HP 9800 Computer Systems

Advanced
Programming ROM

For the HP 9835/HP 9845

(ﬁp HEWLETT

PACKARD

HEWLETT
(ﬁﬁ] PACKARD
Warranty Statement

Hewlett-Packard products are warranted against defects in
materials and workmanship. For Hewlett-Packard Desktop
Computer Division products sold in the U.S.A. and Canada,
this warranty applies for ninety (90) days from date of
delivery.* Hewlett-Packard will, at its option, repair or replace
equipment which proves to be defective during the warranty
period. This warranty includes labor, parts, and surface
travel costs, if any. Equipment returned to Hewlett-Packard
for repair must be shipped freight prepaid. Repairs
necessitated by misuse of the equipment, or by hardware,
software, or interfacing not provided by Hewlett-Packard are
not covered by this warranty.

HP warrants that its software and firmware designated by HP
for use with a CPU will execute its programming instructions
when properly installed on that CPU. HP does not warrant
that the operation of the CPU, software, or firmware will be
uninterrupted or error free.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE. HEWLETT-PACKARD SHALL
NOT BE LIABLE FOR CONSEQUENTIAL DAMAGES.

* For other countries, contact your local Sales and Service
Office to determine warranty terms.

Advanced Programming ROM

Part No. 09845-93065
Microfiche No. 09845-96065

Hewlett-Packard Desktop Computer Division
3404 East Harmony Road, Fort Collins, Colorado 80525

Copyright by Hewlett-Packard Company 1981

\S

ii

Printing History
This manual is for use with the System 35A/B or 45B/C Desktop Computers. It is a slightly
revised version of the Advanced Programming ROM Manual, part number 09845-92065.

The changes which were incorporated into this latest edition are summarized in the System 45
Manual Revision Package (P/N 09845-93099). This package outlines the changes and additions
that have been made to System 45 manuals.

New editions of this manual will incorporate all material updated since the previous edition.
Update packages may be issued between editions and contain replacement and additional pages
to be merged into the manual by the user. Each updated page will be indicated by a revision date
at the bottom of the page. A vertical bar in the margin indicates the changes on each page. Note

that pages which are rearranged due to changes on a previous page are not considered revised.

The manual printing date and part number indicate its current edition. The printing date changes
when a new edition is printed. (Minor corrections and updates which are incorporated at reprint
do not cause the date to change.) The manual part number changes when extensive technical

changes are incorporated.

April, 1981.. First Edition; Updated pages: ii, 1, 2

rev:4/81

Table of Contents

Chapter 1: General Information

Overview 1
Equipment Supplied. 1
ROM Installation e 2
Lexical Tables Cartridge 2
Manual Requirements 2
Chapter 2: Data Manipulation
Introduction. 4
Array Structure and Terminology 4
MAT SORT Statement 9
Sorting Numeric Data 9
Sorting String Data 16
MAT REORDER Statement 22
MAT SEARCH Statement 28
Searching Numeric Arrays 28
Searching String Arrays. 32
Chapter 3: Extended Character Sets
Introduction 36
LEXICAL ORDER IS Statement 36
The LEX Function 37
Uppercase and Lowercase Functions 38
Chapter 4: File Catalog Access with the HP 9835
Introduction 41
CATTO Statement. 41
Appendix A: User-Defined Lexical Oxder 49
Collating Sequences. 51
Collating Section 52
Uppercase/Lowercase Section 54
Mode Section 55
Accent Priority 55
1 For 2 Character Replacement 57
2 For 1 Character Replacement 61
“Don’t Care’” Characters 62
Advanced Programming Lexical Tables 63
ASCII Table 64
French Table. 69
German Table. 74
Spanish Table 79

Swedish Table

iv

Chapter 1

General Information

Overview

The Advanced Programming ROM provides extended computing capabilities for your desktop
computer. This ROM enables you to perform such functions as ordering list data in numerical or
lexical order and searching lists for conditions which you specify. These features can be very
useful in the areas of mathematics, statistics, and information processing. This manual explains

and demonstrates the programming features provided by the Advanced Programming ROM.
You should be familiar with the basic operation of your system before attempting to use the

Advanced Programming ROM and this manual. Refer to the System 35 Operating and Program-

ming Manual or the System 45 BASIC Programming Manual for this information.

Equipment Supplied

09845-93065 | Advanced Programming ROM Manual |
09845-90448 i Advanced Programming ROM Lexical Tables Cartridge

09845-93065
09835-90448

HP 9835 | HP 9845B/C
Part Number l Part Number | Item
98336A 5 98414A l Advanced Programming ROM

rev:4/81

AP-2 General Information

ROM Installation

The System 35 Advanced Programming ROM is plugged into a 9835 ROM drawer, which can
then be inserted into any of the four ROM slots at the lower front of the computer. Refer to the

System 35 Owner’s Manual for installation procedures.

The System 45 Advanced Programming ROM is plugged into the right ROM drawer (black-
labeled ROMs). Refer to the System 45 Installation, Operation and Test Manual for installation

procedures.

Lexical Tables Cartridge

An Advanced Programming ROM Lexical Tables Cartridge is provided for use with the Advanced
Programming ROM. The cartridge contains ASCII and local language collating tables which can
be modified for particular collating applications. Descriptions of the tables and instructions for
their use are found in Appendix A.

Manual Requirements

Before using this manual or the Advanced Programming ROM, you should be familiar with the
basic operating procedures of your desktop computer as explained in the System 45 BASIC

Programming Manual or the System 35 Operating and Programming Manual.

rev:4/81

Chapter

Data Manipulation

page 9 o MAT SORT (orders data records within an array)

page2 o MAT REORDER (orders an array according to the contents of an existing
pointer array)

page 28 ¢ MAT SEARCH (provides information about user-defined conditions within an

array)
Terms

e Record — represents data which is manipulated as a unit within an array.
o Key — a data item within a record used to identify the record for sorting purposes.

e Key specifier — a format used in a syntax to specify primary and / or secondary keys within a
record.

e Pointer array — a one-dimensional numeric array which contains the sorting order of
specified records.

e Location specifier — a format used within a MAT SEARCH statement syntax to specify the
locations to be searched.

Statement Syntax

" source array key specifier * [Lsubstring specifier 1]

[. “secondary key specifier * [[substring specifier 1] [...][T{i pointer array]
object array ¥ pointer array [, dimension specifier]
source array ‘location specifier », condition; variable [, starting address]

condition:

“relational operator-expression
“relational operator-expression

AP-4 Data Manipulation

Introduction

The statements described in this chapter are used as programming aids to manipulate data.
They concern the sorting and searching of numeric and string arrays. Each of these statements
can be executed from within a program or from the keyboard. Examples of each statement are

included to demonstrate its use.

Array Structure and Terminology

For a better understanding of the sorting and searching processes introduced in this manual, a

brief description of array structure and terminology is helpful.

The following illustration represents a two-dimensional array containing numeric data.

A
! I I 3 9 2 B Records
#1 2 (11 8]315]|4 c
3102|7513

#2

Array X

It is dimensioned 3 rows by 5 columns as follows:

The subscripts within parentheses (3,5) are written in the order in which the array is dimen-
sioned (i.e., in the order of the numbered arrows). Throughout this manual dimensioning
assumes OPTION BASE 1 (i.e., numbering begins with 1, not 0). The dimension statement

specifies that the array name is X and that it is three rows by five columns.

An array record represents data (string or numeric) which is manipulated as a unit within an
array. For example, if you arrange a list of names in a specified order, each name is considered
arecord within that list. Similarly, an array might contain a list of social security numbers. If you
arrange them in a particular order, each social security number is considered a record within

that array.

Data Manipulation AP-5

In the previous example, if array X is to be rearranged by rows, each row is considered a record
and ordering is performed along the first dimension. That is, the positions of the rows in
relationship to each other along the first dimension are rearranged. Likewise, if the array is to
bereordered by column, each column is considered a record and reordering is performed along

the second dimension.

In the previous illustration, assume that each row is a record (A,B, and C). If the records are to
be sorted, a key is needed to determine how each row is to be ordered in relationship to the
others. Assume that the records are to be sorted in ascending order according to the value of
the first number in each record. The first column, then, contains the keys for this sort. The
sorting process sorts the keys in ascending order along the dimension in which they lie. In so

doing, the records in which the keys lie are rearranged.

The keys selected are described by the following format:

The asterisk indicates a varying subscript. The first dimension subscript is varied over its range
of values (1 to 2 to 3) to designate a key in all three records (rows). The second dimension
subscript is fixed at 1 to indicate that the keys lie in the first column of each record.

The format (*, 1) is called a key specifier. The asterisk replaces the subscript which corres-
ponds to the dimension along which the records lie, in this case, the rows. The number 1
indicates where the key is located within each record. In this way, the key specifier indicates

how the array is partitioned into records, and where the keys are located within those records.

If all the combinations of the key specifier in the previous example are listed, a description of

the individual keys is obtained as follows.

1st Subscript 2nd Subscript Key

1 1 1st
2 1 2nd
3 1 3rd

AP-6 Data Manipulation

The shaded cells in the next figure represent the keys described by the key specifier.

#1

Keys

1 13]9{2
813 [5]|4
217|153
2 3 4 5
#2
ARRAY X

B

Records

Upon execution, the sorting process arranges the records in ascending order along the first

dimension according to the values of their respective keys. The sorted array is shown next.

2171513
83|54
31912

ARRAY X AFTER SORTING

The records, or rows, are repositioned in relationship to each other according to the value of

their keys. The contents of the records are left unchanged.

Note that any corresponding numbers within the rows could be selected as keys. The column

containing the keys would be described by the key specifier to reflect the proper keys.

Data Manipulation AP-7

As another example, assume array Y is a three dimensional numeric array as shown.

#3
ARRAY Y WITH KEYS

Itis dimensioned in the order of the numbered arrows (3 rows by 4 columns by 4 planes):

Assume that the array is divided into records (A,B,C, & D) along the third dimension, that is,
each plane is considered a record. The keys selected must also lie along the third dimension
since there must be one for each record. If the upper right number in each record is designated

as a key, the key specifier is

.....

where the asterisk indicates that the third subscript is varied over its entire range of values (1

through 4). In this way, a total of four keys is described as shown.

Ist Subscript 2nd Subscript 3rd Subscript Key
1 4 1 1st
1 4 2 2nd
1 4 3 3rd
1 4 4 4th

AP-8 Data Manipulation

The shaded cells in the following illustration represent the four keys described by the key

specifier (1,4,").

ARRAY Y WITH KEYS

If the array records are sorted in ascending order, they are rearranged along the third dimen-
sion according to the values of their keys. The following illustration represents the array Y after
it is sorted.

) R 0 R
e i, BN, B
"ﬂa'g' nﬂgg "gﬁﬁ hﬁgﬁ

ARRAY Y AFTER SORTING

Note that the records have been rearranged according to the ascending values of their keys.

Data Manipulation

MAT SORT Statement

Sorting Numeric Data

The MAT SORT statement is used to order data records in an array. If the data is numeric, it can
be sorted in either ascending or descending order. If the array contains string data, it can be

sorted in either lexical (alphabetical) or reverse lexical order.

Syntax:

T numeric source array ‘key specifier
The source array represents the array in which sorting is performed. The key specifier allows you
to specify the keys by which the records of data are sorted. If the source array is one-

dimensional, no key specifier need be included.

Example:

In this case, A is a numeric array in which sorting is performed. The key specifier indicates that
Ais a three dimensional array and that its records lie along the second dimension. The position
of the asterisk within the key specifier determines which subscript is varied, and therefore, how
the array is divided into records. If the first subscript were to identify records instead of the

second, =2 would be entered. The array in which sorting is performed can

have no more than six dimensions. Numeric sorting comparisons are performed in the IN-
TEGER mode for integer-precision arrays and in the REAL mode for short or real-precision

arrays.

The default order of sorting is ascending. In the previous example statement, the records are

sorted in ascending order. If descending order is desired, the correct entry is

where the letters DES included after the key specifier indicate descending order.

AP-9

AP-10 Data Manipulation

The following example serves to explain the MAT SORT process. Assume array Data is a three

dimensional numeric array containing random numbers.

I

4

NI
{\
=
~

#1 2

N
3\
\I
N
\

[~/

ST

L [/~

ARRAY Data BEFORE SORTING

This illustration is a graphical representation of the array and its contents. Each record is
numbered as are its rows and columns. The numbered arrows represent the order in which the

array was originally dimensioned.

Assume that the records are to be sorted in ascending order and that the numbers in the upper
right location in each record are designated as keys. Since the records all lie along the third
dimension, the third subscript is replaced by an asterisk in the key specifier. The proper sorting

statement is

where the first two numbers indicate the upper right location of each record. The asterisk
indicates that the records are selected by varying the third subscript over its range of values (1

to 2 to 3). After the sort is performed, the array is rearranged as shown next.

Data Manipulation AP-11

R
B
\

~

//~//
[</*/~/

[~//*/

[/~/>/

ARRAY Data AFTER SORTING

Note that the order of the records is changed according to the value of their keys.

A pointer array can be specified in a sorting statement to maintain a record of how the source

array should be rearranged.

Syntax:

“source array ~key specifier 17! pointer array

When a pointer array is included in a MAT SORT statement, the sorting process does not
rearrange the source array. Instead, it fills the pointer array with a series of numbers represent-
ing the order of the source array records as if they were sorted. In this way, the source array is

not disturbed, but the order in which its records should be sorted is maintained for future use.

The pointer array must be a one-dimensional numeric array and it must be the same length as
the range of records to be sorted. The pointer array does not contain the contents of the
records, but rather, a series of numbers representing the order in which the records would be

sorted.

For example, assume that the sorting statement in the previous example is modified to include

the pointer array Point. The pointer array must be dimensioned to be three elements in length

to accommodate the number of records in the source array (! i+). The sorting

statement is modified as follows:

AP-12 Data Manipulation

Upon execution, the source array remains unchanged as shown.

~

4

b
b
.

/=/~/~/

[</~/~/
[2/~/=/

[~/>//
[/

[/=/~/

R
>
D
X

ARRAY Data AFTER SORTING

However, the pointer array now contains the order of the records as if they were rearranged.

POINTER ARRAY Point AFTER SORTING

Note that the numbers in the pointer array correspond to the sorted order of the records in the

previous example. However, the source array is not rearranged.

The numbers in the pointer array are the values that the varied subscript would assume in
designating each record. For example, if Data was dimensioned DIM Data (3,3,-1:1), then

Point would contain

Oji-1]1
12 3

This allows the pointer array to be used for indirect reference into the original array. Thus, after
sorting this example, Data (3,1, Point(2)) = 9.

Data Manipulation AP-13

If two items described by the key specifier are identical, a secondary key specifier can be used
to complete the sort. The sorting process utilizes the order of the data described by the secon-
dary key specifier to arrange the records containing identical primary keys. Should further
identical data be described by the secondary key specifier, additional key specifiers can be
included. The asterisks must appear in the same respective positions in all related key

specifiers.

Syntax:

~ source array *key specifier [, “secondary key specifier i ...]

Note that commas are used to separate individual key specifiers. All key specifiers in a given
MAT SORT statement must partition the array into records in the same way. That is, the

asterisk must always appear in the same position.

Referring to the previous array example, assume that the records are to be sorted using their

upper left location contents as keys. The correct sorting statement is }

1. # 2 where (1,1,*) specifies the upper left numbers as keys. An ambiguity would
develop, however, since the number “‘1’’ appears in the keys of both records one and three.
The values of another series of keys can be used to determine which ‘1"’ should be ordered
first. Assume that the numbers in the lower right locations are described by a secondary key

specifier. The proper sorting statement is:

IS

4

N
B
\

#1 2

[/~/)
[/~
/=/~/~/

ARRAY Data WITH PRIMARY & SECONDARY KEY SPECIFIERS

AP-14 Data Manipulation

Since identical numbers have been encountered in records one and three, the sorting process
examines the lower right keys of the records (as described by the secondary key
specifier(3,3,*)) to complete the sort. Since the ‘2"’ of record one precedes the ‘9’ of record
three, record one is ordered before record three. Upon execution of the sorting statement,

array Data is rearranged as shown.

INS

B ?
b
NN

>
D
X

.
b

/~//~/
/
////

[/~//
[/=/~/

[~///

.

ARRAY Data AFTER SORTING

If identical items cannot be differentiated, then the relative order of the sorted records is

indeterminate (due to the nature of the sort).

The program shown next demonstrates a use of numeric sorting. A list of salespeople, their

districts, and their sales volumes is sorted according to district and volume.

S BTELE.

DARTH =
TATA 1488, 1,
DATR JILL TAHD SAM SRHEDE, HICK DRHGER

1. ETEED

ELLIEL,
FR IHT
FREIHT

pUEALES L INCL

Data Manipulation AP-15

todistrict

MAT FEAD Salespeonted

FOR I=1 T3
2 !

Aoty 1, Ly THES

PFriet the unsorted sates data.

G O AT

PRINT THE

MAT SORT ol

Start with irmelddistrict no.

v Has

Morit by 1, R THEH

=t

The program first prints the unsorted list. The sort is performed by district using sales volume as

the secondary key specifier. If the program is run, the results shown next are obtained.

DATE FOR FOHTH &

SHLEZFEOFLE oIz

JILL THHDY
T DEEDS

WHITE
I TH =
= TEET 2

AP-16 Data Manipulation

RESULTE FOR MONTH &

DIETRICT

TISTRICT =
JILL TAMDY

HHGER

Sorting String Data

The sorting process for string data follows that for numeric data except that ordering is lexical

rather than numeric.

Syntax:

string source array "key specifier : [T{i pointer array]

The source array in this case contains string data. The key specifier specifies which locations are
designated as keys. The optional pointer array is a one-dimensional numeric array which
contains the order in which the records should be sorted. As with numeric arrays, the source

array is not actually rearranged when a pointer array is used.

String sorting uses the LEX function on the string data to perform the ordering (see Chapter 3).
The default order is lexical (ascending), but DES can be used to specify reverse lexical (de-
scending) order. The order can also be determined by a user-defined table as described in the
LEXICAL ORDER IS section.

For example, assume array A$ is dimensioned to be a three-dimensional string array containing

). Assume that the middle location in the

three characters per element (
right-hand column of each record (plane) is designated as a key. If the records are to be sorted

along the third dimension in reverse lexical order, the correct sorting statement is:

Data Manipulation

>
oo
«
5/
P
«
S/
[224
(%)
=

/
7

/
/5/5/

#1 | 2

5;/5’
/£/
Z/5/
7
/&)
7

&
777
K~
o
Z
o

y
/
7
/

/

o
~
—
4
~
>
a
=<
—

/
£

#3
ARRAY A$ WITH KEYS

This illustration represents the source array. The sorting process sorts the records according to
the ASCII values of the data in the key locations. The sorting process begins comparing key
characters until dissimilar characters are found. Since the first characters of all the data in the
keys are different, sorting can be performed without comparing further characters. When the

sort is complete, the array is rearranged as shown.

@
F S
&
/j/
o
=
>
=2
o

E

RN

Gdd

\
SU\,

/
/
/&/

7
/ £/
[
g/
/) 5
/£

-
=
o
[7p)
/77
U
(oo
z
S
o
)
[» 74
z
o
-
&

é
/
/
/
/

o
X
>
@
=<
—
o
=
—

£
L

Note that the string data within each memory location has not been rearranged. The records,
however, have been rearranged to reflect the new order of the keys of string data. It is impor-
tant to note that strings of unequal length present no problem. Any unused dimensioned
character spaces are filled with the null string and are sorted accordingly. (Example: AB pre-
cedes ABC.)

AP-17

AP-18 Data Manipulation

As with numeric sorting, a secondary key specifier can be used to order records which contain
identical keys. In the previous array example, assume that the characters in the upper right
locations of the records are designated as keys and that the records are to be sorted along the
third dimension in lexical order. The sorting process begins comparing characters until dissimi-
lar characters are found. After comparing all the characters in the primary keys of records one
and three, the sort recognizes identical data. The sort process could then utilize a secondary key
specifier to perform the sort. (All characters must match in order to be considered identical
data).

Assume that the data in the lower right locations is described by a secondary key specifier. The

correct sorting statement is:

#1 2 \ TRL \
X

/
7
/ £/
/
/%)

y~J
/77
(p)
2
=
o
[op}
/77
N4
[arg
Z
S
(@)
[«p}
(»24

. / g
/2
7/

/
/=
=/

/.
/7
7/

/
£

Comparing the data described by the secondary key specifier, the sorting process would order
record three before record one since the letter “‘B’’ precedes the letter “‘Q” in the STANDARD

lexical order.

Upon execution of the sort statement, the array A$ is rearranged as shown.

Data Manipulation AP-19

s/ &/
/ £/
/ £/
Z/E/
/.
5/
2/g
/Z/
g/

/
/

7
=
(avg
(o9}
/77
K74
o
z
S
[
v
oo

/7
/

foof
N
>
Z
—
(774
[y
<
F)/
—
—

:
7
/
/

/.
/

2 3

ARRAY A$ AFTER SORTING

When sorting string data, a substring specifier can be used to describe partial key specifier
strings.

Syntax:
T ZUET string source array “key specifier [[substring specifier 7]

The optional substring specifier indicates which portion of the data string in the specified keys is
used to order the records. Referring to the previous example, assume the second and third

characters in the strings located in the lower right memory locations are designated as keys.

74
7
Z

(e
«
(%
=

I

S TR {%\ RN

#1 | 2 QXX N N \/UX RN EHp ALZ \X N
NISNCTIRN RNGIRN S Son N

Mig Ak Rrp [S8p Ohiy | {6

STp

Aéf
/
-
7
/
/

/
=
/
5
Z

2

/
/3

#3

A$ KEYS WITH SUBSTRING SPECIFIER

AP-20 Data Manipulation

The correct sorting statement is

where [2,3] specifies that portion of each key string which begins at the second character and
ends with the third. In this example, the sorting process begins sorting the records according to
the values of the second and third characters in each key string. Sorting can be completed at
the second characters since none of them are identical. After execution of the MAT SORT

statement, the rearranged record order is 2-1-3.

A substring specifier must lie within the dimensioned length of the key string. The substring
specifier can, however, describe an unused portion of the key string. For example, assume the

following illustration represents the contents of the dimensioned length of a string.

AlF|G

A substring specifier such as [4;3] describes the unused portion of this string. For sorting
purposes, the unused portion of this string is the null string. The null string occurs first in any

lexical order.

Substring specifiers can be used with primary and secondary key specifiers simultaneously, as

can descending specifiers. Example:

When used with multiple key specifiers, substring specifiers need not be of equal length.

A pointer array can also be included:

Note that no punctuation is included between a key specifier and its related specifiers. A

comma is included, however, between complete individual specifier entries.

The program shown next demonstrates string sorting. A list of names and phone numbers is

read into a string array and then sorted according to last name.

Data Manipulation AP-21

Notice that the data are sorted by last names using the first names as a secondary key. If the

program is run, the results shown next are obtained.

THE

AP-22 Data Manipulation

MAT REORDER Statement

The MAT REORDER statement is used to order an array according to the contents of an

existing pointer array.

Syntax:

object array %% pointer array [, dimension specifier]

The object array in this syntax is rearranged in the order specified by the contents of the pointer
array. The maximum allowable number of dimensions of the object array is six. The optional
dimension specifier selects the dimension of the object array along which records are ordered.
The dimension specifier is a number from 1 to 6 or an expression which represents this number.
If it is not specified, a value of 1 is assumed by the computer. The dimension specifier describes

the object array dimensions in the manner shown next.

tA,B..... Fi
b4)
Dimension Specifier: 1 2 6

For example, assume that the array Point is a pointer array containing a range of values

determined by a previous sorting process as shown.

It is dimensioned as follows:

Also, assume that array Object is a two-dimensional object array which contains numeric data

and is dimensioned as shown.

The following illustration represents array Object.

Data Manipulation AP-23

v [o]3]sle]2 A
B
e 11 lals |11 .
s (713|712]0 5
« |51]slel3
1 2 3 4 5
#2

ARRAY Object

If array Object is to be rearranged along the first dimension according to the contents of array

Point, the correct reordering statement is

where Object is the object array, Point is the pointer array, and 1 specifies that the object array
is reordered along its first dimension (i.e., each row is considered a record). Upon execution of

the reorder statement, array Object is rearranged as shown next.

D
51118163 B Reordered
I 415 | l A Records
olzlsle]2 c
71317120

ARRAY Object AFTER REORDERING

The records are rearranged in the order specified by the pointer array. Note that they are not
necessarily rearranged in ascending or descending order. There is no necessary relationship
among the records. They are merely rearranged according to the pointer array.

The pointer array must be dimensioned the same size as the dimension of the object array along
which reordering is performed. In the previous example, the pointer array Point is dimensioned

four elements in length as is the first dimension of array Object as shown next.

AP-24 Data Manipulation

NOTE
If the pointer array contains duplicate numbers, unpredicta-
ble results occur. Also, if the pointer array contains numbers
which are out of range for the specified dimension of the
object array, an error .. sage results when reordering is

attempted.

As you may recall, a MAT SORT statement which contains a pointer array does not rearrange
the source array u~on execution. It merely fills the pointer array with the order of the records as
if they were rearranged. The MAT REORDER statement can be used to rearrange that source

array at a later time. For example,

fills the pointer array B with the proper sorted order of records, but it does not actually

rearrange the source array A. In order to rearrange the source array, a MAT REORDER state-
ment can be used. Example:

The execution of line 100 fills the pointer array but does not rearrange the source array A. Line
200, however, does rearrange the source array according to the order defined earlier by the
MAT SORT statement.

A program is now presented that demonstrates a possible use of the MAT SORT and MAT
REORDER statements. Original$ is a one-dimensional array list of names and grade point

averages.

The program fills the array list and sorts the data both by name and grade point average.

Data Manipulation AP-25

SEOLIERI

Notice that the inverse permutation of pointer array B is computed. The use of this permutation
allows two sorts to be performed on the original object array thereby eliminating the need for a
duplicate array. If the program is run, the results shown next are obtained.

AP-26 Data Manipulation

THE CRIGIHAL SERIENZE T3

SHITH
JOMES

SMITH GLEM T
TRYLOR FALFH E
JOHES BOMHIE F

EEORTERED BY MNAMES

EROWH MARY A
JOMES BOE R

5 BOMMIE R
BILL U
N GLEM
TH(LUF PHLP E

FEORDERED BY GFAL

T“1|LH.

EF:UHH ﬁH’ 1
JOHES B

It is important to note that several arrays can be reordered by the same pointer array. The
program shown next utilizes this feature. Several ‘‘parallel’’ arrays are reordered according to

the contents of a single pointer array.

CFTION BR: Lo | e
OIM Id mooidl, Tobe® o, Clock e 3 g 1 fi ! Imwn o SoarcE ared

MAT READ
MAT READ %3
MAT READ Ciock no

iR A HETELE,

|
|

FPRIFT TAECS " II HUMEERY § TRE (280 g " TOE" 5

CALL Primtold noosd, Jobe$is),

THF BN D OHUMEBERY L TR
Potkwe Frirt subrout

KRG }
' Tz r} w artay data BE Peramselers.

FRINT LIMILD

Data Manipulation AP-27

IT rwambets to Boirter aremi,

Notice that the individual object arrays are reordered by the same pointer array. If the program
is run, the results shown next are obtained.

LI

AP-28 Data Manipulation

MAT SEARCH Statement

Searching Numeric Arrays

The purpose of the MAT SEARCH statement is to provide information about user-defined

conditions within an array. This information is returned to a variable for recall and examination.

Syntax:

1 source array location specifier , condition ; variable

[. starting address]

The source array represents the array in which searching is performed. The location specifier
defines the locations within the souce array which are searched. No location specifier need be
included if the source array is one-dimensional. The condition is that value or location for
which you are searching. When the condition is satisfied, the memory content or location which
satisfies it is returned to the variable. The optional starting address specifier allows you to select
a location within the range defined by the location specifier at which you want searching to
begin. Numeric searching comparisons are performed in the INTEGER mode for integer-

precision arrays and in the REAL mode for short or real-precision arrays.

The conditions available in the MAT SEARCH process are entered in the following form:

‘relational operator — expression

“relational operator — expression :

The list of relational operators includes: >,<,=,#,>=,<=,<>. For an integer search, the
expression is rounded before the comparison is performed. A LOC condition causes the search
process to scan the specified locations until it finds the first value which satisfies the condition.

The default value for a relational operator is =.

A #LOC condition causes the search process to scan the specified locations and return the total

number of locations whose contents satisfy the condition.

MAX and MIN conditions do not include an argument in parentheses because they automati-
cally cause the search process to scan all specified locations to find the maximum and minimum
values. To return the result of a MAX or MIN search, a string variable-is used with string data,

and a numeric variable with numeric data.

Data Manipulation AP-29

To demonstrate the MAT SEARCH process, assume that array A is a three dimensional numeric

array containing random numbers as shown below.

SN) Xy 3
LR HES G
\2\1 nh 3 4

#2 -
#3

ARRAY A WITH SEARCH LOCATIONS

Assume that the shaded locations are to be searched until one is found which contains a value

greater than 5. Let B represent the variable to which the result is returned.

The shaded memory locations must be described by a location specifier. Since they lie along
the third dimension, the records in which they lie are defined accordingly. The correct location

specifier is:

Note that the location specifier is written in the same format as a key specifier for a MAT SORT
statement. The subscripts are written in the same order as the array dimensions (the numbered
arrows). The first two subscripts define the upper right location, and the asterisk indicates that

the third subscript is varied over its range of values to describe all three records.

The correct search statement for this example is

where A is the source array, (1,3,”) defines the locations to be searched, LOC(>5) is the

condition, and B is the variable to which the result is returned.

After execution of the search statement, the number 3 is returned to the variable B. This is the
first record whose specified location satisfies the condition(i.e., it contains a value greater than
5). Searching begins at the location in that record described by the smallest number in the

range of varied subscripts and continues to the largest.

AP-30 Data Manipulation

If a condition is not satisfied upon completion of the searching process, a value one greater
than the upper limit of the varied subscript is returned to the numeric variable. For example, if
the specified locations in the previous example are searched for a value greater than 8, none is
found. Therefore, a value of 5 representing a number one greater than the record containing
the last searched location is returned to B. Note that if the upper limit of the varied subscript is

32 767, the value returned by an unsuccessful search is — 32 768.

The location specifier initially defines the range of locations to be searched. If you do not wish
to search the entire range, a starting address specifier can be used to designate where the
search is to begin. In the previous example, assume that the search process is to scan only the
last three records. The correct search statement is

where the number 2 directs the search to begin at the specified location in the second record
and proceed to the last record. Upon execution, the number 3 indicating the third record is
returned to the variable B because the content of its specified location is the first to satisfy the

condition.

The following program is included to demonstrate a search for maximum and minimum values
and number of occurrences. The array Numbers is filled with random numbers from which the

maximum and minimum values are selected.

OFTION
DT Huambs

Data Manipulation AP-31

Normally, a LOC search ends at the first location which satisfies the specified condition. How-
ever, additional satisfactory values may exist beyond that location. By setting the starting
address to be one greater than the content of the variable, a search can be continued from the
first location which satisfied the LOC condition. This automatically continues a search from
where a previous search left off. All satisfactory values can be obtained in this way. As an

example, assume that array B is a three dimensional numeric array containing random numbers

Assume that the shaded memory locations are to be searched for values greater than 2. A single
MAT SEARCH scan would stop at the second record since it is the first one encountered whose

memory location satisfies the condition.

However, by constructing a loop and using the proper starting address specifier, the search can
be made to continue through the range of specified locations. The following program de-

monstrates this feature.

R Tk

HES S A2 S W - A

AP-32 Data Manipulation

DIk g
WHRIT
IF oo

DATA
EHD

The variable C is initially set to zero. Line 170 begins the search routine. Since C was set to zero,
the starting address specifier (C + 1) directs the search to begin at record one. Line 190 tests to
see if the specified locations have all been searched. (Remember, if all locations have been
searched, a number one greater than the last record searched is returned to the variable. In this
case, that number is six). If all locations have not yet been searched, line 210 displays the
contents of C (it now contains a satisfactory value). If C contains a value less than 5, the search
is not finished and line 230 directs the program to search again. Due to the nature of the
starting address specifier, the search begins this time at the next memory location beyond that
which satisfied the condition previously. In other words, the search resumes where it left off. If

you run this program, the following should be displayed:

Searching String Arrays

Searching string arrays follows the same format as searching numeric arrays.

Syntax:

 source array “location specifier * , condition ; variable

[, starting address]

The source array, location specifier, condition, variable, and starting address specifier serve the
same functions for string arrays as for numeric arrays. If a relational operator is included, the
LEXICAL ORDER IS statement determines the ordering of the string data. The order can be
STANDARD (according to the ASCII table) or user-defined (see Appendix A).

Data Manipulation AP-33

For example, assume array List$ contains a list of names and dollar amounts. The program
shown next inputs the data to the source array. It then searches for a particular name and

outputs the corresponding dollar amount.

AP-34 Data Manipulation

In this program a MAT SEARCH is used to find the string which contains the required name.
Once that string is found, the portion of it containing the dollar amount is displayed. Note that

the substring specifier is used in the search and display statements. If you run this program, the
following results are obtained.

MAX and MIN values

program shown next.

P

o e e e

i

ORFTION BRS ! Choothe OFTION

M SreirngssarchE 2030 FoDrmersion the sbedng abrans
|
i

o0 Oy

i

Do
fend

MAT READ Stringzearchd
DATH "ABCY, "BCDM, "DEFY

)
113
fi
X
u

sita Tntne bR arean,

-
(3]

MAT SERRCH String

Tt bt e e ft pen L
fn]

e e B
TR

MAT ZERRCH Stringse

FREINT "pR:TMUE =

ErD

The array Stringsearch$ is filled with string data. MAT SEARCH statements are then used to
find the maximum and minimum values of the data. Note that the search statements use the
current lexical order of the data to perform the search comparisons (see LEXICAL ORDER IS

statement). If this program is run, the results shown next are obtained.

A= IMUM = DEF MIMIMLM = ARC

Extended Character Sets

2
b
)
1]
o
=
£
w
St
o
et
O
Q
=
e
3
o
e
w
2]
£
=
=
©
o
Y]
<
R
-
O
2
9
w
0
i
3
o
=)
w
3
2
s
%)
L
=
w
a
2 4
o)
-
<
Q
o
>
w
—
[J

page 36

™
Q
c
(1)
3
o
[V
w
(o]
£
S
g
(8]
)
7]
<
0
(8]
Q
[\})
@
(@]
[« 44
<
o
Z
Lo
=
\mdS
59
i
=¥a)
E e
So
@)]

22
=20
g~
2y
© -1
®
O
o
Q
=]
[oo]
o,

)

Ing comparisons

e LEX (allows str

page 37
page 38
page 38

o LWCS$ (returns a string with all uppercase letters converted to lowercase)

o UPCS$ (returns a string with all lowercase letters to uppercase)

Statement Syntax

- lexical order designator

s

.

foheies
S

lexical order designator: an integer array containing a local language collating table

=

e

or the word STANDARD

i Lstring expression 1, string expression 2

All items in dot matrix must be entered as shown.

All items in brackets are optional.

Three dots indicate that successive parameters are allowed,

when each is separated by a comma.

§ w
Lo s
-

-

.
e
frisa 1

i

-

.
.

AP-36 Extended Character Sets

Introduction

The statements described in this chapter are used as programming aids to define and access
comparison and case functions on the ASCII and Roman Extension Character Sets. Each of
these statements or functions can be executed from within a program or from the keyboard.

Examples of each statement are included to demonstrate its use.

LEXICAL ORDER IS Statement

The LEXICAL ORDER IS statement allows you to select the collating sequence for string sorts
and determine the results of string comparisons. It also determines the results of UPC$ and
LWC$ transformations for Roman Extension characters.

The lexical order designator must be an integer array containing a local language collating
table, or the word STANDARD which indicates the standard ASCII character sequence. The
following local language collating tables are available on the Lexical Tables Cartridge for use
with the Advanced Programming ROM.

FRENCH SWEDSH (Swedish)
GERMAN SPANSH (Spanish)

Refer to Appendix A for information on the lexical order collating tables.

The STANDARD lexical order designator selects the ASCII table as the collating sequence (i.e.,
string sorting is performed according to ASCII values). STANDARD is the default lexical order
designator at power ON and after SCRATCH A. As such, you need not include a LEXICAL
ORDER IS statement if you wish to use ASCII as the collating sequence. RESET does not clear
the current lexical order. However, if you wish to change to STANDARD from some other

collating sequence, you can do so by entering:

Extended Character Sets

The program shown next demonstrates how a local language collating sequence is selected.

1B IMTEGER Fol:daaD
#1 TO "FREHC

Line 10 dimensions an integer array to hold the specified collating table. Here, A is chosen as
the array and is dimensioned to a length of 400 which accommodates any of the local language

character collating tables listed previously.
Line 20 assigns #1 to the specified file on the cartridge; here, FRENCH.
Line 30 reads the contents of the file (the specified collating table) into the array.

Finally, line 40 establishes the contents of the array (which now contains the collating table) as

the lexical order.

Note that when a LEXICAL ORDER IS statement is executed, the information in the array is
transferred into an internal buffer. This allows you to use the array for something else. Care
must be taken, however, to insure that enough memory exists for the buffer when the statement

is executed. Otherwise, an error occurs.

The LEX Function

The LEX function allows you to compare two strings and determine which precedes the other
according to the current lexical order. The LEX function can be executed from the keyboard or

from within a program.

Syntax:

i_string expression 1, string expression 2

The LEX function begins comparing string characters until a difference is found or until one or
both strings terminate. The function returns the number —1 if string 1 precedes string 2. If the
current lexical order cannot distinguish between the two strings, 0 is returned. The number 1 is

returned if string 2 precedes string 1.

AP-37

AP-38 Extended Character Sets

The program shown next demonstrates the LEX function. Two strings are compared and the
result is displayed.

A=LER I EER"Y, "HBL S
DIsSP &
ERD

[
ERA I Y]

b

Notice that the program utilizes the default STANDARD lexical order. The LEX function com-
pares the strings up to their second characters since these are the first respective characters that
differ. Upon execution, the number 1 is displayed because B (string 2) precedes E (string 1)
according to the current lexical order (ASCII).

The previous example program compared strings of equal length. The example program shown

next demonstrates a comparison of strings of unequal length.

[
R

A=LEC"A", "R ")

TS T

JE N)
o

In this case, both A and B are —1. In both comparisons, the first string terminates before the

second.

Uppercase and Lowercase Functions

The Advanced Programming ROM extends the capabilities of the mainframe uppercase
(UPC$) and lowercase (LWCS$) functions to correctly handle the upper and lowercase trans-
formations of the various local language characters.

The results of the UPC$ and LWC$ functions are determined by the entries in the upper and
lowercase sections of the lexical order array for Roman Extension characters (refer to the Refer-

ence Tables). The upper and lower cases of characters in the main ASCII set are fixed.

Descriptions of the French, German, Spanish and Swedish upper and lowercase transformations

which are provided in the respective files on the cartridge are explained in Appendix A.

Extended Character Sets AP-39

The UPC$ function can be used to obtain a proper LEX comparison if it is not known if the two

strings are in the same case (i.e., if “‘ABC’’ should equal ‘‘abc’’). Example:

NOTE
If a program containing UPC$ or LWC$ statements is
STORE’d in your computer when an Advanced Pro-
gramming ROM is installed, and is then LOAD’ed into your
computer when an Advanced Programming ROM is not in-
stalled, a MISSING ROM error message occurs.

If a program is STORE’d in your computer when no Ad-
vanced Programming ROM is installed, and is then LOAD’ed
into your computer when an Advanced Programming ROM
is installed, no error message results. However, if any lexical
statements are added, the current UPC$/LWCS$ lines must
be re-STORE’d in order for the Advanced Programming
ROM to affect them.

It is suggested that you SAVE rather than STORE programs
which will be switched between those computers which have

an Advanced Programming ROM and those which do not.

AP-40 Extended Character Sets

Chapter 4

File Catalog Access
with the HP 9835

Introduction

The CAT TO statement described in this chapter is provided by the Advanced Programming
ROM for the HP 9835; it is a mainframe statement in the HP 9845B /C. CAT TO allows your
program to read mass storage catalogs. This statement can be executed from the keyboard or

from within a program. Examples are given to explain the statement and its parameters.

CAT TO Statement

The CAT TO statement is used to write a mass storage catalog into a one dimensional string
array. This allows your program to have immediate access to mass storage catalogs. This

feature allows you to copy files from one medium to another under program control.

Syntax:

string array ©# 3 [, skip count [, return variable]] [; “selective

catalog specifier / msus [, heading specifier]]

The catalog entries are read into the string array. The elements of the string array must be

dimensioned to be at least 41 characters to accommodate a catalog file entry.

The skip count parameter allows you to skip the specified number of catalog file entries before

you begin recording them in the string array. The default skip count is O.

The return variable indicates whether the string array is filled before the specified catalog
entries are exhausted. Upon execution, 0 is returned to the variable if the number of catalog
entries to be recorded is equal to or less than the number of array strings. Any strings not filled
with catalog entries are filled with the null string. If there are more catalog entries to be entered
than there are array strings, the position in the catalog of the last recorded entry is returned to

the variable. If you do not include a return variable, this information is lost.

-

AP-42 File Catalog Access with the HP 9835

The selective catalog specifier consists of a string expression or a group of from one to six ASCII
characters (excluding a colon) which identify particular file entries to be recorded. Spaces
within these characters are deleted. Only those file entries whose names begin with the (non-
blank) characters of the specifier are recorded in the string array. If no selective catalog
specifier is included, the CAT TO process attempts to record all catalog entries. If a selective
catalog specifier is given, the skip count and return variable refer to the selective catalog
entries.

The mass storage unit specifier (msus) indicates the mass storage unit in which the catalog is
located. Typically, this specifier is used to select a mass storage unit which is different from the
one selected by a MASS STORAGE IS statement.

The heading specifier is a numeric expression which, when its value rounds to anything other
than 1, causes the second line of the catalog (the heading) to be recorded in the first array
element (string). The heading indicates the mass storage unit and the number of available
tracks. The default value for the heading specifier is 1. (Note that this default is opposite that of
the CAT statement.)

Note that within the CAT TO syntax there are two groups of optional parameters which are
separated by a semi-colon. Within either group the first parameter must be specified if you wish

to use the second. The groups themselves, however, can be included independently.

The following example program demonstrates the CAT TO statement. Assume that the data

shown next represent the catalog of mass storage unit T15 (tape drive).

File Catalog Access with the HP 9835 AP-43

The following program records the file entries in the string array List$. The contents of List$ are

then output.

Notice that the CAT TO statement assumes its optional default parameters since none are

specified.

If the program is run, the results shown next are obtained.

Notice that the heading does not occupy the first element of the array. This is because the
heading specifier assumes a default value of 1. Line one of the catalog is never recorded in the

string arrray because it is the same in every catalog.

The effects of the optional parameters can be demonstrated by modifying the CAT TO statement in the
original program. For example, by setting the skip count to 2, the CAT TO process begins recording
entries at the third file entry instead of the first as shown next.

45 CAT TO LiscdFdss, 2

AP-44 File Catalog Access with the HP 9835

This causes the process to skip down two file entries before it begins recording them in the string array.

DATABS is the first file entry in the string array when this statement is executed as shown next.

By including a return variable you can easily learn whether all specified catalog entries are
recorded in the string array. The original program is modifi=d to include a return variable as

shown next. The string array is shortened to exclude a few catalog entries.

In this program, the skip count parameter is set to 0 so as to start recording file entries from the

first one. Upon execution, the results shown next are obtained.

This indicates that the fifth file entry was the last one recorded in the string array. Since the
string array was shortened, it cannot accommodate all program entries. Notice that DOLARS is

the last file entry in the string array.

File Catalog Access with the HP 9835 AP-45

Although the selective catalog specifier and the msus are grouped together within a parameter,
they can be used separately. The selective catalog specifier is used to record selected file entries
in the string array. For example, to record only those files whose names begin with the letter S,

the CAT TO statement in the original program is modified as follows.
A8 CAT TO Listddshgnge
The semi-colon indicates that the S belongs to the second group of parameters. Notice that the

selective catalog specifier is entered within quotes. If this CAT TO statement is executed within

the original program, the following results are otained.

Notice that List$ contains only that file entry whose name begins with the letter S. The selective
catalog specifier used in this example could also be written as a string expression. For example,

the program lines

30 ZF=rg

G CAT TO Listdosl g IF
would yield the same results.

The msus is typically used to override the current mass storage unit default. The mass storage
unit used in the original program can be changed to a disk drive by modifying the CAT TO

statement as follows.

48 CAT TO LisvFdeiy Py
A colon precedes the msus to differentiate it from the selective catalog specifier.
The last parameter in the CAT TO syntax is the heading specifier. The original example did not
record the heading in the string array. The heading is recorded in the first element of the string

array if the heading specifier rounds to anything but 1. Example:

43 CAT TO List®Ecedg™ 48

AP-46 File Catalog Access with the HP 9835

In order to include a heading specifier, a selective catalog specifier or a msus must precede it.
Here, a space between quotes (used as a selective catalog specifier) fulfills this syntax require-
ment without actually specifying any particular file entries. Spaces are deleted within a selective

catalog specifier. A null string (two quotes without a space) does not fulfill this requirement.

The heading specifier O causes the heading to be recorded in the first string of the array. If this

line is executed within the original program, the following results are obtained.

The parameters of the CAT TO statement can be used to create a ‘‘window’’ around a specified
portion of the catalog. For example, assume that the figure shown next represents a catalog
containing several file entries whose names begin with the letter P.

P1
P2
P3
P4
P5

P6

If the string array A$ is dimensioned three elements, then a statement such as

File Catalog Access with the HP 9835 AP-47

would record only three of the P file entries. The selective catalog specifier selects only the P
file entries to be recorded. The skip count further limits the number of recorded P file entries by
skipping two of them. Finally, the size of the string array limits the total number of file entries

that can be input. The figure shown next indictes the “window” containing the recorded file
entries.

P1

P2 —————

P3 —— | -=— Skip 2
P4 ——
P5 — | --— N=5
P6 ————

Upon execution, A$ contains only file entries P3, P4, and P5. The variable N equals 5 because

the fifth P file entry was the last one recorded.

As another example, notice how the CAT TO statement is used in the following program to

copy files from one mass storage unit to another.

Line 50 allows you to enter the mass storage devices you are using. Line 140 contains the copy
statement for files based on the string array contents from the CAT TO statement (line 80). You

can easily modify this program to copy selective files which suit your needs.

AP-48 File Catalog Access with the HP 9835

Appendix A
User-Defined Lexical Order

It is recommended that you use the existing collating tables as they appear on the tape car-
tridge. However, an experienced programmer can create a lexical order table to accommodate
his particular application. The following information describes the procedures involved. A
knowledge of binary and octal numbers is necessary to utilize these procedures.

To modify a local language collating table, it is first input to an integer array. Once in the array,
the specified table can be accessed for modifications.

Along with the local language tables, a special ASCII table (“ASCII"’) is included on the
cartridge for the purpose of modifying the ASCII collating sequence. The LEXICAL ORDER IS
STANDARD statement automatically uses the standard ASCII sequence. But in order to modify
it, the ““ASCII” file on the cartridge may be input to an integer array in the same manner as is a
local language table. Example:

o
o]

FEEEEFFELEFXLEEEETEELLEEEFLEXTEX LR LETREEH

e F e R

& I owxs This program segment 11 Tustrates the e
& bowsd LERICAL ORLER IR stat FEE
@ | REREREERERFERELEEE LR R SRR EERAEEERRERE LT SR BT H BB EE Y
I

OFTION BRSE 1

!

! eot OETION BAZE,
ER BCAR0 s !
G !
!

Dimenziorn integs
Select AZCLL File,
i

]

AR

Rt BRI
—
e
g

]
m

1

AFEE

SEIGH #1 To "RSCIIC !
F

el RN u Ry R B x SR 1 B O S U U S
s
kY

5 MAT READ #1:E o dnc ik BECTD sable.
a5} 1

16 Ullser modifications,

8 i

e 5 LERICAL DOEDER IS Bos: P Establish contents of

S Darraw-Bras texical orders,
A EHD

Line 90 inputs the “ASCII” file contents to the integer array B. Lines 100 through 120 represent
the user modifications to the ASCII table, and line 130 establishes the modified table as the
lexical order. Notice that in order for the table in the given array to dictate lexical comparison
results, a LEXICAL ORDER IS statement must be included after any modifications to the array

have been made.

AP-49

AP-50

Appendix A

Once a LEXICAL ORDER IS statement has been executed, the integer array can be used for
other purposes. Be sure, however, to save all necessary modifications on the tape cartridge
before using the array for other purposes. The program lines shown next can be used to
maintain a copy of the lexical table modifications for the previous example.

188 A AR T UHENY
118 MAT PREINT #E

The lexical order tables give you the capability to define the collating sequence (collating
section), define the uppercase/lowercase transformation of Roman Extension characters
(UPC/LWC section), and prescribe ‘‘special handling’’ of certain characters {mode section).
The lexical table with its individual sections is an integer array organized as shown in the

following illustration.

1 Total Length
2 | Mode Section Length

Collating Section
{Length = 256)

258

259
) UPC/LWC Section
- (Length = 96)
354
355
: Mode Section
(Length = N)
354 + N

Each element of the lexical table consists of 16 bits. This arrangement can accommodate one

number or an integer combination of two (unsigned) numbers as shown next.

Bit 15 0 Bit 15 8 7 0

Sign_»

B|t ~ J | N— o’ J

Appendix A AP-51

If one number is stored, a binary two’s complement storage format is used. In this manner, each

element has the ability to contain two distinct values.

The first element of the array contains the complete length of the lexical table. This length is
354 plus the number of elements (N) needed in the user-defined mode section (see explanation

of mode section).

The second element of the array contains N, the length of the mode section of the table. Once
the length of the mode section is defined, the first two elements of the array table can be filled

with the proper information.

Elements 3 — 258 of the table contain the actual collating sequence and the appropriate poin-

ters into the mode section, if one exists.

Elements 259-354 define the uppercase/lowercase transformations for characters in the Roman

Extension set (refer to the ASCII and Roman Extension charts in the Reference Tables).

The mode section consists of elements 355 to (354 + N) and provides facilities for handling

certain special case characters.

Collating Sequences

When the lexical order is STANDARD, the ASCII codes define the collating sequence. Thus, A
lexically precedes B (i.e., LEX(““A”’, “‘B”’) is —1) because the ASCII code for A is 65, the ASCII
code for B is 66, and 65 is less than 66.

For computer processing, each character has been assigned an ASCII code. The ASCII codes
are fixed, however, and cannot be changed to reflect a new user-defined lexical order. The
lexical order tables give you the capability of redefining the lexical order by assigning each
character a sequence number. Characters are still represented internally by their ASCII codes,
but a lexical comparison compares sequence numbers rather than ASCII codes. Now, LEX
(“A”, “B”) is —1 if the sequence number of A is less than the sequence number of B. For

example, the strings ““ABC’’ and ‘‘XYZ’’ are stored in the computer as strings of ASCII codes:

ASCIl code | ASCII code | ASCIl code ASCIl code | ASCIi code | ASCII code
for A for B for C for X forY forZ

AP-52 Appendix A

The calculation of LEX (“ABC”’,XYZ”’) involves a comparison of sequence numbers:

Sequence # for A Sequence # for X
Sequence # for B Sequence # forY
Sequence # for C Sequence # for Z

By properly assigning each character a sequence number, you can define any lexical ordering
of the characters.

Collating Section

The coilating section of the lexical order table (elements 3-258) defines the actual collating se-
guence by assigning a sequence number to each character. There are 256 possible 8-bit charac-
ter codes (refer to the ASCII and Roman Extension charts in the Reference Tables). The user-
defined sequence number for the character with ASCII code 0 goes in element 3 of the lexical
table {element 1 of the collating section), sequence number for character with ASCII code 1 goes

in element 4 of the lexical table (element 2 of the collating section), and so on.

For example, the letter A has ASCII code 6510. When an A is encountered, the manipulation
routine goes to the 66th position of the collating section to fetch a sequence number. Note that
the sequence number is fetched from the collating section element number equal to the ASCII
value of the character +1. This is because the first character in the collating section is null, and
its ASCII value is zero. Usually, the sequence number equals the ASCII value. However, if a

different collating order is selected, the sequence number may differ from the ASCII value.

In addition to the sequence number, each entry of the collating section may contain a pointer
into the mode section of the lexical table. If no pointer is specified, 0 is entered. The mode
section contains instructions governing special case letters. The pointer number indicates in

which position of the mode section a special case is handled.

The sequence number and mode pointer number for each character are combined to form a
single integer entry in the lexical table:

Bit 15 8 7 0

Sequence # Mode Pointer #

Appendix A AP-53

Assume that A is a special case letter with the sequence number 65. Also, assume that the
special case is handled-in position 1 of the mode section. The collating section entry containing

this information is represented by:

Bit 15 8 7 0

Array Element 68 65,, Tho

f ?

Sequence # Pointer #

The actual content of this entry is 16 64110. The number is obtained as shown next.

65 1
| 1
Binary 01000001 00000001
¥ S Yy Ty
Octal 4 0 4 0 1,
\
Decimal 1.6 6 4 1,

Both the sequence number (65) and the pointer number (1) are combined to form one integer

value within the table element, in this case, 16 6410.

An alternate method of converting the binary and octal elements of the lexical table entries to
integer form is given below. For example, if the sequence number you are using is greater than

127, you may find it more convenient to use the formulas shown next.

X and Y are each 8-bit unsigned integers.
Z is a 16-bit signed integer formed by concatenating the bit patterns of X and Y.

1. Given X and Y, calculate Z:
Z=X*256+Y — (X>127)*65 536

2. Given Z, calculate X and Y:
X =INT(Z/256) + (Z<0)*256
Y = Z MOD 256

AP-54 Appendix A

Uppercase/Lowercase Section

Elements 259-354 of the lexical table are used for uppercase/lowercase information for
characters residing in the Roman Extension Set. Data contained in these elements is in the
form:

Bit 15 8 7 0

Uppercase Lowercase
Character Character

The UPC/LWC section contains an element for each character with an 8-bit code of 160
through 255. The first element of the UPC/LWC section (element 259 of the lexical table)
contains the upper /lowercase for the character with 8-bit code 160, the next element contains
the transformations for the character with 8-bit code 161, and so on.

The purpose of this section of the lexical table is to allow you to define the upper and lowercase
versions of each letter in the Roman Extension Set for use by the UPC$ and LWC$ functions.
All characters in the main ASCII table have fixed upper and lowercases, and as such, are not
changed. If both the uppercase and lowercase 8-bit codes in the table are 0 for a given
character, the character is unchanged by the UPC$ and LWC$ functions.

For example, if a word containing a lowercase e (code 19710) is to be converted by French
conventions, the accent is omitted when the letter is converted to uppercase. Thatis, e—E. But
under German conventions, an umlaute in the letter remains so that a— A. Therefore, for

French, the 38th entry of the uppercase /lowercase section (296th entry of the table) is

E e

Array Element 296 | 69,, | 197,,

while the 45th entry in the German uppercase /lowercase section is

Array Element 303 | 21610 | 20410

Appendix A AP-55

Mode Section

The mode section (starting at element 355) of the lexical table handles special case characters.

The three special cases shown next are possible.

e Accent Priority
e 1 For 2 Character Replacement

e 2 For 1 Character Replacement
Accent Priority
You may specify the priority of letters with accent marks. Example:
e<e<e<e<e
The symbol (<) means ‘‘precedes alphabetically’’. In this case, these letters have the same
sequence number in the collating section, but different pointer numbers. That is, each has an

individual entry in the mode section.

An accent priority requires only one entry in the mode section (some special cases require more

than one). The format of the mode section entry for this special case is:

Bt 15 8 7 6 0
0 1 Priority

The zero indicates that the eight bits of this special case mode entry are not used, and must
contain zero (0) so as not to be confused with one of the other special cases. A 1 must be
present in bit seven to indicate that this special case is an accent priority. The remaining bits

describe the user-defined priority number.

AP-56

Appendix A

For example, assume that the letter e in the collating section has a pointer number which
specifies the first entry of the mode section (or element 355 of the table). Also, assume that this
mode entry assigns a priority of 2 to the letter e. The collating and mode sections contain the
information shown next.

Array Element 200|Sequence # of e [1 (Mode Pointer)

355 0 [1] 2 (1st Mode Section Entry)

Bit 7

The following scheme is used to find the correct mode section entry.

Binary 0000000 010000010

* S T |
Octal 2 0 2
Decimal 1 3 04

13010 is the proper entry for the mode section element. Bits 6 through O are used to describe
the priority number. Bit 7 is always 1 for an accent priority special case. Bits 15 through 8 are

not used, but must contain zeros to insure proper results.

Note that the value of an accent priority entry in the mode section is always 128 plus the

assigned priority. This means that the maximum accent priority is 127,

Accent priority mode section entries assign a relative priority to characters having the same
sequence number. The accent priority is used only to distinguish two otherwise identical strings

which differ only in their accent marks.

For example, assume e and e have the same sequence number and each has been assigned an
accent priority; e has priority 5, and e has priority 2. The routine to calculate LEX (“‘@”,* &”’)

’

first compares the sequence numbers of e and e.

Since the sequence numbers are the same (and each character has been assigned an accent
priority), the accent priorities are next compared. Five is greater than 2, so LEX (““ e’’,“e”") is 1

(i.e., e> e, or e comes after e alphabetically).

Appendix A AP-57

A character which is not assigned an accent priority in the mode section lexically precedes any
other character with the same sequence number and which has an accent priority. For example,
assume e and e have the same sequence number, but that e has been assigned an accent
priority in the mode section while the mode pointer of e is 0. Since e has not been assigned an

g

accent priority, LEX (“‘e”,*“e”’) is —1, or e precedes e alphabetically.

In the following example, the two strings have the letter e (but with different accent marks) as
the first character. Since the last characters of each string differ, a mismatch is encountered

without using any accent priority information from the mode section.
LEX (“ez’," ea”) = —1

In the next example, both letters in one string match those in the other; the only difference
being the accent marks on the first letters. In this case, the strings match and accent priority
information is used to make a distinction. If the accent priority for e has been specified to be less
than the accent priority for e, the results would be:

LEX (“‘eb”,* eb”) = 1
1 For 2 Character Replacement

Another special case that you can specify is a 1 for 2 character replacement. This specifies that
for collating purposes, a given combination of two characters is to be treated as a single

character. That is, two characters are assigned a single sequence number.

An example of this are the letters ‘“CH’’ together in the Spanish standard collating sequence.
The correct alphabetical sequence in Spanish is A, B, C, CH, D... All words beginning with C
followed by any letter other than H come before words beginning with C followed by H.
Therefore, the two letters CH can be taken as a single letter coming between C and D in the

alphabetical sequence.

The string ““CHA” is to be stored as

ASCII Code | ASCIl Code | ASCII Code
for C for H for A

but for collating purposes, the sequence numbers fetched for this string would be:

Sequence # for CH

Sequence # for A

AP-58 Appendix A

The mode section format is:

Seq. # of 2-character | Uppercase of

combination 2nd character

Seq. # of 2-character | Lowercase of

combination 2nd character
0 12810

The front, or upper part of the first (and possibly second) entry, contains the sequence number
of the 2-character combination. The last, or lower part of the entry, contains the ASCII value of

the 2nd character.

Usually an entry for both the uppercase and lowercase versions of the 2nd character are
specified. This is to catch both occurrences of the given character combination; for example,
CH and Ch. However, this is not required. If the special 1 for 2 character replacement is to

specify CH only (and not Ch), the lowercase entry would be omitted.

In the case that both an uppercase and lowercase entry appears, the sequence numbers in the
upper part can be the same in both entries. They are the same in the Spanish table. However,

different sequence numbers for each combination are acceptable also.

No matter how many entries are given, the last entry for this special case is equal to an octal
200, or a decimal 128. It is a terminator that indicates there are no further character combina-

tions.

When a lexical calculation on a string encounters a character with a mode pointer to a mode
entry of this type, the next character in the string is compared one-by-one with the possible
second characters given in the mode entries. If a match is found, the two characters together
are represented by the single sequence number given in the corresponding mode table entry. If
no match is found, the first character is assigned the sequence number given in its collating
section entry and processing continues with the next character in the string. Note that ‘“‘don’t

care’’ characters in the string are not regarded as such for this type of replacement.

For example, the sequence numbers fetched for the string ‘““CAH”’ (even if ““A’”" is a ‘‘don’t-

care’’ character) would be:

Sequence # for C

Sequence # for A

Sequence # for H

Appendix A AP-59

Note that this special case does not cause any actual substitutions to be made in a string
containing CH; CHA is still stored as:

ASCIl Code | ASCII Code | ASCII Code
for C for H for A

This means that for collating purposes, the character pair CH causes a single sequence number
to be fetched.

Consider again the example of CH for Spanish. Assume that the letter C has sequence number
67 and D has sequence number 68. To include the combination CH, a new sequence number
must be created between 67 and 68. To do this, the collating sequence is rearranged so that C
has sequence number 67 and D has 69. Sequence number 68 is reserved for CH and the

remaining sequence numbers are adjusted accordingly.

Assume that the 4th, 5th, and 6th elements in the mode sequence contain the information

governing the CH special case. The mode sequence entries for this example are shown next.

Array Element 70 67 4 —
71 69
358 | Sequence # for CH H -=— (4th Mode Section Entry)
359 | Sequence # for CH h
360 0 128,

Numerically, the mode section entries for this example would contain:

68 72
68 104
0 128

Note that 72 is the ASCII value for uppercase H and 104 is the ASCII value for lowercase h.

AP-60 Appendix A

Whenever a C is encountered in collating and H or h immediately follows in the string, the pair
of characters (CH or Ch) is assigned a single sequence number. Processing the string “CHA”

would fetch the sequence numbers:

Sequence # for CH
Sequence # for A

In the original example, the actual contents of the mode sequence entries are:

4th Mode Section Entry: 68 72
| 1
Bin'ary 01000100 01001000

(A T Y [N [y W

Octal 4 2 1 1 0

Decimal 17 4 8 0

5th Mode Section Entry: - 68 o 104 I

Binary 01000100 01101000
\ I Y S Y N (T R

Octal 4 2 1 5 04
\
Decimal 1 7 5 1 2

Therefore, lexical table element 358 (1+1+256+96+4) contains 17 48010, element 359 con-

tains 17 51210, and element 360 contains the terminator value 12810.

It is possible to specify additional character replacements for the same character. For example,
if the combination CZ were to follow CH in the previous example, the mode section would be

expanded to include the additional characters as shown below.

Sequence # for CH H
Sequence # for Ch h
Sequence # for CZ Z
Seqguence # for Cz z
0 128

The terminator does not occur until all additional characters have been included.

Appendix A AP-61

2 For 1 Character Replacement

The third special case is a 2 for 1 character replacement. This type of mode entry specifies that
a single character is to be assigned two sequence numbers for lexical comparisons. For exam-
ple, the letter A in German is alphabetically equivalent to AE (or Ae). In a lexical comparison,
A is assigned two sequence numbers; the sequence number for A and the sequence number
for E (or e).

In general, if the mode entry specifies that a character is to be assigned two sequence numbers,
the first sequence number is given in the normal collating section of the table. The second
sequence number is given in the mode table entries. The format of the mode table entries is

shown next.

Bit 15 8 7 0

Sequence # of
2nd character (upper) 0

Sequence # of
2nd character (lower) 0

Since there is only one number required for this case, the second portion of the element (bits

7-0) is not used, and must be set to zero to avoid confusion.

Note that mode entries of this special case require no terminator element. For example, assume
A'is a special case character that is alphabetically equivalent to AE (or Ae), and that the special
case for A is handled in the first entry of the mode section. The collating section entry for A

(which is character code 216) and the mode section entry are shown next.

Array Element 219|Sequence # for A | 1 (Mode Pointer)

355({Sequence # for E 0 (Ist Mode Section Entry)
356|Sequence # for e ’ 0

Assuming that the sequence numbers of A, E, and e are the same as their ASCII values, the

following illustration represents the numerical contents of the table entries.

219 [650 | 1 1664110
355 | 690 | 0 1766410
356 [1010 | O 258561

AP-62 Appendix A

Note that the sequence number for A in the collating section is equal to the sequence number
for A. Differentiation occurs in the mode section information. That is, A probably will have no
mode section pointer, while A will. The sequence difference between A and A, then, is handled

by A’s entry in the mode section.

The choice between lower and uppercase for the second sequence number is determined by
the case of the character immediately following the special case letter. For AN, A is equivalent

to AE. For An, A is equivalent to Ae. The character A alone is equivalent to AE.

This special case does not cause any actual substitutions to be made in a string. In the previous

example, the string *‘An’’ is stored as:

ASCII CODE ASCII Code
for A for n

For collating purposes, the sequence numbers fetched for the string “An” would be:

Sequence # for A
Sequence # for e

Sequence # forn

“Don’t Care’’ Characters

There is a fourth special case which doesn’t require a mode section entry. This is the ‘‘don’t
care’’ special case where the specified character is to be ignored for collating purposes. An

example of such a case is the hyphen in hyphenated words.

A character is ignored alphabetically if it has a sequence number of 255 in the collating section.
That is, wherever a “‘don’t care’’ condition exists in the collating section, simply enter 255 as

the sequence number in that element.

Note that once a character is specified to be a ‘‘don’t care’’ character, it is always treated as if it
did not appear for collating purposes. For example, if the hyphen is designated as a ‘‘don’t
care’’ character, then ““user-defined’” would be collated as ‘‘userdefined’’, and, consequently,
*“~2" would be collated as “‘2’’. Therefore, consideration should be given to the desired results

before a character is designated as a ‘‘don’t care’’ condition.

It should also be noted that the null string precedes a string containing only a ‘“don’t care”
character. That is, if A$ = ““’ and B$ = *“="", then A$ precedes B$ even if the hyphen is a

“‘don’t care’’ character.

Appendix A AP-63

Advanced Programming Lexical Tables

The following listings are the Advanced Programming lexical tables. The tables are recorded on
the Lexical Tables Cartridge under the names ASCII, FRENCH, GERMAN, SWEDSH and

SPANSH. For your convenience, backup tables are included on the cartridge under the names
BKUPAS, BKUPFR, BKUPGR, BKUPSW and BKUPSP.

AP-64 Appendix A

TN s s L ATEATATATAA

EHNTRY #1 -~ LEWGTH OF COLLATIMG THELE = 254
EMTRY #z -- LEWGTH QF MODE THELE = @

————————————— COLLATING SECTION -—-—-—-—-=-—-

EMTRY | COLL. |CHAR CHAR SEG|MODE| JEMTRY [COLL. |CHAR | CHAR | SER) MODE
EMTRY |CODE # FTE # EHTREY |CODE # FTE

R
oo

=J
i

EQT
EHE
ALK
EEL

—
=

I 1 HLL 5] 49 43 (5 4o 5
4 z S0H £ Sl 4 1 4 5]
b i ST & bl b = S 5|
& 4 ETx 1 pa] i 51 5

PRI A B i |

¥ O P (A

inoon

FRRUA) B A S I O T n |
[ax]

Lo =
~) 1Ty
TN s

n

fa
21}
[ax]

[N
— T
LoD -

LA
']

U L
[s X]
5

-4 T
T N

= : 5] [2 £)

oL O

—
(I O]
—_
LR
—

HT
LF
YT
FF
LR
14 S0
<1
LLE 16

,_
oo
—
Sl

[|
LI

yuj
=

—
=

%

-

ex]
]

—
B - VN I O
—_

[
—
—
—
[]
i
»

D Y |

)

h
—
(Y]
-
I

NI R N O N N 0 Y) (R <SR I I x|
hax

p—
Ty
—
$u
—
03

— -

W OR PR LN

fax]

L
Dx()

—
=4
—
LA

—
ikl
—

-J Ty L
—
n

RN PR B CR o
uxl

—
|
Dan]

S Is SR I OO N I (S LUV K s I 5 U 1 I CHR WA LA oo

-
L)

| UK

MR E IR
=
—
(ni}
Doy I
LR

Do SR I SO I LSO |

(=
G
Dex]

-
b
e
2
=
—t
=
b}
[
l
[
£
g
=
&
&)
=
=
=
(=
-
7
=
7

—
fL]
[I o I)
P T I R B B SRR R T T (S e o e Y S SO S S O O SO IR) R 4 3 B SR R R |

R A TN I R B B S I sy B ST SO ST O ST ST Y) R B)) IR) B
Fu

R I It ST RSN B 3 AR s A0 s TR OO R O TR I, B I B, B L R

[
A
)

(X N}

P2 o=
fax]

LRSIy
Vo 0

3 -

uj b= 17 ol 7 5} = = A 5 5
21 13 13 oz 12 5} = 7 E) &
ey 2K 13 s 19 5} 5} o T [T K
23 21 28 o4 2H 5| 1 = o I o =
=4 22 21 HA 21 5 z & E E = 5
=5 = 22 SH =2 5 e 1 & F 5] 5}
ZE =24 =2 ETE 23 5} 4 2 1 G 1 &
27 25 =4 CHH = & b & 2 H 5}
23 26 25 EM 25 @ £ 4 N
2 27 2 SR 2 5] B 5 4 J 74 5}
R 28 27 ESC 27 5 o) S 8 TS 5}
21 =9 22 F= 28 (5} E ¥ &= L T 5}
o 35| 23 55 29 5 & o ¥ I T &
a3 a1 3] Fs 3K 5 =1 = = H B 5}
e &z a1 1= 21 5} o =15 = i} v 5]
35 @ 2 SF a2 £ 23 =3 =1 F =15 B
e =4 EC ! =3 5} o4 =1 [=1 %
a7 a5 e " 4 (5} =] o 32 F oz &
c1E] SR 25 # =5 8] e = o3 = ; 5]
o ch SE k2 2E 5] v b =g T] 5]
4 a8 27 % ch 5} == b= =S I =k 5}
41 a4 38 i 28 &] b= =) N oA &
4z 4@ o (5 3] = W 3 5]

4 46
41

Ja
Fey
ey
N R N

£
=
n

2

ML) I CNR
£
N

00

QR

]
[}

3
5
=
-

=
&
1

o
XX
X

4
[xa]
. :
JL I O PU N V]
Ll
+ #
RO Y
[(]
oo T
i}

NN K]

W)
[xx]

KRN RN]
0 = T O S L T
D

OO

At
D) [SN I DN =
L

L

Y

Ty

v

{

X [SO
DI x]

L

[xx]

UYL BN
Ty 0
5

D

£

§u]

F ey

|

b T
+

Ty

[xx]

0

i) I RN I O T S S o B

i
5
I
[wx]
=}
Py
-
D
Ao
X
o
Ty
I
LY RN Iy
[an(]

Appendix A AP-65

—————————— COLLATIMG SECTIOM - COHT -—--------

EMTREY COLL,. | CHAR CHAFE SEC|MODE| {EMTRY |COLL. |CHAR [CHAR [SEQ{MODE
EHTEY |CODE FTFE # EHMTRY |CODE # FTE

+#*

k] i JE FE 5] 147 145 144 144 5]
166 1= a7 a a7 & 145 146 145 145]
181 99 S5 b T & 149 147 148 146 @
18z 166 949 C a9] 156 145 147 147 &
183 181 1a d 166] 151 14%9 148 145 @
184 18z 181 = 181 5} 152 156 143 143 5}
185 1Bz 182 i 182 5] 1532 151 158 15a 5}
1B& 184 183z q 18z & 154 152 151 15 5]
147 165 164 b 164 5] 155 152 s 15z &
1az 168e 1a5 i 185 5| 156 154 152] (5]
185 1687 1ae] 196 i 157 155 154 154 (5]
11a 1= 1a7 k: 187 5] 158 156 155 155 5}
111 195 183 1 185 & 152 ts7 156 156 5]
112 118 1689 i 169 & 166 158 157 157]
113 111 116 ti 11a@ & 161 154 1558 155 &
114 112 111 o 111 @ 162 168 159 159 2}

3 112 & 163 151 1618 166 &
112 5] 164 162 161 B 1&l &
114 & 155 163 152 T 1&z &
115 5 166 154 1632 B 1E3 5|
116] 167 165 164 0 1&4 o)
117 5 158 166 185 =] 165 5|
112 & 169 167 166 E 166 o]
113 (5} ivd 153 167] 17 i
128 5| 171 163 188 ’ 188]
121) 17e 17a 169 169 &
122 5} 173 171 174 17@ o)
122) 174 17z 171 171 5
124 5} 175 172 172 17z 5|
125 & 176 174 173 E 173 o)
1268 & 177 17s 174 G 174 &
127) 175 178 17s £ 175 o]
122 5] 179 177 17 I - 5}
1239 & 158 17e 177 A 177 @
128 (5} 121 17 17a a i7& &

5| 1: 12 173 “ 179 i
g 11 131 128 7 184 a
5 13 122 181 ¢ 18t @
5] 1 183 152 Hoo1sz 5]
& 11 124 123 Fooo1es &
& 1 125 154 i 124 5
@ 11 18 15895 &1as &
5] S 13 i 126 &
5 198 15 t 127V 5|
5} 131 189 = 128 I
] 1oo 138 & 189 &
5} 193 191 < 19R 5]
x| 194 192 © 191 &

AP-66 Appendix A

—————————— COLLATING SECTION - COHT -——--------

EHTRY | COLL. | CHAR CHAFR SECMODE | JEMTREY [CCOLL, |CHAR P CHAR | SEQ | MODE
EWTREY |COLE # FTFE # EMHTEY |CODE FTER

4 T
non o

o

-

—
DX

#
195 133 138 a 192 5 =42 o4 248 5
156 194 1135 5 193 5| =44 241 241 £
137 195 124 o] 194 5] =245 242 242 5
192 196 135 ¥ 195 (5] Z24e 2432 243 £
19% 197 19a a 135 5 47 244 244]
Zaa HE = 127 5] =243 245 245 5]
i1 e o Q3 K =249 v 2de 295 5]
= 5] i e i) 250 = 247 =47 5]
1 a 5] 5] 251 El 24 &dE 5l
B2 = "] 5] 25 5 243 &4 5}
Bz o 212 5] 253 1 258 gt} 5
B U B3 5] 294 = 51 £51 5]
5] 1 284 5] 255 i 2 252 5
Z8 285 2986 I 253 5]

| GO X U L N

J T
[O N

noan

-
[

o
L <Y

]
i
oo
-
5
-

o

oo
N
n

D
L

—
T
—
hax)

L
=L

"

A

ot
=

X
— -
=
[N a]
T
LA e

DAL [S U

1

= 1 1 &

i 2 a = &

4 £ 1] 5]
7 S @ h|
= [5

T

T &

b T L e
o

J

[RS T

b
T

-

o

1
1
1
1
1
1
1
1
1
1

-

[s e b b s e e s
BN

e O

SUNN}

Doy IR |

| ORI e e el i i |
LU} I
= o

J o= i
[
-,
kY

T
Dot

o
(IR) S
i e

M3
b

)
-
[ax]

"2 P
o e e e v T e o D
[l U T e o L AU OV B OURE A Yy WL

-
fux

5]
i
Dux]

A
hex(}

.
[

| S O A
fuaoe—=
[xA]

Appendix A AP-67

—————————— UFFERCASE-~LOWERCHSE SECTION —-——-————=—

EHTRY UL CHRR | CHAR
EMTEY | CQLE
164

Ol
el

EF|LOWER EHTREY |11 CHAR [CHAR | UF
E_|ERS # EMTRY | CODE |

m m
J
[
it
mm

o

i||

e @ o~ | E

P~y

n

I
= — T M

- Ir
H- Ir

n

O g D3 R e D 00— Ty N d D0 PO o SO

Lo D P e
G B
"

152] I & =
b 4 £ il ¥ = 5 H 5
(= bt H A A 5 ; 5 :
: = e E = g)] o
= 7 I & o £ i
E =

18

LRl U
o— Lt
i) - ul

,_
AR
oo
B s
D

.
AR :

F —
P o

o m —
P ™
o= m

(042
—r Mt

LTI) I ORI (R
[
I e
[oeom

:
=
&
&
g
&
&
6%
s
:
-
:
e
:
-
:
-
:
-
:
-
r
s
:
-
:
.

NI K LI B 1

oo ot
Il I
o

Do Y R

TN
]

]

ol 3
[N

q
-
-
3l

I

=l
-
=
=i

N da L3 f

-3 T

|)
[non s
-

WL

LSO (RO ORGSO O O O8]
DR |

50
e
[T [
wn

i B By B B Bt B B SRS I Y2 LI SO x ST x A0 ' ' 'S SO n SO SO | N B T ¢ I

y R}
[N

P T ol 00 T A e L3 R o D

= .; ’
5 1 i * o
2 A =1 g E:
El S 2 = I

i
soee O
0

s K (P

.—‘
P

]

o a0 l.-._'n —

oo
LLOS VL]
L4 S o)
e

(51
[l

-
puid

oo M e
LRI TR

[N}
LONN N O TR (R BT S S B S) [S

DS]
MUy I R
oy
[N}

R (% e o

(O L Cle A O}
0D

U AN

%)

T L a0 o
£
[nyt

-0
(LI S

e
[}
.

1,
DO P O T T B NN AX]

(YIS

U R)
LLCER TUER

m X

i

EL (1 TH

1
Pt}
]

=
.

1
1
1
1
1
1
1
1
19
1
1
1

DO O 0E G D) 0 Py B OPo [BT

34
=5
&
:
el
1
3
5
&

B OO PV IS o BN B B e (RS
i)

onoon o oon

[hx]
]

Xy)

AP-68 Appendix A

————————————— MODE SECTION -—--—--—-------

EMTEY JMODE TYFE DESCRIPTION
EHTRY

VEELTEEEEE Tvre mETAILE [(L[]

-- DOH- T CARES --
5] a:

CII - 255 = DIon't care

-- ACCEWNT PRIORITIES --

-— THWO FOR COHE REFLACEMEHWHTS --

-~ HQHE FOR THO REFLACEMEHTS --

Appendix A AP-69

AR it LT

EHTRY
EHTE®Y

—— LEHGTH 0OF COLLATIHG TAELE = 374
#& -- LEHETH OF MODE TRELE = 2@

————————————— COLLATIMG SECTION —=-==m-——memm

EMTRY [COLL. [CHAR CHAF SEG|MODE | |[EMTRY [COLL. [CHRR|CHAR | SEQ |[MOTE
EHNTRY | CODE # FTF # EHTEY | CZOLDE FTF

1 5} HILIL 43 45
=0H
=T
ETH
EOT
EHG
ACE
BEL
EZ
HT
LF
WT
FF
R 13

=0
=1
ILE 1E
nci
12 ez
nos
I
HAE
SYH
ETE
CHH
EM

SR

I

,_
o
—
[x]
S x]
—
Lex]

o
Y

A
L
5L

0o
non

i
M

AN I CNR P
[P L]
M pes
Nt on
S RSN [AR FY Y (N oy B v

-
[

(]

[T SR PR o
W
[an)

L1 I RS B (R
n
on o

-1
[an]
wn o«
[

oo QO

Dax]
DOURE (RO o |
Dax]

0
on

—
box]

i BLEE T I CO P (R
Exx]

DOCE 0 51
L) e %

LA R}

,_

[x]
—

=

—
Doy
RN RN |
o
LIS I N
[}

[I s
= T

—
fa
—
R
=
LU

[TINLY O S S 0 SR) Y U P T L T
o

PR
[t R e

—
(%)
—

V) -
—
—

U A |
oo

—
Lo L
—

[1]
[

DO (R L IR 3 |
T L
G -

D]

bt
o
Dand

RN DU OV W et I P) I U P L8
[xx)
Ty
Dan]

—_
oy Cn
—
P
[

DU X}

I x|
a4

-
on
-
Fey
-
Py
[

T
D]

- Ty N e

—
(2
—
n
—
n
fan]
Ty Ty 1Ty

=
-
AN
DG

\.J
=)
[x]

I

[
i
RREAN I I S U O I S W R B) B NP T (6 TS

—
G I

Ty My

NN
—
oo
-
o)

AR
-
o0

[xx]
—
LUCRREN I TN) I R I ORI w0
w

Ty My
w00 -

| A o Ry]

fuct I]
L

T
LA e

[xx]
m
L]

[N O o Yt]

P,
LU A
U A |

L1 [+

]

DO O I LT
I

& L]
o
[

m

()]

b

) I <
"y

T 0 0 U0 O
[xn]

(O SO LT R O (O T SR O I W OV I

[I R B s R SR | I CO PN B W R S R 18]
[xx]

oo -
M
Dex}

B I B B ey B B e e I I T O n VN u U T s S . IO) IO S I TR B B T 4 O OO %

[KSUS COCHN I NI DSCR 5 CRS (Y T O T (4}

D]
a
D B e B x|

—
an)

LRI SRR OO ORI (SR CRN L TN DI L% B 8 (A s

0 Bt B By B Bt B BN S B8 |

LR B ST I O PR OV NS U I x S| Y OO N OV]

T =

LA

,.
[xx]
[}

5
b
c
o
b
]
=
=
]
=]
c
)
]
=
£
&
£
=
=
&
()
£
-
K

-
7

-
K5

-
ks

-
7

-
7

-
7

-
E

-
7

-
7

=
=
=
=
=]

3
5
[
i
o
5]
1

S I Bt Bt By H¥ Bt BNt Nt It I w O » B 0 PO SO VY S S AT SO I

MU s 4

U BLXL TR I S O I Y I x I D) [R DI R) I SO I O
[%]

AR I CRU I O U S w i v et B 2 AR Y ORI O T

R N O T 7 T WS B I I O I I T B B O O OV IR N OV (NI N | ORI ORI e =Y

A DN I A T T B [S | S O PR B O STy B R R R b IR L | S S I T o B O N |

]
[ux]
—
LA

— T o0
Y T
|
fun]

Sy]

S
5]

o1 o
(]

Eoy
£
fa
[{A]
oo

i “ 3 ; =
it o1 1l = 5] E = 7 [} = 5]
= o2 = . 6] a3 = [y F = [n}
3 23 | o 5] =4 o o N} = £t
o g " o 5] =5 = o2 =5 = 5]
= a5 # =] 25 = = = 2 5]
ey e 3 6 A a7 o =4 T = 5}
eE= .'--',' . 5] =e = =5 | = A
i) : : 5] = = =1 L) 5]

L 3 ; v

46 p 44 &]

4 .

—
L

3 D
o
AT

oD O

oL

33 42

R
)

o
£a
)
AR
i)
o

¥y]
[¥u]

el
1
2
S
£

]
1]
[xx]

) PO

[}
o
[n

OV |
£ 5
AR |
£ B
[I S TN
[
N L
N &=
D)
LD

o
D]

1
Ja
ey
o
e
+ %
N
L0
Dn]
N RN R I Iy B (T s RV s B X
DUCEESS B SR) SIS R P T O8RS I
Nu)
Dun}

Ty O fa 3 [0 = T

L] I SR CHRN o8

£
Y
=1
Lo
-] Ty
ey
T
[n]
At
i
[ax]

—
Ay RS
[N x]

SN]
N =
5]

[x
[x)
By
=l
4
-1
=
¥i]

AP-70 Appendix A

—————————— COLLATIMG SECTION — COHT ——-———-—--

EHTEY | COLL. JCHAR CHRR SERMODE| |EXTRY [COLL. [CHAR | CHAR | SEQ | MODE
i EMTRY |CODE # FTE # EMTEY | CODE # FTR
: HE " 1a1 5] 147 145 144
taz 142 146 145
183 149 147 146
1568 14z 147
151 149 143
158 149
a 151 156
152 131
153 152

154 153

e
-4}
[ng'
b

,_
!
—
!

[N
)
oD
J
u_l
=

T)

.._
U)
—
fux]

,_
[xx)
LY
oo
-
AN
-~
[,
—
LU

oS)
-
M

1
CNoda O3 Do

O3 3 o= 5 o0

[l
—
o~
150
—
[}
—
AN
-
A A

DY RN o

LU
Dol
X
IRLO
[ociog
-1 T
DU
—
n
O]
=
LAl

o

1
(3}
M
—
— [an]
J sy
[ST x)
—
LA]
—
n
o
—
[)
—
Licx)

DI o I
Ty L
MU
o 5
DRI T
—_ . s
[xx]
A
—
wnoan |
DL I <%
AN]

AR
L

il
-
2R I
e e
LU U
-
=)

(X}
Do R I i Rt |
—
—
i
fux]
[

~§ 1T

R
LY Bt B a IR Y N OOl]

— o e b s R e b b e
-
[}
n

- b b bt b e b et b s
=, —

[wn
g

o e b s s b b s s
A

5 (51 11z 5} ¥ a5 154 5| 5|
1 (5] 5| k 113 i b= 1) 155 5 5
111 (5] 5 1 114 (5] E ¥ 2 5] 5]
1iz 1a 5| m 115 | 8] = v 5] K
1132 111 11a] 116 (5} 1 = = & 5
114 11z 111 o 11& 5} = B e 5} 5}
115 11z 112 [113 5| i i 51 5} %
11& 114 q 128 5| 4 = = =3 5}
117 115 ¥ 121 [E] S i I P (5]
11% 11e z 5] [! [n] 22 5]
113 117 1.] & T S [o9 %]
120 112 i A o & A & 5
121 113 L [&] T 3 v 3

.._
[ux)
bx]
oo
-
Lol

P

D)
—
[

[xx)
- -
[OEENa)
—
[]
-
[}

DI SR o SN 1]

...
(v
-

¥

T
L) I =%
[
S O LU DU Y
[x]

—
D1
i S
-
(o]
”~
fun}

=y
[ax]
NN

o

O B AR N

e M

I (a1 B (N IS O O O 4 O I L I LW B e et B C R)

[l
.
I‘ =
—
YAy
S T
o
-3 T
ad
(ST
[xx]

—
[ex]

RN IENIEN RN IRV IES RENEE IR S 0 S . A (B (O (S O O BT I
YIRS, YR RN A R

ooy OO =) Ty

—
-
[ax]
—
[ux)
—
[ux]

S IR SIS IES IS IENEES RN A s s s (0 (O s OO (0 00, A B

m
-
[l

-
[

N R e R T St s (O (O s s (s O s O O BT I I |

RN
L U |

—

[x N}

5]
o
i
— S

b b b ek e et bt e b et bd bt b b ek ek bk b bd bk bk bk A bbb bk b s b b b b b 4 b4 b b4 s s p
[acx]

bk b b L L i b bd d kb ek b b b b bk b b bk hed b b b b b e ed b e bd Rl b e b el e et
o it i 8 b bk pek fed b b ek bk ek b hek ek pt b b ek h fd b e ek bk ek b pb et el ek ek pd s

el

4

=

; =31 ; B
3 IV-E 5] x| oo b =) 4 [E]
135 Ik UL 8@ g3 21 20 c £)
1736 174 14 -1 B A o4 g 21 1@ B
I7 125 EL-U] 5] a5 B3 g2 H & 5]
1a: e I-E-U B B T S4 53 A1l 5}
133 137 a 5} a7 25 24 i 14 &
141 138 & & == 28 ae Lo14 &
141 13 138 & & &9 a7 2 d 14 &
142 141 134 5} & =15 T a7 145 &
147 141 144 5@ = =) 5149 @
144 14z 141 5 @ = % & T 159 B

15

15

ao— S0

1
4

—
Py
n
—

e
[]
—
Py
(]

X
=

—
oy

1Ty

—

ey
0l
[

Ja

(X

I

[n]

[yu]

v

o]

M — 1
15

—————————— COLLATIMG SECTION

COHT ——-=m—

Appendix A AP-71

EHTEY

#

CoLL.
EHTR"Y

CHAR
CODE

I
Tn
X
[}
n

MODE
FTR

EHTE

#

coaLb.
ENTEY

CHAFR
COLE

SEC(MOLE
FTHR

0o
n

oo
§

O

[an]
yu

i
[]

O BELATIN | I SO T ORI v

,_._
LU
[

[ax}

o0

.

— s e T
[O B

[ASC I O (T O (I OO CRT (% T (S T O W OO O T (% T S S OO PP
oo

—_
$u

215
216
21E

g
oL

i o
I DR S X

—
ol

ra

-] T

[ASURN O CRR U TR CUI S LT LR RO U (N
LI LR R ORI
DX p o

PR [

wgi

]
J
RN

DAY W

B A
JURIN Y

1973

194

—
L
SN

137

—_
ool
vo o -

—
5]

DOV (A

on f

B
a7

S EERETA I R A S u

=t 0

13z
133

26

S BLLUIE) B P (i IV I I B SR) I RO

- (O X
L R I i i O e T S Se S
Do RN R)

e o)

,_

Lax
—

[

1= 4T [V

-
—
[xn)

._
P

DU DR =
(]

—
(Y]

Dax()
USRS I S

—
[x

1 e e

._,_-
-— il
AL
P
o

T e
[ex]

LRt I NI <8
D

B =T
-
[icn]

—
Dex]

'_
EoUR CRUR i o B v B R

-b WY
[xx}

e e

,_

[ax)
-

[ux)

o
—
[n

I
et e e A ST A P U Y E T T

DL O

Mo = N &
[]

-
o

—
—
0o

DUl e SO

-
[e

oo
[%)

o= e N

o =g
— o s
Q40
[}

R L e

« Ja
o

I —
—
—
SN I
[xn}

—
D]

P,
D]

o o= T
{0 =4
AR I AR
DUl o B By By R D S Ry
A o =
Lo ot T o T AV T Ao oy S S Lo B)

OO D 0D T T 0D 0T T
Lo O I I A I O o O]
O UD O T D 0D O 0T T
AR RO A I R I IO B A

,_

D]
o~
XL

LI A

—
o

BT I A RV (N

L IO, U))) SR)) S Y S CRY G R DR 4
oo -

[LV R OV OV (R O (NN USRS UM CUIN DRI N ORI (VI (%

241
242
243
244

245

e Rcd
EL

243
243
-
=0
251
SE
[Capm B
e
o
R

254
-
=T
2598

240
241
24z
243
244

245

248
243

..

[ux]
R
=

MDA R IR A A Bt DA I I s B
D OO RO o R I o B o B AR o U o By R)
DA A A B B TS SR AN B IR
LU w RO AUl T U B o T o O o B ot T i I A

AP-72 Appendix A

—————————— UFFERCHSE-LOMERCHSE SECTIOH —-——--~-————--—

EHTRY | LI-L CHAR [CHAR | LIFFER [LOWER
EHTRY [ZODE CHSE CHSE

ERILOWER
E CASE

L CHER | CHAR[LUP
EMTREY |CODE)

3t

I
— {7 T
10

ZEu 2 181 A A i 56 i i
zE1 E 1ez I I] | I 8 Q
X 4 163 & & e :

5 164] 0 i :

e TR
e

~] T

—
m T
m T
M

TN

—

s @ =

—

-]
(X

(RS L

It
22l

R G

T
o

-y

ool a0
—

-
-

12

—

oI
i
o= i

[HEE
P

SO o e

3
hex BECHE) (RS

|+
=
||"’ [mCEa) ()

()
o M
m
o= M
— M
1

4

[RN X T R R 1 B s s | B O)

oo
] Ty

o I It B B B I I e I IR LA U R AN A LR T AR A L
-4 T

-l
ool ol

L2 1] e o
oo

oY)
DAY L]
0

e el el o o i e i e e

LR -~ 3
2 =i | c r : a
= H r] 7

—_——l
-

-
—

T R e

Jo 0 PO e

B : . ;
= e P .
o] i i 5

)]

-,
e
e

S IR IS IEN N REN N SR B B T (s (O VO« e S e B s P B, D B)

= @ o o =
23 E E 5]

¥u]
i e
oUY)

STk,

(RN}

N

LLCENN VL
m I
[LE 1 TE

oo
_t

¥u]
o
Laa
o

1)
LY T
LISV LS

i

m I
Qe

)
_!

P 3

oo e e

[I XN 1]
o
m I = O
u
Nk}
oo

[(O VR

71

IO T I OXI BN WR x X B u S| S Y

B £ A 5
- = E .:

[A
=)
—_a

Pt T P P Tod [od Tt [s b b e e s e b b e e b e b b b e
L COE T -

i
DS (I R O

L]
L
XY
noin
i CPR]
At

Appendix A

————————————— MODE SECTION -=—~--=—-——m e

EMTRY [MODE TYFE DESCRIFTION
EHTEY

355 1 TWQ FOR OHE CHARACTER REFLACEMENT

256 2 THO FOR OHE CHARACTER REFLACEMENT
LITEEEITD Tere peTRILE (L[]

-- DOH“T CARES --

Bo- AZCIT - 45 = Don’t care

-- ACCENT PRICQRITIES --

-- TWO FOR OHE REFLACEMEMTS --

EHTREY # FEFLACEMEHMT RSCTI
1 [= 22 = == 22

=~ OHE FOR TWOD EEFLACEMEHNTS --

AP-73

AP-74 Appendix A

A st AT AT ATAT A
GERMAM THELE
NERRRRRRRRRRERE

EHTREY #1 —-- LEMGTH OF COLLARTING THELE = 374
EHTRY #2 —-- LEMGTH OF MODE THELE = 24

————————————— COLLATING SECTION --------—----

EHTEY |COLL. |CHAR CHAFR SEQ|MODE | JEWTRY |COLL. | CHARJCHAR | SEQ [MOLE
EHTEY |CODE # FTE # EHTEY |CODE # FTF

WA
MY

3 1 a HLIL) = 1 43 43 & 45 5
4 z 1 S0H 1 & 2 58 49 1 43 a
5 3 2 ST 2 a 3 S1 56 2 Sa @
& 4 £ ET: 3 & 4 Sz S1 3 51 5]
7 5 4 EOT 4 & 5 53 Sz 4 52 @
= & S EHO 5 @ £ S4 53 5 53 5]
£ 7 = ACE & @ v 55 54 & 54 &
14 & v EEL v a & SE S5 v S5 =]
11 El 3 5 = & £ 7 56 & Se 5]
12 1a 3 HT E a s] a 57 3 =N i
&} 11 14 LF 1a @ 1 5 : 5 a]
14 1z 11 WT 11 & 2 S ; 3 &
3 = 3 & 2 & &
' : &

-
n
b

—_
o
com
-n
—
(]
[ux]

h

—

FR
(X3}

[I
—-
o
Dux]

Ty T
D]

fu)
o £ PO o= T o0 00
1]

-
[ux]

Ty N

[ng
—
n
[y}
—
N
15

(LAY
15

T T Ty I T T (A n o
ol
T

DI O ER OF I

J
—
i
=
-
m
-
Dt
Dax]
[x]

DRI |

—
[24]
[
L
—
[IX]
'I'I
1
[xx]
L I e I B e e Y L M B ' S S I Y S O T IR)) ¢ N 4 |
4

g
R
]

ey
[
[ax]
[ax]

I
S
S}

5

5]

1

1 3

1 4 €
17 5 £
15 17 IC 1 17 @ £ £S5 A & @
1 1% joup= 12 @ E E7 €5 E 71 @
o6 19 e 1% @ o 55 7 C T2 @
21 el IC4 el B 1 £9 8 O T4 @
g z HAE 1A z T g% E 7S @4
o3 2z S Iz A 3 71 eOF T @
o4 23 ETE I 4 T 71 G BB @
25 24 CAH X4 @ 5 73 FZ2O0OH 21 @
: £ 25 EH 25 @ £ 74 RS SR- = S
e ; 26 S UE e @ 7 7S T4 I = i
S = a7 ESC T @ 5 TE 7S KE 5
21 E el z =@ e 7T TE L i @
: i 9 GE 9 @ i 7E TTOOM s 5
3 15 R I8 @ 1 7 7R OHM 5
2 a1 s a1 5] o 26 T) 5}
33 <P, Sp 1z @ 21 g8 P 9 i
Zd che ! cIcI- 21 R 9 @
35 Z4 " 4 A g2 R 97 @
TE 25 # 5@ g3 % 98 @
a7 IE $ cT-S 24 T 93 @
o a7 A a7 5l o059 il B 5]
41 o9 25 : - 53 25 4 1Bz @
4z 4 39 %A TS 27 W 1Bz @
47 41 46 ; 48 @4 31 25 % 1@d @
44 4z 41 - 41 @ 2z g% % 18S @
42 4z £
7

o

Py
(22
£
L
il
- 4+ &
(]
[an}
51
AL I =N
i
N oo 0 PO e

—
I A

,_
LA
]
-
LU R}

o0

M
o
Ty

N
[N
oY
Ty]

AR I ST
j e
+ B
D) S
[ax]
N

O
[}
Nuj

AR AN

-
DR

45

o

L
s
Ja
Ty

o0
4

.
"

X

o
)
Lo T 0
o h b bk b b b b b b

—_
Ll N
[

e RE1

']

]

o]

AT
[0

S8 4=

Appendix A AP-75

—————————— COLLATIMG SECTION — COHT ———----———

EMTREY JCOLL. | CHAR CHRE SEQ[MOLDE| |EHTREY |COLL. |CHAR | CHAR | SER |MODE
ENTEY |CODE # FTF # EMTRY | CODE # FTF

i HE " 147 145 144
14s 148 145
1493 147 146
158 142 147
151 33
152
153

154

)
-4

4 1T
—
—
]
=

b]
xx]

o 0
DR}
L¥
oo,
u_l
—

)
o
DO
Dex]

U)

DR RN
Nx]
o -
o
—
4
A
[xx]

Dax]
DA RN RN &
[1 S <O P T L T e o N R R |

'_
—
[0
— 5
[xx]

U v I]

DU I]

[}
PO TR I (N
[ax]
DURRN s IR
a
s
A A
It
[ex]
.
—
I
[xa]

(]
1t
[xx]
m
—
Mo I
£ L
=
XX}
—_
Ja
A
=
Do

(O T s
-,

—

TR L

MR

15

._..
o
- X
D]

!

T
Lo I]
W
—

[}

B
DA

N
Byl ex]

i
—
Lax)
n

A I T
LAOUR U A
=
DU R

A
[ax]
—
£
L -
i
2k}
[ax]

SN

—
on
A
D]

~J

D]
—
il
D

-—
——
X
8]
o e
[R]

-,

U kA]

b b pa e b e s s b
ax]
n

..
—
-
=,

T
[U Y

[xn]
LY R B 2 SR | [S P ORI v BN 1]

o AT I SR PR (R
— —
n o
N (X}
=]
[hx]

— ot
USRS RO B N

.

[ux]

—
—
—
D

b R b e b b b e s pe
bt
[YY)

—_
]
-] T
[x]
o

—
—
M
=0

it 146
LAl

Il 143
X

P T S W

,_..
—
—
AR

TR
—
cn
o0

113
114
115 1132

—
—
S e
[xx)
—_
—
=
[ax]

—
[
[]
-
—
—
A A]
15

5]
5]
5]
5]

—
—
Fr
—
Ju
[xx]
Dan}
[

S I AT) I Y P R O I o B i)
R B B B Rt B N AN RSV n SO n 0 S O S T 0w PO s U S I IO B B B S B B B S 8

n £

o

.

()
J

148 1323
141 130
142 144 133
1473 141 148
144 142 141
145 1432 142
14& 144 147

1
1
1
!
5 1
15 1
15 1
15 1
15 1
16 1
16 155
1 168 E
16 1e1 5|
116 114 112 3 143 5] 1e 1e2 161 =] =35 5
117 115 114 r 158 5] 1& 163 ez I =] 5
11& 11 115 = 151 3] 1& 164 163] ED! 4
13 117 11& 1. a2 5 167 165 164] 19t i
1268 113 117 1 152 5] lez les 165 A =3 5
121 113 113 LA 157 & 13 167 166 E T 5]
122 121 119 sl] 5 17e 1ea = n] Sz 5
123 121 128 153 5 171 164] . 168 &
124 1z2 121 Ly 18 5 1rz 17 163 167 5]
29 22 122 z 151 K 17z 171 TR 168 5]
126) 122 i 1z 5] 174 17& 71 1563 G
127 125 124 | 183 i 175 173 v 1A 3
28 126 125 154 5] 17& 174] E TS 5
123 1&7 126 o 165 5] 177 173 T4 I e 5
128 25 27 DEL 5] 5] 1ra 17 TS £ 17 i
121 129 122 CLE 5} 5] 173 177 e v 5
132 128 129 IW 5] 5] 128 172 v A 7 5
123 121 12 EBEL 5 5] 121 173 G a 11 15}
124 122 121 IW-B B 5| 122 124 v = 17 5l
1295 1323 122 L e e 193 121 =g} - 7]
1326 134 123 IWw—1 51 & 124 1832 21 E 1z 5}
127 125 124 EBL-U 5] 5 125 13z 122 ﬁ o 5]
3 128 125 I-E-1 5 5] 12 124 =3 Fi 5|
139 137 135 lE] i = 135 = i}
1!

,.
]

[

I
-

(]

E- =

)
!

N
oo
fan]

,_
ux]
o

5

,_
D]
-

fux]

S R IR B

U 1B e I I T
Loaal OURRN S B (R R Y O OIS o I (N I T Y W L N R (X

,_
LA
o
[x]
-~
[un]

-
]

PO OO T I [x]

-
[

M
a4 b e b el bt s

[S S

-
U A

,_
[ux)
—
and
-
Den

AP-76 Appendix A

—————————— COLLATIMG SECTION - COHT -—--------

EHTEY |COLL. | ZHAR CHAR SEQ|MODE] |EMTRY JCOLL. CHAR [CHAR | SER | MODE
EMTRY | CODE FTE # EHMTREY | CODE # FTE

*

i BT I TN O% B
<]
[
L Ty — fa
o U x|

L) I SN

- DR
U M| :]'.-. N
[acn N §

S 0ol R

11 -
—

[¥)
—
—
(]
p—
M
—

yu
oo

1 s e e e e e e s

U O T CROE DS O LSRN I S DU DRI O

O N I e e e e e i i
I o

m-

1T

[

L BN e |

ol
LU Ui a4
D]

) v
O

—_
—
[}

1932 192 & 112 5] 243 241 248 5] 5|
194 & 127 g 244 24z 241] a
195 b 148] 245 247 24z] a
198 by 156 & 246 244 243 a 5
197 Y 1186 @ 47 245 244 g &
195 3 125 5} 243 2946 245 5| i
193 & 144 i 249 247 @ a
206 i 154 & 256 243 & &
281 a 117 g 251 243 a &
zaz & 126 & 5z s E] &
a3 & 145 @ g 251 @ A &
284 i 155] 254 252 1 @ f
ZBs EY 113 1 255 253 z A A
2 2EE & 128] 258 254 3 5] a
a9 zaT & 143 3 25T 255 3 g]
Z1a ZRE i 153 5 258 258 = @ i
11 2aa A ST]
21z 14 g i 135 5]
213 2 @ £ 24 5]
214 z 1 A= 5
o1 2 z a 15 a
1 2] i 23 5]
1 =z
1 =z
1 e

—
[

.,_

[ux}
-~

fux

[N |
— (T
LU
-~
[}

—
ax]

a4
T T
Loy
-,
=

)
]
X
-
o

=
.
[x

i =

0
[ax]

N,
Lol

(X}
P
DU e
-
[ix}

—
2]

(LI 3
[ax()

L}
-
[xx]

‘_..

oaT
RN

(AU

,_

o
-

D]

,.
[x
~—
&

Appendix A AP-77

—————————— UFFERCASE-LOWERCASE SECTION —----=-—--

L CHARE | CHAR
EHTRY | CODE
les
1l
162
l1ez
1ed

125

LU)

EF|LOWER | [EHTRY |11 CHAR | CHAR | UFF
E |CHEZE # EHTEY | CODE

il
m m
ey
-
i
m m
a

[

T T
b}
I

I
! = e {00 E

I
— T

oY

on
[BNy)

o)
RRERN|

Fe.

—
[R
=

H- Ir
H- Xr

on

[aa e
!

11
1

21z

-

—
=
P

D = e

[B}
onoen oo
[N OW =

CA B Q0 P o=
DO R
N g G

- e

-y Ty
.M T

LBV URD

A I

M T

leg

[

g
1
[SN

214 a

-
-
P =S DA N

5 B B M M Bt M IRt IR St I SO 2 O 4

v

o T) [ful] 215 ® 3 v
& ’ 3 21e A A 4
21z

|

—
[RN al
4 1T

[BN n]
i -

ST
R HEE R T -

oo
[uoCNR I R s o
Ll

m
.
) (]

[ERN g}

O FYE OW I =

. M
e

1 —
oo

Ty 0 o OO Pl

CUSN I S | I N
=
|
|+

)

s o]
o I ol
oo

]

- 5
[2l
| Taam

ul

(IS]

-
=
)

o D0 [o~ 5 0 O

-
] R

=i
Lo
=
=i

DO I I o

LA

=] T K
TN)
oo
e
e
L B O PN (R

P b b e et d A b b e et d A et s b L b

YO RO (ST CR R ORI COOR (SN RN RS (T N
LiL| I N
e (e e I e B BN Y W T w O 'y s ' S S s B B S O O R B D S

)

SE & = £ £ £ 3

=y e 2 & 2 7

o els) = E = 2

= 31 2 : = E
& el : :

T
m I
M

TR RN s
(]

)
LA I SN PR
[}

ot
CORLALL IS SN 7% (R
ra
¥
&)

4

[m 3

41

O A
pus
e
o

POOT3 PO B3 B3R PO 3 fed B3 PO o

5u]
[N R cNR O S ol

E & 242 a2 243
o ! 243 = 244

Z44
345

yu)

4 T

'L

- M Ir

(L) (K 1)

(XA
Lyl
o
Py
n

-J
[xx]

™M Tu ¢
[LIE T
ol
fu
=
afy OO0 00
(AU W B R |
fud
o
[xx]

L I SN WU R s W n
n
x]

g
~ Cr M

yul
DU IS
i

DN B N |

DX]
BN
[y}

uj
Pub

—
(R (PR (RN

DN X

E OO S R Y

Pa foop

—
-
o,

1)
I
o -

N1}

[
on
B LD o T 0
L1

4z

— i
R w
)

[x]
N oL
(¥u}

PN 0 I)
D P o=

£

[XN
e G Do

s
ey

e
|22 O3
LR
WO

[xx]

DAL SN O O
L
Ty

,_
[l
i

O o0

11
1
15
1
1
1
1
1
19
1
1

4 &

on
1)
Ty
n
n

T

AP-78 Appendix A

————— ~—==-=-— MODE SECTION -—=-=--=---——----
MOLE TYFE DESCRIFPTION
EHTEY
1 TWO FOR OME CHHRRACTER REFLACEMEWT
s TWO FOR OHE CHARACTER REFPLARCEMENT
I TWD FOR OHE CHAEACTER REFLACEMENT
4 TW FOR OHE CHREACTER REFLABCZEMEMT
S TWZ FOR OHE CHARACTER REPLACEMEMT
2 TWO FOR OHE CHARARCTER EEFLACEMEMT
B TWZ FORE OHE CHARACTERE FREFPLACEMEHT
o TW FOR OHE CHARACTER REFLACEMEMT
= TWO FOR OHE CHARRCTER REFLRCEMEWT
14 TWY FOR OHE CHARRCTER REFLACEMEMT
11 THWO FOR OHE CHRREHACTER REFLACEMEMT
1z THO FOR QOHE CHARACTER REFLACEMEMT
13 THWO FOR OHE CHARACTER REFLACEMEMT
14 TWO FOR OHE CHRERACTER REFLACEMEWT
LUV Tore peTaILs (1111]]]

-— DOH“T CHEE!®

-—- HCCEHWT FRIORITIES --

-— THWO FOR COHE REPLACEMEHWHTES --

EMTEY # FEFLACEMEMT A=CTI
1 i = as = as 284
3 & = e = oos g
=1 U= ue = ys zZav
v A = AE = As 21e
o 0 = QE = 0 E =
11 W= UE = Ue =14
17 F = zz = 2z 22

-- OHE FOR TWD FREFLACEMEWHTS --

Appendix A AP-79

N emstmtstiss N

EHTEY -— LEMGTH OF COLLATIMG TRELE = 274
ENMTEY #L -- LENGTH 0OF MODE TRELE = 28

————————————— COLLATIMG SECTION —=—-~--m—mmmmm

EHTEY |COLL. |CHAR CHRFRE SER{MODE EHTEY | COLL. |CHAR | CHAR | SEQ [MODE
EHTEY | CODE # FTE # EMTRY | CODE PTP
FLL 49 4J
-HH

*

=
=)
-
[x)
—
Dx]
Dx]

LI
| R
ban
kN
I Y
o0
Do x]

oo

noon

S 5 b 5]

ETH

=

-
[
h
[x]

non

DAL I T Ll

[CRET R R T n S | [RN R O T

=

Lt
G0
(]

a 1 4

1 2 5 43

2 i 1 Si

I 54 2 51 51
v B! EOT 4 (5 S5 3 S S (5
=] b EHE S 5 SE =4 b] A
] 5 ACE [5 57 o5 54 5 54 (5]
1a v BEL v a S SR 3] 7 S5 5
o = o 5 R = SE o SE 5]
1 E HT e Iy s SaE ST e a7 5|
11 14 LF 16 a (28] S S : S 5]
1z 11 VT 11 5| e n) 59 : 53 5]
1z 1z FF 1z 5] 51 s A L35 5
14 13 CF 2 5} &g = =1 = el (5}
5 14 = 14 5 (3] 29e] 9] ; (298] 5
1 5 =1 15 5] =Y &g (3] 5 e 5
17 1e ILE 15 5] BT a5 () =) 5
13 17 ot 17 | (] EE 3] H =S 5
13 12 oz 1z 5] &7 e b BE 5]
b 13 ooz 132 5 s o &Y [e 1
23 21 g 4 28 5 71] (=] I [5]
s 22 21 HAE 21 A : e % E TR 5]
25 2 22 S H 2 5 e 71 L) F T1 5]
) =3 ETE 23 5] T4 T 71 [T 5]
259 24 CHAM 24 5] k] ¥ T H e 5]
26 =25 EM 25 5] TE 74 Fs] I T4 5|
. 27 26 SUE 26 5 v k] T4 J TS 5
£y 28 27 B 27 5 T TE Fi=) K TE 5
chl 29 g Fa 25 5l vv TE L T 4
e s 2 S = 5 v v g T 5
e =1 e3e] R =8 5} e = H =gs] 5}
=g Ehe a1 1= =1 5 1 TR {1 a2 5
25 B 3 SF a2 A =1 SE F a3z |
e = a3 ! 23 | E=pe =D [} = 5
a7 1) =4 b a4 5] = : F =k 5
] e 1] # 1] 5] = = =1 5]
a7 S ¥ e 5] =) T a7 A
a7 k a7 5 k] I = (5]
o aE 5] P L] 5]
a9 3 s} | ; bl A &
48 ‘ 45 5 3 =) 21 5
4 41 5 3 1S = a2 5

4 2 5

;
o
3

1

e

Tu)
[y [NS B R
b

Ny
[x]

45 45 35 -
4% 47 4 :
5@ 43 ,

£

|

N

£

fa

fa
N
I

L

O

PN
23]
+ #
A
LS N AN
LU B SR I O (S A U S R v
o
[ae}

"v--"'.-
Ec I U U

N

KN

Y
on oL
0

| S = o I Y

oy
=
o BEALIY
[ay]
i)

1
=
TS
LIRS TRV

O on
A
g
I
[y,
=
A
o
%

AP-80 Appendix A

COLLATING

SECTION -

COMT

EHTEY

CoLL.
EHTF|

CHAE
CODE

CHAFR

#* O
m

MOnE

FTR

EMTRY

coLL.

EHTEY

CHHAE
COLE

CHRE

SEG

MOTE
FTE

B
(S1s]

DI I R AU R A I)
P RN W R B & 3 B SN P T (I

bt e ek b b pea s s

— 5

-
(U
[

11

LS SR

-
il
-
=
e
-
2

g Ty

—

129
1448
141
142
143
144
145
l4g

o

SR |

Do IS W Y |
[RN u]

,..
LU)

-
DU e

-
LU o)

- e b b e p b b h e
—- =
DaoCREY W R T S £ IS N P N D

141
14z
143
144

5

DS Y L RNeY
[N R N |

DB U Y

I OO PN I (% I

..,_,_
LUR WU A,
n

[in]
AV N I I

—
DU MY

A e b e b e b s
—_ = 1T
o

—
—
S 0

LEL
CLE

I |“,I

EL
IV-E
LIL

Iw -
EL-II
I-E-Ll

[]
D I < Y]

o e b bt e e e
el S U I U A A |
P o 03

11z
114
115
116
112
113
121

12z

R

-
DU

-
LR k)

-~
1T

S Sy
LU I B U % B AU MU A

—
LU

- e
DU AU WX

DI e X

—
A I Bt I e B R Bt B R A B A B R A U T B A R AN B B e
DA A O R I B U U U oURE ot U U U Y X

J—
G o

-
=

P
LU

A A R N B IR A DA R R AN
DO WU AU AR AU AU AU U B U MU MR]

- m e o
[ACCRR AU UR W

-
(U

147
143
1473
158
151

—

DO R Ry Bt M B Ry M M B e e S x 0 2 SO ' O O T S o O STy B IR ¢ I) I |

NIy BT I xS B RS) [U O B O B o L W K St S TR 4 B N RN CaoURN W B I 1 AR | B O PN (N}

bt

[S T

— A et e b b b et e e
ofF o w0 0 0 O0 00 00 00 O

145
148
147
14a
143
158
151
153
154
1::
156
157

B RS B R BN TS I R BN s s Cn ST M s A2 S A AR e R B

|"| DV O EN (2 SRR 4 T N Y T U i) DY U RS IS Y 1 B A P T OO T i SN)

._.HHHHHHHHHHHHHHHHHHHHHHHH

=4

0
1T

o QO D0 00
by

]
i o— ¥

. A A e e R
AR
MUSEY LR

WL

144
145
145
147
143
149
156
151
152

153

U W n

DeCRES W kI e ST) IS RS B CS ll

(RS €U It T 5 SN £ N SR S OO I

1

[P

—_ s s

H Ir

m T i O

-

[

ST

[l]

.. —
[T

M

JUUN
oI I

U,
(U AU L B U A B U O R A

—
LU kA

T
[t B]

N

4

[O]

=J
D]

(R I N

—_ e e e

— —_

—
[Y R R CURE R SN OB T U B VS CRRY iU U SO SR W Rt IS SA €3

| DR S\ BN w I v St B SRR 4 B s S SR R Y Ol 4 I T LT LN b WY

= a e e A b s e

IR I B T B R Y B T A B R B X B B R R e I R B RN B A B B BN
[I i O o T S R e T W T R T T o G AU R ot B L AU AU AU AU

P
LU)

- o
LoURIOUSE RO R

JR—
Lt B

T T T T
D BOURNE bR MU AU AN]

R
[Al

ey
S S T T T

ol

Appendix A AP-81

—————————— COLLATING SECTIOHN - COHT ——--------

EHMTRY | COLL. | CHAR SEC|MODE] [EMTREY |COLL. |CHAR [CHAR | SEG | MODE
EHMTRY |CODE # FTE EHTRY | CODE # FTF
193 1 184 241 248
194 13 159 B 241
121 243 242
244 243
2945
246
247
248

I
o
*

15

)
L
1

[N
bt
i

[ay]
£

(o
AU

1
b T N

[N

KRR (8

7 LA

o
(S

164
155
121

.,_,..
[
)
=
R

o
e}
(03]
—
_A
P

It

WO -
o

1

0
[N a I
[}

-1

,_
)
-

(U

o
[}
i
=,
D]
T
M
-
Lan)

L R TR

P
I

A
¥y
s
i
(]

[, Qs RS O CUE U R OO O3
oy

R
e e
i
by
—
[
=
Dx]
15
[xx]

L LS LS LI LS CRCR L3 LS TN LS LSS U LR (R L LA DN

1

1

1

1
5 2EA 5
B3 a1 a 194 5] 51 243 X} 5|
i g] g 183 5] = 250 & a
As 2B3 o 121 o 53 51 a i
@ e 2Bg ¥ 127 & 54 a5z & A
av 265 £ 164 & &5 flge a ol
o BG g 19 & SE 254 & o
g BT & 121 & 5T 255 I} &
16 e 0 tz7 & s 256 & 5]
11 pea A 55 &
1z 216 i 1132 &
13 =R i aa &
14 21z i ES A
15 213 el & 14 &
16 214 13 1 11 &
17 s 14 @ 1z &
1a 16 15 £ 16
1 i

VoLt
[L]
—
=l

OB (SO ON
—-
Ty
I
o 5

—

A

L]
1
O]
|
[DR
[y
—
RO N I [SR) T <%

PR
Do

A

I

—
[ex]

o =

—_

Gl e =
K]

3o Ot

[
A
—

(N x]

,_

[ux]
-
=

| RSCHN LS CR CSCR S8 T OV I OV DO T DTS DU COUN CRCR U I O LR LU LSO CRCI ORI CRU DN IR L L ORI DO ORI % L R O B OV I el il

27 : 5] 5]

2 = 5 H

=29 B 5 5}
5 = e

-
Dux]

]
A

[y A

,_
D >
=

,_,_,_
LATUI U
O T
U I ot A A}

=

,_,_,_
LU U)
al

=

,_

[ux}
-
()

,_
o
Dax]

,_
]
=

,_
T,
p
1

AP-82 Appendix A

————————— LUPFERCAHSE-LOWERCHASE SECTION —————————-—

EHTRY | 1d-L CHRR | CHAR FILOHERTIEHTRY TUAL THAR TCHRETLF
HE i

EHMTR"

[
m m
i
1
3*

(i
DO}

Ea
-
fant]
-
pm

m m

I

EMTRY | CODE

254 1 166 E : -
ZER 2 161 A =) i cT5 k] L i
261 3 162 f T i iclaL-! 16 i
e 4 1'5:_: < E. :1@ ;11

.

164

—
=
e N
<
]
—
—

ANRAL

a1z

Ty 1Ty
n &
[
—
G
i
m T
m- T
I

4

[ag}
[
[

SV R T O P ORI S < I
[N .
- [
i ()
R G =

1Ty 0

L |

o
e
4
10
QL La
—
Py

L
SR

J

R A HY

—
DY
T

| IS

o—

Do B LI K R
L
—
a

S L 4
[g
—
[N
L

) |
DN)
—
ra

S W]

RS
-1
[

]
1

DN XX

m-

[O I U ST ORI ORI R (NI ORI OV O

ot o
0

1o o0
g
o =

[t O W

1
N fa 03 Pa o
[LRTRR) I %
o=
| o

T I R e e e
X
- Pt
m

0= T N Ja O3 P o= w0 o

[N |
<t i
S LR B -8

< T Il

L VT

| S ST O LN (R ¢
ool OO~ Ty

" G

{

[CSCR GO ORI OO (]

T dn
Nl
oo~

o=

-
=

[l
]

=]

RNy

o 7)

o

()
|
L=
=
i

Rl S
v

0 OO

¢

[RO B OB Y I O
N o
fa

S B B B B B et B Wt Nt a0 S OO VN0« R 0 e S OO VR VR RO B B) R L AL B R N

VAR X I RN (ST NI R SR R (R AT L R

v =) i i i 5 4
3 av £ £ £ 3 5
el o8 2 o o - e
4 & £ & 2 = 7
1 & z 3 -5
E =15]

EY WY

m

[} Xu]
o L3P o T

+

+

e (R TTE
=T e

(]
)
fux]
BT (S
ra
EN
]

e
ey

X
aon
Pt

3 - : 8 243

EC H & 55 244

a7 & E 3 S Sas

o bl & a & a7 gt
44 X i I iy s o4
41 Be 4 A fa san
42 5] 5 E = S 4

Cre M-)
—
(VL S

.,_
=
B

- e i

[,
Do L

i

[t N W ()

[an]
o

[}
DI I SN ORI
(BT

o

)

S D3 o o
P
P
r

Dex}

(N Fa 00 o o
£a
iy

)

pilg
AR

: M I
oM

N xH
i
L0

0 P P00 P Pl PO P Fud s s e e b s b b L b b b b b b b et bk b bl b b b b b e b b b ek b ek

L]

DU W B O B O N I T R
e

AR T A TS B TR A]
[

U % I SO

SN

[xx]
=4 1T

Dbl
o in
iy
YRy
0y N
(L]
[}
n

~ -

e o— I o I T o= ot M
[TLEI S R TR L)

T -

m oy

o= me

o

Appendix A AP-83

————————————— MODE SECTION —--=-=—=—me=m

EMTREY [MODE TWFE DESCRIFPTION

EHMTRY
395 1 OME FORE TWO CHARARCTER REFLACEMEMNT
256 2 OME FOR TWO CHARACTER REFLACEMEMT
357 = * TERMIMRTOR MWORD
=] 4 OHE FOR THO CHARARCTER REPLACEMENT
E] OHE FOR TWO CHARARCTER REFLARCEMEWT
25 =) # TERMIHRTOR WORD =
v OHE FOFR TKO CHARACTER FEEFLACEMENT
o OHE FOR TWO CHARACTER REFLACEMEWMT
] # TERMIMATOR MWORD #
18 OHE FOR TWO CHARACTER REFPLACEMENT

11 OME FORE TWO CHARACTER REFLACEMENT
12 * TERMIMATOR MWORD *

13 TWO FOR OHE CHAREACTER REFLACEMENT
14 TWO FOR OHE CHRARRACTER REFLACEMEMT

LEPEEEEETE mere peTAILS [T

-- DOM“T CHEES --

-= HAHCCENT PRIOQRITIES --

-— TWO FOR OHE REFLACEMEHNTZS --

EMHTEY # REFLACEMEMT RSCII
1z 2 = 2z = == 222

-— CHE FOR THO REFLACEMEHTS --

EMTEY # FEFLACEMENT AND SEQUEHCE NUMEER
1 CH = &2

z Ch = &3

4 LL = 72

g L1 = 72

v cH = 187V

= ch = 187

148 L= 117

11 11 117

AP-84

Appendix A

U e

EHTREY -
EMTREY #; -=

LEHETH
LEMIGTH

OF COLLATIHG THE
OF MODE TRELE =

COLLATIHNG

ELE
s

SECTION

EHTEY |COLL.
EMTEY

CHARE
CODE

#

“E

MDE
FTE

EHTREY
#

CaLt.

EHTRY

CHAF
CODE

CHAR

SER

MOTE
FTF

RSN IS SR Y]
—

-J

(251
L2 I SRR N LN

D B
Ty

e o S S S S
A e SRR I O I O I Y O
— = —_ o
[3 N N T O B o I W v B |

—
)}
—
oy

19
2a

E
5]

DAL S o8
AR R En

A

[I OO O O

=) T

— bt
foo— 5 g0

SR U RS S T 0 ST | I G Y (% B o I)

ARy YY)

HUL
JUH

AN
T O iR

fan]

LRI I S Y T D

D S R X A |

[SO O O% B

| S

Lot B SR Y SN

W

=
=
=
-
o
-
-
=
<
-
-
-
=
-

2B
21
ey
a2
-~
o3
o4
o9
1
%
3T

aE

L S
=D

SO N
J

e
I B I SN O

S A T IR R B e B e I % B A T X
L U A U R R U U B b B R AU R %

Do o v

O D T
DURIOUE MU LU A

DU o T T O ot T o T A T ¢ T)

YMINAEA A B B AT B R R B
Do R o I o U o B A IR)

-
LU)

"M D)
LROUR AU WU

-
Lol

—
Pux]

LR}

U en O oonoCn
Lo 0 o

wn
LUE RN I A |

Ty T O On
(IR &]

Ty 1Ty
DO O

T T Iy
LA N <N

T

J

Ty

DUER R

DO CW

R N I S e B I

DS s SR I SR | J N

v
=
21
oy
-
T
=
g4
a8
=1
]
=

el
365

o o o0 oy
P SR (R

N N]
(LA RN B PR |

(¥

43
53
51
52

=

RO

LoURRN (I SN B 8 R

S LU) B SN N SO

[B X

Ot B x PO I SN I N

R B T B B MY Mt N Ity N B O U U O T 4 T T T 0 O I A R

Don BN

Mr: —

RV KRN N U S C RV U s 1
)

TN fo GO Do

i
[x)]

43

N £
[Y u}

LA IR S I I
IS IS CO T I ORI

n
0o

LL) B B
O

Ty

T T

(o]
L1 < N R U

Ty
T

X R |

[u§

T
Paors 0

=l = =

AR
-
G
el -
[
-
(=]
-
[
)
[~
=

[¥x]

oo -
oo,

O oo 0 o

fa]

00 0D oo

el
=)

1R LN IR R e RS ©
P O % I LR

L
(R 1]

-
[ux]

DO O I

LA | I <

[N |

w I

=

= T M m

b BV a e & Bew B « B

S

n L

™ ou0

DR |

_noonoon g

Ty
e BT WX R N 0 ST 1 B S I O =

Ty

1Ty Iy

G
L I N T R OV I g

Ty
(U s

T
[

T
[B

L S VAR O

n

]

N I I IS I N R R
By

L o— 3

00D 00 OO 00
DL I <

!

A0
— o0

E

111
112
113
114
113

EGAROA TN IR AN
DA RN

oS

-
DU iU k)

[I B I 0]

- o o
[R R o B]

- -
LU RO MU kA)

SRR A DR I AN BN
LU U AU A% R A |

.
D e

DA A A I A B B A I R R
DO I I WU B U U U i o B R U A Bt B R |

-
(U

Appendix A AP-85

—————————— COLLATIMG SECTION - COHT —--==-—-m-

EHTRY |COLL. | CHAR CHAE
EMTRY | CODE

MODE | [ENTEY [COLL. | CHAR | CHAR | SE® {MODE
FTKE # EHMTRY |CODE # FTE

EE 3, 36 @ 47 145 144 CR
188 g a7 a @ 48 148 145 I
A1 =E a3 b g 4% 147 148 BB
182 1688 a9 c @ 5 143 147 @ @
183 181 1@a d @ 5 143 143 LR
194 1@z 181 = @ S 156 143 5@
185 183 1@z f @ 5 151 158 @ @
185 1@4 183 3 & 5 152 151 @ @
167 185 184 h 5 s 153 15z @ @
185 186 185 i @ 5 154 153 a8
163 187 188 i @ 5 S5 154 a8
116 188 187 k @ . SE 155 R
111 18% 18g] o ST 156 BB
112 118 189 m 4 S5 s7 B
113 115 M i] SE &

—
—
[
[m]

[xx]

...._
U KU R}
.
DA

—
—
fa

-
Dx]
D]
D]

T

.
=

w1 o= 00
[

[xn]
X ")
DNy

- H Ir

[a]

r
i
(]

LI Y A B SV (A O
DO O]

D]
YRR I SR U (N o RS o

AR

T
g

—
ORI OO OB
0 o o~ o0 OO
Do ko)
-]
m T
EAURY W)
[an]

-
[xx)

RS I Ry
5

._
Lux]
o -

R S
—

Do}
—
ax]

Foa
-
OUNN
=0
o

—_
N OQ <N
v
Do I]
]

DU I OO i o SN O O
ot I >

-
[d

[DN

[xx]

N N R

—
[]

!

LU TS B R S) I CNRN RN SN
D] 5

[S
i e M B 41

-
[\x]

RN I SR | I SIS OO T o T B T e A £ B U R I (N oo BT I R I x GO I < A)
[an}

I e M M M Bt et B¥ B I n ST 0 SO SO 0 (T SO SO SO ' 0 AT SO I

o
LU i
| # Te M

bt e b ek s d A b ek e

R LT I So PR OV U Y

R R R R T A
TIRSIESTEN RS EENIENENEENEN Y, (R A S SO S CO O O OO (AR

(XA w]
(I T 3 SO | B N T I O o N |

il TE &
5 v T =) 5}
5 5] =15 b= T A N K
5 5] 21 =] = 2 156 &
5 5| = o [= 126 5
5| i o 21 2 C I 5]
5 5| =4 = = ; | 5!
I
& 5] 25 = H B 5

Xy

P T T T T e S S S S P P T

e b R b b b R e b b b b b b et bbbl b b bt b bk b b s e b b b b ek A b b b b b et pd ba L A b

L o S e S S T VI

1

' 1
5 5] = =p noo1ed A
5] 5] = 55 : i 121 5]
& 5] RS 2 B e 122 &
5 5] o] [e %)
5] 5| SR 122 o i 154 5}
5] A =D 133 b= =2 125 5]
5] A R 13a =k I = 5]
A 5 el 131 =15 < 127 5]
o] A S4 192 %1 las 5|

AP-86 Appendix A

—————————— COLLATING SECTION - CONT —---—-----

EHTRY [COLL. | CHAE
EMTRY |CODE
192 1az
194 193
194

135

I
I

SEC[MODE | [EMTRY [COLL. |CHAR | CHAR [SER|MODE
FTR | |# ENTRY |CODE #_|PTR
243 241 z4@
244 zdz 241
245 24z 24z
248 244 243
247 245 z44
248 245

243 247

*

D]
=
kY
-

Dx
—
=

n

-
DA
-

b

-
=

CER CE T U

[ag
o
=

[ed iy —d ==

R)
i
—
o
-
o

.
s

DO
—
)
=

—
Dy
LY
LI
L el o S S
A
.l
+
[xx
D]
D B et |

—_
Sul
o
D)
IR Y R SR s 4
o0
[}
Fe
i

¥}
o=

'

J 0y

Dx]

|
D]

B
P
-

o

A0

—
S
n

L]
hon

pliny
[ux]

Dex)
e
—
'
=)
D
n
[
[
o
S I v |

_n
N]
fun}

PR OO I =
n
bk}
n
D]
[an]

,_

fun)

a

Pt

AN
=,

Ty I
[and

—

facn}

T

[]

I
SUBN SN DU CRONE ORI A

noan
nn o«
.

o5
Y
e
—
Ja
Nu]

PR]
N
[n]
kN

—
n
o
[xx]

I LSO LSRN LA 6 I LS LN ol
WX = S
(|

4 TN

Ty
D
[

T
T
nod

-
fux

RSN O PSS ORI (RN L AT L (N

,_,_,.
[I
(2]

[R OO ¢
ift N

fan
A]
3
—
g
[xx
[xx]
f
oo

-
[

= A R a
21 2 i 157 5
21 218 £ 187 o
W 211 Az]
215 13 21z a 145 a
216 214 213 i 155 &
217 215 214 @ 163]
R 218 215 # 144 &
13 217 21 A 35 5}
' 213 217 i 158 @
g 219 1% a 1ae 5
- e 19 I 114 @
2 gl 3 =k a
z =z i 158 &

z z 3 136

.,_
fun]

-
oo

.,.,_
[)
[ax]

AR
DU U A
T T T
LU R WU R M)

)
-
=

,_,_,_
[
=

!
-
[ux)

,_

=}
—
)

,_
[x)
0

,.
kA

— e

Do

XX
2l
)

=
[ux]
(R cu

..
fan)

,_
L]
[xu]

,_
oS
A

Appendix A AP-87

—————————— UFFERCAZE-LOMERCASE SECTION ~-—----—---

EHTRY | LI-L CHAR | CHAR | UF
EHTEY | CODE
: 164
1el

FERILOMWER | JEHTREY [L-L CHARE | CHARR | UFFER | LOWER
=E |CHSE # EHTRE"Y | CODE CHSE |CHSE

SRS

[:‘j
N e
L

A
1

o

H Ir
[N
noan

=% I
P S]
7]

=259
ZEd
el

_r
_r
-
DO I X
if
3

— r H Ir
Dull LD TT}

L I U Y I TR

Ty
L
—
3f e
n
-
= I

i)
—
et
on

T T T g
- M T
e e
L3 e
— =3 -
O S (6]
n n
N In SO ; T N O (TSN

F_:-

)
-
E

o

L7}
G =

oy
H= =]
R

DAY R Rt |
Lk
—
o_n
on

RS
i — T
ot —_ ul

3 (]
—

LU 0 5

1 on
[

(RN
=

— =
o

o Bt B B S 41
EILEL I SN O LSO o RS A

PRI O T o R)
(2%}
—
=4
n

L2
. M
m
]
.
ot o— e
1=

DL
% e
e o
| Qo 0

Ty

= ar A A Y 5
15 T i A 3 7
zu ER o @ = 2
o 1) i g i 3 E
o8 =1 ; o Pt o 5]

3 oz H H F gl

I
-
.o
-
-

n

[x 1]
M &

] i i :
e a o i

=) T L

O 00
J
O PR
e

D Y W xR s Y

[an B
wn

RSO A B IR) B SN FY I O

v

b B TV)

..
(RS
)

L s e e e B B I I Y xS n S S S

O 00 [e

Do
LLCEN VTR
M T~ o
LY

o
B
—
o

R UL N

o
A

n

oy
o
o0 Ol 00
=) T

DO T
3 - I ¥,
L LR 1]

- T

(LN N A I |

) i
14 Il 14 R0 N ol

oo 00

P S S CURL UL U P O B O Y T T I W N OSSR LSO CR U O ()
2 oo

OO I T B Y) B O P I ORI =P o B

Pl Pl P20 P P Pl o0 Tl 2 b e = e = b et e e b e b b et bk b b b b b e et bd b e et pt b A b b s

1 A A A R A a9

. g4z g E = 343 S
e 43 & I}] g 1 258
Sz 44 G I i IEQ R 251
! 45 EY F 5 251 93 i
EYE] 4 & E £ a5z R 253
A5 47 b | & ISR L 254
a8 45 0 il ¥ 354 I 255

AP-88 Appendix A

————————————— MODE SECTION -~----=-=--—--=

EHMTEY [MODE TYFE DESCREIFTICOH
EHMTRE"Y

355 1 TWO FOFR OME CHRRACTER REFLACEMENT

DA 2 THO FOR OHWE CHRREARCTER REFLACEMEHWT
LIVILTIL] TerE pETAILE)T

-- DOH“T CHRES —-

-— ACCEWT PRIOQGRITIES --

== THWO FOR OHME REPLACEMENTS --

EHTREY # REFLACEMEMT A=ZCII

1 B o= =z = = 2o

-— OWE FOR TWO FEEFLACEMEMTS --

Your Comments, Please...

Your comments assist us in improving the usefulness of our publications; they are an important
part of the inputs used in preparing updates to the publications.

In order to write this manual, we made certain assumptions about your computer background.
By completing and returning the comments card on the following page you can assist us in
adjusting our assumptions and improving our manuals.

Feel free to mark more than one reply to a question and to make any additional comments.

Please do not use this form for questions about technical applications of your system or re-
quests for additional publications. Instead, direct those inquiries or requests to your nearest HP
Sales and Service Office.

If the comments card is missing, please address your comments to:

HEWLETT-PACKARD COMPANY
Desktop Computer Division

3404 East Harmony Road

Fort Collins, Colorado 80525 U.S.A.

Attn. Customer Documentation
Dept. 4231

All comments and suggestions become the property of Hewlett-Packard.

