up to the Z-register when 1 was pressed.

SIMPLIFIED OPERATION

EXAMPLE 3: MULTIPLICATION
36 X9 =324 =Y

PRESS: C_B_J
PRESS: @

PRESS: @
S
PRESS:
DISPLAY: Result of
temparary 2 rori MEXEH‘ID'E 2
BcCumAEtor ¥ gaq . ﬂﬂ
Kayboard X .40

EXAMPLE 4: DIVISION
120+16=75—->Y

PRESS: (not a necessary operation)
PRESS: @ 0 —]
PRESS:

PRESS: @

PRESS: @

DISPLAY:

tamporary 2 g - gﬂ
accumator ¥ 7 . 53
—— 16.00

2-5

KEY
FUNCTIONS

SIMPLIFIED OPERATION

Following are brief descriptions of the keys already used (except O
through 9 and the decimal point} and some other keys.

[kun |
5]
e

RUN

Fix i v

CLEAR

CLLAR

I
T
~

Selects the operating mode for making calculations and running
programs.

Followed by cne of keys 0 through 9 positions the decimal point
on the display.

Clears the display. Also clears the 3 and & storage registers (see
Storing a Constant, below).

Clears only the X-register. Use this key if you make a wrong
number entry; press CLEAR x and then enter the correct number.

Duplicates X in Y without changing X. Shifts ¥ up to Z. The
contents of Z are lost.

Opposite of T:
Duplicates Z in Y without changing Z. Shifts Y down to X. The
contents of X are lost.

Exchanges X and Y without changing Z.

‘Rolls” the display:
Shifts X up to Y.
Shifts Y up ta Z.
Shifts Z down to X.

Adds X to Y; the sum appears in Y. X and Z remain unchanged.

Subtracts X from Y, the difference appears in Y. X and Z remain
unchanged.

Muttiplies Y by X; the product appears in Y. X and Z remain
unchanged.

Divides X intoe Y, the quotient appears in Y. X and Z remain
unchanged.

Changes the sign of the X-register, Arithmetic may be performed
with negative numbers.

SIMPLIFIED OPERATION

The calculator contains many registers which, if they could be seen, would
appear similar to the display registers. These are the data-storage registers
{fully described in Chapter 4) which are used to store numbers; the
numbers can then be recalled at any time to the display and used in a
calculation. Only two of these registers, named 8 and 6, need be of
concern here because they are the easiest to use.

Stores X into the &-register (or B-register) without changing
X=>1) the X-register.
or
o
g Stores Y into the a-register {or &-register) without changing
Y=0) the Y-register.
or

o0

a Recalls @ to the X-register without changing the 3-register.

e Recalls & to the X-register without changing the &-register.

CLEAR

. Clears all three display registers and & and 4.

EXAMPLE 5: STORING A CONSTANT

Suppose the unit-price of a certain item is $132.57 and you wish
to calculate the cost of buying various quantities. To save entering
the price for each calculation, you can store it as a constant and
then recall it, with one keystroke, each time you need it.

Assume you have the following list of quantities:
47, 29, 36, etc.

First store the unit-price in the 3-register,

s 0 (2) [

s (1) (3) (2) () (3) ()
s) (1)

STORING A
CONSTANT

2-7

2-8

STORING A
CONSTANT
{continued)

ACCUMULATING
TOTALS

SIMPLIFIED OPERATION

Now make the calculations, using each quantity in turn and
recalling & each time.

PRESS:
PRESS:
PRESS: @
PRESS:

DISPLAY: 6230.73

PRESS.@.@.

DISPLAY: F844.53 - Y

v (3) () (1) (4) (5

DISPLAY: 4¥772.5¢2 — ¥

and so on for each quantity.

There are several ways to accumulate totals in the calculator; two of the
simpler methods are described here.

{f you have a list of numbers which are to be totalled, all you need do is
key each number into the X-register and press the ‘plus’ key to accumu-
late the total in the Y-register. Be sure that the Y-register is cleared first.

EXAMPLE 6: ACCUMULATING IN Y
Add 9, 36, 25,

PRESS: [accumulatlve total in Y = 0)
e O

DISPLAY: 7.

s T R T T SRR T B BT T AR S e

SIMPLIFIED OPERATION

soloo

DISPLAY: 45.

m..@

DISPLAY: 0.

In Example 6, numbers were totalled as they were keyed into the
calculator; sometimes, however, you will want to total the results of
individual calculations. You can do this in one of the data-storage registers
and then recall the final total to the display. The following keying
sequence adds the number in the Y-register to the number in register &
(the g-register can also be used in this way).

) (+) (8]

EXAMPLE 7: ACCUMULATING IN STORAGE

Repeat the calculations of Example 5 and total the results, as they
are calculated, in register 5.

PRESS: a
PRESS: {ensures &A-register contains zero)

Store the constant {the unit-price} in 3:

e (1)(3) (2) (D (8)
s) ()

Make the first calculation:

reess: (4] (2) (1) (=) ()

Add the result to the total (currently zero) in register &:

PRESS: (»() E*— | O
{cantinued)

2-9

2-10 SIMPLIFIED OPERATION

ACCUMULATING Make the second calculation and add the result to the total:
TOTALS

(continued) PRESS: @ @
PRESS: @

Make the third calculation and add the result to the total:

s (3) (2) (1) (2) ()
s) (+) (8

To recall the final total in & to the X-register:

PRESS: @

DISPLAY: ($) /4847.8Y - X

which is the total, in dollars, of the three calculations.

PROGRAMS A program enables the calculator to automatically execute the keys
necessary to make a particular calculation. First the program must be
loaded into the calculator’'s memory; this teaches the calculator which
keys are required and the order in which they are to be executed.

The program steps can be keyed into the calculator, or they can be loaded
from magnetic program cards. Once loaded, the calculator can remember
that program until another program is loaded over it, or until the
calculator is switched off. Magnetic cards are a convenient way of
permanently storing programs because they enable even long programs to
be loaded in seconds.

Once a program is loaded, the calculation can be made any number of
times. In general, it requires that you key in some data numbers and then
start the program by pressing the CONTINUE key. In some cases, that will
be all that is required; in other cases, the program may stop several times
for you to key in more numbers.

PROGRAM Due to the versatility of the calculator and to the variety of programs, it
USER-INSTRUCTIONS is not possible to give a precise set of instructions which will enable you
to run every program. Therefore, the person who asks you to run his

program must give you complete and concise user-instructions to run that

SIMPLIFIED OPERATION 2-11

program; if he does not, then you should ask for them. This is not a
reflection on your intelligence, it is simply recognizing the fact that it is
impossible for a non-programmer to run a program without the proper
user instructions; even an experienced programmer would, in most cases,
find it easier to write his own program rather than try to run an existing
one without any user-instructions.

Here are some general guidelines to the type of jinformation which
user-instructions should contain. {Following these is a sample program and
then instructions to record it on a magnetic card and to load it, from the
card, into the calcultor.} The guidelines assume that the program is known
to work properly and that it is already recorded on a magnetic card (or on
more than one card, if it is a long program).

USER-INSTRUCTION GUIDELINES
1. What the program does.
2. How many magnetic program card sides have to be loaded.

3. Where in memory is the loading to start. . . . usuaily this will be at the
beginning of memory (press END), but not always.

4. Where in memory to start running the program. . . usually this will be
at the same place as in step 3, but, again, not always.

5. When to key in the required data numbers and when to press
CONTINUE.

6. How to interpret the display each time the program stops and where
to took for the results.

7. Any other information you may need.

8. A set of test data numbers with known results which You can use to
run the program and check that you are following the instructions

properiy.
Before the example program can be demonstrated, it must be loaded into AN EXAMPLE
the calculator; please press the following keys, in exactly the same way as PROGRAM

in the earlier examples. If you miss a key, or press a wrong key, do not
try to correct the mistake, go right back to the beginning of the complete
keying sequence. Ignore the unusual display which appears when yOu press
the ‘'PRGM’ key.

s o (=) s (o) o) 9 (3
s (2) (=) (8) (1) (2) () 6
s (+) (8)) (3) () o

The program is now loaded.

2-12 SIMPLIFIED OPERATION

AN EXAMPLE USER INSTRUCTIONS
PHDGHAM This program makes the same type of calculations which you made
(continued) previously in Example 7. The program has been written so that you first

key in the unit-price {which can be any value); as you then key in each
quantity the program automaticaily calculates the quantity cost and
accurnulates the total cost, When all of the quantities have been keyed in
(and you can key in any number of quantities you please), you can then
recall the total cost from memory, just exactly as was done in Example 7.

NOTE
It is assumed that the program is already loaded.

Steps 1 through 7 {below) constitute a generalized procedure to run the
program; specific keystrokes, using the numbers from Example 7 as
test-data, follow the generalized procedure.

1. Position the decimal point, then start the program at the beginning of

memory:
§
PRESS: @ @ i
A
DISPLAY: ey 2 7.00
accuminios ¥ J.og
kapboard X g.o0
2. Key in the unit-price and press £
u
E
DISPLAY: oy 2 7.0
accumniator y Price
koyboard % 0.oo

3. Key in the first quantity and press

mMEF=—-FO0

SIMPLIFIED OPERATION 2-13

DISPLAY: ‘
temparary 2 Cuantity
accomulator ¥ Cost
kophoard X Price

[
8
4. Key in the next quantity and press | |
N
u
E

DISPLAY: Same as 3.

5. Repeat step 4 for each of all remaining quantities; do step 6 when ‘all
guantities have been used.

6. Recall the total cost:

PRESS: @

DISPLAY: .
lempocary 2 Last Quantity
sccumulator Y Last Cost
koyhoard X Total Cast

7. To run the program with a new unit-price or with different quantities:

PRESS:

and go back to step 2.

mMoE—mZO0

|

Now run the program using the numbers from Example 7 as test-data:
unit-price of $132.57 and quantities of 47, 29 and 36.

(1) PRESS: [fx(i] (2) @

MO ==y O

2-14 SIMPLIFIED OPERATION

AN EXAMPLE
PROGRAM :
i Eololalelolol
[+
N
3 PRESS: !
[
N
{4) PRESS: @ 1
b
E
_
5
N
(5) PRESS: @j :
.
(6) PRESS: @
FINAL DISPLAY: [35.00
accomuinior 4172.52
porboard X 14847.849
RECORDING The procedure given here demonstrates how to record the example
AND LOADING program on a magnetic card and then how to load it back into the

memory (you will need one side of an unused magnetic card). This
procedure is not necessarily correct for other programs.

NOTE

Before proceeding, please read the following part of
the section titled ‘Magnetic Program Cards’ in
Chapter 5: From the beginning of the section as far
as (but not including) the paragraph describing the
RECORD key.

SIMPLIFIED OPERATION

To record (if the program is no longer in the memory, refer to the keying
sequence on Page 2-11 to load it}:

1. Go to the beginning of the program, which in this case is at the
beginning of the calculator's memory:

PRESS:

2. Insert the card into the card-reader.
PRESS: [Recora)

{as soon as the card stops moving, remove it from the card-reader).
The program is now recorded (it is suggested that you do not protect the
recording because this program has little practical value except as a
demonstration},

To load:

1. Go to the beginning of memory:

2. Insert the card, as in step 2 above,
PRESS:
{when the card stops moving, remove it from the card-reader).

The program is now loaded and ready to run exactly as before.

2-15

OPERATING CHARACTERISTICS

This chapter of the manual contains generatl information of the type which
does not readily classify with particular keys. Any special terms are
explained wherever they first appear. The examples are not intended to
teach the keyboard but to illustrate the particular points being made in
the text. It is, however, recommended that you perform the examples
because they will help you to develop a ‘feel’ for your calculator.

Chapter | of this manual contains an introductory description of the
calculator and details of the options and peripheral devices available to
build a 9800 System.

The calculator uses several memories, which can be classified into two
types - ‘read/write” and ‘read-only’. The program memory and data-storage
memory are of the read/write type, because information can be taken
from them {‘read’) or stored into them (‘write’) at will.

Information in the read-only memories, on the other hand, is ‘hardwired’;
that is, it is permanently stored and cannot be changed by the user. {The
word ROM, which also appears in Chapter |, is derived from the initial
letters of the words Read-Only-Memory.)

The hardwired programs contained in the ROM’'s define the keys. Each
time a key is pressed, one or more of these programs is used to execute
the instruction, or to calculate the function, called for by that key. The
basic calculator contains a ROM which defines all of the keys except the
half-keys in the left-hand block. These half-keys are defined by the various
plugin ROM’s, thus they can have any of several definitions, depending
upon which ROM is installed. Without the plug-in ROM’s, the calculator
treats each of these half-keys as If it were a ‘no-operation’.

The plug-in ROM's are easily installed by pushing them into the slots
located on top of the calculator and behind the display. The calculator
should be switched off whenever a ROM is to be installed or removed.
The operating manual supplied with each ROM describes any special
procedures; the manuals also detail in which slots particular ROM’s may
be installed.

NOTE

The calculator wiil not be damaged if a ROM is
plugged in, or removed, while the calculator is
switched on. However, it may result in some arbi-
trary display which can be cleared only by switch-
ing the calculator off, and leaving it off for a few
seconds before switching it back on.

READ-ONLY
MEMORIES
(ROM)

3-2

SECONDARY
KEY-FUNCTIONS

KEY
COLORS

THE
DISPLAY

OPERATING CHARACTERISTICS

In addition to the characters molded into the top of each key, there is
also a secondary character stamped on the front of many of the keys.
These characters represent a secondary key-definition which is used by the
Model 11219A Printer {Option 004) if the Printer Alpha ROM {Model
11211A) is installed, and by the Model 61 Typewriter. In the basic
calculator these characters have no meaning and may be ignared.

The keys are classified into groups by color. The color gives some
information about each key; however, the grouping is not absolute and
there is some overlap. Following is a brief description of the significance
of each color.

YELLOW ORANGE: A ‘caution’ in that the CLEAR, LOAD and
RECORD keys can change data and program steps stored either in the
memory or on magnetic cards. Pushing one of these keys accidentaily
could result in losing useful information and wasting a great deal of
programming time.

YELLOW GREEN: The CONTINUE and STOP keys are used to (respec-

tively) start and stop program execution; it is, therefore, desirable that
they be easily identifiable.

MINT GREY: Numeric and decimal point keys, used to enter data.
OLIVE GREY: Simple arithmetic functions. The inverted L-shape formed
by these keys also accents the numeric keys, thus emphasizing their
‘10-key adding machine’ function {see Chapter 2).

MOSS GREY: General purpose programmable keys.

DARK OLIVE GREY: Control keys, non-programmable.

NOTE
a. If the calculator is not switched on, refer to the
turn-on procedure in Chapter |,
b. If the calculator is running a program (the
display is flashing or blanked) press the STOP key.

c. Press the RUN key.

The calculator’s disptay consists of three lines labelled, from top to
bottom, ‘temporary z’, ‘accumulator y', and ‘keyboard x’. Each line, called
a ‘register’, can contain a data number consisting of one or more digits. As
you will see shortly, it is possible to change the form of the display
(reposition the decimal point, truncate insignificant digits, etc.) by pressing
certain combinations of keys. Within limits, you may display the numbers

(in any form to suit your needs and yet you will not be affecting the

actual numbers because they are also stored elsewhere in the calculator.

OPERATING CHARACTERISTICS

The numbers seen in the display are derived from the numbers stored in
three special registers: the X-register, the Y-register and the Z-register.
These are the three working registers; calculations and operations which
appear to be occurring in the display, actually occur in the working
registers. Then, when the calculator is idle, that is it is neither calculating
nor running a program, the numbers in the X, Y and Z registers are
displayed in the corresponding display registers: the contents of the
X-register in ‘keyboard x’, and so on, .

It is important to understand that the format of the displayed number,
and to some extent even the display itself, is purely a user convenience; it
does not affect the accuracy of the calculator. Apart from this, however,
there is no reason, from the operator's point of view, why a distinction
need be made between the three working registers and the three display
registers; therefore, throughout the remainder of this manual, the two
types of register will be assumed to be the same.

Keyboard x - This register displays numbers as they are entered from the
keyboard, one digit at a time. (See note on Page 3-2.)

EXAMPLE:
Enter 6.34 into the X-register,

Press the following keys in the order shown, from left to right,
line-by line ['FIX {2) positions the decimal pumt]

PRESS: (6) O D

DISPLAY: &. :-r"f
(“6.34 appears in the X—register"}.

Accumulator y - the result of an arithmetic operation between two
numbers, one in the Y-register and one in the X-register, appears in the
Yreg|ster

EXAMPLE:
6.34 ~2 =317
{with 6.34 — x)

Y

'S Ty ST

PRESS: {T} (2) C—J
DISPLAY: F./7 - ¥
2.00 -~ X

3-3

THE
DISPLAY
{continued)

OPERATING CHARACTERISTICS

used to temporarily store a number while arithmetic
operations are performed on the numbers in the X- and Y-registers. The
number in Z can then be returned to Y when it is again required.

Temporary z -

EXAMPLE:

20 (3+2)=4
{20 will be stored in Z while 3 and 2 are added.)

Enter 20:

mess: (2) (0} {1)

DISPLAY: 20.00 —» ¥

Enter the remaining data:

rosss: (3] (] (2}

DISPLAY: 24.40 A
.00 — Yy
2.00 — X

Add the numbers in X and ¥ {without affecting 2):
PRESS: | + |

DISPLAY: 5.00 —» ¥

Return the numbers in Z and Y to Y and X respectively:

PRESS: | | |

DISPLAY: 20.00 —>
&.ag - X

Divide:

s (4}

DISPLAY: 4.40 —» ¥

OPERATING CHARACTERISTICS

The calculator stores all data and performs all calculations in ‘floating-
decimal point”. The display, on the other hand, may be either in floating-
or fixed-decimal point (selected by the FLOAT or FIX keys, respective-

ly).

A ‘fixed-point’ number is one which appears in the form in which
numbers are most commonly written, with the decimal point correctly
located {e.g. 123.45).

A ‘floating-point’ number is one written in a convenient shorthand: the
decimal point is always located immediately after the most significant digit
(excluding zero) and the number is followed by an exponent. The
exponent, written as a positive or negative power of 10, represents the
number of places and the direction which the decimal point should be
moved to express the number as a fixed point number. The following
examples illustrate the relationship between fixed-point and floating-point
numbers.

FIXED FLOATING oxoonent
(a) 1234.6 = 1.2345 X 103+ = &P

(b) 0.0012345 = 1.2345 X 10-3

(c) 1.2345 = 1.2345 X 100

In the calculator, when numbers are displayed in floating-point the
exponent appears as a two-digit number tc the right of the dispiay; if the
exponent is negative, then the minus sign also appears.

EXAMPLE:

Display example (b), shown above, in fixed-point and then in
floating-point format.

PRESS: |cuear] [Fxi3) (BW

PRESS; () [0 \ (o
D () (5

PRESS: (NCE (SJ k4 E

DISPLAY: §.0012345 —» X

PRESS: [*ioar]

DISPLAY: [.234500000-03 —> X

\\ exponent (negative)

3-5

FLOATING-
AND FIXED-POINT

GUARD
DIGITS

OPERATING CHARACTERISTICS

Regardless of the way in which a number is displayed, the calculator
always stores the number in floating-point. Furthermore, regardless of the
rnumber of digits entered, or displayed, the number is stored with 12
significant digits and a two-digit exponent,

Up to, and including, 10 significant digits and the two exponent digits can
be displayed. The remaining two significant digits, which are not dis-
played, are called the ‘guard digits’. The purpose of the guard digits
(which are not to be confused with the exponent digits) is to maintain
greater than 10-place accuracy during calculations and also to automat-
ically round the tenth displayed digit.

The examples which follow illustrate the guard digits. The first example
shows that they do maintain accuracy; the second shows that they do
round the tenth digit and also shows you a method of viewing the guard
digits.

EXAMPLE:

Divide 6.000000001 by 3 and then multiply the result by 3.

PRESS: @ (Fx{)) {fgj

s Ty T Ty
PRESS: | 6 | (|

\ o L_f,f

lr(- B 4 f'/ V 4 l’lﬂ-
PRESS: | 0 I 0 [0

‘,,- o : . f" -7 .‘ ;r ;
PRESS: (. O . [O i O
PRESS: | O | ! 0 1[1

DISPLAY: £.000000001 - X

_,:;“‘\1 ('45"\

e _L',_J

DISPLAY: 2.000000000 -
F.4000000000 —_

’/""u_\ (
PRESS: | 4 | k
iy i

Y
X

If there were no guard digits, then, with the numbers currentiy
displayed in the X- and Y-registers, you would expect the sub-
sequent multiplication to result in 6.000000000, and not the
6.000000001 originally entered.

OPERATING CHARACTERISTICS

PRESS: Q
e -

DISPLAY: £.000000001 e
Accuracy is maintained because of the guard digits.

The next example shows how you may easily view the guard digits at any
time.

EXAMPLE:

[T the w key is pressed, the value for pi is entered with 12 digits,
although only the first ten are displayed. The last displayed digit is
rounded up, from 3 to 4, because the guard digits contain 60.

s 1 (1) (1)

DISPLAY: F./4/58265Y4 00
last digut; \‘\
rounded exponent

By subtracting 3.1 from pi, the guard digits can be seen:

= DOOE)

DISPLAY: 4.158265360-07

(1) (2) \’\
exponent

{1) = formerly 4, the last displayed digit
(2) = formerly the guard digits

With the fixed-point display, if the number in any one display register
‘overflows’ li.e., it becomes too large to be displayed with the decimal
point in its current position) then that number will automatically be
displayed in floating-point.

EXAMPLE:

PRESS: @ [exch m

This specifies that there can be up to 7 digits to the right of the

REGISTER
OVERFLOW
AND
UNDERFLOW

REGISTER

OVERFLOW

AND

UNDERFLOW

{continued)

OPERATING CHARACTERISTICS

decimal point and, therefore, no more than 3 to the left if the
display is to remain in fixed-point format,

eess (1) (2] () (J (o)
rness: (4] () (o] (o)

DISPLAY: /237.04568745 - X

PRESS: [Fx(1] [Bj

DISPLAY: [. 2J0455789 02 - X

After "FIX ({8)' was pressed, only two digits could appear to the left of
the decimal point; because the number to be displayed had three digits
preceding the decimal point, overflow occurred and the number was
automatically displayed in floating-point,

Now experiment by pressing the FIX key and following it by any one of
the numeric keys (0 through 9). Each time you do this observe that the
decimal point shifts to a position specified by the numeric key pressed.
Also notice that the last displayed digit is automatically rounded, depend-
ing uporn the value of the non displayed digits. Any time you press ‘FIX
{7} you will see that, no matter how you have previously changed the
display, the number still appears as it was originally entered (provided that
no other keys were pressed to change the original number entry).

When the displayed number ‘underflows’ {i.e. becomes too small for any
significant digits to be displayed) then the displayed number does not
change to floating-point. Instead, zeros appear in the display; however, the
significant digits are still stored in the calculator in floating-point, and will
still be included in any subseguent calculation.

EXAMPLE:

PRESS: [emxi]; @

PRESS: (} (o V[o |
\"ﬁ-‘,___ _7_7(} L‘ L _7/1‘

mess (o J (Lo (]

DISPLAY: [.00064 - X

OPERATING CHARACTERISTICS

~
\

!

PRESS: e 1) (4 |

DISPLAY: 0.0400 — X

The number underflows and zeros appear in the X-register.
PRESS: [Fioar)

DISPLAY: & 000000000-05 - X
Again, accuracy is maintained.

In either case, ‘overflow’ or underflow’, significant digits are not lost
because the calculator always operates in floating-point, with 12 significant
digits and the two-digit exponent, regardiess of the display.

The dynamic range of the calcuiator is from +107°% to +9,999999999(99)
X 10°%, Whenever this range is exceeded during a calculation, the
STATUS light (see below} lights and the ‘overflowed’ register contains one
of the following:

+9.999999999(00) X 10°8, if the exponent would have exceeded 98;
zero, if the exponent would have been less (more negative) than —98.

Calculations which normally result in zero, such as subtracting a number
from a number equal to itself, are not considered to exceed the range of
the calculator.

Even though numbers with exponents equal to 10°° or 107 °? can be
entered from the keyboard into the calculator, such (keyed-in) numbers
should never be included in a calculation. If they are, the result will
usually be meaningless and may or may not turn on the STATUS light.

The STATUS light poses the question “What happened?’”. It alerts the

user that some special condition exists and that an investigation should be
made to determine what that condition is. With one exception, the light
indicates that an error has occurred. Errors can be of two types:
procedural, such as calling for a non-existent data-storage register; or
mathematical, such as dividing by zero or exceeding the range of the
calculator. |f a program is running, a procedural error will stop the
program whereas a mathematical error will not. Once the light is lit, it
cannot be turned off unless the program has stopped; it then goes off as
soon as the next key is pressed {provided that the key pressed does not
constitute another error, thus turning the light on again).

RANGE

STATUS

3-10 OPERATING CHARACTERISTICS

STATUS The one STATWUS condition which is not an error occurs whenever the
{continued) calculator is ‘initialized’; this occurs at turn-on or (very rarely} if there is a
sudden and drastic loss in line-power.

-

NOTE

The remainder of this chapter contains a description
of the conditions which light the STATUS light. It
is recommended that you skip this material and
refer to it oenly as you need it. Most of the material
here will be meaningless to you if you have read
only this far in the manual because it is based on
information given in the rest of this manual.

STATUS Other than at turn-on, the STATUS light indicates that an error has
CONDITIONS occurred. Non-drastic errors, such as division by zero, do not stop program
execution. On the other hand, drastic errors, such as designating a
non-existent address, do stop program execution and in some cases destroy
data in the display registers. This does not present any problem, however,
because drastic errors normally occur only in new programs, when they

are first being tested and debugged.

Before the conditions which light the STATUS light are detailed, here is
some background information necessary to an understanding of STATUS
light aperation.

The basic calculator has 500 program locations {addresses 0000 through
0499}, Option 002 has 1012 (addresses 0000 through 1011} and Option
003 has 2036 (addresses 0000 through 2035). In all three versions of the
calculator the program counter can be stepped up to 2035, both in
‘program’ and in ‘run’ modes. In the basic calculator and in Option 002,
even though the extra addresses can be displayed, no program steps can be
loaded into them. All addresses above 0499 in the basic calculator, and
above 1011 in Option 002, appear to contain 00 (the key-code for zero).
If the extra steps are executed in the ‘run’ mode, all they can do is load
zeros into the X-register until the last step, 2035, has been executed. After
step 2035 an ‘end of memory’ program is executed.

The “end of memory’ program consists of three steps permanently stored
in what would be addresses 2036, 2037 and 2038. The steps are: CLEAR
x, =, END. The program clears the X-register and divides zero into the
Y-register. The division by zero results in 9.999999993 X 10°® appearing
in Y and lights the STATUS light. The END stops program execution and
sets the program counter to address 0000. Several of the STATUS
conditions, listed below, result in the ‘end of memory’ program being
executed.

OPERATING CHARACTERISTICS 3-11

Following is a list of conditions which light the STATUS light and the
symptoms which can be observed for each condition.

1. TURN-ON:
Setects RUN and FLOAT.

Clears the display, the data-storage memory and the program memoty,
by loading zeras throughout.

Sets program counter to address 0000.
Clears the SET FLAG and any subroutine return-addresses.

NOTE

When items 2 and 3 occur in a program, the
program does not stop; the STATUS light remains
lit after execution of the program is completed.

2. EXCEEDING THE RANGE {does not stop program execution):

If the upper limit is exceeded, contains +9.9999999399 X 10°% in the
Y-register, or in the data register; the guard digits contain zeros.

Contains zero if the lower limit s exceeded.

3. ILLEGAL MATHEMATICAL OPERATIONS (does not stop program
execution):

a. Division by zero results in the upper {imit of the calculator’s range
being exceeded.

b. Calculating the square-rcot of a negative number results in the
square root of the absclute value of that number being displayed.

c. lllegal operations associated with the plug-in ROM’s are detailed in
the separate ROM manuals.

4. REACHING THE END OF MEMORY:

If the last programmable step in memory is executed, and it is not
either a halt or a branch instruction, then the program counter
automatically steps up to, and executes, the ‘end of memory’ program.
The last programmable steps are 0499 in the basic calcutator, 1011 in
Option 002 and 2035 in Option Q03.

5. NON—-EXISTENT DATA STORAGE REGISTERS:

The basic calculator has 51 data registers {49 numeric and 3 and 4)....
non-existent registers are 049 and above. Option 001 has 111 data
registers (109 numeric and & and &).... non-existent registers are 109
and above.

a. If the non-existent register is specified from the keyboard {either
directly or indirectly) no operation occurs.

3-12

STATUS
CONDITIONS
{continued)

OPERATING CHARACTERISTICS

b. If specified (directly or indirectly) by program steps, no operation
occurs and the program stops with the program counter pointing

to the next step. For example:

(i)[STEP] KEY | (ii)[STEP| KEY
Tuzss x> 0266 x>0
067, O | 0267 5
: 0268 5 0668 O
. 0269 0 0269, cwe siaN
| 0270 cua sion 0270 +
|+

In case (i) the program stops, in the basic calculator, with the
counter pointing to CHG SIGN in step 0270 (CHG SIGN is not
executed).

In case (i) a short-form address is used; here the counter points to
the ‘plus’ in step 0270. The CHG SIGN in step 0269 is not
executed but it does terminate the address.

Occasionally, when indirectly addressing in an Option 001 calculator,
an improper address will be interpreted as a proper address. This
occurs if the improper address contained in the indirect register meets
the following two conditions:

Its absolute value is equal to or greater than 10°.

Its three most significant digits constitute one of the numbers 100
through 108.

Such improper addresses will designate (proper) addresses 100 through
108, respectively.

6. NON—EXISTENT PROGRAM ADDRESSES GREATER THAN 2035:
a. Given from the keyboard - no operation occurs.

b. Given as program steps program execution stops with the
program counter pointing to the step preceding the first digit of
the address, as shown by the arrows in the following examples:

—» cGoTo 6o TO - F XY Fx=y
2 —= 5UB / RETURN 2 —» 5U8 / RETURN
0 2 0 2
4 0 4 0
0 4 0 4
0 0

7. NON—EXISTENT PROGRAM ADDRESSES LESS THAN 2036:

a. Given from the keyboard - the program counter points to the
specified address but the STATUS light does not light, If CON-
TINUE is pressed, loads zeros into the X-register until step 2035 is
reached, then executes the ‘end of memory’ program.

OPERATING CHARACTERISTICS

b. Given as program steps - the program counter branches to the
address specified and continues program execution; zeros are
loaded into the X-register untii step 2035 is executed, the ‘end of
memory’ program is then executed.

8. NON—EXISTENT LABELS:
a. Given from the keyhoard - no operation occurs.

b. Given as program steps - program execution stops with the
program counter pointing to the step following the label-call (the
step is not executed).

60 10
LABEL
A

— 1

9. NESTING SUBROUTINES 6-DEEP:

Program execution stops with the program counter pointing at the
return-address, that is the first step after the last one used to call the
sixth subroutine,

GO TO
SUB / RETURN

10. EXECUTING A RETURN WITH NO RETURN-ADDRESS:

Program execution stops with the program counter pointing to the
step immediately following the address containing the RETURN.

SUB / RETURN

——— CLEAR

11. RECORDING ON PROTECTED MAGNETIC CARDS:

The STATUS light remains on only as long as the protected card is
moving through the card reader. No recording is made and the
program counter continues to point at the address to which it was
originally set. When the card stops, the INSERT CARD light remains
on; either insert an unprotected card or press the STOP key.

3-13

KEYBOARD

This chapter describes operation of the basic calculator from the key-
board. The keys of immediate interest are, mostly, those contained in the
two center blocks of the keyboard. Each key is described in two parts
..... a brief explanation in bold print, which may be used for quick
reference, followed by more detailed information and examples. The
keyboard presentation near the front of this manual (Page vi) contains an
index of the pages on which the ‘bold’ print explanations appear. Keys
with multi-functions may appear in several places.

The characters stamped on the front of the keys define the use of these
keys with the -hp- 11219A Printer (Option 004) and the Model 9861A
Typewriter.

The half-keys in the left-hand block serve no function on a basic
catculator which has no plug-in ROM's.

The extreme right-hand block of keys is used almost exclusively for
programming purposes, described in Chapter 5.

In general, keys operate in the same way whether used from the keyboard
or as steps in a program. However, there are occasional differences
between keyboard and program operation; any such differences will be
noted where applicable. All keys can be used as program steps except
where noted.

Examples are presented in either one of two formats, depending upon
which is more suitable for the particular example.

FORMAT |
Keys are pressed in the order shown, from left to right, first line then
second line, etc.

. CLE
s () ()

FORMAT II
Keys are pressed in step sequence 1, 2, 3, 4, etc.

STEP| KEY
1 CLEAR X
2 2
3 ENTER EXP
4 CHG SIGN
5 1
6 0

Use of Format Il will help to introduce present ‘non-programmers’ to

programming because this is a simplified way of writing a8 program.

4-1

INTRODUCTION

KEYING
INSTRUCTIONS

KEY ING
INSTRUCTIONS
(continued)

KEYBOARD

Statements describing the contents of the display registers are shown as,
for example:

DISPLAY: 5.00 — ¥

interpreted as 9.00 appears in (or goes to) the Y-register’.

NOTE

If the light below the KEYLOG key is lit and there
is no printer installed (see Chapter 6}, then the
keyboard will be inoperative; to turn the light out

PRESS: [keviog)

If the light below the RUN key is not lit,
PRESS:

It will be assumed throughout this section that this
light is on.

KEYBOARD 4-3

INITIALIZE KEYS

The LINE OFF-ON switch applies ac power to the calculator. Refer to {INE
Chapter 1 for power requirements and turn-on instructions. OFF _ ON

At turn-on, the calculator is automatically ‘initialized’ as follows:
Turns on the STATUS light (Chapter 3).
Selects RUN and FLOAT modes (this chapter).

Clears the display and data-storage registers by loading zeros througn-
out {this chapter).

Clears the program memory by loading the key code for zero {00) in
all program step locations (Chapter 5).

Sets the program counter to 0000 {Chapter 5).
Clears the FLAG (Chapter 5).
Clears any subroutine ‘return-addresses’ {Chapter 5).

The RUN and PRGM keys (not programmable) select the calculator's RUN pRGM
mode of operation; the lights immediately below the keys light to indicate
which mode has been selected.

@I ‘Run’ mode is used for ali calculator aperations except those noted
under PRGM, below. ‘Run’ operations include all calculations,
running programs, ail magnetic card operations, etc.

‘Program’ mode is used when loading programs into memory from
the keyboard and when editing programs (refer to Chapter 5).

The FLOAT and FIX keys (not programmabie) select the mode of display, '
“floating” or ‘fixed’ decimal point, respectively; the lights below the keys

light to indicate the selected mode. Choice of display mode is purely a

user convenience, it does not affect the calculator’'s accuracy of

calculation.

(continued)

NOTE

For a more complete description of the two modes
and for examples, refer to the following paragraphs
in Chapter 3:

‘Floating: and Fixed-Point’, ‘Guard Digits’, and
‘Register Qvertlow and Underflow’'.

4-4

(continued)

KEYBOARD

INITIALIZE KEYS

Numbers of up to ({(and including) ten significant digits are

displayed in floating decimal point (or scientific notation); the
tenth digit is automatically rounded according to the contents of the two
guard digits. The exponent, or power of ten multiplier, appears as two
digits to the right of the number; the minus sign is included for negative
exponents.

EXAMPLE:

NUMBERS: 12345.67898 = 1.234567898 x 10"
DISPLAY: /.234567898 04
AN

‘FIX {) followed by ‘n’ {any one of numeric keys O through 9)
selects the fixed point display; ‘'n’ positions the decimal point on
the display. Numbers of up to (and including} ten significant digits are
displayed as they are commonly written, with no exponent and the
decimal point correctly located. The last displayed digit is automatically
rounded if there are any less significant digits not being displayed.

exponent

‘n’ specifies the maximum number of digits which can be displayed to the
right of the decimal point. As illustrated in Chapter 3, if the number
becomes too large to be displayed with the decimal point in its current
position, then overflow occurs. The overflowed display register automati-
cally switches to floating decimal point.

If the number to be displayed becomes too small for any significant digits
to be displayed, then underflow oaccurs, but the number does not switch
to floating decimal point. In this case, the display will contain zeros but
the significant digits will still be contained in the calculator.

KEYBOARD

DATA ENTRY KEYS

The numeric keys, 0 through 9, are used to enter numbers into the
X-register. Numbers are entered serially, the last digit entered becoming
the least significant digit.

EXAMPLE:

Entor: 1234506789

PRESS: (Fx() (5

PRESS: (cewa) t 1 [2 0131 4 [6 (-]

PRESS: [O \1116"?171\,48"19*

LS LY i % ! 5 ! [

DISPLAY: [/JIY5.0R785 - X

See Enter Exp key for further examples of data entry.

use CLEAR x before a new data entry unless the previous entry is

Clears only the X display register (0 — X). It is not necessary to
X
not terminated.

A number in the X-register is terminated as soon as any operation has
been performed (e.g. t, + etc.). In this case, the new data entry
automatically replaces the old and CLEAR x is not required.

A number is not terminated if no subsequent operation has been
performed; that is, if the last key used was one of the following:

(o Jwow(e) () ()«

(if CHG SIGN was used as part of the data entry). In this case, if CLEAR
x {or CLEAR) is not used, the next number entered will not replace the
unterminated number but become a part of it,

Lse CLEAR x when correcting a wrong data entry.

NOTE

Many of the examples in this section include the
CLEAR x or CLEAR keys only because the pre-
ceding examples may bhave left an unterminated
number in the X-register.

through

4-6

KEYBOARD

DATA ENTRY KEYS

Clears the display registers (0 — X, Y, Z). Clears the 3 and &
@ data-storage registers (see Page 4-24} but does not affect any other

data-storage register. Clears the SET FLAG key (explained under
programming). ‘CLEAR’ has no effect upon the program steps stored in
the programmable memory.

In general, it is not necessary to use CLEAR before each new calculation
because, except in the case of an unterminated data entry (see CLEAR x
key}, the new data automatically replaces the old. Do not use CLEAR if
data numbers stored in the @ and & registers are to be retained.

display mode selected, it is not necessary to use the decimal point

key when entering integers in fixed point format: if the decimal
point is not used, it will be assumed to have followed the last digit
entered (see ENTER EXP key for examples).

' Enters the decimal point into the X-register. Regardless of the

Changes the sign of the contents of the X-register; the number in
JIT X may be either terminated or unterminated (see CLEAR x key).
If ENTER EXP precedes CHG SIGN, then the sign of the
exponent is changed without affecting the sign of the number (see ENTER
EXP key for examples).

@ Initializes the exponent in the X-register so that the next digit
FLN entries (0 through 9) and CHG SIGN affect only the exponent.

The exponent must be entered as a one- or two-digit number, the last digit
entered becomes the least significant digit; if a third is entered, it will

terminate the current data entry and become the first digit of a new data
entry.

The calculator automatically corrects the exponent, according to the
position of the decimal point, so as to display the number in scientific
notation, when floating point display is selected, and to position the

decimal point when fixed point display is selected {(assuming overflow has
not occurred).

KEYBOARD

DATA ENTRY KEYS

When entering negative exponents the CHG SIGN key should normally
follow immediately after the ENTER EXP; however, it may also be used
immediately after the first or second digit of the exponent,

If ENTER EXP follows any operation, except data entry, then 1 is
entered into the X-register; thus it is not possible to change the exponent
of a terminated number in X by means of the ENTER EXP key. However,
an unterminated number in the X-register can be multiplied directly by
any number of powers of 10 by entering & sequence of exponents (see
Example 6 on Page 4-10).

The following examples illustrate some typical keying sequences used for
data entry. Each example shows several keying sequences all of which
produce the same display {except that, in some cases, non-significant zeros
are blanked).

For clarity, the examples specify a particular display mode; however, it
should be remembered that the display mode affects neither the data
entry nor the accuracy of any calculations.

The CLEAR x key is required in most of these examples because the
previous data entry is not terminated.

EXAMPLE 1:

Enter: 1 > 10" (1.0, .01 X 107, etc))

PRESS: [Fioat)

-
PRESS: l|°L;“ﬂ @,{5“]
N o

ar
o (T
PRESS: Ctx““] L1
_7___’J R
ar
;. Ty r v ; '*.\ Ty :"' Y
TR (R A o B B A I O
DISPLAY: 00— X

Yiwponent

4-7

4-8

KEYBOARD

DATA ENTRY KEYS

ENTER
Exp Enter: 1 X 10° (10 X 10?, 1000, etc.)
{continued) o

PRESS: r\ (_EJ“ : @ C2U
pness: () (1) (_ 0]

o O
PRESS: L 0 J

ar

DISPLAY: [|.000 IE] — X

EXAMPLE 3:

Enter: 4 X 107 {004, 4 X 1077, etc.)

PRESS: @ ”,{,E“ @ (

or
mess () () (0 S0 (4]
or

CLEAR A
.UUL

DISPLAY: 4.

KEYBOARD

DATA ENTRY KEYS

EXAMPLE 4:

Enter: —4 X 10°

PRESS: “"ﬂ @@ (4 | \E:’IER ()

or

PRESS: c@ k4 @ Gﬁ (Sj

DISPLAY: -4. E]

EXAMPLE 5:

Enter: 1.2345 X 10° (12345, 12345 X 107", etc.)

eness: () (1) () (2] (2] (4] (5)
PRESS: @

or

s () (1) () (3) (1) () (&

or

pres (%) (1) (2] (3) (2 (5
PRESS: QJ

DISPLAY: /.2345 63 - X

4-9

4-10 KEYBOARD

DATA ENTRY KEYS

If the number in the X-register has not been terminated {no operation has

ENTER been performed since the number was entered), then it can be multiplied
EXP by any number of powers of ten.
{continued)

EXAMPLE G:

768.32 X 107 X 10% X 107'5 X 10® = 7.6832 X 10*

PRESS: G@

mess: (7)(6) (o) (<) (3) (2)
PRESS: @ (@

PRESS: @ [a

PRESS: E%ﬂ @‘@ (—i) @

T ™
PRESS: f,“;;;"w (9 ‘|

(Y AR

DISPLAY: 7.6832 a4 —» X

NOTE

When multiplying an unterminated number by
powers of ten, as in Example 6, care should be
taken to ensure that the range of the calculator is
not exceeded. If it is, then the final exponent will
not be correct,

In this particular case, if the calculator’s range is
exceeded, the STATUS light will not tight because
the type of operation performed in Example 6
constitutes a data entry rather than a calculation.

KEYBOARD 4-11

DATA ENTRY KEYS

Enters the value for pi into the X-register.
i 18

EXAMPLE:

PRESS: [FLoaT |

PRESS: | 77 |
N v

DISPLAY: F. /51552655 00 — X

{ast digit {actually 3} is rounded up
because the guard digits contain . . . 60

4-12

/I.lgst
Z/-'Z
Yy ¥

KEYBOARD

DISPLAY CONTROL KEYS

The four control keys (t, {, Roll t and x 2 y) are used to reposition the
contents of the three display registers. Combinations of these keys allow
the contents of any display register to be moved to any other display
register. The examples below show only what each key does: other
examples in this chapter iilustrate actual usage of the keys in a calculation.

The contents of the Z-register are lost.
The contents of the Y-register shift to 2.
The contents of the X-register appear in both Y and X.

EXAMPLE:
U
PRESS: (71 | O)
. CLE;R o . o0
PRESS: E) L4) (1‘) @ (1‘ J
DISPLAY: 4. —>» 2
3. - Yy
7. - X

The contents of the Z-register appear in both Z and Y.
The contents of the Y-register shift to X.
The contents of the X-register are lost.

EXAMPLE:

{with the display shown in the previous example),

4 A
PRESS: | { |
\ o
DISPLAY: 4. — Z
q. -y
ER - X

‘Rolls’ the display up without losing information.
ROLL Shifts the contents of X to the Y-register.
Shifts the contents of Y to the Z-register.
Shifts the contents of Z to the X-register.

KEYBOARD

DISPLAY CONTROL KEYS

To ’Roll down’ use two successive Roli 1's.

EXAMPLE:
- R - T 5 r——a e ‘\\\ E
PRESS: { 1 \ (T) {2) (T) (3}
DISPLAY: /. - Z
2. =Yy
7. - X
To 'Roll up’

e
PRESS: ;P“)

| or
DISPLAY: 7. — 2
7. i 4
l. - X
To 'Roll down’
puess | 01
S LRon o Ron !
DISPLAY: /. - Z
c. e N 4
7. - X

A Exchanges the contents of the X and Y registers without affecting
SRR the contents of Z.

EXAMPLE:
{ A { Vol 0 i(a ‘-\i T
PRESS: [1 [t 2) (1] (3
\ FEY S ‘\‘ L S
DISPLAY: /. — Z
2. - Yy
7. - X
PRESS: (xzaa
DISPLAY: /. —> Z
ER i
a. - X

4-13

X2y

Z 7

Il

4-14

0000

KEYBOARD

ARITHMETIC KEYS

The arithmetic keys can be divided into two groups, each of four keys: +,
—, X, *, which operate on the numbers in the X and Y registers, and {X",
x?, Vx and INT X, which operate directly on the number in the X-register.

0000

These four keys perform the indicated arithmetic operations upon two
numbers, the one in the Y-register (the first operand) and the other in the
X-register (the second operand). The resuit of each operation is substituted
for the number in the Y-register. The numbers in the X- and Z-registers
remain unchanged.

NOTE

‘First operand’ and "Second operand’ are used here
in the sense that the second operand is always
considered to alter the first operand in order to
produce a result. For example:

a—b=R

The second operand (b} is subtracted from the first
operand {a)} to produce the result (R).

All four keys are also used with the data-storage keys to perform
operations on data stored in the memory, This use is explained under
‘Data Storage’ later in this chapter.

Adds the number in the X-register to the number in the Y-register.
The sum appears in Y; the X and Z registers remain unchanged.

EXAMPLE:

8+4=12

PRESS: [#iX(1] (0 }

{f contents of X are unterminated, press ‘'CLEAR x').

PRESS: (8) (21 (a) (/;\
Y L,-J N
DISPLAY: original contents of y

—
2. -
Y, —

= N

KEYBOARD

ARITHMETIC KEYS

Y-register. The difference appears in Y; the X and Z registers

a Subtracts the number in the X-register from the number in the
remain unchanged.

EXAMPLE 1.

7 9-8

¢

PRESS: | 1117 4 19—

DISPLAY: original contents of y —_ 2
A, - Y
g. - X
EXAMPLE 2
47 18-y 25
{fcontents of 2 toceenwan enchamged)
PRESY R I
PRESS &+ — 151 4+ .
DISPLAY oripmin contents of 2 — 2
75 - Y
5 — X

Multiplies the number in the Y-register by the number in the
X-register. The product appears in Y; the X and Z registers remain
unchanged.

EXAMPLE 1:
[(3 x4y - B] x8=48

PRESS: | 3 | | P i1 4 | x|

S

[continued)

4-15

4-16

0000

{continued)

KEYBOARD

ARITHMETIC KEYS

ness: (o) (=) (8) (x)

DISPLAY: original contents of y —>
48 . —>
g. —_>

=2

EXAMPLE 2:

5 =5 X b5 X 5=125

polololo

DISPLAY: /25,

Civides the number in the Y-register by the number in the
X-register. The quotient appears in Y; the X and Z registers remain

unchanged.
EXAMPLE:
36 ~9=4

I Vo v Y . i
PRESS: (3) et i9) (“J

DISPLAY: original contents of y - 2
Y. -> Y
g. ->» X

The foliowing example includes the use of all four keys; the calculation is
performed by two methods to show how steps can be saved.

EXAMPLE:

Method |

a. Starting with the numerator, solve separately for the guantities
in parentheses, then add them and store the result;

b. solve the denominator in the same way;

c. recall the numerator and divide.

KEYBOARD 4-17

ARITHMETIC KEYS

e N
PRESS: [mxa] | 1)
Then press the keys in the step sequence given below.
DISPLAY
REGISTERS NOTES
STEP| KEY | X Y Z
1 CLEAR a 0 ? 0 -
2 3 3 0 0
3 4 3 3 0
4 4 4 3 0 -
5 X 4 12 0 (3x4) -y
6 ROLL 4 0 4 12 store in Z
1 8 8 4 12
8 2y 4 8 12
9 9 9 8 12 -
10 - 8 -1 12 {(8-9} =y
1 4 -1 12 12 trecall 3x4) to Y
12 + -1 " 12 (Ax+(8-8) —y
13 LLTRE 3 12 -1 " store in Z
14 8 8 -1 1"
15 2y -1 8 1" -
16 2 2 8 11 -
17 x 2 16 " (8x2) —y
18 6 6 16 1 -
19 - 8 10 1 (8x2) -6 —y
20 AR 10 N 11 recall (Ix4)+{B—Nto Y
2 - 10 1.1 " Result=1.1 —»Y

This ‘program’ can be shortened by several steps without changing
the procedure;

1. The CLEAR key is, in most cases, an unnecessary step;
2. step 6 is unnecessary if step B is changed to 1;

STEP| KEY X Y 4

5 X 4 12 0

6

|7 8 8 12 (13
8 4 8 8 12
B 9 | 9 8 12

The contents of the registers is the same, in both cases, at step 9
and one step has been saved. Similarly, step 13 can be deleted and
step 15 changed to 1.

4-18 KEYBOARD

ARITRMETIC KEYS

Method 11.

If the problem is solved by separately adding (+)8 and (—)9 in the
numerator, then more steps can be saved. This approach changes
the total number of steps from 21 to 16 (17 if CLEAR has to be

a used).

(3><4)+(8—9)=11
{8 X2) -8 ’
DISPLAY
REGISTERS NOTES

STEP| KEY X Y 2

1 3 3 .

2 t 3 3

{continued) 3 4 4 3 - -

4 X 4 12 - |{3x4) =y

5 8 8 12 - -

6 + 8 20 - (3x4}+8 -y

1 9 9 20 - -

8 - g 1 . {3x4)+{8-9) —>¥
"9 8 8 " - -

10 1 8 8 1 {3x4)+(B - 9)stored in 2
1 2 2 8 11 -

12 x 2 16 i Bx2) —y

13 6 6 16 n -

14 - 6 10 11 (Bx2)-6 —Y

15 4 10 11 1" recall (3x4)+(8—-0)to Y
16 - 10 1.1 4 Result = 1.1 =¥

The following example illustrates an accumulative process using the
arithmetic keys; the T and | keys allow the partial totals to he
temporarily stored in, and recalled from, the Z-register.

The sum of the products, nyn, + nyn, + ngng, + ... etc,, is used in this
example; however, this ‘program’ is particularly important as it can be
easily adapted to solve other expressions (such as product of the sums) as
will be explained following the program.

KEYBOARD

ARITHMETIC KEYS

NOTES

STEP| KEY

1 |Entern,

2)

3 | Entern,

4 X

5 | Enternyg

& t

7 jEntern,

8 X

8 {

10 +

11 | Enter ng

12 1

13 |Enter ng

14 X

15 !

16 +

17 |Entern,
—-atc.--

use any digits for n

(ﬂ] ﬂz) --Y

{ny n;)stored in 2

{nz ng} —Y¥

recall {(n, nx}ta Y

{ny ng) +i{ng ny} —>¥

{n, n,} +{ny n,) stored in Z
{ns ng)

recall {ny ny} +ingngdto Y
{(ny nz) +{n3 ng) +{ng ng) —¥

Notice that, after the initial guantities have heen entered and multiplied at
step 4, the step sequence is repetitive, steps 5 through 10, 11 through 16

and so on.

The program can be adapted to solve other expressions by changing the
arithmetic instructions; for example, if the X and + keys are interchanged,
then the product of the sums is selved (n, + ny) {n; +ng) (ng +ng)

ate.

If the X keys are changed to +., then the sum of the quotients is solved:

ny, ., Ny, n
3 5=
n, n; n,

. etc.

Viore complex expressions, such as:

n, +n, ny +ng

= 1

n, g,

:an also be solved using this general program form;

:ases, additional steps are required.

however, 1n these

4-19

4-20

int x

KEYBOARD

ARITHMETIC KEYS

These four keys perform the indicated operations directly on the numbes
in the X-register without affecting either the Y- or Z-registers. The resuli
appears in X.

VX

Calculates the square-root of the contents of the X-register; the
result appears in X.

EXAMPLE:

Ve=3

PRESS: [Fixi 1) @)
T

eness: [0 | (i)

DISPLAY: F.40 - X

Calcuiates the sguare of the contents of the X-register; the result
appears in X.

EXAMPLE 1:
4 =16
PRESS: | 4 (x*]
S R

DISPLAY: f6.00 - X

EXAMPLE 2:

5% = {57} = 625

PRESS: (51} (xﬂ} (f)

DISPLAY: &25. 010 -» X

(see the X key for raising numbers to odd powers.)

KEYBOARD

ARITHMETIC KEYS

EXAMPLE 3:

x =\ a® +b? /3 +4? =5
o NN T TN
PRESS: (3) [x | (T | (4 | (x’j
PRESS: (F
DISPLAY: 5.00 - X
EXAMPLE 4:

Area of a circle is #r?, where r is the radius; if r = 6.5 units, then
area = 132.73 sguare units,

peess: (6] (] D (<) (1) {7 [

DISPLAY: (32. 179

Calculates the reciprocal of the contents of the X-register; the
28 result appears in X,

EXAMPLE 1:

L
98 10204

-
PRESS: [Fx(1] E)
e (3 () (08

DISPLAY: [./0204 - X

4-21

4-22 KEYBOARD

ARITHMETIC KEYS

EXAMPLE 2:
n
X - n
b4
EPR B
5 57 = 0.0016

e (5] () () ()

DISPLAY: .00/E0 - X

(continued)

) Removes the fractional part of the number in the X-register
IR without affecting the sign or the integer part.

EXAMPLE 1:

integer of —7—5-.9 = —h

PRESS: [ri 1) [1 |
fows b N
PRESS: | D6 [6, | 0)|

DISPLAY: -5.59 - X

PRESS: it x|

DISPLAY: -5.4 — X

PRESS: Txii] [O

KEYBOARD

ARITHMETIC KEYS

Repeat the above example [except do not press ‘FIX (1)]; notice that,
when —5.9 is entered, the disptayed number is rounded to —6. The final
result {—5} is still correct, however, because the choice of the display does
not affect accuracy.

EXAMPLE 2:

Convert 5.72" to degrees () and minutes {')
572" - 4" 432

PRESS: fex(1] [2 |
.
Emter H.72:
' R A S A T A
PRESS:(S)[-\{7|L2,{T;
L “,j A .
Separate degrees from minutes (fractional part):
PRESS: \'[intX\ (—]
. o
Transfer degrees to the Z-register
oress: [125) (1)
Convert the fractional part to minutes by multiplying by 60:
PRESS: (Eﬂ (0 l m

‘) 5.400
) 43.20

DISPLAY: | —
(' —_

z
N

4-23

4-24

DATA
REGISTERS

KEYBOARD

DATA STORAGE KEYS

Apart from the X, Y and Z display registers, the basic calculator contains
a further 51 registers which are similar in form to the display registers;
these registers are used for data storage. One complete data number can be
stored in any register; it can then be recalled at any time for use in a
calculation.

NOTE

Data storage memory is entirely separate from the
program memory; storing data does not affect the
space available for storing program steps.

Forty-nine of these registers are named (addressed} 000 through 048; the
remaining two are special registers addressed as 3 and & (not to be
confused with the alpha characters A and B).

An optional add-on feature {-hp- 11216A) allows the storage memory to
be increased by a further 60 storage registers (049 through 108} giving a
total of 111 registers. Option 001 calculators have these additional
registers instailed. The three-digit addressing enables the extra memory to
be added without changing any operating procedures; the extra registers
are used in exactly the same way as the original registers in the basic
calculator.

Data storage registers may be used in any order; each register is selected
from the keyboard {or program) by pressing the keys corresponding to the
address. Depending upon the operation to be performed, certain keys must
precede the address.

NOTE

It is possible to select a register whose address
contains leading zeros without using all three digits
{e.g. 28’ for register number 028); this is explained
under ‘Short-form addressing’, at the end of this
section.

If an error in addressing is made so that a non-existent register is selected,
the STATUS light lights and the calculator stops without performing any
operation on the memory (see Page 3-11). Non-existent registers are 049
and above for the basic calculator or 109 and above if the extra memory
is installed (see Indirect Register-Addressing on Page 4-35).

KEYBOARD

DATA STORAGE KEYS

NOTE

Throughout the remainder of this section storage
registers are referred to as, for example, ‘reg. 032’
or ‘reg. 3', etc. The contents of a particular storage
register are referred to by the register name appear-
ing in parentheses; for example, '(reg. 012}’ means
‘the data number stored in, or contents of, regq.
012'.

When the calculator is switched on, the data registers are automatically
cleared. However, it is not always necessary to clear a storage register
before storing a number because the new data automatically substitutes
for the old data. The CLEAR key clears both the & and & registers
without affecting any other storage register.

@

These keys provide access to the data storage registers. They are ‘initializ-
er' keys in that they do nothing by themselves but must be followed by
other keystrokes before any operation is performed.

There are four operations involving the data-storage registers:
1. Direct data storage and recall.
2. Direct storage-register arithmetic.
3. Indirect data storage and recall.
4. Indirect storage-register arithmetic.

Each of these operations is described, in turn, in the following pages.

For ‘direct’ operations the keying sequence selects the required register by
means of a ‘direct” address; for example,

=) (4)

stores the contents of the X-register into reg. 3. Here 3 is the ‘direct’
address.

4-25

4-26

DATA
REGISTERS
(continued)

DIRECT STORAGE
& RECALL

KEYBOARD

DATA STORAGE KEYS

For ‘indirect’ operations the keying sequence selects the required registe:
via an ‘indirect’ address; for example,

) @) (3)

stores the contents of the X-register into the register specified by the
contents of reg. 3. Here, 3 is the ‘indirect’ address and the contents of
reg. 7 select the ‘direct’ address.

Both ‘direct” and ‘indirect’ operations can be performed either from the
keyboard or in a program; however, in general, ‘indirect’ operations are
program oriented rather than keyboard-oriented operations.

Direct storage and recall enables displayed numbers to be stored in the
memory and enables stored numbers to be recalled to the display. The

direction of the arrows on the keys indicates in which direction the data is
to move.

Stores the contents of the X-register into the storage register
selected by the next key(s) pressed: 3 or & or 000 through 048
{through 108 in Option 001 calculators).

The contents of the X-register remain unchanged.

EXAMPLE 1;

Store 7 in the & register.
e S
pRESS: | 77 ,\ 6—#“ (b ‘
A 7_,_/ e _J
RESULT: = =—» req. A

EXAMPLE 2:
Store 7 in req. 027,
PRESS: (w) @c-@ Q o | (2) [7?

RESULT: # —» reqg. 027

KEYBOARD 4-27

DATA STORAGE KEYS

Stores the contents of the Y-register into the storage register

selected by the next key(s) pressed: @ or & or 000 through 048
{through 108 in Option 001 Caiculators).

Y=

The contents of the Y-register remain unchanged.

No example is given as the y = {)} key stores the contents of Y in exactly
the same way as the x — {) key stores the contents of X.

Recalls, to the X-register, the contents of the storage register

selected by the next keys pressed: 000 through 048 (through 108
in Option 001 Calculators),

The contents of the recalled register remain unchanged. It is not necessary
to use the x < {) key when recalling data to X from the & or A registers;
simply press those keys to recall the data, from the selected register, to X.

EXAMPLE 1:

Recail # from reg. & {stored previously).

~ {ciear} This is not a necessary operation; it is includ-
PRESS;

ed only to demonstrate that # is recalled.
PRESS: @

DISPLAY: # —» X
{w also remains in reg. &)

EXAMPLE 2:

Recall = from reg. 027 (stored previously).

. [cLEar
PRESS: @

SR R S
PRESS: Gc«(y(0 ,\2}(7)
DISPLAY: 7 - X

{m also remains in reg. 027)

4-28

DIRECT STORAGE

& RECALL
(continued)

KEYBOARD

DATA STORAGE KEYS

I Exchanges the contents of the Y-register with the contents of the
el storage register selected by the next key(s) pressed: @ or & or 000
through 048 (through 108 in Option 001 Calculators).

EXAMPLE:

Enter any number into the Y-register and exchange with the
contents of reg. 027 (7 was stored in req. 027 in an earlier
example).

wess: (5 (1)
e) (0) (2)(7)

RESULT: 5 —» req. 027
{reg. 027) —» ¥

The y 2{) key is particularly useful, especially in a program, for moving
data from one memory location to another.

PRESS: @ﬂ (a \J
e SRS, ‘j

PRESS: (y@ (' 0 '“\| CS) (2
A . VAR A

PRESS: f;e() (0) (BR\ [3 |
A ML R o L

PRESS: @ (:H__Om \] 1‘> (_6‘\,,

RESULT: (y) —» reg. g .
(reg. &) —>» reqg. 032
{reg. 032) —> req. 033
{reg. 033) —> req. 016
{reg. 016} —» ¥

Used, when storing and recalling data, to select reg. 3 or reg. &,
respectively,

KEYBOARD

DATA STORAGE KEYS

STORAGE: see , and .

RECALL: Press either key to recall the contents of the selected register to
X (the contents of the recalled register remain unchanged}.

The '‘CLEAR’ kay clears both of the 7 and & registers:

The @ and b registers are particularly usefut as they require a minimum
of keystrokes for storage and recall.

NOTE

If the Mathematics ROM (-hp- 11210A) is installed,
the & and & registers serve a special function, in
conjunction with ACC +, ACC —, and RCL keys.
This enables minimal keystroke operation of vector
arithmetic and manipulation of complex numbers
(i.e. using the ‘i’ operator, where i = j=+/—1}.

Fhe following example illustrates a typical use of the data storage
nemory. For simplicity, only reg. & is used; however, the technique
ilustrated is applicable to all data storage registers.

EXAMPLE:
Multipfication by a constant:
a series of numbers (n,, n,, ny, . . . etc.) are to be multiplied by a
constant (k).
Let k =1.684, n, =3, n, =112, ny, = ... ete.

The value for k is first stored in memory so that it will not be
necessary to reenter the constant for each calculation:

PRESS: (mx(1) @
Enter & and store in req. a:
press: (1] (-} (6] (8] (4] b=} (2]
Enter n,, recall & and multiply:
)0 () (0
PRESS: |
e rile) [x

DISPLAY: {kn,) 5.0520 e N

{cantinued)

4-29

4-30

DIRECT STORAGE
& RECALL
{continued)

DIRECT
STORAGE-REGISTER
ARITHMETIC

KEYBOARD

DATA STORAGE KEYS

Enter n,, recall k and multiply:

eess: (1) (1) () (2) (4] (&) ()

DISPLAY: (kn,} /H.8808 o N

Enterng etc.

Direct storage-register arithmetic enables arithmetic operations to b
performed using a number stored in the memory without first recallin
that number to the display. Four arithmetic keys {+, —, X, <) are used ir
conjunction with the storage and recall keys. In addition to indicatine
where the results of the operation will be stored, the arrow on eacl
storage or recall key also points to the first operand (defined in the not
on Page 4-14).

+ 3
e
or or
—_— nnn

Performs the indicated arithmetic operation between the number in the
X-register (the second operand} and the number in the selected registe:
{the first operand).

The result is stored in the selected register and the X-register remains
unchanged.

EXAMPLE 1:

Subtract the contents ol the X-register from the contents of reg

b,
PRESS: @i‘) (;} [b_]

RESULT: {reg. A (x) —> reg. &

KEYBOARD

DATA STORAGE KEYS

EXAMPLE 2:

Givide the contents of reg. 042 by the contents of the X-register.

PRESS: / N . ‘\. 7 'a ""-‘ o 4 ,f"' - \
S: {x-:-()=] |\ 0 | l 4 ,
B A S A N

RESULT: (req. 042) ~ (x] —>» reqg. 042

+ 3
Y=0) x b
- nnn

Performs the indicated arithmetic operation between the number in the
Y-register (the second operand) and the number in the selected register
(the first operand).

The result is stored in the selacted register and the Y-register remains
unchanged.

EXAMPLE:

Add the contents of the Y register to the contents of req. 038,

; Vo Ty A
PRESS: Y=l [4+]| O 3. 8
\ ! W) }‘i . \ | \ i

RESULT: (reg. 0381 1+ {1 — reg. 038

4-31

4-32 KEYBOARD

DATA STORAGE KEYS

DIRECT -+ E
STORAGE-REGISTER _
ARITHMETIC b
(continued) X
- nnn

Performs the indicated arithmetic operation hetween the number in the
selected register (the second operand) and the number in the X-register
(the first operand).

The result appears in the X-register and the number in the selected register
remains unchanged.

EXAMPLE:

Divide the number in the X-register by the number in reg. 3.

e
PRESS: Ecet) (w) L7

RESULT: {x} : {req. 3} = X

+ 3
- R

or or

- nnn

Performs the indicated arithmetic operation between the number in the
selected storage register (the second operand) and the number in the
Y-register (the first operand).

The result appears in the Y-register and the number in the selected register
remains unchanged.

NOTE

In this application, the y &{) key does not have
the ‘exchange’ connotation (Page 4-28). The bold
arrow, pointing to the left on the key, indicates
that, when performing register arithmetic, the key
works in the same fashion as the x < {) key.

KEYBOARD

DATA STORAGE KEYS

EXAMPLE:

Subtract the number in reg. 039 from the number in the Y-regis-

ter.
ress b (—1 (o0 (3) (o)

RESULT: (y) - {reg. 039) —» V¥

X~

R
¥

d
N b
; DIREET
X or
n
or nn
Yeiy

/

Indirect storage and recal! is the same as direct storage and recall except
that the required register is selected via an indirect address. The keying
sequence uses the INDIRECT key to select the indirect register-address;
the contents of that register then select the required direct register.

NOTE

Care should be taken to ensure that the indirect
register contains a suitable number, otherwise a
non-existent register may be designated. Proper reg-
ister designations are discussed in detail under ‘In-
direct register addressing’ on Page 4-35.

EXAMPLE 1:

Store the contents of the X-register into the register
designated by the contents of reg. 038.
Let {reg. 038) = 22

pwess (et} () (0) (3] (e

{continued)

4-33

INDIRECT
STORAGE & RECALL

4-34 KEYBOARD

DATA STORAGE KEYS

INDIRECT RESULT: (x) =—» reg. 022
STORAGE & RECALL
{continued) The contents of the X-register and of reg. 038 remain
unchanged.
EXAMPLE 2:

Exchange the contents of .the Y-register with the con-
tents of the register designated by the contents of reg.
3.

Let {reg. 3} =3

press. o) k) (2]

RESULT: {y) —» req. 003
{req. 003) '—» Y

The contents of reg. 3 remain unchanged.

INDIRECT A
STORAGE-REGISTER
ARITHMETIC
+ 3
@<
or or
- nnn

)

Indirect storage-register arithmetic is the same as direct storage-register
arithmetic, except that the required register is selected via an indirect
address. The keying sequence uses the INDIRECT key to select the
indirect register-address; the contents of that register then select the
required direct register. The INDIRECT key may be used either hefore the
arithmetic key (as shown above) or after the arithmetic key; the result is
the same in either case. ;

See the NOTE under “Indirect Storage and Recall”” on Page 4-33.

KEYBOARD

DATA STORAGE KEYS

EXAMPLE 1.

Multiply the number, stored in the register designated by the
contents of reg. 014, by the contents of the Y-register,

et {reg. 014) = 19

PRESS: {¥=0¥ lomecr; x | 8] b k4 :

L S e L —
RESULT: {reg. 019} X (y) —» rey. D19

The contents of the Y register and of reg, 014 remain unchanged.

EXAMPLE 2:

Divide the number in the X-register by the number stored in the
register designated by the contents of reqg. A

Let (reg. h) = 8
f‘ 5 ! - A p ’F' o y
PRESS: [xet) ' kecr = b
RESULT: {x} © (reg. 008) =—» X

The contents of reg. 008 and of reg. & reinain unchanged,

When indirectly addressing a storage register, care must be taken to ensure

that the indirect register contains a proper address to designate the
required register.

Proper addresses are numbers 0 through 48 for the basic calculator or 0
through 108 in Option 001 calculators.

a. The address may be negative; the sign will be ignored.

b. The address need not be an integer, the fractional part of the
number (considered as a fixed decimal point number} will be
ignored.

Examples of proper addresses:

1 = designates reg. 001
—b6 —>» designates reqg. 006
28.368 —>» designates reg. 028
1.02368 X 102 =—» designates reg. 102
3.642 X 10-* - designates req. 000

4-35

INDIRECT
REGISTER-
ADDRESSING

4-36 KEYBOARD

DATA STORAGE KEYS

INDIRECT tmproper addresses are:
REGISTER-
ADDRESSING a. Numbers with an absolute value greater than 4899 9 in the
(continued) " basic calculator.
b. Numbers with an absolute value greater than 108.99 9 in

Option 001 calculators.

The 3 and & registers cannot themselves be addressed indirectly, but they
can be used as indirect addresses to designate other (numeric) direct

addresses.
SHORT-FORM A short-form address consists of a register-address with all {eading zeros
ADDRESSING dropped; ‘3" for reg. 003, ‘38’ for reg. 038, etc.

NOTE

This information is alse applicable to the 4-digit
addresses used by the program memory (described
in Chapter 5b).

The short-form address may be used either from the keyboard or in a
program; however, the address must be properly terminated. For example,
consider this keying sequence:

o0

as soan as the ‘3" is pressed the address is automatically terminated and
the operation is performed {in this case, the number in X is stored in reg.
003). This sequence may he shortened to:

This time, when ‘3’ is pressed, the address remains unterminated because
the calculator has no way of deciding whether the address is selecting reg.
003 or, say, 038. The calculator, therefore, will do nothing until the
address is terminated.

Any key, except the digit keys and CONTINUE (given from the key-
board}, on the basic calculator, can be used to terminate the address;
however, the terminating key will also be executed.

KEYBOARD

DATA STORAGE KEYS

For example:

) (2 ()

will store the contents of X in reg. 003 and then execute the ‘up’
instruction.

Similarly, v

) (3)(e) (2]

will store the contents of X in reg. 038 and then recall the contents of
reg. 2 o X,

If no subsequent operation is desired when the address is heing made from
the keyboard, then the STOP key can be used:

<) (5)

In this case, the STOP acts as a ‘no operation’ but still terminates the
address so that the number is stored.

in general, there is little to be gained by using this short-form addressing
from the keyboard; the beginner, who may be confused by the results, is
advised not to use it, either from the keybecard or in a program.

On the other hand, short-form addressing in a program does offer some
advantages; using this method of addressing in complex programs saves
considerable space in the program memory. This has the effect of enabling
more program steps to be stored.

Indirect data-storage addresses can be nested, to any depth, by repeating
the INDIRECT key the required number of times.

EXAMPLE:

Let (reg. 3) =1
and (reg. 001) = 2

PRESS: (Q omscrl olnscn [\‘33

RESULT: {x) =% reg 002

4-37

NESTING
INDIRECT
ADDRESSES

PROGRAMMING THE MODEL 10

INTRODUCTION TO PROGRAMMING

This chapter describes the programming keys (those contained in the
extreme right-hand block of the keyboard) and explains how to program
the calculator. The keys described in the preceding chapter operate as
before, whether used from the keyboard or as steps in a program.

A program is a sequence of instructions telling the calculator what it must
do to solve a particular problem. The calculator can ‘remember’ the steps
of the program and can execute them any number of times. The rules for
programming the calculator are relatively simple because the program steps
are the same as the keyboard operations; no special language need be
learned. Difficulties encountered in writing a program are more likely to
result from the complexity of the particular program than from the
application of the rules,

The calculator cannot interpret the programmer’s requirements, it can only
obey instructions; it is essential, therefore, that the programmer knows
exactly what each key does and that he be exact in giving instructions to
the calculator. Despite the ‘exactness’ requirement, it is not necessary to
be unduly concerned about making errors in a program; the design of the
calculator is such that errors are usually easy to recognize and correct,
even after the program has been loaded into the calculator.

As stated earlier, a program is a sequence of instructions to the calculator.
In the preceding section of this manual, whenever an example was to be
performed, you, the operator, were ‘programmed’. You were asked to
press keys in a given sequence to obtain a particular result; (in most cases)
if the sequence was not followed exactly the result was not correct. In a
similar manner, you, the programmer, must now give a sequence of
(correct) instructions to the calculator.

As an examgple, try the lollowing:

Enter three numbers (A, B, and C) into the calculator so that A
appears in the Z register, B in the Y register and C in X; choose simple
numbers, say A=6, B=5and C = 3,

The disptay should now be:

(A B, > 2
B) 5. —> ¥
© 3. —» X

Next press whatever keys are necessary to solve (A X B}/C, in this case (6
X 5)/3. As you press each key, write it in the KEY column in the table
below (starting in step 0000} and also make a note, in the appropriate
columns, of the effect on the three display registers, Do not include

entering A, B and C as program steps, these will be entered each time
before the program is run.

5-1

WHAT IS A
PROGRAM?

PROGRAMMING THE MODEL 10

INTRODUCTION TO PROGRAMMING

WHAT IS A
PROGRAM?
{continued)

DISPLAY .
STEP KEY X Y z

Enter the numbers | C(=3) B{=D) A(=6)
0000
0oo1
0002
0003
0004
0005
Q006
aoo?
0008
gic.

If you now have the correct result of the calculation {i.e. 10} in one of
the display registers, then you have just written a useable program. it may
not necessarily be the shortest or most efficient program, but it will still
work in the calculator for any values of A, B and C. The program is
complete except that you should add an END as the last step; END
instructs the calculator to stop running the program because the calcula-
tion is finished. Two (of several possible) programs to solve (A X B}/C are
shown on Page 5-3.

Here is the procedure to load and run your program or either one of the
example programs.

To load the program:

PRESS: ((run] @

PRESS: [Prom]

PRESS: The keys in the step sequence of the program
for program 11, for example, this would be

101010

PRESS: [[run_}

To run {and rerun} the program:

PRESS: @

PROGRAMMING THE MODEL 10

INTRODUCTION TO PROGRAMMING

. PRESS: digit keys to enter A, B and C into Z, Y and X
respectively; e.g.

@@B@B

[

a

N

PRESS: T the program runs and the answer appears in
h {:1 the display.
L
PROGRAM |
DISPLAY
STEP KEY X Y Z
Enter the numbers € B A
0000 oL 4 A c B
0001 RoLL 4+ B A C
0002 X B AxB C
0003 J AxB C C
0004 X2y C AxB C
0005 + C % C
0008 END final display
PROGRAM 1l
DISPLAY
STEP KEY X Y Z
Enter the numbers C B A
. B
000D T C C A
0001 ! % A A
B AxB

0002 X T c A
00Q3 END final display

5-3

5-4 PROGRAMMING THE MODEL 10

INTRODUCTION TO PROGRAMMING

WRITING A In general, program writing is composed of three major steps:

PROGRAM a). Define the problem.

b). Decide how the problem is to be solved.
c}. Write the steps for the calcuiator.

Example of program writiﬁg:
a}. Define the problem ... what is the program supposed to do?
Write a program to solve (A X B}/{A + B} for any values of A and
B; when the program is complete, display the result and display A

and B.

b}. Decide how the problem is to be solved . . . what steps would you
take to solve the problem on paper?

The easiest way to do this is by means of a 'flow chart’; the initial
flow chart should be as simple as possible.

Multiply:
A XB

Add:
A+B

Y
Divide:
A XB
A+B

b

Display
the results

Next, draw the flow chart in greater detail adding specific notes
such as where data is to be stored, etc. |t may be necessary, if the
problem is complex, to draw several versions of the flow chart.
Here is the final version of the flow chart;

PROGRAMMING THE MODEL 10

INTRODUCTION TO PROGRAMMING

Enter A and B manually

B — X

|2 =

Store
A —
B —

E]
b

Multiply:
AXS8

¥
Recall from

storage and
Add:

A+B

Y
v Divide:
A XB
A+B

¥

Racall from
storage

¥
vi Stop and
display:
AXB
A+B

== 2
Yo
e N

c). Write the steps for the calculator . . . what keys would you press
to make the same calculation from the keyboard?

Write the steps exactly as the keys would be pressed if the
operations were to be made manually; at each step note the effect
of the operation on the display and storage registers (the program
pad, supplied with each calculator, may be used for this). Opera-
tions such as data entry should not be included as steps of the
program.

5-5

5-6 PROGRAMMING THE MODEL 10

INTRODUCTION TO PROGRAMMING

WRITING A Starting with | in the final flow chart, A and B, (currently in Y
PROGRAM and X respectively) are stored in the memory:
{(continued)
DISPLAY STORAGE

STEP KEY X Y z a 1)

0000] y-O 8 A

0001 g 8 A A

0002 X+0) B A A -

0003 I3, 8 A Al B

(H of the flow chart) Multipty A X B.
0004 X B AxB - A B

(1l of the flow chart) recall from storage and add, A + B (only A
need be recalled as B is already in X).

0005 X1t 8 AxB A B
6006 + B Ax8B A B
0007 3 A+B| Ax8 A B

(1V of the flow chart) Divide, (A X B) + (A + B)

-
=
=]

0008 = A+B

>
+
o

{V and V1 of the flow chart} recall A and B fram storage and stop
to display the resuit.

AxB
0009] A AT B A| B
AxB
0010 4 A ATl A B
AxB
uon L) B A A B A| B
0012 END —— finai display

PROGRAMMING THE MODEL 10

INTRODUCTION TO PROGRAMMING

MNot ali programs wiil be as straight-forward as the preceding one; most
programs will contain loops and branches ({explained later) involving
decision making by the calculator. However, the bhasic approach to
program writing remains the same: define the problem, decide how the
problem is to be solved and then write the steps for the calculator.

Here is the complete program; an extra column, titled ‘Key Code’, has
been added because this program will be used later in this section to
illustrate program operations. Use of the key codes is explained later in
this chapter,

KEY DISPLAY STORAGE
STEP| KEY |CODE| X Y z al|h
0000 ¥y 40 B A .
0001 g 13 B A - A
0002 | x>0 23 8 A - Al -
0003 b 14 B A A | B
0004 b 4 36 8 AxB A B
0005 | x<c1 67 B AxB A B
0006 + 33 B |AxB A B
0007 g 13 |A+B|AxB A B
- AxB
0008 - 35 |A+B AT R A B
AxB
0008 d 13 A A+B - A B
AxB
0010 1‘ 27 A A A+ B A B
AxB
001N b 14 \i A e Al s
0012 END 46 final display —

5-7

5-8

LOCATIONS

PROGRAM
COUNTER

STEP
SEQUENCE

PROGRAMMING THE MODEL 10

PROGRAM MEMORY

The program memory in the basic Model 10 Calculator contains 500
jocations, each of which has a unique 4-digit address; addresses consist of
the numbers 0000 through 0499. One step (one keystroke) of a program
can be stored in each location.

Extra sections of program.memory can be added at any time, increasing
the original 500-step program memory in the basic calculator either to a
total of 1012 steps (addressed as 0000 through 1011), or to a total of
2036 steps (0000 through 2035). The use of 4-digit addressing throughout
the program memory enables the extra memory to be added without
changing any operating procedures; the extra memaory is used in exactly
the same way as the original 500-step memory in the basic calculator.
Option 002 calculators have 1012 program steps and Option 003 calcula-
tors have 2036.

NOTE

The program memaory is entirely separate from the
data-storage memory; storing data does not affect
the space available for storing program steps (and
vice-versa).

A program is loaded into the memory simply by pressing the required
keys; it is not necessary to first clear the memory because the new
program steps are automatically substituted for the old.

When a program is being either loaded or run, a mechanism known as the
‘program counter’ automatically steps sequentially through the memory.
At any given time, the program counter contains the address of a memory
location; that is, the counter ‘points to’ the location whose address it
contains. As soon as some operation has been performed at that location
(i.e. a program step either loaded or executed), the counter increments by
1 and points to the next location.

The program counter can be set by the user to point to any desired
location; this operation is known as ‘setting the program counter’ or as
‘addressing the memory’.

When a program is to be loaded, the user selects the starting address by
setting the program counter to point to the address of the location which
is to contain the first step. Then, as the program is loaded, by pressing the
appropriate keys, the steps are automatically stored in sequential locations,
beginning at the address specified.

PROGRAMMING THE MODEL 10

PROGRAM MEMORY

When the program is to be run, the user selects the starting address as
before; the steps of the program are then executed in numerical order,
except where the program inctudes branching instructions {Page 5-10).

Generally programs start at the beginning of memaory, at step 0000, unless
more than one program is in the memory at the same time.

There are two ways to select a location in memory; either by setting the
program counter to a fixed address or by instructing the program counter
to search for a ‘label’. A fixed address is selected by keying the 4-digits of
the address and preceding them by the'GO TQO' key;

() C e) (2) () (s

sets the program counter to address (265.

The label search, on the other hand, selects an address identified by the
label’s position in memory. A label consists of two keys, LABEL followed
by any other programmable key (with the exception of END), for

example:
@

The operator can insert a label anywhere in the memory. Once the label is
in memory, the address specified by that label can then be found by (in
this casel the following keying sequence:

This results in the program counter going to the beginning of the program
memory (address 0000) and searching sequentially through the memory
for the label {the keys 'LABEL, #' not preceded by a ‘GO TQ'}). As soon
as the n part of the label is found, the program counter points to the next
address and this becomes the selected address, identified by that particular
label.

5-9

ADDRESSING
THE MEMORY

5-10 PROGRAMMING THE MODEL 10

PROGRAM MEMORY

BRANCHING Branching instructions in a program cause the program counter to go to
some location in memory other than the next sequential location; the
program then continues, sequentially, from the new location. A branch
can be either one of two types: ‘conditional’ or ‘unconditional’,

If the branch is ‘conditional’ then the calculator makes the decision (hased
upon a specified condition) whether to branch or not; as a simplified
example, the calculator can be programmed to ask “Is the number in X
larger than the number in Y? If the answer is NO, the program does not
branch; if the answer is YES, the program counter branches to some other
{specified) address and the program continues from there (conditional
branching is fully described later in this chapter). If the branch is
‘unconditional” then the catculator has no option, it must branch to the
address specified in the program (see GO TO key).

SUBROUTINES The Model 10 has subroutine capability. A subroutine is a sequence of
program steps which is to be used many times, perhaps in several different
programs, yet need be stored in only one place in the memory. A program
may ‘call for’ {i.e. branch to) the subroutine at any specitied time; when
the steps of the subroutine have been executed, the program counter
automatically returns to the ‘calling’ program, to the step following the
program step which originally ‘called’ the subroutine. Use of subroutines
saves not only considerable space in the program memory, but also
considerable program-writing time. (See the SUB/RETURN key for com-
plete information on the use of subroutines.}

BLANKED When the calculator is running a program, the display is blanked: as soon
DISPLAY as the program stops, the display returns.

Many programs are short enough that the display will do no more than
blink before reappearing; a long program which contains many branching
instructions may leave the screen blanked for several seconds, or even
much longer,

It is possible to write an error into a program which results in the
calculator continually branching in a circle so that the display never
returns; if this should occur, press the STOP key, the program will then
stop and the display will return,

PROGRAMMING THE MODEL 10 5-11

PROGRAM MEMORY

Each of the programmable keys has a two-digit key code; the code is KEY CODES
shown in the Appendix at the back of this manual. When a program is

being loaded, the code for each key pressed is stored in the program

memory, one key-code per location.

The key codes are not required for program writing, however, the
programmer should be aware of them because they are used for editing
purposes (see Page 5-20). They are also printed by the printer when
making a list of program steps (Chapter 6).

Those keys which are shown in the Appendix as having three-digit codes
are not useable as program steps,

SHORT-FORM

NOTE ADDRESSES
The beginning programmer is advised not to use
short-form addresses until he is familiar with the
hasic branching techniques.

The short-form address for the program memory is similar to that used for
the data-storage memory {see Short-Form Addressing, Chapter 4) in that
leading zeros may be dropped and an operational key used to terminate
the address. Whether or not the terminating operation is executed, will
depend upoun whether the address came from the keyboard or from a
program. For example, this sequence in a program causes the program
counter to branch to address 0045 without executing the ‘plus’ (+} key:

(=) (4) (o) (=]

The same sequence given from the keyboard causes both the branch and
execution of the ‘plus’ key.

When addressing from the keyboard, the address can be terminated by
most keys; however, the terminating key will be executed, and this may
result in some unwanted operation. |t is acceptable to terminate the
address by switching to the ‘program’ mode (i.e. pressing PRGM) but not
by starting program execution (i.e. pressing CONTINUE). Pressing the
STOP key will always terminate an address without producing unwanted
results.

5-12 PROGRAMMING THE MODEL 10

PROGRAM KEYS

Y The RUN and PRGM (program) key§ select the calculator’s mode of
operation: the lights below the keys indicate the current mode.

PROGRAM MODE:

Used when loading program steps, from the keyboard, into the memory
and when editing a program f{i.e. verifying that the steps were loaded
correctly}.

Program mode enables program steps stored in the memory to be
displayed; shown below is a typica! display. Each display register contains
an address {corresponding to a location in the program memory) followed
by the key code for the program step currently stored at that address.

a. The Y-register always contains the address of the location to which
the program counter is currently painting.

b. The Z-register always contains the next lower-numbered address
and the X-register always contains the next high-numbered address.

ooos-------- 33—z
0o07-------- 13 =y
000g-------- 35— X

RUN MODE:

Used for all calculator operations except those listed under PROGRAM
{above}). ‘Run’ operations include all keyboard calculations, setting the
program counter, running programs, all magnetic card operations, etc.

This key, followed by an address, is used to set the program
counter to the selected address in the program memory (see Page
5-9). For example, location 0138 is selected by:

) (o 1) (s) (8]

If the keying sequence is given from the keyboard, the program counter
sets to the address designated and the calculator then waits for further
keyhoard instructions,

GO TO

If the keying sequence is encountered as program steps, then an uncondi-
tional branch is made to the address indicated and the program step stared
at that address is executed. The program then continues to run automati-
cally from that address.

"GO TO is also used in conjunction with the LABEL and SUB/RETURN
keys to address the memaory {see description of LABEL and SUB/RE-
TURN).

PROGRAMMING THE MODEL 10

PROGRAM KEYS

Labels (briefly described under Addressing the Memory, Page 5-9)
gl are used to identify any desired Jocation in memory. Labels must
consist of two keys, LABEL followed by any other programmable

key {except END):
(e

A specific label cannot be used to identify more than one location at any
one time. If it is, then only the first {i.e. the lowest numbered location)
will be valid.

Any number of different labels can be used at one time, limited to the
number of keys available to follow the LABEL key.

o0e-

These keys instruct the program counter to search for a particular label.
The search begins at address 0000 and continues sequentially through the
memory unti} the label (i.e. ‘LABEL, any’ not preceded by a ‘GO TO') is
found. The search ends at the address immediately following the ‘any’ part
of the label (the operation specified by ‘any’ is not executed).

If the instruction to search came from the keyboard, the calculator waits
for the next key to be pressed. If the instruction to search came from the
program then execution automatically continues at the new address.

For example:

STEP KEY STEP KEY
0098 0362
0099 GO TO 0363 | aseL
aido LABEL 0364 -
fo101 | 0365 4
L 0102 i et 0366 ete.

After step {address) 0101 the search for the label starts (at address 0oo0o);
when the label is found, program execution continues with the ‘up’
instruction at address 0365. The ‘divide’ instruction in step 0101 consti-
tutes part of the label-call and the one in step 0364 part of the label; in
neither case does an actual divide operation occur.

Branching to a label offers considerable advantages over branching to a
fixed address. Programs whose addresses are identified only by labels can
be stored anywhere in the memory; they can also be moved easily because
there are no addresses to be changed. Also, any time the program is to be
corrected ({i.e. steps changed, added or deleted) there are no fixed

LABEL

5-13

5-14

LABEL

{continued])

PROGRAMMING THE MODEL 10

PROGRAM KEYS

addresses to be checked in case they must now be changed as a result of
the corrections.

The main disadvantage of using labels is that a search takes more time
{depending upon the location of the label in memory) than does a branch
to a fixed address. Usually, this will have no significance because, in this
case, ‘time’ constitutes only a few thousandths of a second. If time is a
significant factor, then the programmer may still take advantage of the
labels; he can write his original program with labels and then, when the
program has been completely checked, change the labels to the appro-
priate fixed addresses. Alternatively the fabels can be located in the
lower-numbered addresses.

When given from the keyboard, starts automatic program execution
beginning at the present address in the program memory. CON-
TINUE may be used in a program as a ‘no operation’ and as a
termination for a short-form address. It cannot be used from the
keyboard to terminate a short-form address.

MECZ2~~200

. Stops execution of the program.
5TOP

If the STOP key is pressed while a program is running, then the program
will stop after completing the current operation.

STOP's used as program steps enable the user to affect the results of a
program by ‘breaking in’ at specified places. When the program is stopped,
the user can enter data, or make any keyboard operations and then
continue automatic execution of the program.

END shoutd be the last (i.e. the highest numbered), and only the
last, step in a program. |t stops program execution and resets the
program counter to address 0000.

When used from the keyboard, END is the equivalent of keying ‘GO TQ,
0, 0, 0, 0° and may, therefore, be used instead of that sequence.

During magnetic program card operations the recording and loading
processes stop as soon as an END has been transferred (see Page 5-28).

END clears any subroutine return-address to which a return has not yet
been made {Page 5-45}.

'

PROGRAMMING THE MODEL 10

PROGRAM KEYS

Causes program execution to pause, and the display to return, for
@ approximately % second; this enables the partial results of calcula-

tions to bhe viewed. Execution of the program automatically
continues after the pause,

Successive PAUSE instructions increase the duration of the pause by %
second increments (there will be a slight blink in the display as each
successive PAUSE is executed).

PAUSE may be used as a ‘conditional stop’ where the user, rather than
the calculator, decides whether or not to stop the program. The stop is
achieved by holding pressed any key {other than STOP) during program
execution; the program then stops when the next PAUSE instruction is
encountered in the program. The key pressed is not executed, it serves
only to cause the stop when the PAUSE is encountered. |f there is no
PAUSE in the program then pressing any key except STOP has no effect.
Once the program is stopped, execution does not then resume until
CONTINUE is pressed.

NOTE

STOP cannot be pressed to make this type of
‘conditional stop’ because there is no way to prede-
termine at which step program execution will stop.

B The ‘step program’ key is not programmable; it is used, from the
I’ keyboard only, to single-step programs.

In the ‘run’ mode (i.e., RUN light on) it single-steps program execution;
each time STEP PRGM is pressed the program counter is incremented by
one so that one program step is executed.

In the ‘program’ mode {i.e. PRGM light on} STEP PRGM enables the
program steps stored in memory to he viewed. Each time STEP PRGM is
pressed, the program counter is incremented by one, so that the address
and key-code displayed in the Y register shifts to Z, the address and
key-code in X shift to Y and the next higher address (and key-code)
appears in X.

Use of STEP PRGM is fully detailed under Editing and Correcting A
Program, starting on Page 5-20.

5-15

5-16 PROGRAMMING THE MODEL 10

PROGRAM KEYS

This key is not programmabile. Operation of BACK STEP is similar
BACK to operation of STEP PRGM except that BACK STEP decrements
STEP the program counter by one each time it is pressed.

BACK STEP should not be used in the ‘run’ mode; it should be used only
in ‘program’ mode.

Using BACK STEP in the ‘run’ mode produces confusing results because,
although the program counter is decremented each time the key is pressed,
program steps cannot be ‘un-executed’.

Use of BACK STEP is fully detailed under Editing and Correcting A
Program, starting on Page 5-20.

g Causes the Option 004 printer to print the contents of the
PRINT ol X-register; successive PRINT/SPACE instructions cause the printer
SPACE to space after the initial print. For complete details refer to
Chapter 6.
If the printer is not installed in the calculator, then the PRINT/SPACE
instruction acts as a STOP operation; it will not otherwise affect program
execution, except that it will terminate a short-form address.
The FORMAT key is used to redefine other keys, to control some
FMT plug-in ROM’s and peripheral devices and also to control some

operations involving the magnetic card reader. For specific ‘format’
commands, refer to the manuals for the individual accessories or peripheral
equipment and to the description of the magnetic program cards, later in
this chapter.

All keys which are part of a format command {i.e., FMT and the next
key} will act as ‘no-operations’ if the appropriate accessory or peripheral
device is not connected; such commands will not affect program execu-
tion, except that they will terminate a short-form address.

PROGRAMMING THE MODEL 10 5-17

PROGRAM KEYS

Some FMT commands redefine the entire keyboard for use with optional
plug-in or peripheral devices. All subsequent keys then remain redefined
unti! a terminating instruction, usually a single ‘FMT’, is given. For
example:

‘'FMT FMT’ results in the character stamped on the front of each
subsequent key being printed by the Option 004 Printer if the -hp-
11211A Printer Alpha ROM is installed. Printing is then terminated as
soon as another ‘FMT’ key is encountered.

When a FMT command of this type is given and the appropriate plug-in or
peripheral device is not installed, then the normal function of the
subsequent keys will be executed, instead of their supposedly redefined
functions.

To avoid such unwanted execution, substitute a CONTINUE for each of
the keys to be redefined, including the FMT command and the terminat-
ing command.

5-18 PROGRAMMING THE MODEL 10

PROGRAM OPERATION

‘Program Operation’ describes methods used to load and run and to edit
programs.

The generalized instructions given here may have to be varied slightly
depending upon the requirements for the individual programs. FEach
program should have a set of user-instructions detailing the operating
procedures for that particular program. Even though the program is
intended for use only by the programmer the operating procedures for a
program are easily forgotten; it is often time consuming and difficult to
recreate them later.

The section titled ‘Program User-Instructions’ in Chapter 2 details the type
of information user-instructions should contain. Refer also to the programs
in the Math Pac, supplied with your calculator, for further examples of
user-instructions.

LOAD & RUN To load and run a program from the keyboard:
PROGRAMS
STEP 1: Address the memory:

PRESS: (if the RUN light is not lit)

Y Y
PRESS: GStarting AddressD
L

STEP 2: Load the program.
PRESS: [ProM

PRESS: Keys in the step sequence of the program.

PRESS: ((aun'}
STEP 3: Run the program.

Y Ty
PRESS: (Starting Address)
A W)

Enter data as required and press CONTINUE to start program
execution at the current address. Press CONTINUE to resume
program execution any time the program stops for a data entry,
etc.

(The following paragraphs discuss each of the preceding three steps.)

PROGRAMMING THE MODEL 10 5-19

PROGRAM OPERATION

{STEP 1) The calculator must always be in the ‘run’ mode whenever the
memory is to be addressed. The starting address for loading the program
must be numeric (even when the starting address for running the program
is to be a label). The address may be keyed as a short-form address
because it will be terminated by the PRGM key.

If, and only if, the starting address is 0000, then END may be pressed
instead of the key sequence ‘GO TO, 0, 0, 0, 0.

(STEP 2} Program steps can be keyed into the memory only when the
calculator is in ‘program’ mode. If any programmable key is pressed, it
will be loaded as a program step into the memory.

As each program step is loaded, the display scrolls upward one position so
that the code for the key pressed, and the address in which it is now
stored, appears in the Z-register. The Y-register always contains the address
into which the next step will be loaded. (If an error is made during entry,
refer to Editing and Correcting a Program, on Page 5-20.)

It is good practice always to switch back to ‘run’ mode (press RUN} as
soon as a program is loaded; this will prevent any changes being made
accidentally in the programmable memory.

{STEP 3) The starting address for running the program will often, but by
no means always, be the same as the starting address for loading the
program.

The address may be either a 4-digit numeric address or a label. The
short-form address should never be used when starting a program because
of the uncertainty of its being properly terminated by the next keystroke.
The most likely next step will be either a data entry or pressing
CONTINUE and neither of these will terminate the address properly.

The user can affect the program results by making any (appropriate)
keyboard operations, either before the program is started or whenever it
stops for, say, a data entry. Data may be entered and stored in the
memory, arithmetic operations may be performed on that data, and so on.
Any special requirements for such operations should be detailed in the
user-instructions for the individual programs.

EXAMPLE:
Load and run the (A X B)/{A +B) program from Page b-7.

PRESS: [mun | (if necessary)

PRESS: (END) (equivalent of GO TO, 0, 0,0, 0)

{continued)

5-20

LOAD & RUN
PROGRAMS
{continued)

EDITING
PROGRAMS

PROGRAMMING THE MODEL 10

PROGRAM OPERATION

PRESS: [prom |

PRESS: the keys in the step sequence of the program.

/""‘\
PRESS: [mun | (END J

Enter tho data (A and B).

PRESS: numeric keys for A

PRESS: (:T ‘

PRESS: numeric keys for B

DISPLAY: any number —» 2
A - Yy
B —> X

(o

% 'u

N
PHESS:‘ 5 '
PE

DISPLAY: A X B
A+ > <

¥
A - Yy
B - X

The preceding program can be rerun by entering new values for A and B
and then pressing CONTINUE; the END instruction, at address 0012,

automatically resets the program courter to 0000 as well as stopping
program execution.

Editing enables programs which are in the memoty to be checked, on a
step-by-step basis, in either the ‘program’ or the ‘run’ mode.

PROGRAM MODE:
Used to verify that the program steps have been loaded correctly,

PRESS: [run_]) (if necessary)

N Ty T
PRESS: (Starting Address)
A N

PROGRAMMING THE MODEL 10 5-21

PROGRAM OPERATION

PRESS: (rraM | (The starting address is in the Y-register.)

PRESS: (:@

Each time STEP PRGM is pressed, the program counter is incremented
by one and the display scrolls up; this enables the key-code for each
program step to be viewed in turn {see the appendix at the back of
this manual for the key-codes).

PRESS: @

The BACK STEP key has the opposite effect from the STEP PRGM
key; the program counter is decremented by ane, so that the display
scrolls down, each time BACK STEP is pressed.

As an example step through the program loaded during the example
on Page 5-19 and check that the addresses, and the key-codes stored in
them, are correct.

RUN MODE:
Used to verify program operation. The program is treated as if it is to
be run automatically except that the CONTINUE key is not used:
instead, the STEP PRGM key is pressed to execute each step in turn.
As each step is executed, the results appear in the display registers
exactly as if the same key was being pressed. Data must be entered at
the correct steps to check proper operation of the program.

NOTE

1. Neither STEP PRGM nor BACK STEP will
terminate a short-form address.

2. Do not use the BACK STEP key in the ‘run’
mode; the result will be meaningless.

3. There are some situations in which the opera-
tion of STEP PRGM, though predictable, is not
quite as expected. These are explained after the
next example.

EXAMPLE:
Single step the program from Page b 7.
With the program loaded i the memaory)
PRESS: 1 run T {1 necessary)

(continued)

5-22 PROGRAMMING THE MODEL 10

PROGRAM OPERATION

EDITING -
PROGRAMS PRESS: (Em:j
{continued) .

PRESS: Digit keys for A

y
V.

o

PRESS:

PRESS: Digit keys for B

=

PRESS: |51

| PRGW i

Each time the STEP PRGM key is pressed, observe that the display
contains the results of the corresponding operation, as shown in
the program.

In some situations {in the ‘run’ mode only) operation of the STEP PRGM
key produces unexpected resuits. This occurs for short-form addresses (for
both the program and data storage memories), and for labels.

Short-Form Address:

(a} [sTEP| KEY
00145 GO TO
0016 3
0017 6
0018 x
pos| 1 |

With 4-digit addressing the branch is made as soon as STEP PRGM is
pressed at the fourth digit. The above key sequence, however, contains a
short-form address, therefore STEP PRGM must be pressed at step 0018
before the branch is made. The multiply operation in Step 0018 is ‘seen’
only as an address termination, it will not be executed. The next time
STEP PRGM is pressed, the ‘up’ operation in step 0036 will be executed.

(b} [sTep| KEY

0324 | =x-=1)
0325 3
0326 x

Short-farm addressing for the data storage memory is similar to short-form
addressing for the program memory; in example b, STEP PRGM must be
pressed at step 0326 before the store operation is performed. In this case,

PROGRAMMING THE MODEL 10

PROGRAM OPERATION

because no branch is involved, the multiply operation in step 0326 is
executed at the same time.

L abels: STEP TEWY —|
0020| coro |
0021 LABEL
0022 A
0366 LABEL
0367 A
| 0368) X

Any time STEP PRGM is pressed at a LABEL key, the next key is ‘looked
at’ simultaneously. There are then two possibilities depending on whether
or not a GO TO preceded the LABEL key.

{(a} If the whole of the above sequence is singlestepped, then STEP
PRGM need be pressed only at steps 0020 and 0021 before the
program counter goes to 0368 (apparently} skipping steps 0022,
0366 and 0367. The third time STEP PRGM is pressed the
‘multiply” will be executed.

(b} It the program counter is set by some other means to point to

address 0366 (e.g., GO TO, 0, 3, 6, 6) and STEP PRGM is next
pressed, then the counter (apparently) misses only step 0367.

The editing feature enables program steps to be changed, deleted or added,
without reloading the entire program.

Changing and deleting steps constitute the simplest case.

PRESS: (ren] (if necessary)

N Ty
PRESS: (60710 {Address of incorrect s@
L N

PRESS: ((Prom)
the step to be changed will be in the Y-register.

PRESS: the correct key or, if the step is to be deleted,
CONTINUE (‘no operation’).

The corrected step will now be in the Z-register.

PRESS: [run)

5-23

CORRECTING
PROGRAMS

5-24 PROGRAMMING THE MODEL 10

PROGRAM OPERATION

CORRECTING EXAMPLE:
PROGRAMS
{continued) Change the (A X BY/(A + Bl program {Page 57) to solve for AB

(A + B). This requires only that step 0008 be changed from 'divide’
Lo ‘multiply”.

(With the program stored in the memory.)

PRESS: [wun | (sow') o0 o)
L : L /
PRESS: | O 8] e
DISPLAY: O007-------- '3 - Z
a2a0g-------- 5 e A
;0005 --------) - X
step to be changed
PRESS: (X}
)/Vstep changed
DISPLAY: OO0H-------- Jh - 2
aogg-------- = o
aolg-------- 27 — X

PRESS: [[(run]

The program may now be run as betore except that the solution
will be for AB (A + B}.

NOTE

As this program is alsc to be used in the next
examples, repeat the above procedure but change
step 0008 back to 'divide’.

If additional steps are to be inserted into a program, then the remaining
steps In the program must be moved down in the memory, to make room
for those additional steps. Where the program is short, or where the
addition is to be made near the end of the program, it is a simple matter
to key in the additional steps and then to key the remaining steps into
their new locations. Where there are many steps to be changed, or moved,
keying them all into memory can be a lengthy task. Here are two methods
which can be used to simplify inserting steps into long programs.

PROGRAMMING THE MODEL 10

PROGRAM OPERATION

METHOQD I.

In this method, all of the steps which are to be moved down in the
memory are recorded on a magnetic card. The recorded steps are then
re-loaded from the card after the additional steps have been inserted.

For simpheity assume thal the program of Page 57 is a long program
and that 1 s desired to insert a PAUSE instruction between steps 0007
and 0008.

To correct the program:

1.

2.

Record the steps which are to be moved, starting with step 0008;

PRESS: |soTo) | [§] | |: O }
r'/- o 4 f’(ﬁ‘\\
PRESS: | 0 I \ 8 |

INSERT: magnetic card into the card reader (see instructions
on Page 5-28}.

PRESS: [recoro]

Load the extra step (PAUSE) into address 0008:

PRESS: (Gow) L o ;. o 1l o |

T
PRESS: kPmEjl

PRESS: [soN |

Heoad the remaining steps from the magnetic card ithe program
counter is already pointing to address Q009 because the previous
operation used aadress 0008).

INSERT: magnetic card into the card reader,

PRESS: 1 oan |

{continued)

5-25

5-26

CORRECTING
PROGRAMS
{continued)

PROGRAMMING THE MODEL 10

PROGRAM OPERATION

The steps from the card will automatically be moved down in the
memory., The program may now be run as hefore, except that
there will be a pause; during the pause the partial result of the
program wiil be displayed.

When Method | is used, care must be taken to correct any branching
addresses which might now be wrong as a result of the changes.

METHOD Hi.

The second method of inserting steps consists of a ‘patch-in’ technique.
This method has the advantage over Method | that very few program steps
need be moved to different addresses.

Using the same example as in Method [, it is required to add a PAUSE
instruction between steps 0007 and 0008 of the program from Page 5-7.
Here is part of the program as originally written:

KEY
STEP | KEY |CODE
0007 Ej 13
0008 | = 35
0009 3 13
0010 4 27
0011 b 14
0012 | ewo 48

Ta insert the steps:

1. Starting at the first address to be changed {0008}, load instructions
to branch to some unused part of the memory. In this example,
the branching instruction requires that steps originally in addresses
0008 through 0010 be deleted.

I key

STEP KEY CODE

0ao7 a 13

Branch gggg soTe gt:

. LABEL

Instruction 0010 - 56
0011 b 14

0012 | w0 | 46

PROGRAMMING THE MODEL 10

PROGRAM OPERATION

In an unused part of the memory insert the steps to be added, the
steps which were deleted and instructions to branch back to the
original program. The program may then be run as before except
that the partial result witl be seen when the PAUSE is executed.

KEY
KEY CODE .
LABEL 81 .
w 86
PAUSE a7 |
- 35
= 13
t 27
co 1o 44
0 a0
0 0o
1 a1
1 ot

5-27

5-28 PROGRAMMING THE MODEL 10

MAGNETIC PROGRAM CARDS

Both program steps and data can be recorded on a magnetic card (Figure
5-1) and then loaded into the calculator any time in the future. The card,
which is six inches long, has two sides, each of which is recorded on
individually. The sides are identified only with the word ‘SIDE’, space
being left for the user to write any identifying information he pleases.
Either pencil or ballpoint pen may be used to write on the card; neither
will affect the magnetic properties of the card.

Protect Tab \

I ~
)
e - aqs -
E}} CALCULATOR PROGRAM CARD PART NO.
)] HEWLETT PACKARD 91620012

SIDE
_\ ol —
:K J

\

Protect Tah

Figure 5-1. The Magnetic Program Card

CAPACITY OF Sufficient program steps can he stored on a six inch magnetic card that

THE CARD the entire basic program memory (500 steps} can be recorded on one
card-side. The complete memory in Option 002 calculators {1012 steps)
requires two card-sides, and in Option 003 calculators (2036 steps)
requires four card-sides.

When data is recorded, the basic data memory of 49 numeric registers {not
including & and &, which cannot be recorded) requires one card-side;
Option 001 calculators, which have 109 numeric registers, require two
card-sides.

Occasionally, one card-side is not sufficient to record the amounts stated
above; this is normal and presents no problem because the INSERT CARD
.light indicates that another card-side is required.

INSERTING To record or load, insert the magnetic card into the upper slot of the
CARDS INTO card-reader as shown in Figure 5-2. QOrient the card so that the printed
THE READER face is towards the keyboard and the arrow on the card-side to be used is

pointing down. Lean the card slightly towards the keyboard and insert it
approximately an inch into the slot until a stop is felt. Do not force the
card into the slot, it will be automatically pulled through the reader when
the appropriate keys are pressed.

PROGRAMMING THE MODEL 10 5-29

MAGNETIC PROGRAM CARDS

REET GARD

Figure 5-2. Inserting the Card

During the record (or load) process, the INSERT CARD light is lit. If the
light remains lit when the card stops moving through the card reader, then
the recording (or loading) is not complete and another card must be
inserted. Recording (or loading) stops either when an END statement has
been transferred or when the end of the memory has been reached.

Program steps or data, once recorded, can be loaded into the calculator PROTECTING
any number of times. New information can be recorded over previously THE
recorded information on a card provided that the card is unprotected. To RECORDING

permanently protect the information recorded on a card-side, remove the
protect tab (see Figure 5-1) from that side of the card. Any attempt to
record on the protected card-side lights the STATUS light and does not
affect the recording currently on the card.

The RECORD and LOAD keys, which are not programmable, control the
recording and loading of programs (not data) on the magnetic cards.

(Other keys are also used for these purposes but under different circum-

stances; these will be explained later.)

To record a program which is in the memory:

1. Insert an unprotected card into the card reader as described above.

{continued)

5-30 PROGRAMMING THE MODEL 10

MAGNETIC PROGRAM CARDS

RECORD 2. Set the program counter to the beginning address of the program
{continued) to be recorded:

PRESS: (if necessary)

TN T
PRESS: (Startmg Address)
L

The address may be short-form because it will be terminated when
the RECORD key is pressed in the next step. The address may be
a LABEL, but if it is, then the label wili not be recorded. END
may be pressed instead of GO T0O, 0, 0, 0, O.

3. Record the program:
PRESS:

The card reader motor transports the card through the reader and
partially ejects it from the bottom slot. When the card stops
moving, recording has also stopped; remove the card from the card
reader.

NOTE

If the card is not pulled through the card reader,
then it was probably not inserted properly. Do not
press any keys; remove the card from the card
reader and re-insert it.

4. If the INSERT CARD light is still on, then the program is not
completely recorded and another card is required. Turn the card
over and re-insert it into the card reader (printed side facing the
keyboard} so that the other card-side can be recorded, or insert a
new card. It is not necessary to readdress the memory or press the
RECORD key; as long as the INSERT CARD light is on, the card
reader will automatically continue recording as soon as the card is
inserted. Continue inserting cards as necessary until the entire
program is recorded. {The recording process can be stopped at any
time by pressing the STOP key; this will probably result in the
recording being incomplete.)

PROGRAMMING THE MODEL 10 5-31

MAGNETIC PROGRAM CARDS

NOTE

Unless STOP is pressed, the recording process stops
when an END instruction has been recorded; the
program counter remains pointing to the address
containing the END. H there is no END, then
recording continues right through the memory and
stops only when the ‘end of memory’ program (see
Status Conditions in Chapter 3} has been recorded.

5. To avoid canfusion in the future, identify the card by writing on
the card such information as the name of the program, the number
of the card-side (if more than one side was used) and so on. Also,
if required, protect the recording by removing the protect tab (it is
recommended that you first verify that the recording is correct,
because the steps on a protected card-side cannot be changed}.

An example recording procedure is given after the LOAD key explanation.

To load a program from a magnetic card into the calculator’s memory:

1. Insert the card, into the card reader, with the printing facing the
keyboard and the arrow on the required card-side pointing down.

2. Set the program counter to the address which is to contain the
first step:

Y T
PRESS: {Starting AddressD
LU N

The address may be short-form but it would not normally be a
label.

3. Load the program:
PRESS: [oan)

As for recording, the loading continues until either an END is
loaded, or, if there is no END, until the last address in the
memory is reached. |f the INSERT CARD light remains lit when
the card stops then another card-side is required. (Loading can be
stopped at any time by pressing the STOP key.)

{continued)

5-32 PROGRAMMING THE MODEL 10

MAGNETIC PROGRAM CARDS

4. If the loading stops at an END, then the program counter will be

{continued)

pointing to the address which contains that END. If another card
is now inserted and LOAD is pressed, then the first new step

loaded will be substituted for the END from the previous program.
This is a useful feature as it enables programs, part programs, and
subroutines to be chain-loaded and then, if required, recorded as a
composite program.

EXAMPLE:

Record the (A X B)/{A t B) program (Page 5-7) on a magnetic card
and then load the program from that card into another part of the
memary {address (020, for example).

1.

Ensure that the steps of the program have been cqrrectly keyed
into the calculator.

Record the program:
PRESS: [run @ {if necessary)

Insert an unprotected card into the card reader.

Load the program from the card into the calculator; start the
loading process at address 0020 {in this program the change in
position in the memory can be accomplished easily because
there are no branching addresses to be changed):

PRESS: (com) { 0 \,) (' 0 \l

ir"(_7 o T
| 0 l
o

!'}

PRESS: (2)
S -

Insert the card into the reader using the same card-side as in
step 2.

PRESS: [toan]
The program may now be run as before except that the

starting address (0020) must be set each time the program is to
he run:

PROGRAMMING THE MODEL 10 5-33

MAGNETIC PROGRAM CARDS

PRESS: Gor\oj (0 : (0]

PRESS: ("’ 2 (0 \,

AR
Enter the value for A into the Y-register and for B in the
X-register.
{ C‘\
i g |
N
PRESS: | !
i N
by
} !
1y _,,1'
Automatically loads and starts execution of a program AUTOMATIC
recorded on a magnetic card. The two keys are the ‘LOAD & RUN’

equivalent of the following key sequences given together:

GO 7O, 0, 0, 0, 0, LOAD — which loads a program, starting at address
0000, from the card in the card reader, and

GO TG, 0, 0, 0, 0, CONTINUE — which starts program execution at
address 0000, as soon as the END has been loaded from the magnetic
card.

‘FMT, GO TO' may be given from the keyboard. Alternatively, it may be
included as the last steps executed in a program, so as to ‘call-for’ the
next program to be automatically loaded and run. In this way the parts of
a very long program may be conveniently linked.

All of the rules applicable to the normal load routine also apply to this

automatic load except that program execution starts automatically as soon
as an END is loaded.

5-34

RECORDING
DATA

LOADING
DATA

PROGRAMMING THE MODEL 10

MAGNETIC PROGRAM CARDS

Causes the data stored in the numeric registers to he
recorded on a magnetic card. Recording starts at register
000 and continues sequentially until the contents of all of
the numeric registers has been recorded. The INSERT CARD light remains

lit if another card side is required (see ‘Capacity of the Card’ on Page
5-28). Recording may be-stopped at any time by pressing the STOP key.

The contents of the @ and & registers cannot be recorded.

if 'FMT, x — ()" came from a program, then program execution
automatically continues as soon as the recording is complete. (Press
CONTINUE to resume program execution if the recording was stopped by
pressing the STOF key.)

Causes the data stored on a magnetic card to be loaded

into the numeric data storage registers. Loading starts at
register 000 and continues until all of the registers have
been loaded.

The INSERT CARD light remains lit if another card side is required.
Loading can be stopped at any time by pressing STOP.

The contents of the 3 and & registers are not affected by the loading
process.

H ‘FMT, x <« () came from a program, then program execution
automatically continues as soon as the loading process is complete. (Press
CONTINUE to resume program execution if loading was stopped by
pressing STOP.})

PROGRAMMING THE MODEL 10 5-35

PROGRAM KEYS - CONDITIONAL BRANCHING

I 3
x>y FLAG

The four ‘IF’ keys are used for ‘conditional branching’ (see Page 5-10).
Each key tests the condition defined on that key; the subsequent program
operation is then determined by the resuit of the test.

The three keys which contain the ‘x’ and 'y’ symbols compare the
numbers contained in the X and Y registers., The three conditions defined
are:

IFx <y
‘I the number in X is less than the number in Y~

IFx=y
‘If the number in X equals the number in Y~

IF x>y
‘I the number in X is greater than the number in Y’

The IF FLAG key is a special case, it tests a condition definable by the
user (see SET FLAG, Page 5-39, for a complete explanation).

For all four conditions there can be only two results to a test; either the
condition is ‘met’ (YES) or the condition is ‘not met’ (NO}.

CONDITION NOT MET:

When the tested condition is not met {NO), the program automatically
skips (ignores) the next four steps and continues normal execution at the
fifth step following the ‘IF".

CONDITION MET:

When the tested condition is met {YES), the program automatically goes
to the next step following the ‘IF’; subsequent operation then depends
upon the type of key-sequence contained in the four steps following the
‘IF* key. The simplest case is a key-sequence consisting of a 4-digit
address; the program branches to that address, executes the step contained
there, and then continues program execution seguentially from that
address.

NOTE

The other types of key sequence which can be used
after an IF key require that the programmer remem-
ber numerous exceptions to the branching rule. For
this reason, those sequences are discussed in a
separate section, ‘Advanced Branching Techniques’,
at the end of this chapter.

5-36 PROGRAMMING THE MODEL 10

PROGRAM KEYS - CONDITIONAL BRANCHING

When an IF instruction (other than IF FLAG) is encountered, the two
numbers in X and Y are automatically rounded before the test is made. In
each register, the tenth digit of the number is rounded according to the
value of the guard digits; the guard digits are then set equal to zero. Thus
the numbers tested actually have the same values as would appear in a
floating point display with all ten significant digits displayed. After the
test has been made, the numbers in X and Y retain their rounded values.

In most cases these rounded values are the desired values for further use.
However, sometimes the slight loss in accuracy resulting from the rounding
may not be desireable; in these cases, provision can be made, in the
following way, to retain accuracy. Before a test is made the two numbers

IF can be stored in the data-storage memory; after the test, the stored
FLAG numbers can be recalled and substituted for the rounded numbers.

{continued) In the following sequence the conditional key in step 0236 tests to
determine if the numbers in X and Y are equal:

STEP KEY

0236 | Fx=y
0237
0238
0239
0240
0241

~>=l O

If the condition is not met (NO the numbers are not equal): four steps,
0237 through 0240, are skipped and the ‘up’ in 0241 is executed.

If the condition is met (YES the numbers are equal): the program ‘sees’
address 0347 (contained in steps 0237 through 0240), it branches to that
address and executes whatever instruction is contained there.

The next program is a simple counting routine which illustrates a typical
use for an ‘IF’ key (in this case, IF x < y). The program sums any
positive number (N} until the total (Zn) is equal to, or greater than, 100.
‘IF x <y’ tests to determine whether or not 100 has been equalled or
exceeded.

The final display shows N in the Z-register, 100 in Y and N {the final
Zn)in X,

If N is negative, then 100 is never reached and the program sums (—}N to
{—)infinity.

Load the program, starting at address 0000; to run the program, press
END, enter any (positive) value for N into the X-register and press the
CONTINUE key.

PROGRAMMING THE MODEL 10

PROGRAM KEYS - CONDITIONAL BRANCHING

Enter N

-t—

FLOW CHART Display:

Zn=ZN

Add:
Zn+N=2Zn

At step 0008, if Zn is less than 100, the condition tested is met (YES);
the program continues to the next steps and, as these constitute an
address, 1t branches (to step 0014). When Zn is no longer less than 100
{i.e. Zn = XN #» 100), the program skips steps 0009 through 0012 and
executes the STOP at step 0013. (Notice the use of the short-form address
in step 0018}

KEY DISPLAY STORAGE
STEP| KEY |CODE X Y 2 a
0000 X} 23 N
Qoo g 13 N . N
pooz | ¢ 27 N N
0003 | ewrer exp 26 1 N
0004 2 02 100 N -
0005 4 27 100 100 N
0006 & 13 N=Zn 100 N
. flashing display
0007 PAUSE 57 Zn 100 N
0008 | rx<y 52 zn 100 N
0003] 0o Zn 100 N
0010 0 0o Zn 100 N
0011 1 01 Zn 100 N
0012 4 04 zn 100 N
[;*final display
0013 sT0P 41 InzZIN 100 N
D4 | xenr 67 zn 100 N
004 + 33 zn 100 N
po16 a 13 | {(Zn+ N)=Zn 100 N
i Go To 44 zn 100 N
0018 7 07 En 100 N ¥
0019 END 46

5-37

5-38 PROGRAMMING THE MODEL 10

PROGRAM KEYS - CONDITIONAL BRANCHING

The next program calculates N! (N factorial) for values of N up to, and
including, 69.

NY = N(N-THN-2) {(N—N+2){1}
Bl=6XEX4X3IX2X1=720
0! = 1 {by definition) .

FLOW CHART

n = current multiplier term {N, N—1, N—2, etc.)
P = partial result of N!

tF
FLAG

. Enter N ~t— — = —— —— e e —I
{continued)

[
|
|
Stare N — g |
N=n |
1=p !
|
- I
I
Y
|
I
nctr YE |
I
w |
3 | '
Multiply: P=N! [
PXn=P - Recall n |
Display I
I
A]
L——
Subtract:
n—-1=n

Load the program, starting at address 0000; to run the program, press
END, enter the value for N into the X register and press CONTINUE. This
program is arranged so that, once the program has been run, the program
counter automatically sets to address 0000 ready for the next value of N;
the END at step 0020 does this.

PROGRAMMING THE MODEL 10 5-39

PROGRAM KEYS - CONDITIONAL BRANCHING

KEY DISPLAY STORAGE
STEP| KEY |CODE X Y F4 a I}
0000 x-0 23 N .
0001 g 13 N . N
0002 4 27 N N=n
0003 1 01 1 n
0004 | xX-1 23 1 n -
0005) 14 1 n 1=P
0006 | wx>y 53 1 n
0007 0 00 i n
0008 0 00 1 n
0009 1 01 1 n
0010 7 07 1 n
0011] y-u 40 1 n
0012 X 36 1 n Y
0013 h 14 1 n Pxn=P
0014 — 34 1 n-1=n
0015{ w0t 44 1 n
0016 6 06 1. n
ao17 g -1 13 N n=0, .
0018 t 21 N N 0
0019 b 14 | P=N! N 0

inal display]

0020 END 46] N 0 Y Y

IF FLAG key (Page 5-35). SET

@ The SET FLAG key establishes the condition to be tested by the
FLAG

The 'YES’ condition is establiished by giving SET FLAG, either from a
program or from the keyboard.

The ‘NO’ condition is established by clearing the flag; the flag is cleared
automatically whenever the calculator is switched on or by the CLEAR or
IF FLAG (given from the keyboard or from a program).

The flag enables the programmer to select the conditions which will
determine whether a conditional branch is to be made. The types of
condition which require the flag, and the actual use of the flag, are best
iltustrated by examples; the next two programs serve this purpose.

5-40 PROGRAMMING THE MODEL 10

PROGRAM KEYS - CONDITIONAL BRANCHING

The following program illustrates a situation in which the flag must be set
from the keyboard. The pregram calculates the average value (X) of N
data points. The formula used is:

{continued)

As can be seen from the flowchart, the program is arranged so that each
time a data point is entered it is added to the accumulative total. At the
same time, a counting routine counts the number of data points. When
there are no more data points to be entered the user sets the fiag, thus
establishing the "YES' condition and causing the average value of the data
points to be calculated.

Zx, =10 — g
CLEAR N=0 -y
Clears flag —E

\

STOP

Enter new data point — X
or, if no data, set the
flag.

(Clears fiagh——

Divide
K =
fndal QR VY
Accumulate and N
count data points
Zx, +x — g i
N+1 =Y Display:
N - ¥
X - X

Load the program starting at address 0000; to run the program:

__.
-
o
m
%)
7
T
. m .
. Z
=}
MCZ— 4200

PROGRAMMING THE MODEL 10

PROGRAM KEYS - CONDITIONAL BRANCHING

2. Enter the first data point {X1} into the X-register and
N
! oy
N
PRESS: I
U
| E
i
3. Enter the next data point into X and press CONTINUE.
4. Repeat step 3 for each one of the remaining data points.
o
P ! E \
f A i
b. PRESS: | SE] ! |
S
v B
' !
KEY DISPLAY STORAGE
STEP| KEY | CODE X Y d
0000 cuear 20 0 . 0 0=Zx;
snter
0001 sTOP 4 | X, I previaus N Zx,
0002 If FLAC 43 X, N
0003 0 00 X, N
0004 0 0o X; N
0005 1 01 X, N
0006 5 05 X N
0007 | =x-0 23 X, N
0008 + 33 X; N Y
0009 3 13 X, N Ix, + %, = Zx
0010 1 0 1 N 2x,
oo + 33 1 N+1=N
0012 | cean x | 37 0 N
0013 GO TO 44 0 N
0014 1 01 1} N
0015 | y-c 40 X, N
0016 - 35 X, N Y
17| a | 1 " N 2%
0018 | 3 13 X N X
0019 END a6 final display

5-41

5-42 PROGRAMMING THE MODEL 10

PROGRAM KEYS - CONDITIONAL BRANCHING

The next program illustrates use of the SET FLAG instruction as 3

FSLZL program step. This program calculates the following alternating series:
~3+5-7+9— oo
{continued) 1-3+5-7+9— ...
NOTE

A serigs with simple terms is chosen as this program
is intended to illustrate use of the IF FLAG and
SET FLAG to alternately branch to either side of a
loop. The branching technique can, however, be
easily adapted to any series with more complex
terms.

In the program, each term (tn) of the series is generated and added to the
accumulative total (P). As each term is added, one {1} is added to a
counter (N), to count the number of terms.

The sign of n must be alternated {+ or —}: the-flag is used to determine
whether to leave n positive or change the sign to (=). This is shown in the
partial flow chart given below:

wor® s
1,

Irgerf;ra;“} SET FLaG | |
| valun:,;;r] | ; (clears flag)
L"’T_J CHANGE SIGN N
i {—in
L{=)n {(+}n

Add (£)nto P

If the flag is set:

a. Positive {(+)n is added to P:

b. The flag is cleared (whenever an IF FLAG instruction is
encountered the flag is cleared automatically),

PROGRAMMING THE MODEL 10

PROGRAM KEYS - CONDITIONAL BRANCHING

The next time through, the flag is not set:

4. Negative (- In is added to P;

b. The flag s set (by & program step) so that the next time through
{+In will he added.

FLOW CHART: forseries 1 — 3+ 5 -7+ 9 oo

n = current term of the series
N - number of terms added
P = the accumulative total of the series.

CLEAR 3 &
and FLAG @

¥

P
Ni=1
n
r
P — 3
Stm N —- &

\

SET FLAG g] (Clears flag)
} N
CHANGE SIGN
{-In
lon]

\

Add (HntoP | — &
Add 1to N — &

5-43

5-44 PROGRAMMING THE MODEL 10

PROGRAM KEYS - CONDITIONAL BRANCHING

Load the program starting at address 0000; to run the program:
SET
FLAG

{continued) PRESS: [euo \
. l\
l\

To stop the program and display P, N and n:

o)
i,

mMoZ——20

N
PRESS: rpause) (press CONTINUE to resume program
(S execution).

{Note the use of x?, \/x 10 ensure that n is always positive at step 0011.)

KEY DISPLAY STORAGE
STEP| KEY |CODE X ¥ z E b
0000 | crean 20 a [0 i i
0001 1 at 1 a 0 l
0002] x-0) 23 1 | 1]
0003 a 13 1 0 0 1=p
0004 X+ 23 1 1] 0 P
0005 b 14 1 0 1 1=N
0006 1 sl N P 1 N
6007 1t 27 1-n N p
ooos PAUSE 57 flashing display
0009 | rause 57 n N P
o010 x? 12
go11| JE 16 inl=n N P
o012 + n n n N
0013 2 0z 2 n N
0014 -+ 33 2 n+d=n N
anis ¥ 25 n N N
0016 IF FLAG 43
at17 0 ae
ao018 0 a0)
0019 2 02
0020 3 a3
0021] seveac h4
0022 | cwesen | 32 -n N N
0023 x-u 23 tn N N
0024 + 33 o N N ‘L
0025 a 13 n N N Pt{tjn=P
0026 4 27 0 +n N P
0027 1 01 1 n N
0028 Xl 23 1 0 N
4029 + 3 1 0 N 1
0030 & 14 1 " N N+1=N
a0 a 13 p n N N
8032 4 27 P 4n
0033 b 14 N P n
0034 [ecu 4 12 n N P
0035 waro 44
0036 8 i}
po37 [0 46 ¥

PROGRAMMING THE MODEL 10

PROGRAM KEYS - SUBROUTINES

The SUB/RETURN key is used to call (SUB), and to return from
R

A {RETURN), a subroutine (see also Page 5-10). Keying sequences
are shown below.

Subroutines may be nested up to a depth of five, An attempt to nest to a
depth of six is an error; the program will stop and the STATUS light will
be activated (for compiete details refer to ‘STATUS CONDITIONS’ at the
end of Chapter 3}.

Both the initialization process, which occurs at turn-an, and the END key
{given from either a program or the keyboard) automatically reset the
nesting to a depth of zero so that all five depths are then available.

Programs stored as subroutines may also be used as stand-alane programs
{illustrated on Page 5-50).

. M Eartmg address of subroutme)

The above keying sequence is used in the callmg program to (uncondi-
tionally) call a subroutine; the starting address in the sequence may be a
4-digit numeric address, a short-form numeric address (properly termin-
ated) or a label (‘LABEL, any’), If the address is a label then the first two
steps of the subroutine must also be that label. The keying sequences used
to conditionally call a subroutine are detailed under Advanced Branching
Techniques at the end of this chapter. Execution of the steps of the
subroutine starts autamatically as soon as the subroutine is catled,

SuB.

RETURN.,

SUB/RETURN must also be included as the last step to be executed in
the subroutine. The RETURN causes a branch to the ‘return-address’ in
the calling program, The return-address is always the address immediately
following the last step used to call the subroutine. Execution of the calling
program then continues automatically, starting at the return-address.

The following program steps illustrate a call and the subsequent return,

Calling Program Subroutine
STEP | KEY STEP | KEY

0037 | x+0
0025 6o T0 0038 g
0026 |sus/ReTuRn
0027 0

0028 0 0058 | rause

0029 3 0059 |sue/RETuRN
0030 7]
0031 | xen

5-45

5-46 PROGRAMMING THE MODEL 10

PROGRAM KEYS - SUBROUTINES

Instead of executing the step at address 0031, the program branches to
Sus address 0037 and executes the steps of the subroutine, At address 0059,
the ‘RETURN’ causes the program to branch back to the returm-address
{0031) and continue execution of the calling program from there.

RETURN

{cantinued)

NESTING SUBROUTINES
Any number of subroutines may be called individually during a program;
however, it is also possible to use more than one subroutine at one time.

One subroutine can call a second subrouting which, in turn, can call a
third subroutine, and so on. This multiple-calling is known as ‘nesting’.
The calculator can remember {store) from one to five return-addresses at a
time so that the subroutines may be nested any depth up to a depth of
five. Calling a sixth subroutine without first returning to at least the
fourth depth constitutes an error because the calculator cannot remember
more than five return-addresses at one time.

Returns are made on a ‘last-in, first-out” basis, the return always being
made to the last return-address stored. As soon as the return is made, that
return-address is forgotten (erased from storage) so that the previous
address now becomes the ‘last’ one. Thus the returning order is always the
opposite of the calling order.

NOTE

When preparing to run a program which nests
subroutines, press the END key to ensure that all
five levels of nesting are available; END. automat-
ically erases any stored return-addresses to which
the return has not yet been made.

The next program illustrates the use of a subroutine; the N! program {Page
5.38), altered slightly, is used as the subroutine.

The program calculates possible combinations (C} of n objects taken k at a
time. For example:

If a box contains (n) 15 differently colored balls, how many possible
color combinations (C} are there if {(k} b balls are selected (and then
returned) at a time?

Answer = 3003

The formula used in the ‘possibie combinations’ program is;

n n!
Sk TR k)
The program caiculates C for any values of n and k up to, and including,
G9.

PROGRAMMING THE MODEL 10 5-47

L
PROGRAM KEYS - SUBROUTINES

SIMPLIFIED FLOWCHART FINAL FLOWCHART

(n—k}! ; CLEAR, STOP

| !

Enter data -
Kl ‘ k— x

Stare:
4 n = (a0

k — 001

k! {n—k)!

¥

—Sm—(} Subtract:

] N1 —t—- n—k

nl ¢

-+t (n—k}
! Store —» 002
n

Kl (n—K} ¢ ¥
Recall k
N (k)

Y

. Multiply and
Store: .
k! (n—k)! — 002

¥
Aecall n
+——L— [p)
1 ql

 J
Divide:

nl _
k! {n—k)! ¢

{

Display:
c
n
k

i
R N

5-48

SUB

RETURN

{continued)

PROGRAMMING THE MODEL 10

PROGRAM KEYS - SUBROUTINES

Load the program starting at address 0000; the N! subroutine follows
immediately after the main program.

To run the program:

c
A
PRESS: END : T
K | N j
— | U
\‘ E ,’
Enter data: n(15) —» Y
k(5) - X

-
oy
m
92
w
mME2—--Z00

Before the final answer appears, the display will flash three times, showing

the results of the factorial subroutine for each value of N (n—k, k and n
respectively).

FLASHING DISPLAY: zero =—» 2
N e
NI - X

FINAL DISPLAY: C 3004. - 2
n /5. o
k 5. - X

{Note that this program contains several examples of short-form
addressing, including short-form data register addresses.)

PROGRAMMING THE MODEL 10 5-49

PROGRAM KEYS - SUBROUTINES

KEY DISPLAY
STEP| KEY |CODE X Y Z
0000 | cLear 20 0 b . 0
enter
ana1 sTop 4 k n
0002 Y- 40
G003 0 00 n
0004 | x-t1 23
0005 1 M k
0006 - 34 k n—k
0007 ¥ 25 n—k

0008 G0 1o a4
0009 | svesretuan | 77
o010 3 03
0011 7 07

Calculate {n—k}!

0012 x-0) 23 (n—k)! n—k 0
0013 2 02

014 X«t) 67

0015 1 01 k

0016 | coro | 44

gg:; e ;; Catculate k!

(HIRR] 7 o7

0020 X+l 23 k! k 0

no2t x 36
0022 2 a2
0023 X+t 67
0024 0 0o n
0025 6o T 44
0026 | sun/ReTuRN 11

0027 3 03 Calculate n!
0028 7 07
0029 Xei} 87 nl . .
0030 - 15
0031 2 02 c . .
032 2y 30 n c 0
o3| ¢ |2 : :
0034 Xt 67
0035 1 01 "
final display

0036 5TOPR 41 . ’ X

{continued}

DATA STORAGE REGISTERS
0oo | n
o0 k
002 | (n—k)!, k!{n—k)!

5-50 PROGRAMMING THE MODEL 10

PROGRAM KEYS - SUBROUTINES

KEY DISPLAY
RETURN STEP KEY CODE X Y Z
| 0037 Xt 23 N
{continued) 0038 a 13
0039 4 27,
0040 1 01
0041 X+ 23
0042 b 14
0043 | x>y 53
0044 0] a0
(045 0] 00
wioE| 5 05
= | 0047 5 05
§ o048 | y-0 | ag
m | 0049 x 36
a{os0] 4 14
= | 0051 —_ 3
0052 GO TO 4
0053 4 [
0054 3 03
0055 a 13
0056 1 27
0057 b 14 flashing display
0058 PAUSE 57 N! N H
0059 | sue/ReTurN 17
.| 00E0 END 46

A program written as a subroutine may also be used as a ‘stand-alone’
program provided that two simple rules are observed:

1. Press END to erase any return-addresses currently stored in the
calculator.

2, Do not use the SUB/RETURN key when addressing the memory
from the keyboard before the program is run. If SUB/RETURN
were to be used then the current address (in this case 0000} would
become the return-address; program execution would automatically
continue at that address when the steps of the subroutine had been
executed.

To use the N! subroutine from the previous program as a stand-alone

program:
PRESS: (Eq

PROGRAMMING THE MODEL 10

PROGRAM KEYS - SUBROUTINES

s (o) (0 (0 1 (3)(7)

Enter a value for N into the X-register and then press CONTINUE.

The program will stop with the value for N in ¥ and NI in X. The
STATUS light will also be on, indicating that there was no return-address
for the RETURN at step 0059. In this case the light may be ignored
because the lack of any return-address was intentional.

5-51

5-52 PROGRAMMING THE MODEL 10

ADVANCED BRANCHING TECHNIQUES

When testing with the conditional branching keys {Page 5-35), there can
be only two possible results to the test; either the tested condition is ‘not
met’ {NOJ, or it is ‘'met’ {YES).

The ‘not met’ condition results in the four steps following the ‘IF’ key

being skipped and program execution resuming at the fifth step. There is
never an exception to the ‘skip-four-steps’ rule.

The “met’ condition results in the program going to the next step after the
‘IF’. The purpose of the four steps after an |IF key is to contain the four

digits of a branching address, hence the need to skip those steps when the
condition is ‘not met’,

The conditional branches in the example programs presented earlier in this
chapter all use four-digit addresses; however, it is possible to use other

types of address and even operations. Here is a general description of the
type of key-sequences which can follow an ‘IF":

a. The address which follows an IF key can take any one of four
forms (listed below}; notice that the ‘GO TOQ' key is required only
if the LABEL is used. Numeric addresses can be short-form if
properly terminated.

1. Branch to a numeric address ‘n, n, n, n'.
2. Branch to a label ‘GO TO, LABEL, tany)’.

3. Call a subroutine with a numeric address ‘SUB/RETURN,
n, n,n,n'.
4, Call a subroutine with a label address ... ‘GO TO,

SUB/RETURN, LABEL, {any)’.

b. If the steps immediately following the ‘IF' are operations {e.g. +,
1) then the branch is cancelled and the operations are executed.

The following program-sequences, 1 through 9, are parts of imaginary
programs. Each sequence illustrates a typical combination of keys follow-
ing an ‘IF’ instruction; in each case the subsequent activity for ‘condition
met’ (YES) and ‘condition not met’ (NQ) is explained. Only the IF x = y'

key is used, however the explanation would be the same for any of the
four IF keys.

PROGRAMMING THE MODEL 10 5-53

ADVANCED BRANCHING TECHNIQUES

SEQUENCE 1:

4-digit address.

STEP| KEY
0126 | * z=y
0127
fi128
p129
0130
0131

LMo O

YES: Branches to address 0056 without executing step 0131.

NO: Skips four steps (0127 through 0130) and enters 3 into the
X-register.

SEQUENCE 2:

Short-form address terminated by an operation.

STEP| KEY

0126 IFx=y
0127
0128
0129
0130
0131

WxIom

YES: Branches to address 0056 without executing step 0129,

NO: Skips four steps (0127 through 0130) and enters 3 into the
X-register.

Notice that, in Sequence 2, steps 0129 and 0130 will never be executed
unless a branch is made to them from elsewhere in the program. If such a
branch were not required, then steps 0129 and 0130 would normally
contain CONTINUE's (no operation). In this case, the main advantage to
be gained from using the short-form address is in time-saving; even though
this is only a few millionths of a second it could be significant in some
situations.

5-54 PROGRAMMING THE MODEL 10

ADVANCED BRANCHING TECHNIQUES

SEQUENCE 3:
Operations.

STEP

KEY

0126

0128
0129
0130
D131

¢127 |

Fx=¥y

UTRIRT AT g |

YES: Executes all steps.

NO: Skips four steps {0127 through 0130) and recalls the contents

of 8 to X,

SEQUENCE 4:
Digit entry.

STEP

KEY

0126
0127
0128
as
0130
0131

Frx=y !
CONTINUE

1R
0
0
1

YES: CONTINUE acts as a ‘'no operation’ but cancels the branch
so that the digits (1001} are entered into the X-register.

NO: Skips four steps (0127 through 0130) and enters 1 ({step
0131} into the X-register,

SEQUENCE 5:
L.abelled address.
STEP KEY
D126 | wa=y
D127 G0 To
D128 LABEL
0129 k24
0130 | cowrimue
03 e

YES: Branches to the address specified by ‘Label #n'. In this case
the CONTINUE serves no function except to step the program
counter past address 0130 when the program is being loaded.

NO: Skips four steps (0127 through 0130) and executes the

‘divide’.

PROGRAMMING THE MODEL 10

ADVANCED BRANCHING TECHNIQUES

SEQUENCE 6:

Subroutine-call using a numeric address.

STEP | KEY
0126 | w x=y
0127 | sue/RETURN
0128 0
0129 2
0130 4
0131 6
10132 s

YES: Branches to the subroutine starting at address 0246: the
‘return’ will be made to address 0132.

NO: Skips four steps {0127 through 0130}, enters 6 {step 0131)
into the X-register and divides.

SEQUENCE 7:

Subroutineall using a short-form address (similar to Sequence 6).

STEP KEY
0126 | wx=y
0127 | sus/RETURN
0128 2
0129 4
130 6
0131 =

YES: Branches to the subroutine starting at address 0246; the
‘return’ will be made to step 0131,

NO: Skips four steps (0127 through 0130) and executes the
‘divide’,

$-55

5-56

PROGRAMMING THE MODEL 10

ADVANCED BRANCHING TECHNIQUES
SEQUENCE 8:

Subroutine-call using a label.

STEP| KEY
0126 | v x=y
0127 Go 70
0128 | sua/RETURN
0129 LABEL
0130, W
0131 X

YES: Branches to the subroutine whose starting address is specified
by 'Label, 7'; the return is made to step 0131,

NO: Skips four steps (0127 through 0130) and executes the
‘multiply’.

SEQUENCE 9:

To conditionally return from a subroutine.

STEP| KEY
0126 | wx=y
0127 | continue
D128 | sve/ReETURN
0129 | cONTINUE
0130 | conTinue
0131 Xet)

YES: The CONTINUE in step 0127 cancels the branch and the
RETURN in step 0128 is executed.

NO: Skips four steps (0127 through 0130) and executes step 0131,

OPTION 004 PRINTER

GENERAL INFORMATION

The Option 004 9810A Calculator contains a printer which is capable of:
‘hard-copying” data from the calculator’s X-register, logging keyboard
operations, and listing the steps of any program stored in the calculator’s
memory. Each of these printer operations is described in the section
entitled PRINTER OPERATION.,

If your calculator does not contain Option 004, your nearest -hp- Sales
and Service Office can install the printer for you. When ordering the
printer for your calculator, order the -hp- 11219A Printer.

One of the many products available for the Mode! 10 is the -hp- 11211A
Printer Alpha Read Only Memory (ROM). With this accessory the entire
calculator keyboard is re-defined to enable printing of alphanumeric
characters by either keyboard or programmed instructions. The Printer
Alpha ROM also complements keylog and list operations by adding
abbreviated titles and mnemonic symbols to the information normally
printed during either operation (see the foldout in the Appendix).

The Printer Alpha ROM may be purchased at any time and plugged into
the calculator through the top cover. For complete details on this and
other easy to install ROM’s for your Model 10 contact any -hp- Salés and
Service Office.

Printer paper may be ordered from the nearest -hp- Sales and Service
Office. See the inside rear cover of this manual for office locations. Printer
paper is available in 8 roll quantities, -hp- Part No. 92810401.

Printer paper is loaded by using the following procedure (refer to Figure
6-1). :

Lift the flap attached to the calculator’s top cover.

2. Remove and discard the paper core of the previous roll. If the
remaining roll is small and a new roll is to be installed, remove the old
roll by:

a. Unrolling it until the core and paper are above the bail:
b. Grasp the roll firmly and pull up and forward; the paper guide will
tear the paper off cleanly.

{cantinued)

6-1

INTRODUCTICN

ALPHA
PRINTING
CAPABILITY

ORDERING
PAPER

LOADING
PAPER

6-2 OPTION 004 PRINTER

GENERAL INFORMATION

LOADING 1 3. Remove the first layer of paper from a new roll.
PA?EH § 4. Insert the new roll so that the free paper end is positioned as shown in
(continued) Figure 6-1. Be sure the bail drops back into place.
5. Press PAPER until the paper advances through the printer mechanism
and appears beyond thg printer window,
6. Lower the flap.
Figure 6-1. Loading Paper
PAPER Step 2 in the preceding procedure may be followed in order to remove a
REMOVAL partially used roll of printer paper.

NOTE

The printer will not operate if the printer paper roll
is empty or if there is no paper loaded in the
printer. If the paper roll empties during program
operation, the program will be halted at a PRINT/-
SPACE Instruction. Provided no print instructions
are given from the keyboard or a program, the
disabled printer will not affect other calculator
operations.

OPTION 004 PRINTER 6-3

GENERAL INFORMATION

The printer window may be removed, to facilitate cleaning or paper : PRINTER
loading, by carefully sliding it up and forward (see Figure 6-2). - WINDOW
REMOVAL

Figure 6-2. Printer Window Removal

The following procedure may be used to verify the printer's electrical ELECTRICAL
performance. INSPECTION

NOTE

[f your Calculator contains a PRINTER ALPHA
ROM, you should also perform the Electrical In-
spection in the Printer Alpha ROM Operating
Manual,

6-4 OPTION 004 PRINTER

GENERAL INFORMATION

ELECTRICAL , LINE
INSPECTION SWITCH: e 3 oN

(continued)
PRESS

If the light below the KEYLOG key is not on,

PRESS:

NOTE

When the KEYLOG MODE is on press keys slowly
enough to enable the printer to log each keystroke.

To load the program:

=lolololo

s (o)) (2 69

Solclololelol:
e laslanlolo
PRESS:-
SoloCCCElE
o @) @ @ @ @ (2

To run or rerun the program:

PRESS: '

OPTION 004 PRINTER

GENERAL INFORMATION

HARD COPY:

To obtain a listing of the program previously loaded:

PRESS: (st)

HARD COPY:

{continued}

ELECTRICAL
INSPECTION
(continued)

OPTION 004 PRINTER

GENERAL INFORMATION

To verify keylog operation, compare the hardcopy printed during program
entry (printed before the program was run) with the program listing. The
printed lists of program steps should contain identical information.

The printouts should be evenly spaced and completely legible. If any
characters are not completely printed the program may be rerun and both
printouts compared with the example. Should the printer still fail to

operate properly, contact your nearest -hp- Sales and Service Office for
assistance.

OPTION 004 PRINTER

PRINTER OPERATION

This section describes how to use your printer. The printer is capable of
performing three important functions: printing data, keylogging, and
listing program steps. The examples following each description should be
performed in order to obtain a good understanding of printer operation.

Any data in the X-register can be printed by pressing PRINT/SPACE.
Since only one instruction is required to print the data, successive
PRINT/SPACE instructions will cause the printer to space one line for
each added instruction.

The PRINT/SPACE instruction also terminates the number in the X-
register. |f the number was not previously terminated, (i.e. just entered
from the keyboard) the hardcopy will contain an asterisk ().

EXAMPLE:

Print data during keyboard operation.

PRESS: [run | [Fx()] [3

L
Enter data and print.
: Vo ri-‘\‘ [‘\" r Fr’-R?IVNT o
PRESS: | 6 k 5 , nsnnce [(.
i / L !
[puint | PmNT ' memT\
PRESS: ‘ | SPACE) spnca 1 (x ,‘ \ sr'ncz)

HARD COPY:

Notice that the data entry symbo! accompanies only an unterminated
number. Also, notice that a successive PRINT/SPACE instruction causes a
line space (space between printed lines).

The PRINT/SPACE instruction is also easily programmed. See the section
titled PROGRAMMING WITH THE PRINTER for further information.

PRINTING DATA

PRINT
SPACE

DATA ENTRY
SYMBOL

KEYLOG
MODE

OPTION 004 PRINTER

PRINTER OPERATION

The keylog mode is indicated by the light below the KEYLOG key.
Pressing KEYLOG will either activate or release the keylog mode.

By specifying KEYLOG (on) during the RUN mode, the printer will print
a ‘log’ (or record) of nearly ali programmable operations performed from
the keyboard. The printer logs each keystroke by printing the key's
keycode. During program operation CONTINUE, STOP, and PAUSE
instructions from the keyboard will not be logged. Also, the keystroke
following FMT or LBL will not be logged.

NOTE

During KEYLOG operation, the keyboard is mo-
mentarily “locked out’® while the printer is operat-
ing {i.e. the calculator will not receive a keyboard
instruction). This requires keyboard entries to be
performed slower than when the printer is not in
KEYLOG mode.

While programming, the keylog mode will cause the printer to list program
steps {logged by keycode) as they are entered from the keyhoard.

NOTE

Keycodes for the block of half-keys will be logged
even though, without 2 ROM installed, these keys
are not functional.

The following example demonstrates use of the keylog mode and print
operations while calculating from the keyboard.

EXAMPLE:

Find the area of a circle if: A = 7r®, where r=7.5

p
PRESS: (Fun] (mxc) | 3] v oG, {on) (}

To enter a value for r and compute A:

OPTION 004 PRINTER

PRINTER OPERATION

DISPLAY: /76.715 — Y
J 147 = X

To print the resultant data:

{ ! f‘.PRINT)
“QC.
PRESS: | ‘l/ _' | SPACE |

HARD COPY:

Notice that every keyboard operation was logged after the KEYLOG mode
was specified. The keylog mode is also useful when programming. See the
section titled PROGRAMMING WITH THE PRINTER for a further
discussion,

By pressing LIST, any program stored in the Model 10 program memory is
printed, step-by-step, by the printer. By setting the calculator program
counter to the beginning address of the program to be listed and then by
pressing LIST, program steps will be listed from that address until an END
instruction (keycode 46) is printed.

The program counter may be set by pressing GO TO, followed by the
program step address. Thus, pressing

= o) (o) (o) (3) (6) e

will cause the printer to list program steps beginning at step 0036 and
continuing until either an END instruction is printed or STOP is pressed.
Also, pressing END and LIST will cause the printer to list from the

PROGRAM
LISTING

6-9

6-10

PROGRAM
LISTING

(continued)

PAPER
ADVANCE

OPTION 004 PRINTER

PRINTER OPERATION

beginning of the program memory {step 0000). Short-form addressing may
also be used to address the program counter. For a discussion of
short-form addressing see the chapter titled PROGRAMMING THE
MODEL 10.

For an example of program listing, turn to the printer electrical inspection
on Page 6-5.1f no programming operations have been performed since the
electrical inspection was done, a listing of this program can be printed by
pressing RUN, END and LIST.

NOTE

Should STOP be pressed to halt a listing operation,
LIST must be pressed again to resume listing with
the next program step.

Printer paper may be advanced by pressing PAPER. This is not a
programmable operation.

OPTION 004 PRINTER

PROGRAMMING WITH THE PRINTER

This section contains instructions for programming PRINT/SPACE opera-
tions. Also included are hints on using the keylog and list features while
programming or running a program.

During a program, data may be printed by merely inserting one PRINT/-
SPACE instruction in the program. Since the printer is restricted to
printing only X-register contents; additional program steps may be
required to position the data in the X-register before the PRINT/SPACE
instruction is executed.

The following examples, which could be a part of a program, show
possible methods to program the copying of X- and Y-register data.

EXAMPLE 1.
KEY DISPLAY
STEP KEY | CODE X Y z
0050 120.00 7500 | —
0051| Prinr/seace 45 120.00 7500 | -
00s2] | 25 7500 | | e
0083| prinT/sPaced 45 7500 | 00 -
HARD COPY:
EXAMPLE 2.
KEY DISPLAY
STEP KEY CODE X Y Z
0050 120.00 7500 | -
0051] rriNT/sPacH 45 120.00 75.00
0052| prinT/sPaced 45 120.00 7500 | -
0053 =xZy 30 75.00 120,00 | -
0054| prinT/space 45 75.00 12000 | -
HARD COPY:

Notice that the method in Example 2 is useful if the X-register data in
step 0050 must not be lost. Also notice that an extra PRINT/SPACE
instruction is added in order to provide a space between copied data.

6-11

PROGRAMMING
PRINT/SPACE
INSTRUCTIONS

6-12

PROGRAMMING
PRINT/SPACE
INSTRUCTIDNS
(continued)

USE OF
KEYLOG MODE

USE OF
PROGRAM
LISTING

OPTION 004 PRINTER

PROGRAMMING WITH THE PRINTER

NOTE

if a program containing PRINT/SPACE instructions
is run in a calculator without a printer each instruc-
tion will halt the program; this enables the operator
to copy data which would have been printed.
Pressing CONTINUE will resurme program operation.

The keylog mode is useful when writing short programs, since, when the
calculator is in both keylog and program modes, a log of program steps
will be printed as they are entered from the keyboard. This enables the
programmer to list a short program as he enters it. If branching instruc
tions must be written, he can refer to the log which was just printed in
order to find the branching address. The keylog mode is not
programmable,

A fast check of program foading is made possible by obtaining a program
listing. The listing feature, although not programmable, is useful when
either loading a program or debugging a program while it is in the
calculator. See the section titled PRINTER OPERATION for directions on
how to obtain a program listing.

OPTION 004 PRINTER 6-13

PROGRAMMING WITH THE PRINTER

The following program, which is also used in the PROGRAMMING THE ADDING
MODEL 10 chapter of this manual, will be used to demonstrate how to PRINT/SPACE
add PRINT/SPACE instructions to an existing program. INSTRUCTIONS

This program wiil solve the equation: (A X B) = (A + B), for values of A
and B which are entered into the Y- and X-registers, respectively.

KEY ISPLAY TORAGE
[STEP | KEY |CODE | X Y Z ERN:]
Q000 | y-i 40 B A .
0001 3 13 B A A
0002 | x+0 23 B A A | -
0003 b 14 B A A | B
0004 x 36 B |AxB A |B
0005 | X« 67 B AxB A B
0006 + 33 B |AxB A |B
0007 a 13 |[A+B [AxB A |B
. AxB
0008 - 35 |A+B AT A | B
AxB
0009 E] 13 A |as 3 A | B
AxB
0010 4 27 A A A+B A | B
AxB
00N b 14 t A At D A | B
0012 END a6 firal display ——

The above program can be modified so that hard copy is printed of both
entered variables (A, B) and the resultant [{A X 8} ~ (A + B)].

6-14 OPTION 004 PRINTER

PROGRAMMING WITH THE PRINTER

ADDING The maodified program below shows one method of adding the required
PRINT/SPACE PRINT/SPACE instructions. Notice that each instruction is inserted after
INSTRUCTIONS the required data is in the X-register. Also, notice that an extra PRINT/-

(continued) SPACE instruction is added (step 0006) in order to leave a space on the

hard copy between the entered data and the resultant data.

KEY DISPLAY STORAGE

STEP | KEY |CODE X Y Z a b
0000 priNtT/seace | 45 A - - - -
goo1 X1 40 A
noo2 g 13 A A
0003 0 27 A A A
enter
0004 5TOP 41 i B A A
00085 pRrinT/ sPACE 45 B A A
0008 Peint/space | 45 B A A
0007 X+t a0 B A A
poos | B 14 B A A B
0009 x 36 B AXB A B
0010 | x<«t) 67 B AXB A B
0011 + 33 B AXB A B
0012 =) 13 A+B AXE A B
. AXEB
0013 - 1] A+B A+E A B
A XB
0014 ¥ 25 A+ A B
0015 printsseace | 45 _—i :(_ g A B
AXB AXB
0016 1 27 A+EB A+B A B
AXEB
0017 d 13 A A+E A B
AXB
0018 4 27 A A A TE A B
AXB
0019 14 B A Ealal’)
0 b AT A B
0020 END 46 B A % A B

The program can be run to ensure correct insertion of the PRINT/SPACE
instructions.

To load the modified program:

PRESS: (run) ((eram]

PRESS: (keys of the modified program beginning with step
0000}.

OPTION 004 PRINTER

PROGRAMMING WITH THE PRINTER

To enter values for A and B (A=40.0; B=20.0) and run the
program:

PRESS: (Crun] [(Fix(]] O
PRESS: (—J QO

MC2==2Z00
—,,

[¢
— | ﬁ
e (2) (o) |}
-— U
E

DISPLAY: /3.33337 — 2
40.00000 — —> Y
20.00000 —> X

HARD COPY:

The above hard copy contains both entered variables and the result in the
same order as they appear during program operation. Also notice the data
entry symbol (+) indicates the unterminated entered data.

The programmed ‘space’ instruction (step 0006) between variables and
result provides a more readable printout. The space instruction may also
be programmed at either end of the program’s printout in order to
separate groups of data, or to advance the printed data above the printer
window to facilitate hard copy removal. To advance the last printed line
above the print window requires at least 8 successive PRINT/SPACE
instructions after the last data printing operation.

If the modified program does not operate as expected, the first step in
debugging would be to check program loading. A program listing is a fast,
accurate check to determine if the program was correctly loaded.

6-15

LINE SPACE
INSTRUCTIONS

APPENDIX

CHARACTERISTICS

TEMPERATURE RANGE: 0°C (32°F) to 45°C (113°F)

VAPOR PRESSURE: Not to exceed 1.03 pounds per square inch.

RANGE OF CALCULATION: (£})107%8 to (+)9.99999999999 X 10%

ERROR SUMMARY: Summary of maximum errors of the functions in
the basic calculator. Errors of functions in the plug-in ROM'S are
listed in the individual ROM manuals.

a. Errors are expressed as absolute errors:

Absolute error = | f{X} — f(X)I

where i(X) = exact value
f(X) = calculated value

b. One ‘visible count’ is one count in the tenth digit.
1. ADD, SUBTRACT 5 X 10711 X 10Usreer addend exponent)
2. MULTI!PLY, X? +1/2 visible count
3. DIVIDE, 1/X +1/2 visible count

4. SQUARE ROOT +1/10 visible count

c.g:nvz MNEMONIC KEY | Jony MNEMONIC KEY CKO‘I;’E MNEMONIC KEY c?u:: MNEMONIC KEY C':::! MMEMONIC KEY
| {i 0115 G G |32 rCHS owesen |47 THT cownne] i d IHT int x
@l i 1114 F F |3z + + |58 =Yy Fx=ylos I [
az 2 2117 1-H Vo |34 - - |51 LEL waeeL | i b B
e 3 3|28 CLR cear 3T TITY = |52 oy rx<y|ET HFRE Xe()
&g 4 4121 . « 13k b X |57 HxY w x>y | 7 M M
G 5, 5|z pup row d)37 OLw cemx B4 SF serrua] P l 0O
ks £ 6 |23 HTOD x+() 48 YT0 Y>0)55 i K |7z i L
By 7 724 vE yenr|di sTF sor | 56 g w73 H N
1i o 8 |25 IiN yo|4E FHT W ST PRE Pause 7' H H
11 5 9 |26 FEX ewvremexe]d? IFG Fras ol E |74 J J
1= S x| =7 UF t l44 o1 go 1o &1 ™ (Aj e r x
13] a |38 HEY xey|4=s FHT) LR A Fr T = Jjus.
14 b blzt 1nD mnm:cyr 46 EHI e £ it D RETURN

The mnemonics are printed by the Option 004 Printer if the -hp- 11211A
Printer Alpha ROM is installed.

‘o DECIMAL——\

110

111

STATUS

(&)e()a a0 o2)

—
M~ <t > - < I~
L - — <t (o]

of
)
)

B
)t

)t

DIRECT

)
)

)t
f

it

f

X<

x>

L

71

75

60

KEY CODES

‘ >
I MODE v PROGRAM N
107 106 1056 104 103 102

INSERT CARD

ENTER CLEAR
EXP X
32 26 37 B4
07 10 11 .
@ @
04 05 06
PRINT IF
01 02 03
N0 21

FLAG

N
o
i

=Y
N
oy
o
—

mMCZ——Z00
=
o

ey
~J
~J
~J

Refer to Page 5-11 for a description of the key codes.

Keys with 3-digit codes are not programmable,

