T

I

-
|

8}

i
|
}

LRI

H+ E-WeEL e e i Nl e ol s ot e el

SR

1

]

Tl......

AN

HEWLETT [hp) PACKARD

D

Owner’s Handbook

For Additional Sales and Service Information Con-
tact Your Local Hewlett-Packard Sales Office or Cali
408/996-0100 (Ask for Calculator Customer Service)

i)

LS

!

e e . e . ;4_*_..«"1._"- N 0 L ik LIt ,,,,A.J

e =
=
[T
=
=
=
B .
o
-
E—a
s
=
E =
s
£ a

i

S

HEWLETT ﬁ? PACKARD

HP-65
Owner’s Handbook

July 1974

00065-90200 Rev. 7/74

©HEWLETT-PACKARD COMPANY 1974

Contents
Introducing the HP-65
Three Ways to Use the HP-65 5
Onward 10

Section 1: How to Get Started

Power ON i 1
Initial Display i 1
Keying In and Entering Numbers 12
Simple Arithmetic 14
Manipulating Numbers 22

Section 2: General Operations

Clear Operations i 27
Displayoo.iii 28
Negative Numbers 32
Keying In Large and Small Numbers 32
Last X ... 34
Recallinga. ... 35
Addressable Registers 36

Section 3: Functions
Functions InvolvingAngles a1
CONVETSIONS oo\ttt ie et iee e 48
Functions of X and the Exponential Function (y*) 49

Section 4: Programming

WhatlsaProgram?..........., 53
LookingataProgram 54
Writing Your Own Program 61
Running the Program 62
MagneticCards cooiannn. 63
Editing the Program 64
Branching L. 70

Conditional Testingocoveun... 80

i

Interrupting Your Program 91
Writing Programs to Solve Your Problems 95
Common Mistakes 101

Appendix A: General Information

ACCESSOMBSttt 103
Battery Operation 104
Recharging and AC Line Operation 105
Maintenance 106

Appendix B: Additional Operating Information

Automatic Stack Lift 109
Programming Tips 110
Calculating Range 110
Temperature Range 11

Appendix C: Calculator Service

Blank Display ... 113
LowPowerot B R K
Improper Card Reader/Writer Operation 113
Battery Failure 114
Warranty R, 115
Shipping Instructions 116

|
=
(-
-]
=
| -
e
s
o =
=
i
e
=

Introducing the HP-65

Your HP-65 is one of the most advanced pocket calculators in
the world. In addition to the computational capabilities of the
operational stack that have made the earlier HP-35 and HP-45
models so popular, your new HP-65 is the first pocket calculator
to provide true programmability.

Three Ways to Use the HP-65

You can use this powerful device in three ways:
1. To calculate manually.
2. To run a prerecorded program.
3. To write, run, and record your own programs,

1. To Calculate Manually

Figure 1, inside the foldout, illustrates the keyboard layout. Al-
most every key performs multiple functions. The symbol for the
primary function appears on thc key. Symbols for alternate func-

tions appear above the key, 7] . or on the inclined lower key sur-
face, .

Note: Designations for alternate functions from above
the key or from the inclined lower key surface will ap-
pear in the manual in the appropriate color (gold or

blue) outlined by a black box like this: NESD|

To execute a blue alternate function, press the [8 prefix key and
then the key with the desired blue function. To execute a gold
alternate function, press the [l prefix key and then the key
associated with that function. To execute the inverse (or comple-
ment) of that same gold function, press the [prefix key and
then the key associated with that same gold function. For ex-
ample:
5

Your HP
the worlc
operation
models s
to provid

Display

W/PRGM-RUN Switch
Three V

You can
1. To«
2. To:
3. Tor

OFF-ON Switch —|

Window ——

[Nl cHolE] Before using the calculator, you may need to charge
its battery pack as described in appendix A. The

Blue Prefix Key calculator can then be operated while the bat-
L tery is charging or, later, on battery power alone.

1. ToCa
Gold Prefix Keys

. Figure 1,
most ever
primary fu
tions appe

Arithmetic Keys

Not
the |
peal

blue

R EN

To execute
then the k
alternate f
associated
ment) of t
then the k
ample:

PORRRRTLDODRRRED

3. Insert the card in the right lower slot as shown. When the
card is part way in, the motor engages and passes the card
through the calculator and out the left side. Let it move
freely.

Calculate By Pressing See Displayed
sin (909) = 1 90 [l ['1.00 |
arc sin (1) = 90° 1 @GN | 90.00]
51—120 5 @ [EEX

Now calculate the area of a circle with a radius of 25 using the
equation area = r2+r.

Press See Displayed

25 - Key in the radius.
BL=] I Caiculate 1.
9 - Recall pi accurate internally

to 10 places.

x EEEE Ao of the circle.

culate manually.

2. To Run a Prerecorded Program

By using prerecorded magnetic cards, like those supplied in the
Standard Pac shipped with your calculator, you can do complex
calculations with minimal effort or study of the calculator itself.
Let’s try running one of these programs now.

1. Select the Compound Interest Program from the Standard

Pac card case.
did not read properly and program memory will be cleared.

Press X and reinsert the card.

COMPOUND INTEREST STD 11A

4. The display will read 0.00. If the display blinks, the card
5.

PV Fv Upon completion, insert the card in the upper “window”

slot to identify the top row keys.

&3
=
E—=
=
=
=
=
S
Sections 1 through 3 are devoted to a description of how to cal- dg
e
e
—a
s
s
=
=

2. Set the W/PRGM-RUN switch to RUN. You are now ready to use the program.

Example: Investment Plan

What amount must be invested today to have $15,000 at the
end of 20 years if the interest rate is 7% compounded quarterly?
To solve the problem, just follow the instructions given in the
standard format in figure 0-1. You read the “instructions,” line
by line, key in the required “input,” press the indicated “key(s),”
and observe the displayed “output.” In this case, the answer is
displayed after pressing [and [in step 4.

step WSTRUCTIONS o NPUT kevs | OUTRT
[1 Enter program (Compound [
[Interest as shown on page 7 . I:":]
of this manual) I:":}
2 Initialize 0.00
3 tnput [
n(n=20x4) 80 A so00
land i (=7 a) 17 [] 1.75
and FV 15000 [0][] 15000.00

4 Compute PV

Figure 0-1. Instructions for Running the Compound Interest Program

You can run the program again, if you like, using different values
just by keying them in. Your work is minimal because the HP-65
has stored the long keystroke sequence required for this tedious
calculation.

3. To Write, Run, and Record Your Own Program

No prior programming experience is necessary to program the
HP-65. In fact, before you have finished this brief introduction,
you’ll have written your first program. It’s that easy!

To calculate the area of a circle manually, you have to press five
keys after keying in the radius of the circle (see example, page 6).
If you had to calculate the area of 10 different circles, it would
require too much work. So we’ll write a program to calculate
the area of a circle given its radius.

= =
[=]
-]
-]
==
=
=
-
=2
=
]
=
i
=
é‘:..;

1. Set the program mode switch to W/PRGM.
2. Press [fl to clear the calculator.

3. Press the keys in the order shown below, ignoring the dis-
play for now:

Key Comments

)

Defines the beginning of the program.

These are the same keys you
pressed to solve the problem
manually,

KHIII =

R

=

N Defines the end of the program.

If you make a mistake, or your program doesn’t work, start again
at step 2. Later, in section 5, you will learn how to correct mis-
takes and the meaning of the numbers in the display.

In the simple program above, you have added [N [to the top
and to the bottom of the same list of keys that solved the
problem manually. The program is then controlled by the [§ key,
although any one of the program control keys ([} t4ru[d) could
have been used to execute the program if the appropriate label
had been used. You’ll find that the ability to define programs
using the top row keys is one of the most convenient and power-
ful features of your HP-65.

To Run Your Program First set the W/PRGM-RUN switch to
RUN. Now calculate the areas of circles with radii of 10, 19,
and 24.

Press See Displayed

0N A | - Area of the first circle.
190 EEEEEE Areaof the second circle.
24 - Area of the third circle.

To Record Your Program.

1. Select a blank, unprotected (unclipped) magnetic card.

EI._.L | 1 d
2. Switch to W/PRGM mode.

unprotected
3. Pass the card through the right lower slot exactly as you did
when entering a prerecorded program.

Your program is now recorded on the magnetic card. Be sure and
mark the card so you don’t forget what the program does. The
finished card might look like this when you are through:

breq of a Cirele

protected

And that’s all there is to it! Of course, this is only a simple pro-
gram written in the most convenient way possible. For a more
complete picture of programming, you'll want to read section 4.

Onward

If you are a beginner, you will appreciate the step-by-step expla-
nations in this handbook. But even if you are an old hand at
using calculators, you can minimize the time you spend calcu-
lating by following the procedures presented throughout. For
those of you who are familiar with Hewlett-Packard pocket cal-
culators, you may want to skip directly to the programming
section and cover the remaining material at your leisure.

If the manual does not answer all your questions, contact your
nearest HP Sales and Service Office, or, if you are in the U.S. dial
(408) 996-0100 and ask for Customer Service. We want you to
be completely satisfied with your HP-65.

=
[—
E—a
E—=
[S
-]
]
e
|
=
[
=
(="
=
& —a

l

Section 1

How To Get Started

Power On

Your HP-65 calculator is shipped fully assembled and is ready
to operate after making a few simple checks. If you have just re-
ceived your calculator, please be sure that you have all of the
standard accessories and that the calculator’s battery pack has
been charged. (Refer to appendix A.) If the battery pack is al-
ready charged or if you plan to run the calculator from the
charger, here’s how to get started:

= Set the W/PRGM-RUN switch to RUN,
= Set the power switch to ON.

You should now see displayed 0.00; if not, please turn to ap-
pendix C.

Initial Display

Basically, numbers are stored and manipulated internally in the
machine in “registers.” Each number, no matter how simple (i.e.,
0, 1, or 5) or how complex (i.e., 3.141592654, —23.28362, or
2.87148907 x 10*7) occupies one entire register. Whenever you
switch the calculator ON with the W/PRGM-RUN switch set to
RUN, the display shows 0.00. This represents the contents of the
display, or X-register. Every number keyed into the calculator
goes first to the X-register, which is the only visible register.
Similarly, you must bring every computed result to the X-register
before it can be viewed.

11

12

The displayed X-register is one of the four registers inside the cal-
culator that are positioned to form the “operational stack.” We
label these registers, X, Y, Z, and T. They are “stacked” one on
top of the other with the displayed X-register on the bottom.
When the calculator is switched ON, these four registers are
cleared to 0.00.

(always displayed)

As you'll see, the “stack™ allows you to solve almost any equation
without storing intermediate results, helping make your calcu-
lator one of the most powerful on the market.

Keying In and Entering Numbers

Key in numbers from left to right and include the decimal point
if it is a part of the number. For example, 314.32 is keyed in

by pressing: BlO [EE

Why not try it yourself now? If you make a mistake, clear the
entire number by pressing @LX (clear X); then key in the num-
ber correctly, Your stack registers now look like this:

Name Register

T | 0.00
z 0.00
Y | 000
X 31432

In order to key in a second number, you must tell the calculator
that you're done with the first number. For example, if you were
to key in 567 right now, the number in the displayed X-register
would be 314.32567 and the calculator would still not know if
you were through. (It’s clever, but it can’t read your mind.)

ThhiRRRRRRDRRLD

How to Get Started 13

One way to tell the calculator you're through with a number is to

press [ENTER#].* When you press [ENTERS), the contents of the
registers are changed

T 0.00 T OOEi
0. . Z | 0.00

from this: z 0o to this: 41
Y 0.00 Y [314.32
X [314.32 X [314.32

As you can see, the number in the displayed X-register is copied
in Y. (The numbers in Y and Z have also been transferred to Z
and T, respectively, and the number in T has been lost. But this
will be more apparent when we have different numbers in all four
registers.)

Immediately after pressing [ENTER#!. the X-register is prepared
for a new number. And that new number writes over the number
in X. For example, key in the number 543.28 and the contents of
the stack registers change

T 0.00 T 0.00
Z 0.00 Z 0.00
from this: v (31432 to this: vy 31432
X |314.32 X 1543.28

|63 also prepares the displayed X-register for a new number by
replacing any number in the display with zero. Any new number
then writes over the zero in X. For example, if you pressed CEX
now, the stack would change

*A detailed discussion on number termination can be found in appendix B.

T 0.00 T 0.00
_ Z | 000 Z| 000
from this: —— to this:
Y | 314.32 Y | 314.32
| 22 | 22392 |
X | 543.28 X | 0.00

And if you then keyed in 689.4, the stack would change

T 0.00 T 0.00

~z| o000 z | 000

from this: v 3—1-4'32- to this: v —3@
X _[)ﬂ X L689.4

Note that the numbers in the stack do not move when a new num-
ber is keyed in immediately after pressing |ENTER® or [GEX .

Simple Arithmetic

Hewlett-Packard calculators do arithmetic by positioning the
numbers in the stack the same way you would on paper. For in-
stance, if your numbers were 34 and 21 you would write 34 on
a piece of paper and then write 21 underneath it like this:

34

21

and then you'd add like this:

Numbers are positioned the same way in the HP-65.

POMDRRRRLDRREDD

Here’s how itis done:
(Clear the previous number entry first by pressing [6LX .)

Press See Displayed

34 Bl 34 is keyed into X.

ENTER# - 34 is copied into Y.

21 Bl 21 vrites over the 34 in the display.

Now 34 and 21 are sitting vertically in the stack, so we can add.
+ - The answer.

The simple old-fashioned math notation explains how to use your
calculator. Both numbers are always keyed in first and then the
operation is executed. There are no exceptions to this rule.

Subtraction, multiplication, and division work the same way. In
each case, the data must be in the proper position before the
operation can be performed.

34
Tosubtract21 from34 | _,q | :

Press See Displayed

34 Il 34 is keyed into X.
ENTER4 - 34 is entered into Y.

21 B 2! writes over the 34in X,

= - Answer.

34
To multiply 34 by 21 (X21) :

Press See Displayed

34 Ell 34 iskeyedinto X,
ENTER#4 Bl 34isenteredinto Y.

21 BBl > vrites over the 34 in X.

x - Answer.

To divide 34 by 21 (g?—) :

Press See Displayed

34 I 34 is keyed into X.
enteRd RN 34 is entered into Y.
21 I 21 vwrites over the 34 in X.

+ - Answer.

Arithmetic and the Stack

You've already learned how to enter numbers into the calculator
and perform calculations with them. In each case you needed to
position the numbers in the stack manually. However, the stack
also performs many movements automatically. It's these auto-
matic movements that give the stack its tremendous computing
efficiency and ease of use. The stack automatically “lifts” every
calculated answer in the stack when a new number is keyed in
because it knows when it completes a calculation that any digits
you key in are a part of a new number, For example, calculate
16430411 417=7

Note: For the purposes of the remaining examples, it
is assumed that the stack is cleared of the previous
problem. You can do this yourself by pressing [l [57%].

Press Stack Contents ~Comments

T 0.00

Z 0.00 16 is keyed into the dis-
16 v 0.00 | Played X-register.

x 1o

T | 000 |

z oo’ |
ENTER4 000 | 16 is copied into Y.

Y 16.00 |

— =
X | 16.00 |

PRRRDRRORDDRRTLD

Press

30

11

17

Stack Contents

KN H X LN H XN H X <N H Mo NH X< NS

om0
0.00

1600

0.00
74.00

Comments

30 writes over the 16 in X.

16 and 30 are added to-
gether. The answer, 46, is
displayed.

11is keyed into the dis-
played X-register. The 46 in
the stack is automatically
raised.

46 and 11 are added to-
gether. The answer, 57, is
displayed.

17 is keyed into the dis-
played X-register, 57 is
automatically entered into
Y.

57 and 17 are added to-
gether for the final answer,

18 How to Get Started

After any calculation or number manipulation, the stack auto-
matically lifts when a new number is keyed in. (See Number
Termination in appendix B.)

In addition to the automatic stack lift after a calculation, the
stack automatically drops during every calculation involving both
X- and Y-registers. It happened in the above example, but let’s
do the problem differently to see this feature more clearly.

Stack Contents Comments

T 0.00

0.00 | 16iskeyed into the dis-
0.00 | Played X-register.

o N

16.

0.00
0.00
16.00
16.00

16 is copied into Y.

s N =

0.00

090 | 305 written over the 16 in
16.00 | X.

30.

30

Mo N =

0.00

16.00 | 30isenteredinto Y. 16is
30.00 lifted up to Z.

> o< NH

30.00

FORRLDDRRORRRDD)

Press

11

KN H XK N4 M <N A

17

Stack Contents

Mo N 3 MoK N A

Ho< N A

0.00

16.00

30.00

11.

16.00

30.00

11.00

11.00

16.00

30.00

11.00

17.

16.00

16.00

30.00

28.00

16.00

16.00

16.00

58.00

16.00

16.00

16.00

74.00

How

Comments

11is keyed into the dis-
played X-register.

11 is copied into Y. 16 and
30 are lifted uptoZand T
respectively.

17 is written over the 11 in
X.

17 and 11 are added to-
gether and the rest of the
stack drops! 16 is dupli-
catedin T and Z. 30 and 28
are ready to be added.

30 and 28 are added to-
gether and the stack drops
again. Now 16 and 58 are
ready to be added.

16 and 58 are added to-
gether for the final answer
and the stack continues

to drop.

This same dropping action also occurs with &, %, and & .*
The number in T is duplicated in T and Z, the number in Z
drops to Y, and the numbers in Y and X combine to give the
answer, which is visible in the X-register.

Left to Right Execution

The automatic stack lift and automatic stack drop let you retain
and position intermediate results without reentering the numbers.
This is the great advantage the stack has over all other data han-
dling methods. As a matter of fact, Hewlett-Packard calculators
are the only pocket calculators with a specially designed system
for evaluating algebraic expressions with maximum efficiency and
overall ease of use. Many problems can be solved by keying in
the numbers in left to right order. For example:

(35 + 45) % (55 + 65)

Press See Displayed

35 EE 1t left-most number is keyed
into the X-register.

ENTER# IEEEE No operations can be per-
formed so press [ENTER#

45 EEN The next number is keyed
into X.

F BN The intermediate result of the
addition operation is
displayed.

55 EE The next number is keyed
into X.

ENTER#+ BRI The multiplication operation
cannot be performed yet, so
you press |ENTERS -

65 BB 1he next number is keyed
into X.

;o — The addition operation is
performed next.

x _ The answer is calculated with-

out repositioning the numbers.

*The stack also drops during [=], il [D.MS+ |, and [l [D.ms+

operations, which are discussed later,

PRRRDRRRDDRDRRLD

Of course, you don’t have to work problems from left to right.
Many people start in the middle and only key in numbers as they
need them. Either way, the more complex the problem, the more
you'll appreciate the capabilities of the operational stack. Try
these additional examples.

Sample Case: Calculate 5 X [(3+4) + (5:-2) + (4=3)]

= (3 x .213)
Press See Displayed
3 3. |
ENTER# | 3.00 |
@l 4.]
+ Bl G
& [5. |
ENTER# [5.00 |
2] £
+ B -2
+ Bl 49162
(4 ¢ |
ENTER+ [4.00]
@ 3.
* El -3
+ Bl G-9+6-2+@1=:3)
&) -
ENTER+ | 3.00 |
213 213 |
x Bl G20
+ 7.17]
(5] BBl The first number is keyed in.
x EEE 1he Answer.

Constant Arithmetic

Sample Case: The growth of $1000 invested at 10% per period
would constitute a geometric series in which the first term is
1000 and the growth factor is 1.10. Follow the example below
to calculate the first six periods of growth and watch your savings
grow!

Press See Displayed
1.10 EEEE Growth factor.
ENTER4

Growth factor now in T.
Original amount.

Amount after 1 period.
Amount after 2 periods.
Amount after 3 periods.
Amount after 4 periods.

Amount after 5 periods.

x

Amount after 6 periods.

What we’ve done is put the growth factor (7.70) in the Y-, Z-,
and T-registers and put the first term (7000) in the X-register.
Thereafter, you get the next term whenever you press ¥ . For
example, when you press % the first time, you calculate 1.10
% 1000. The result (17100.00) is displayed in the X-register and
a new copy of the growth factor drops into the Y-register. Since
a new copy of the growth factor is generated in T each time the
stack drops, you never have to reenter it.

Manipulating Numbers
ENTER® is not the only key that positions numbers in the stack.

The & (roll up), @ and @ (roll down) key

FORRRLLLRODRDDTD

<N H K< N A

Get Started 23

sequences reposition numbers in the stack without any danger
of losing numbers from the T-register.

Rotating the Stack
The & and B keys let you review the entire stack

contents at any time. To see how these key sequences work, load
the stack with the numbers 1 through 4 by pressing:

4 ENTER+ 3 ENTER+ > ENTER# |

If you then press [[R+], the stack contents are rotated

from this: to this:
wﬁj 1.00 |
3.00 | 7?04‘
200 | | 3.00
Lo | 2.00 |

Now watch the stack contents that follow as we use the |8
and [& keys to bring numbers in the stack one-by-one into
the displayed X-register.

Comment

Press Stack C_oEt_e_Et_s

2.00

100

Once again all of the numbers
are rearranged in the stack.
3.00 is now in the displayed
X-register.

W (&)

| 2.00

The numbers are rotated down
one by one again. 4.00, which
was in the T-register, is now
in the X-register.

T 4.00

i 3.00 All the numbers are back in the
9 registers they started in. No

Y 2.00 numbers have been lost.

X 1.00

T 3.00

7 500 The number in T replaces the
e : number in the X-register this

Y 1.00 time. The other numbers shift

X 2.00 up one place.

T 2.00

Z 1.00 And again the numbers are
[] . rearranged in the stack. 3.00 is

4.00 now in the displayed X-register.

X 3.00

T 1.00

7 4.00 The numl?ers are rotqtcd up one
rs place again. 2.00, which was in

Y 3.00 the T-register, is now in the

X 2.00 displayed X-register.

T 4.00

Z 3.00 All the numbers are back where
9 —— they started. No numbers have

Y 2.00 been lost.

X 1.00

These keys are used primarily to position numbers in the stack.
However, if you're unsure of the contents of the stack, use

9 and [@ [R+], as we have done here, to verify the lo-

cation of the data.

l—

COLTITRROTRELREY

Exchanging Xand Y
The & (x exchange y) keys exchange the contents of the
X- and Y-registers without affecting Z- and T-registers. If you
press @ with the data intact from the previous example, the
numbers in the X- and Y-registers will be changed

from this: to this:
400 | ———— 4.00j

300 | ———> 3.00

2.00 ><: 1.00 |
1.00 [2.00 |

Similarly, pressing a again will restore the numbers in the
X- and Y-registers to their original places. These keys are used
to position numbers in the stack or simply to view the Y-register.

Bad@

You may notice that and are also available on the [E]
and [@ keys when the power is first switched ON. The five func-
tions shown in the window were selected because they are the
most commonly used. Their primary intent is for manual use
from the keyboard. They each permit single keystroke operation
of functions that otherwise would require two keystrokes. When
the Y thru @ keys are redefined by a program (or whenever
BB has been pressed), the window functions are still

available by two keystrokes.

rhtepenpolonnnl

Section 2

General Operations

In this section we will describe how to: = perform the clear op-
erations ® control the display ® enter negative numbers and
numbers in scientific notation ® recover from wrong keystrokes
using the Last X feature ® recall 7 = use the addressable stor-
age registers.

Note: Lower-case letters are used to denote values

in corresponding registers; e.g., “x” for the value in

the X-register. Upper-case letters are used to denote
the register itself.

Clear Operations

Five separate clearing operations are available on your HP-65,
using the [functions of the fourth row of keys.

Clearing Unwanted Prefix

T cancels the effect of a prefix so that a non-prefix
operation can be done. Let’s say you accidentally press i, &,
or @, before keying in a number. If you then press the number
key, you will get an alternate function of that key instead of the
desired number-entry operation. To prevent this from happening,
press [to cancel the effect of the unwanted prefix

key, then key in a number. If a wrong prefix key is pressed when
another prefix is wanted, the error can be corrected by simply
pressing the correct prefix and proceeding from there.

The above procedure can also be used to clear these additional
keys:

Clearing Stack Registers

E clears all four registers (X, ¥, Z, and T) of the opera-
tional stack. Although this operation may be comforting at times,
it is never really necessary and is provided only as a convenience.
To clear only the X-register, press CE% .

27

28 General Operations
Clearing Addressable Registers

i clears all nine addressable registers. Be sure these are
cleared before doing storage register arithmetic.

Clearing Entire Calculator

The entire calculator can be completely cleared by turning the
power switch OFF, then ON. When the power comes on, how-
ever, default programs for the functions corresponding to the

window legends above the top row keys ([], = |, [],[R¥],
[x2¥]) will be automatically placed in program memory.

Clearing Program Memory

5 clears the HP-65"s 100-step program memory but is
effective only when the W/PRGM-RUN switch is in W/PRGM
position. In RUN position, Y has the same effect as
oLx .

Display

The display is used to show results, operational errors, low bat-
tery condition, programs in execution, and in W/PRGM mode
the display allows you to “see” each step of a program in memory
(this use of the display will be described in section 4).

Setting Display

The HP-65 displays up to 15 characters: mantissa sign, 10-digit
mantissa, decimal point, exponent sign, and 2-digit exponent. In
RUN mode, the display shows a rounded version of the number
in the X-register. Two display modes (fixed and scientific nota-
tion) with a variety of rounding options may be selected from the
keyboard. (Rounding options affect the display only; the HP-65
always maintains full accuracy internally.)

Fixed Display. Fixed notation is specified by pressing EER [+]
followed by the appropriate number key to specify the number
of decimal places (0-9) to which the display is to be rounded.
Fixed notation allows all answers to be displayed with the same
precision. The display is left-justified and includes trailing zeros
within the selected setting. When the calculator is turned OFF,

g

Operations 29

then ON, it always reverts to fixed notation with the display
rounded to two decimal places. For example:

Press

(Make sure W/PRGM-RUN switch
is set to RUN. Turn the
calculator OFF, then ON.)

123.4567

(0s> NENIEY
E=3 -1 ()
LI
(0s» NERREY
Scientific Display. This is useful when you are working with

large or very small numbers and allows answers to be displayed
with the same number of significant digits. It is specified by
pressing &3 followed by the appropriate number key to specify
the number of decimal places to which the mantissa is rounded.
Again, the display is left-justified and includes trailing zeros
within the selected setting. For example:

See Displayed

See Displayed

Press

(Turn the calculator
OFF, then ON.)

123.4567 [Eniene EEEEEENEN

E=3 2] EEEE :quals 1.23 x 102,
= (7] IEEEER ol 1.2346 x 102
DsP | DR Fquals 1.234567 x 102

Next, set the display to show eight decimal places in fixed nota-
tion:

Press See Displayed
0 EEEEEE *Equals 1.23456700 x 102

*If a number is too large to fit the specified display, the number is displayed in
full (10 digit) scientific notation.

30

Now return to two decimal places in fixed notation:

Press See Displayed

[ose A | 123.46 |
=] ooos (ks eniens [EEEEN +)

TI77777777,

Blinking Display

> 99999.59599 D.MS

The display blinks when any of several improper operations are
attempted. Pressing any key stops the blinking without other-
wise performing the key function. [GE¥ is the recommended
blink stopper. Figure 2-1 lists these improper operations.

Error

lllegible Display

During execution of a stored program, the display continuously
changes and is purposely illegible to indicate that the program is
running. When the program stops, the display is steady.

- 99999.99999 degrees or
equivalentin radians or grads

~
=

x| > 1073741823,
X is noninteger or x| > (12222222221), =

9999999999, = 1380525201,

X or yl orjy—=x
x=0
y<o0

x\
X is noninteger or

Multiple Decimal Point Display

The battery provides approximately 3 hours of continuous opera-
tion. By turning off the power when the calculator is not in im-
mediate use, the battery power will be conserved. To conserve
power without losing program or results, leave the calculator
on, key in a [+], and leave it there until ready to resume cal-

culation.

All decimal points light in the display when 2 to 5 minutes of
operation time remain in the battery pack. Even when all decimal
points are turned on, the true decimal position is known because
an entire digit position is allocated to it.

Function
}degrees, minutes, seconds

Decimal to octal

Subtract |

Add
Convert angle expressed decimally

Common log (base 10)
to/from degrees, minutes, seconds

Square root

Natural log (base e)
Arc sine

®
E
o
9]
k]
)
L
©
3
O
o

Arc cosine

{

L True Decimal Position

*If a result develops that is too small to be expressed in the specified display, zero
is displayed (with minus sign in case of a negative result).

Keys

M (]
oG]
(=)

podoappopolonnnl

Blank card; bit or word dropped

X is nonintegerorx <~ 0
during reading

Figure 2-1. Blinking Display Errors

Exponential
Factorial
Magnetic card read

Reciprocal
Divide

| JuEs
e
+

& [

If the decimal points light while the reader/writer motor is run-
ning and then go out, the battery is almost discharged.

Operating the calculator for more than 2 to 5 minutes after this
low power indication first occurs may result in wrong answers,
The battery pack must be replaced or recharged by connecting
the calculator to the battery charger. Be sure to start with at least
partially charged batteries before using the card reader/writer.

Negative Numbers
To key in a negative number, press [GH8 (change sign) after key-
ing in the positive value. For example, to key in —12:

Press:

12 [CHS

To change the sign of a negative or positive number, press [GHS| .

For example, to change the previous number back to a positive
12:

Press: [CHS

Keying in Large and Small Numbers

You can key in numbers having power of ten multipliers (scien-
tific notation) by pressing [EEX (enter exponent). For example,
key in 15.6 trillion (15.6 > 10'%), and multiply it by 25.

Press See Displayed

15.6 [EEK 156 00]

12 EEENE (5.6 x 10 ¢
ENTER® TR 1 56 x 107
25 ® EEEEE Aosvwer

*To key in_a negative number (e.g., —15.6 x 10") you would press [GHS| before
pressing [EEX .

PRRDLLLRDDDDDDTD

Exact Powers of Ten

You can save time when keying in exact powers of ten by press-
ing [EEX] and then pressing the desired power of ten. For example,
key in 1 million (10°) and divide by 52.

Press See Displayed
B 6

ENTER® [1000000.00 |
52 1523077]

Small Numbers (Negative Exponents)

To key in negative exponents, key in the number, press EEX
press [GH8) to make the exponent negative, then key in the power
of ten. For example, key in Planck’s constant (h) — roughly,
6.625 X 10*7 erg-s — and multiply it by 50.

Press
6.625 [EBX
27

CHS
[ENTER#
[Dsp K3

50

x

(J(2]

IlIIIIII?
g
15
£
g

Regardless of the display format, the number (6.625 X %0.’“7 in
this case) is maintained internally to an accuracy of 10 digits.

3 A

Last X

Last X is the name of the register reserved for storing the last
number displayed that precedes the last function performed. Last
X is set to zero when you switch the calculator ON and it remains
unchanged until a calculation is performed. At such time the
number displayed is saved in Last X as an automatic prelude to
the calculation. The saved value is recallable to the X-register

(repeatedly, if desired) by pressing [[sTx].
Last X is particularly useful in expressions like the following:
sin X
X

, Y5 — /X, sinx 4 cos®x

Let's try the first expression in an example to see how this works.

in x
Sample Case. Calculate ST for x = 52.47°, (Assume degrees

mode is set.)

Press See Displayed

52.47 [52.47 |
& 0.7]
CesEnl |
- 0.02]

Last X is also useful in recovering from accidental wrong key-
strokes such as pressing the wrong arithmetic key or entering a
wrong number. For example, if you were performing a long cal-
culation where you meant to subtract 3 from 12 and you divided
instead, you could compensate as follows:

Press See Displayed
12 [ENTERE 3 = Bl 0Oops — you wanted to

subtract.
Kl Bl Retricves last number pre-

ceding division operation.

ppdpnnoanneRRLl

Press See Displayed
- ivisi tion:

x Reverses division opera

you are back where you

started.

Retrieves last number dis-

played before multiplica-

tion operation.

Correct operation produces

desired results.

e

If you want to correct a number in a long calculation, Last X can
save you from starting over. For example, divide 12 by 2.157
after you have divided by 3.157 by mistake.

Press See Displayed

12 [EnvERy 3.157 & You wanted to divide by
)) 2.157, not 3.157.

Retrieves last number dis-

[LsTx] [3.76 | i

" played preceding operation.

x BBl You're back at the beginning.
[5.56]

Correct operation produces
desired results.

f--;he following operations (including inverses) save the X value

| in Last X: 38 B8, 6 B8 . [-ows), [ows+), (5], (0], [6d). |

| Goerl. B2, (5. 658,), B, [() . 50).
Note that: [l , 576 [# [n]. 570 = [n].[§T0 % [n].[570 =
xzY W x<Y B x=y d t affect the Last X register.

(v £, EEE0 0 anc B o ot = register. |

Recalling T
7 is a fixed constant provided in your HP-65. Merely press
@ [whenever you need it in a calculation.

Sample Case: Calculate the area of a circle with a radius of 3.
Area — 3%

36 General Operations

Press See Displayed

Ll B Recall 7 to X.
3EnTERY % [N Coalculate3 X 3.
x EER 1hc answer.

Addressable Registers

Registers R, thru R, constitute the addressable registers. Their
respective contents are referred to as ry, 1,, . . ., r,. Operations
refer to them by number, The registers are typically used to ac-
cumulate sums or to store constants or intermediate results. You
can store the value of the stack’s X-register in any addressable
register, or you can recall the value in any addressable register
to the X-register. Additionally, you can calculate in any register
an arithmetic sum, difference, product, or quotient of the con-
tents of the given register and the X-register.

Storing and Recalling Data

To store a number appearing in the display (whether the result
of a calculation or keystroke entry):

1. Press §T0).
2. Press a number key [1] thru [8] to specify in which of the
nine registers the number is to be stored.

If the selected storage register already has a number in it, the old
number will be overwritten by the new one. The value in X will
remain unchanged.

To recall a number previously stored in one of the nine addres-
sable memory registers:
1. Press [REE .
2. Press a number key ([1] thru[8]) to specify which of the
nine registers the number is to be recalled from.

Recalling a number does not remove it from the storage register.
Rather, a copy of the stored number is transferred to the display
—the original remains in the storage register until either: (1) a
new number is stored in the same register, (2) the calculator is
turned OFF, or (3) all nine storage registers are cleared by pressing
I [FEG]. Recalling a number from a register will cause the stack

to lift unless preceded by GE¥ or [ENTERE .

PO20LLDRRDRDDRED

General Operations 37

Sample Case 1. A customer has bought three items priced at
$1,000, $2,000, and $3,000, respectively. Your policy is to grant
a 5% discount on all purchases over $500. How much will the
customer pay for each of the three items? What is the total cost?

Solution:
Press See Displayed
1 [ENTERE 05 = Stores constant 0.95
&% (1] EEE (959) in register R,.
1000 [REE x Amount customer will
pay for first item.
2000 #EQ 1) = Amount customer will
pay for second item.
soo0 el] % EEEEEE Amount customer will
pay for third term.
HE - Total cost.

Sample Case 2. The capacity and height of three tanks are listed
below in U.S. units. What is the capacity and height of each tank
in metric units?

Capacity (gal.) Height (in.)
Tank 1 3.6 13.5
Tank 2 55 20.9
Tank 3 11.3 328

1 U.S. gallon = 3.7854 liters

Remember that: 1 inch = 2.5400 centimeters

We will store these constants in R, and R..

Solution:

Press See Displayed

R N Sedisplay.

3.7854 810 1] |ENEEEE Stores liters/gallons
conversion constant in R,.

2.54 710 2] B Stores centimeters/inch
conversion constant in R,

3.6 [Rer E 3] - Capacity of tank 1 in
liters.

135 Ko 2] ¥ [EEEEEE Height of tank 1in
centimeters.

55 Wl 1] % |EEEEE Capacity of tank 2 in
liters.

209 Wel 2] ¥ |EEEEEE Height of tank 2 in
centimeters.

1.3 Red (1] % |EEEEE Capacity of tank 3
in liters.

32.8 el (2] & EEEE Heightof tank 3 in
centimeters,

=212 EEEIl Rescts display.

Choosing Addressable Registers

Exc_:ept for the case of registers R, and R,, it is immaterial which
registers you use.

R; is the special object of the [@ operation (presented in
section 4), which uses it as a descending counter (index) in pro-
gram applications. Ry should be avoided for other uses when [§]
iz| is used in your programs.

DO2DRI00DDDRDRLD

R, is subject to alteration by the trigonometric functions, rec-
tangular/polar conversions, and the relational tests (used in pro-
grams). The trigonometric functions and rectangular/polar con-
versions use R, for intermediate calculations. When executing a
relational test, R, serves as a Last X register. At other times R,
is available for your use.

Calculating in Addressable Registers

Thus far, all calculations have involved the X-register or the X-
and Y-registers to produce a result in X. In the case of addres-
sable register arithmetic, the result is left in the addressable reg-
ister and the number in X is unchanged.

Subtraction. ;Fo subtract Fh.c: number in X st6 =)
TOm I,, press:

Addition. To add tlhe number in X to sto 1)
I, press:

Multiplication. To multiply the number in X -
by r,, press: Siol . ()

Division, To divide the number in X st0 &

into 1., press:

For example, store 6 in register R, and then increment it by 2.
Press See Displayed

6 510 [1] Bl stores 6in R,

280 + 1] [l Adds2tor,.

Aew (1] BRI cConfirms that r,

equals 8.
Now, subtract 5 from the contents of R,
seo =]
REw [1] Bl Confirms that r, has

been reduced to 3.
Finally, multiply the remaining contents of R, by 2:

280 %]
ew (1) Bl Confirms that r, has

been increased to 6.

Section 3

Functions

You have already learned to use the arithmetic functions (B,
8.5 .[¥) in both the stack and the addressable registers. You

have also learned to move numbers among the calculator’s regis-
ters and to enter and display data in both fixed and scientific
format. To complete the subject of manual calculation, we will
return to the non-arithmetic functions, things like sine, logarithm,
square root. . .

Keys Introduced in this Section

cos) [ows+] () [Foer] Gm) =]
|

E—

These functions are both easy to learn and easy to use. In the
introduction you learned to execute a function by pressing pre-
fix key (., , or[@) and following it with the desired function
key: you use the [@ prefix to calculate a function having a blue
symbol, you use Jf] to calculate a function having a gold symbol,
and you use [to calculate the inverse (or complement) of the
function denoted by a gold symbol.

As might be expected, the x’s and y’s you see on the keyboard
for these functions refer to the contents of the X- and Y-registers.
For example, y* means raise the number in the Y-register to the
power of the number in the X-register.

Figures 3-1, 3-2, and 3-3 present a systematic review of which
functions are available and the respective conditions that apply
to each of them. To calculate a given function, the respective
table entry shows any conditions that apply to the input value(s),
the keys to use, and conditions applying to the result(s). If your
need is to start calculation immediately, you might even end
your study of functions with the tables, skipping the sample cases.

40

TR RRRDTIIRR D

Functions 41

Functions Involving Angles

These functions are listed in figure 3-1. They include the trigo-
nometric functions (sine, cosine, tangent and their inverses), the
rectangular/polar conversions, the addition and subtraction of
angles expressed in degrees, minutes, seconds, and conversions of
angles expressed decimally to and from degrees, minutes, and
seconds.

Angular Mode

Operations involving these functions assume the angles to be ex-
pressed in units of the prevailing angular mode, which is set to
decimal degrees whenever the calculator is switched on. You can
set the mode to radians or grads or decimal degrees by using the
mode functions.

Angular Mode Functions

_ Keys Function
. Set mode to grads
. Set mode to radians
. Set mode to degrees

400 grads = 360 degrees = 2 77 radians
| Keys to which Angular Mode applies:
|

In the examples, the degree mode is assumed except as noted otherwise.

Degrees, Minutes, Seconds

You can convert from the decimal form of an angle to degrees,
minutes, seconds. You can also do the inverse. When converting
from the decimal form of the angle to degrees, minutes, seconds,

Result(s)

Input Value(s)

Function

Keys

Functions 43

all 10 digits are evaluated. When converting from degrees, min-
utes, seconds to the decimal form of the angle, the angle is
rounded to the nearest second before the conversion is made. The
format for degrees, minutes, and seconds is DDDDD.MMSS.
Thus, you use g [+] [4] to display this format. This function
depends on the mode setting as illustrated below.

_;, radians to degrees, minutes,

Sample Case Part 1. Convert
seconds.
Press See Displayed

0s> JEINEY

X

90°)" -
< +90°)°

180°)**

Set display.

7

Set radian mode.
Answer: 250 42’ 51”.

< result <

result <
X, yin X, Y. (Program halt on underflow in X.)

Principal value of arc cosine (x) in X

(0° <
Principal value of arc tangent (x) in X

Principal value of arc sine (x) in X
(—90° < result
DDDDD.MMSS in X (Difference)****

(—90°

DDDDD.MMSS in X

Decimal angle**** in
DDDDD.MMSS in X (Sum)****

Cosine (x) in X
Tangent (x) in X
ratinX, Y

Sine (x)in X

<1)
1)

Sample Case Part 2. Now do the inverse, but converting back
to grads (instead of radians).
Note: This method allows you to convert between
angle modes, i.e. decimal degrees = radians, deci-
mal degrees = grads, radians = grads.

x not be greater than 1 or
DDDDD.MMSS****

. {DDDDD.MMSS****

x not be greater than 1 or
¥
x:
¥yl
x |

Angle*

less than —1 (/x
Angle*

lessthan —1 (/x| =
Angle*
Unrestricted x

X yinX, Y
rainX,y

Decimal angle****
DDDDD.MMSS

Press See Displayed

Cl R Sct grad mode.

" IR Answer in grads.

Sample Case: Adding/Subtracting DDDDD.MMSS. Find the
sum of 45° 10’ 50” and 44° 49" 10”.

Press See Displayed

= (] () EEEEEN Sct display.

45.1050 _ Key in first angle to X.

ENTERY | 45.1050 |

44.4910 EEEEE Key in second angle.

i I Answer, 900007 007

minutes, SS = seconds.

Magnitude of angle should not exceed 99999.99999 decimal degrees (or equivalent in radians

or grads) or 99999.59599 in DDDDD.MMSS format.

Figure 3-1. Functions Involving Angles

DODDDRODDDDRLLDY

Convert rectangular coordinates (x, y) topolar
Convert polar coordinates (r, #) to rectangular

form (x, y)
M (~ows] Convert decimal angle to DDDDD.MMSS format***
Add (Y+x)in DDDDD.MMSS format***

Arc cosine
Arc tangent

Cosine
Sine

oMs+ || Subtract (y—x) in DDDDD.MMSS format***

|

DMS+ |

* Decimal angle in prevailing angular mode.

** Or equivalent in grads or radians.
*** DDDDD.MMSS format. D = degrees, MM

@ [:oms] Convert DDDDD.MMSS* ** angle to decimal format

44 Functions

A musical selection begins at 9:25’ 7" and ends at 9:39’ 47”.

How long is the piece?

Press See Displayed

53 () (s MEEEE Setdisplay.

9.3947 | 5.3547] Completion time.
ENTERS [8.3947]

9.2507 - Starting time.

" IEEEEEl Answer, 147 407 duration.
osP NESNFY - Reset display to two places.
Sample Case: Trigonometric Functions. Compute cosine 60°.
Press See Displayed

9 60 L

B [cos EEl Answer.

Compute arc cosine (—1.) expressed in radians.

Press See Displayed

9. 1o N

e IEEEN ~nswer in radians,
Compute sine 300.

Press See Displayed

Y=k (50,

® EEE Answer.

Compute arc sine (1.00) expressed in radians.

Press See Displayed

9 1 [

] BB Answer in radians.

00000000000000010

Functions

Compute tangent 45°

Press See Displayed
o 45 [45,]
B (&N EEE Answer.

Compute arc tangent(39.4), expressed in radians.

Press See Displayed

W 94

H [

EEE Avswer in radians.

45

Sample Case: Polar to Rectangular*. Convert polar coordinates

(r=8, §=120°) to rectangular coordinates:

Y
(x,y)
~—- 6.93
N
e
$ 6=120°
X -4 0

*Note that if r is equal to 1.00, then x is equal to sins and y is equal to cose; a fact

that is often useful in programming applications.

Underflow in polar to rectangular conversion may leave out-of-range values in Y.
When these values are brought to the X-register, they are set to zero; an executing

program halts.

X JO SU0JSIaAU0) *Z-g 8inbi4

[‘ "0gz} < (100~ M “9s9
W °'969 « [150+ | [866

959 = 8 + (8 6) + (,8 x 6) Se pajeidisjul aq ||1Mm 66 SB YONS JBquinu |B}O0-UoU Y ' 10 g SHBIp ay) |
Bujurejuod syuswnbie |B}00-uou }dad0e ||Im UOISISAUOD ,[eWwIoap O} [B}00,, 8y} ‘8INJea} |BUOIIIPPE UE Sy, |

‘abueyo ou ‘esimiayio

‘ubis sy ebueyo * x— | X + ‘@njeA 8jn|josqy
X Ul uonoelypF X Ul uonoely sabajul + ‘uonoedy paubis 0} ajeouUns |
| X ut griebejul+ X Ul uopoely sabajul+ ‘Jabaju) paubis 0} ejeouni)
(01 9sEQ) [EWIOSP
X Ul °'x . Jabajul |B100 ue fx 0} Jabajul [e}00 YBAU0D
"'¥e8Ly.LEL01
uey} sse| apnyubew ‘(g @seq) |e100
I X ul®x jo 1abajul |lewioap B °'x 0} Jabajul |ew|28p PaAU0)
} —— 4+ S— . 4 -
h jinsay (s)anjep indu; uonoung
Lo .
5= n 3§
g2 £
o w -
55 SH
ER -
&n v o®
g o -
T O =
-]
O & a2
. &5 ~ £5
g2 &) =
g% G§2 £ %% 8¢
£ .8 &= & E 5 & 5 sSE
g 8 B.g “ 58 § = £38
2 9 C.w. o 5 85 & ¥ gus
§8 o x <« 388 ES& Z5g
= S SE 2o K on =88
- S S = o &
& A= B oSz
= [~3N -] - =
z £ o - %o2
a S& R 3 529
@ s 2 » o52
$ mom © “32
S~ @ s
g [852
0 [~ 4 _ Ky nU m mm
c . ™ N B 6o
o] Q - » £33
= @ <t v 2gE
] -1 ™ =2
e oll 553
5 o Xy o ; Bow
s, 2,8 g Lo : D 58
gz 1] I ‘ o
E E R o co ® s BB &°°

Conversions

The conversions are listed in figure 3-2. The conversions all ex-
pect an input value in the X-register. Note that angle conversions
are given in figure 3-1.

Sample Case: Octal/Decimal Conversions. Many computers are
designed to work with octal (base 8) numbers instead of decimal

(base 10) numbers. The function on your HP-65 allows

you to make octal/decimal conversions with ease. For example,
find the octal equivalent of the decimal number 512.

Press See Displayed

512 W (oot EEEEE

Convert the octal number 2000 to its decimal equivalent:

2000 [1024.00

Sample Case: Truncating at Decimal Point. Some application
pac programs expect you to key in dates using the format mm.
yyyy. The program separates mm from yyyy using the truncation
functions. Do the same for the date 12.1980 (December 1980).

Press See Displayed

E=a (7] [a) N Set display.

12.1980 BB Key in date to X.

H () BB Answer: integer part.

[ST EEEEE Recall original value.

[BBl Answer: fractional part.
(ose fBIEY EEEl Resct display to two places.

Sample Case. Absolute Value. Some calculations require the mag-
nitude of a number. To get this from the keyboard, you could

observe the number and change the sign if negative (using GHS)-
From a program, you use the function which changes the

Octal representation of 512,,.

Decimal equivalent of 2000,.

PRRRDRRODDIDRNTLD

Function 49

sign, if negative. For example, calculate the absolute value of 3
and —3.

Press See Displayed
3@ .
cHs Bl
i) .00}

Functions of x and the Exponential Function (y*)

These functions are listed in Figure 3-3. All expect an input value
to be in the X-register. expects, in addition, a y value in the
Y-register. It is worth noting that the conditions given for INPUT
VALUE(S) can generally be predicted by common sense. For
example, the table tells us that to calculate the reciprocal, the
input value cannot be 0, which is exactly what we would expect
because we ordinarily attach no meaning to 1--0. If we attempt
to calculate the reciprocal of zero, the blinking display emphati-

cally warns us of the error. Try it. Just press Gl [§ [/]- You
can stop the blinking by pressing any key.

Sample Case. Common Logarithm. Calculate the power gain in
decibels of an amplifier yielding twice the value of the input
power.

Note: decibels = 10 log (2)

Press See Displayed

10 [ENTERS B save value 10.
2| M ro:2

x BBl Avsver

Sample Case: ¢°, Display the contant e to nine places (e=e'=
natural antilog I).

Press See Displayed

1@ ()

Dse 1| — Answer.
02 B Resct display.

-
5 .m 2 &
, £ % g
s £ 8 8
-] = =
= g) 31
w — ._"I.a
L og 3 S
7 g v 5
] o o =
$ Eg o8
w s = 3 .m £ 3 ®
S8 T © - = -
EEN ° <2 : g5 g [
TEEE - s % 3 _ & F. -~
5 =5 [} S 88 5T 8 "8 |z
58 % & 5 @ <53 Y ¢ =z3 -
“ s g o] g 3 £ 0
= @ ﬁ o w B = B =
m,m 5o @ S 2B Q0 g
W B o tnm [=] m a =R =] 5]
= c © @ s o g =
g2 S 4 3 T 2 5 =
5 =73 » T @ 8 & 2
“'g @ R - =
§s %8 § s >
s a] % .8 =1
6g &2 o B Zg 5
o5 9g o T2 =
o, 2o 2 [=] g ER @
EE 53 £ Egm = o
wid =L] w A s Z3F =
(xA) uojrouny jejueuodx3 ayj pue x Jo SUOjOUNS "g-E BInBig
[) 4 ’ | T
, | X pelouls | 7
‘sd0Jp ¥oBIS ‘X Ul ¥k _ -8Jun pue (0<<A) £ annisod (k) lenusuodxa | 7@ _
“ . L=i0
[(4ebsjui ue x g < x) Us(L=u). "regeg-l=ju
_ X Ul ju | X uluiebeju sanebau uon (ju) jelojoRy J8bBRW| |
“ X ulx/L (0+x) x 0482 UON (x/1) |leooidioay
XUl | X pajoisaiun (:x) sienbg
X ur xA (0<x) x aannebau uoN (x/\) 1001 2ieNbg
|
X ulx0L X pajollsaiun (x01) wyiebojiue uowwon
X ul (x) 6ol | (0<Xx)sss| 40 0loZ Jou X (0} eseq) wyjiebo| uowwoy
@ X Ul x® X pajousesun (x@) wyuebomue [einjeN |
(=] | | |
5 | Xul(x)ul | (p<x)sss| l0018Z Jou X (e @seq) wypuebo| |einjey
ZF L “linsey B (s)enjeA induj [uopoung | skey

50

Press See Displayed
R Reciprocal of 4.
3@ (] EEEl Reciprocal of 3.
& B Sum of reciprocals.
9 BB Answer: reciprocal of sum.

Sample Case: Factorial. Calculate the number of ways 6 people
can line up for a photograph.

Press See Displayed
6@ (o] B Avswer.

Sample Case: Exponential. In the preceding section we calculated
the successive terms of a geometric series to find that after 6
periods, $1000 invested at 10% grows to $1771.56. Using the
[5%] function, the same result is obtained by evaluating the fol-
Towing:

1000(1.10)¢

Press See Displayed

1000 [ENTER® R Original amount.
1.10 [ENTERS 6

L N G (0r

x - Answer.

DDRDDL00D0DD00LD

Section 4

Programming

You've finally reached the section that describes the reason you
probably bought an HP-65 in the first place— programming! But
relax. The keyboard programming language used by the HP-65
is not complicated or difficult to understand. By taking your time
and working through the sample programs as you read, you’ll
progress from writing simple programs like the one you wrote
in the introduction to the advanced programs found in the appli-
cation pacs.

What Is a Program?

A program is nothing more than a sequence of keystrokes stored
in the calculator and executed automatically with the press of a
button—one keystroke replacing many! In the previous sections
of this handbook, whenever an example was done, you, the
operator, were programmed. You were asked to press keys in a
given sequence to obtain a particular result. In most cases, if the
sequence was not followed exactly, the result was not correct.
Similarly, in a program, the calculator is given a sequence of key-
strokes. The calculator “memorizes” the keystroke sequence and
then can execute it automatically any number of times, and much
faster than you could yourself!

What key sequence do you give the calculator? The bulk of every
program you write will be the same keys you would press manu-
ally in RUN mode to solve your problem. In fact, from the entire
keyboard there are three key sequences that cannot be given to
the calculator for later execution:

(ssT I Wie i Y

These three key sequences are the only active operations in
W/PRGM mode. All other keys pressed in W/PRGM mode are
stored in program memory to be executed later.

As you know, in RUN mode pressing any key produces an im-
mediate result. However, every operation in RUN mode can be
generated in two ways: from the keyboard or from program
memory (if the keys have first been stored in program memory).

53

54 Programming

And, the only keys that work differently from the keyboard than
they do from program memory are:

v] O = ol ris

These instructions control program execution and should be
studied carefully.

Looking at a Program

Earlier, you may recall, you learned that five functions/operations
are accessible in two different ways. You can press [@ [~ Jor ¥;
[] or[B; and so on. The five keys [thru [are used to

control program execution. Each key is defined by the program

it controls. Default programs for [. |, 77] ,[R+], and
are automatically stored in program memory for these five keys
when the calculator is switched ON. This is for your convenience
when doing manual calculation, so that you can use these common

functions and operations (indicated in white above the Y thru
& keys) by pressing one key instead of two; e.g., [instead of
8 (4] But the [} thru @ keys can be redefined by any
program you choose, The short program you wrote in the intro-
duction is an example of how this is done. You redefined the [[}
key to calculate the cube of a number.

Program Memory

Now let’s use these default programs to find out a little more
about the program memory of the HP-65. Switch the calculator
OFF and then ON again. The Y thru @ keys are now defined by

the default programs. Next, slide the mode switch to W/PRGM
(write program). You should see the following display:

R o ocovcooe vk

Whenever you see this display, you know that you are at the top
of memory. The HP-65 program memory consists of 100 usable
steps and a top of memory marker. The following drawing is a

TR 0DRNNED

Programming 55

graphic representation of program memory. Notice that the top
of memory marker does occupy a step (not one of your 100), but
that no keys may be stored there. The other steps can store one
and sometimes two keystrokes.

Top of Memory

“ B W=

98
99
100

Program Pointer
When a program is run, the calculator executes each step sequen-
tially downward by means of a program “pointer.”

56 Programming

The program pointer takes the place of your finger, pushing the
keys one by one, The calculator executes each step as the pro-
gram pointer points to it.

Single Step

(single step) cannot be stored in program memory. In
W/PRGM mode, it enables you to review a program one step at
a time. Pressing advances the program pointer to the next
step in memory— showing you the steps but not executing them.

Keycodes. Now let’s use the key to take a look at the pro-
gram defining the [key. Press one time and the display

changes to:

This is the keycode for the first step of the program. How can
you tell what key it is? Simply count down 2 rows and count over

3 keys. You should find the (label) key. The codes represent
the number of rows down and the number of keys across.

3'd Key

W/PRGM

yI

G

PRRRRRRDDDRDIDLD

The digit keys are the exception. For ease of recognition, the
digit keys [0] thru [8] and the blue and gold functions associated
with them are displayed simply as 00 thru 09. Press again
and the display changes to:

This represents the Y key (first row, first key). Press again
and the keycode for the blue prefix key [is displayed:

Again pressing changes the display to:

Notice here that because the previous code was for the blue pre-
fix key [, this code will be interpreted by the calculator as[7x |,
the blue alternate function of the (4] key. Pressing one more
time displays the last keycode of the program controlled by the
A key which is (return):

As you can see, the default program executed by the [[J key is:

Keycodes Keys Comments
23 =i Execution begins here when Y
11 (4] is pressed.
35 g These keys produce the same
i result here as they do from the
04 keyboard.
24 RTN Defines the end of the program.

Now continue pressing to see how the default programs
for the [[] and [keys are written. The keycodes and keys are
shown below:

Keycodes Keys Comments

23 LBL Execution begins here when

12 a Bis pressed.

31] } Once again, the keys here
produce the same result as they

09 (=7 do from the keyboard.

24 RTN Defines the end of the program.

23 LBL } Execution begins here when

13 is pressed.

35 | Calculates y* as you would

05 from the keyboard.

24 RTN Defines the end of the program.

Merged Keycodes. To conserve memory, the most frequently
used prefix-suffix pairs are merged into single codes (internal
restrictions prohibit merging all such pairs). This is illustrated in

the default program executed by the] key. If you are not al-
ready at the [B)] key, single-step through memory until you reach
it. The program looks like this:

Keycodes Keys Comments
23 LBL] Execution begins here when
14 D] Bdis pressed.
3508 L] The same as from the keyboard.
24 RTN Defines the end of the program.

You can see how the keys [@ and were combined and repre-
sented by the keycode 35 08. Continue to press to view the

12000000000000010

Programming 59

& program which also contains a merged code. The keys and
keycodes are listed below.

Keycodes Keys Comments
23 LBL Execution begins here when
15 B is pressed.
3 Again the keys you would press
3307 ® from the keyboard go here.
24 RTN Defines the end of the program.

The keys that are merged are listed below:

Keycodes Keys Keycodes Keys
3500 s 3509 e
3507 ‘s 35 08 [|
3301 s (1] 3401 et (1]
3302 5% [z 3402 et (2]
3303 516 3 3403 Rell [3)
3304 [§70 [4] 3404 Retl (¢
3305 §76 (5 3405 Ret (5]
3306 'sTO 3406 et ()
3307 sT0 3407 RCL
3308 sT0 3408 RCL
3501]

Note particularly that when a [l (no operation) is en-
countered by the pointer, nooperation occurs.

Also notice that [§¥8) [2] and [REE [9] are not merged. This serves
as a helpful reminder that the HP-65 uses R, to store inter-
mediate results when using trigonometric functions, rectangular/
polar conversions, or numerical comparison tests.

bl

Bottom Memory Display. If you pressed repeatedly, you
would eventually reach step 100 and two dashes would appear in

the display:

This is only to let you know that you are at the bottom of
memory. If you press one more time, the program pointer
comes again to the top of memory.

Full Memory Display. If the 100th step of program memory
contains anything other than [l , the display in W/PRGM

mode always appears with a dash on the right to let you know
that program memory is full. For example, if the program pointer

was pointed at a somewhere in the middle of a program and
the program memory was full, the display would look like this:

Clearing Memory

The key sequence [l cannot be stored in program
memory. It is used to clear program memory. Whenever you in-
tend to redefine one or more of the program control keys [thru
. you must clear program memory first. Otherwise, as you key

in your program, the default programs are pushed down in
memory and unless your program is 100 steps, you may end up
with two programs controlled by one program control key.

To clear program memory, switch to W/PRGM mode and press:

ﬁ

This fills the entire 100-step memory with [codes and
sets the program pointer to the top of memory.

0020000000000000

61

Writing Your Own Program
Now that you know a little more about the program memory of
your calculator, let’s write another program.
This program will calculate the volume of a sphere using the
simple formula: Volume = r* X 7 X 4/3. All you will have to
do is key in the radius (r) and press [[§. To key in the program
follow the procedure below:

1. Set the program mode switch to W/PRGM.

2. Press [l [PRGM to clear program memory and set the pro-

gram pointer to the top of memory marker.
3. Press the keys in the order shown. Take the time to identify

each key by its keycode.
Keycodes Keys Comments
23 Program execution begins here
11 when [} is pressed.
03 (3]
35 9 Calculates r°.
05
35 9
02 Calculates r° X .
71 x
04 (4]
n - Calculates r* % 7 X 4/3.
03 [3]
81 +
24 RTN Defines the end of the program.

If you make a mistake, clear the program by pressing §ff] [Frc
and start over. You'll learn how to correct mistakes and edit your
programs shortly.

Running the Program

To run the program, set the W/PRGM-RUN switch to RUN.
Now find the volume of a sphere with a radius of 10.

Press
00N 1 |

See Displayed

When you pressed [[J, the program pointer searched through
program memory from its current position until it found [N Y.
Program execution then started from this point. If there had been
no label A, the calculator would have begun execution at the top
of memory. If you've just run the program in the above example,
§m'tch to W/PRGM mode. The display shows the code of the last
instruction executed:

The at the end of the program stops calculator execution,

halts the stepping of the program pointer, and returns control to
the keyboard.

Volume of the sphere.

If you now need to calculate the total volume of five spheres of
radius 10, you can simply multiply your answer by 5. The pro-
gram is not affected by any calculations you perform. Switch
back to RUN mode and try it.

Press See Displayed
Y A | EEEEEEE Volume of one sphere.
5% EEEEEEN volume of five spheres.

Now switch again to W/PRGM mode. The display shows:

00000000000000110

This is the keycode for multiply. Although the program pointer
stays at [, the display shows the last key pressed during a cal-
culation.

Magnetic Cards

Now record your program on a magnetic card as you did in the
introduction by:
1. Selecting a blank, unprotected (unclipped) magnetic card.
2. Switching to W/PRGM mode.
3. Passing the card through the right lower slot exactly as you
did when entering a prerecorded program.

The position of the W/PRGM-RUN switch is very important
when recording programs or using prerecorded cards. There is an
easy way to remember which position the switch should be in
for each use.

To Record Your Own Program. The switch belongs in the
W/PRGM mode position. Think of it this way: In W/PRGM
(write program) mode I wrire my programs onto the magnetic
card.

Prerecorded Programs. The switch belongs in the RUN mode
position. Remember it by saying to yourself: When I want to
run a program from a prerecorded card I put the switch in RUN
mode to read the card in.

Read/Write Operations

Reading or writing a card records all 100 steps of the program
memory. However, it does not change the contents of the registers,
which enables you to utilize data developed by a prior program.
If a read operation fails, program memory is cleared to [
codes and the display blinks. Reading a blank card will have the
same effect.

Protecting a Card
To protect a card containing a stored program, clip through the
notches with scissors as shown below.

s
s
P

o T T

/

Not here — you could lose part of the program.

A further precaution is to record the program on the opposite
edge of the card as well. If by accident you erase your program
you can always insert the other end (opposite to the arrowhead)
of the card. However, for permanent program storage we recom-
mend that you use only one track since:

1. The second program cannot easily be labelled.

2. Extreme care must be taken to protect the second program.
(Do not clip more than you would on the first track or you
may lose information.)

3. The motor roller is over the second track. Over a period of
time, the second track may not read properly.

Marking a Card

You can write on the non-magnetic side of your card using any
writing implement that does not emboss the card. It is customary
to write a program name on the top of the card and to write sym-
bols identifying the functions of the top row keys in the spaces
below. Annotating magnetic cards with a typewriter may impair
the read/write properties of the cards. To permanently mark a
card, clean it first of grease, oil, etc. Then use a pen with india ink.

Editing the Program

You can easily edit (correct or change) your HP-65 programs by
using the editing features built into the calculator. These features
allow you to insert or delete a step anywhere in the program.

Positioning the Pointer

Before you can edit a program, you must first position the pro-
gram pointer at the particular step to be edited. You have already

*

0020002 00000TLY

learned one way to do this. By pressing you advance the
program pointer one step at a time. However, if the step to be
corrected is far down in memory, this method may not be con-
venient. There is an easier way.
You can move the pointer to any (label) in the program by
switching to RUN mode and pressing (goto)[@thru @1.*
The program pointer searches through memory from its current
position, finds the [lEM, and stops. For example, if you press
3. the pointer searches for [EM . Then, if the pointer finds
the label, it stops at the step containing the [key. If the label is
not found, the pointer goes to the top of memory and stops. With
the pointer positioned at the key, you can then switch to
W/PRGM mode and use the key to move the pointer to the
correct step, having bypassed long sections of the program.
To return the program pointer to the top of memory, you have
two choices:

1. Press until you complete the cycle through memory

and once again reach the top of memory marker.

2. Switch to RUN mode and press [0
Naturally, your position in the memory will determine which
method you use. In most cases, pressing in RUN mode is
more convenient. (Note that operates differently in RUN
mode than in W/PRGM mode.)

Insert Operation

Whether you know it or not, you have already learned how to
insert steps in your program. Effectively, when you were writing
a program and you pressed a key in W/PRGM mode, it was in-
serted between the displayed step and the following step. The
program pointer then moved to display the inserted step.

To summarize the procedure for inserting program steps:
1. Position the program pointer so that the code of the instruc-
tion that is to precede the insertion is displayed.
2. Press the key or keys to be inserted. The rest of the program
is pushed down to make room.

* You can also move the pointer to labels 1 thru 9 by pressing [(1] thru[]1.
Labels are discussed on page 71.

66

As you can see in the drawing below, when a step is inserted,
the bottom step of memory is lost.

Before After

Pressing

Pressing

Do not concern yourself with the bottom step of memory when
inserting unless the display indicates that memory is full.

Insert operations are not performed for the second key of a
merged code since the second keystroke uses the same memory
location as the first.

When the program pointer is at the bottom of memory, insert
operations are not performed. If the pointer is at the bottom, and
you try to insert a step, the code(s) will be generated in the dis-
play, but will not go into memory.

Delete Operation
Deleting steps in a program is easily accomplished by following
the procedure below:
1. Position the program pointer to display the code of the in-
struction to be deleted.
2. Press [[DEL](delete) in W/PRGM mode. The instruction

is removed and the program pointer moves up to the previ-
ous step in memory.

13000 DDDD I

The drawings below will help you to understand what happens in
program memory when you delete a step.

LBL
¢
-
RTN

s Lost |

S P — —
Before After After
Pressing Pressing Pressing

As seen above, the 8 key is first interpreted as part of a pro-
gram operation and it is inserted into memory, pushing down all
steps below it. Since memory is full, the bottom step of memory
is therefore lost, as in any insert operation. When the suffix key
[DEL]is keyed in, the delete operation is recognized by the calcu-
lator and both the [key and the incorrect step are deleted.

The program pointer moves up two steps and [l [Nop]’s fill the
two vacant steps at the bottom of memory. You will, of course,
want to reinsert the last step when this happens. (For programs
shorter than 100 steps—no dashes in the display—no concern
need be given the bottom of memory.)

Deleting Consecutive Steps. To delete a sequence of program
steps, position the program at the last step in the sequence. Each
time &) is pressed, the pointer will backstep to display the
next step to be deleted.

Deleting the Bottom Step. If the program pointer is at the bottom
step of memory, pressing [deletes two steps in memory:

the 100th step and the 99th step. When deleting the bottom step
of a program, remember to reinsert the extra lost step.

Backstepping. If, using B3, you happen to overshoot the mark
only slightly, you can use [[DEL] to recover. Simply backstep
the program pointer by deleting the intervening steps, make the
required insertion or deletion, and then reenter the deleted steps.
This procedure is often easier than repositioning the pointer by
other means.

Revising a Program

Now that you're familiar with the editing procedures, let’s put
that knowledge into practice with an example.

We'll take the volume of a sphere program and change it to cal-
culate the area of a sphere (r* X 7 % 4). The two programs are
very similar, Otherwise it wouldn’t be feasible to change one to
the other. Side by side they look like this:

Volume of a Sphere Area of a Sphere
[LBL | LBL
Beginning of program. e Beginning of program.

n A]
(3] 2]
B }Calculates r°. @ | Calculates r2.*
| 9
Times 77- Times 7-
x x
(8] }Times 4 (s] } Times 4.
x x

J Divided by 3. W] End of program.

End of program.

* These steps could be changed to [l or [ENTER# X to save space but
it would have made this example more difficult to follow.

0202000000000

As you can see, there is little to change. Key in the sphere volume
program now if you have not already done so by following this
procedure:

1. Switch the calculator to W/PRGM mode.

2. Press [l to clear program memory.

3. Key in the keystroke list on the left.

4. Switch back to RUN mode.

Use the following example to check your program before we edit
it. Example. Find the volume of a sphere of radius 25.

Press See Displayed

0 [65449.85 |

In order to change the sphere volume program to a sphere area
program, we need to make the following changes:

Volume of a Sphere Area of a Sphere
LBL LBL

(A} n

[8] « Delete this step. [2] « Insert this step.

| [|

)

rl k1

il

x x

(4] (4]

x x

[3] « Delete this step.

¥« Delete this step.
RTN

Here's how we do it:

1. Switch to RUN mode.

2. Press B to return the pointer to na.

3. Switch back to W/PRGM mode.

4. Press once to position the pointer at the step being de-

leted. The display should show code 03.

5. Press [@ to delete the unwanted step. You should see
keycode 11 displayed.

6. Press [2] to insert the new step.

7. Press nine times to position the pointer at the second

of the two consecutive steps to be deleted. The display
should show keycode 81.

8. Press @ to delete the ' key. The pointer backs up to
display 03.
9. Press to delete the [3] key. The display should
show keycode 71.
10. Now switch back to RUN mode to run the program.

Run the program by keying in a value for r and pressing [.

Example. Calculate the area of a sphere with r = 25.

Press

s 0

See Displayed

For additional practice, try changing this program back again so
that it calculates the volume of a sphere.

Branching

Although program execution is normally sequential, with one
step executed after another, the calculator has the ability to
jump (branch) to any labelled section of a program and continue
execution there.

DDRDLDRDDLDIRTD

Labels

A label consists of the key and a digit key ([0]thru[8]) or
a program control key ([[§thru[@). Any or all of these 15 unique
labels can be used in a program, although only program control
key labels (T8 ¥ thru [E} @) can mark a section of program
that can subsequently be executed directly from the keyboard.

Direct Branching

A direct branch in a program consists of the key and a digit
key ([0]thru[9]) or a program control key ([fJ thru[@). Each
such direct branch should be paired with a corresponding label
somewhere within the program. If there is no corresponding label,
the calculator will continue execution at the top of memory.
When the calculator executes a direct branch, the program
pointer searches downward in memory for the label from the
[E0)., not from the top of memory. Program execution continues
at the corresponding label. For example, (3] branches the
program pointer to [3] and program execution continues
there. Remember that [3] produces the same result from the
keyboard, except that program execution does not continue.

Writing a Program with a Direct Branch. Direct branching is
commonly used when two or several functions have a common
section. Let’s write a program to illustrate this. Suppose you
needed to write programs for two similar equations:

- sin X - cos X
Y= 36inn+2 Y= 3cosx)F -2

You could, easily enough, write a separate program for each and
control one with the [fJ key and the other with the] key.

T

Keys Comments Keys Comments
EEC Execution begins LEL] Execution begins
A] here. a here.
= } Calculates sin x. ¥ } Calculates cos x.
SIN cos
Saves copy for Saves copy for
ENTER® | umerator. ENTER® | umerator.
ENTER+
(sin x)? (cos x)*
x x
(3] (3]
3(sin x)* 3(cos x)*
x x
(2]) (2]
3(sin x)* 42 3(cosx)*+42
* +
+ The answer. & The answer.

As you can see, the last nine steps of each program are the same.
What we can do is write a program containing these nine steps
and branch our B and B programs to it. This third
program will be controlled by the [key and will calculate

a . . .
ol For one program, “a” will equal sin x, while for the
other,“a” will equal cos x. Switch to W/PRGM mode, press
] m, and key in this program now.

Keys Comments Keys Comments
LBL 3]

inning. 3a
]Beg:mnmg % } a
ENTER4 Save copy of a. (2]

3a*+2
ENTER4 +
aZ
x } = The answer.
End

DDIDDDDIRELEY

|

Now key in the [[§ and [f] programs which have been shortened
to this:

Keys Comments Keys Comments
[} Besinni
Beginning. eginning.
A} a
* Calculates sin x. = Calculates cos x.
(]
GTO
Then branches to Then branches to
label C. label C.

Notice immediately that these last two programs did not end in
because they branch directly to and continue exe-
cution there. Also notice that in entering these three programs
you keyed in the program first, then the program, and
finally the [F] program. The order of entry or use is immaterial.
Now switch to RUN mode and let’s run the programs.

sin x CcOs X

. i = 60°.
Example. Calculate e T2 I cos)’ 12 or X
Press See Displayed
= - Set degrees mode

if not already set.

60 1 [W——
L 5 0.18 | The answer

74 Programming

As a further improvement to the program (if you are interested in
conserving steps in memory), rearrange the labels as shown
below:

Keys Comments Keys Comments
T \ LBL Beginning of com-
mon section.
A This program cal- [
1 : ENTERS
¢ Ele?ltisl‘::lrélfezlig - \
label 1.
x :
a
[B 33
x
LBL X 2]
This program cal- 5|
(B] culates cos x and
t then continues exe- =
cution through End of both
(€95) 1abel 1. RTN programs.

First of all, notice that'[[E§ [has been replaced by [N [7].
Since we are not planning on executing that portion of the pro-
gram from the keyboard, it is not necessary to use a valuable
program control key. Secondly, notice that we’ve eliminated two
steps in the program by positioning B directly before
(1] (previously). In this way, program execution
doesn’t have to transfer from [IE8 [to [EW [7] using .

it can continue sequentially.

R R g B

Programming 75

Subroutine Branching

A second method of transferring program execution is by means
of subordinate programs or “subroutines.” When a series of steps
is repeated in a program or is common to a number of programs,
a single subroutine containing the steps may be written.

Just as you use the [[§ thru [@ keys to control the steps between
the corresponding and , so can the calculator use these
keys. When the is reached, instead of stopping the program,
program execution automatically branches back (returns) to the
step following the original branch instruction.

RTN

Subroutine B

Program A

As you can see, a subroutine is a program. The only difference
is the usage. In the above illustration, if you press [, the pro-
gram controlled by [f] is executed and the calculator stops at
the . However, if you press [[J, the calculator executes the
program controlled by [[J sequentially until it reaches the B |
program step. Then program execution transfers to[lEH B .
When the calculator reaches that same this time, it now
branches back to the [} program and continues execution se-
quentially, starting with the step that follows the [key.

In other words, in the [[§ program the [} key is just one more
key in the program. The program executes just as if the keys

were pressed from the keyboard. Note that only [E]’s [thru

3 can designate subroutines, not ’s [0] thru[g].

A good thing to remember when using subroutines is that your
subroutine often repositions or changes data in the stack. Be sure
to allow for this by first storing away values needed later.

Secondary Pointer. How does the calculator keep track of where
to return from a subroutine call? It uses a second program
pointer. In the previous drawing, when 3 is pressed, execution
proceeds sequentially until the main program pointer reaches
B). Here the pointer stops and marks its place directly after the
B key.* And there the main program pointer waits.

Main pointer deactivates and
marks its place after exe-

cuting subroutine call [.

Meanwhile, a secondary pointer is activated, and it searches for
B . starting at the top of memory. When it finds the label,
it executes the sequence of keys in the subroutine.

—_— LBL

B .
Secondary pointer exe-
cutes subroutine B.

RTN

Subroutine B

* In marking its place, the main program pointer is inserted into memory, though
it does not take up one of your 100 steps. If you stop the secondary pointer in
the middle of a subroutine and manually reposition it, you can see the main
pointer in the display. It appears as keycode 41 and would execute as
in your program.

PRRRRTRRIIDRNDIN]

The execution of the at the end of the subroutine deactivates

the secondary pointer and reactivates the main program pointer.
Program execution then continues sequentially in the main pro-

Secondary pointer deactivated

after executing .

Writing a Program with a Subroutine. In order to calculate the

area and volume of a sphere efficiently we would use a subrou-

tine. The equations for these two problems are:
Area=r*X 7T x4 and Volume=r*x 7 X 4

Main pointer reactivated.
Execution continues at [# .

The volume equation can easily be expressed in terms of the area
equation:

Volume = z—?g
And that is the way we’ll write our programs. The program con-
trolled by Y will calculate the area of the sphere. Switch to
W/PRGM mode, press [§ to clear the default pro-
grams, and key in the following list of keys.

Keys Comments Keys Comments
LBL } 9 }

Beginning of program. Recall 7.
[A] gl g ol progr,

[§76/ (1] Store r for later use.

Calculate r=.

The area.

x
(4]

x

End of program.

78 Programming

Now switch to RUN mode and try this program to make sure
it works.

Example. Find the area of a sphere with r — 15.

Press

158

See Displayed

Area of sphere.

Now let’s find the volume of the same sphere using this program.

Press

150
e (1]
x
(3]
E

In order to make this key sequence a separate program we need
only add to the top and to the bottom.

See Displayed

Area of sphere.
Recall the radius value r.

T X Area.

Volume of sphere.

Keys Comments Keys Comments

LBL
Beginning of program. u rX Area.

(5] 3
n Call subroutine A. *

W8 (1] Recall the radius value r. [GILJ

Volume of sphere.
End of program.

Notice that instead of having to key in the radius again, we can
simply recall it from R,. Switch to W/PRGM mode and key in

this new program. Don’t press [this time because we
want to keep the [fJ program in the calculator.

10200000000000110

Programming 79

Now let’s use both programs.
Example. Find the area and volume of a sphere with a radius of 20.
Press See Displayed
200 5026.55 |
a EESLER

The calculator finds the volume of the sphere in this example in
the same way you did in the previous example.

Area of the sphere.

Volume of the sphere.

Second Subroutines. A subroutine cannot call a subroutine of its
own. There is simply no third pointer to keep track of things.
If you try to call a second subroutine, you'll find that program
execution transfers from that subroutine back to the main pro-
gram, not the first subroutine.

Conditional Testing

Nine different program instructions give your HP-65 the ability
to make decisions within a program. These “conditionals” modify
program execution depending on conditions in the program. They
all work similarly.

Condition Met
(continue)

Condition Not Met
(skip two steps)

Continue here.

If the condition is met, the program will execute the next two
steps, which often contain a branch instruction. If the condition
is not met, the program will skip over these two steps. Sometimes,
you’ll even be able to condense the operations that would nor-
mally require a branch into the two steps. There will be examples
of both these possibilities in the text to follow.

Numerical Comparisons
Four tests compare the contents of the X- and Y-registers. These

Are the values in X and Y unequal?
Is the value in X less than or equal to the value in Y?

Are the values in X and Y equal?

Is the value in X greater than the value in Y?

0000000000 00011)

In each case, if the answer to the question is YES, then program
execution continues sequentially. If the answer to the question is
NO, then the program pointer skips two steps before continuing.
In this program segment,

execution of [&)
compares the current values
inXand Y.

1. If the value in X is greater than
Test the value in Y, [9]is
executed and the preceding

}*Branch section is repeated.
2. If the value in X is not greater

than value in Y, is
skipped and # is executed.

Each time a comparison test is made in a program, a copy of the
value in X is stored in R,. The value in the Last X register does
not change. R, should therefore be used with caution for storage
purposes when these tests are a part of your program. Now let’s
write some programs using these numerical comparisons.

Two Programs Using Numerical Tests. This first program is de-
rived from the following anecdote:

According to unreliable sources, many years ago there was a
prosperous kingdom where a tired and grumpy king ruled. One
day, looking for new amusement, the king sent out the following
message throughout his kingdom: “Whosoever finds a game of
suitable amusement for me, shall be granted any wish he desireth.”

Lo and behold, a young gentleman presented the king with the
game of chess. The king was ecstatic! “What is your wish?” asked
the delighted king. Replied the gentleman, “O wise and noble
king, all I ask is that you put down one stalk of wheat for the first
square on the chessboard, merely double this amount for the
second square, then double the new amount for the third square,
and so on for the remaining squares. All I wish to be given is the
amount of wheat put down for the final chess square.”

82 Programming

To this the king replied, “But, generous gentleman, this is a
prosperous kingdom, surely I can do more for you than that!”
But the gentleman was equally insistent.

PS. The kingdom produced about one billion (1,000,000,000)
stalks of wheat (W) annually and the chessboard had 64 squares
(S8) to be filled.

Was the gentleman really being generous?

The program calculates the amount of wheat to be placed on each
square in succession in R. and keeps track of the number of the
square in R,. If more than one billion stalks of wheat have to be
supplied for a given square, the program halts and displays the
number of the square at which it surpasses one billion. If the 64
chess squares can be filled without depleting the kingdom’s supply,
the program halts and displays the number of stalks of wheat that
need to be paid.

Switch to W/PRGM mode, press [l to clear program
memory, and key in the following list of keys.

Comments Keys Comments
Beginning of (]

rogram.
prog (4] Compare square
Initalize R, and R, e number to 64.

to take care of Ist
square. 1
equals 64, display
amount and stop.

If square number
|-@] 4

Beginning of repeat.

Otherwise, compare
amount to 1 billion
Calculate amount. (13X 10).

Branch if one billion
is greater than
amount.

BT TR T

Increment square .)
number. Otherwise, display
square number and

stop.

Rl B ER:FEELI:K

=

100000000000001)

Programming 83

Now switch back to RUN mode and run your program. After
several seconds the calculator should display:

Over one billion stalks of wheat have to placed on the 31st square!

(To find the exact amount on that square press [REE (2].) To calcu-
Jate the amount on the 64th square, press (2] [ENTER® (6] (4] [
[7F]. Needless to say, the generous gentleman was executed!

The second program calculates the arc sine of an input value x
(x must be within the limits of —1I and +1.) The program tests
the resulting angle, and if it is negative or zero, adds 360 degrees
to it to make the angle positive.

Switch back to W/PRGM mode, press i [(Frcv | and key in
the program now.

Keys Comments Keys Comments
‘ Beginning of 8 EZ] Test the angle.
These two steps are
rogram. :
a ’ 3] } skipped if angle is
" } Calculates the positive.
- arc sine.
Puts 0 in X (o] Adds 0 or 360 to
o } Exchanges 0and | assure than the angle
o arc sine. RTN is positive.

If the angle is positive, [3] and (6] are skipped and zero is added
to the angle. Otherwise, 360 is added to the angle. Let’s try a
problem.

Example. Calculate the arc sine of .5 and —.5.
See Displayed

5 5

B | | 000 NEENERS)

5 ocns I

(B] RN (degrees)

Decrement and Skip on Zero

Press

The (decrement and skip on zero) key subtracts 1 from

the contents of R, and then tests for a non-zero value. The con-
ditional can be stated like this:

Is the value in R, a number other than zero?

Once again, if the condition is met, program execution continues
sequentially. If the condition is not met and the value in R, is
zero after 1 has been subtracted, the program pointer skips two
steps.

Condition Met .
If the value in Ry 520
continue execution sequentially.

Condition Not Met .
If the value in R, =0 skip two
steps before continuing execution.

Continue here .

Naturally, since R is used by [5sz]. you will not want to use this
register for other storage purposes when this test is a part of your
program. does not work if the number stored in R, falls
outside the range — 10" = r. = 10'° and (in general) is not de-
signed to work for non-integer values less than one.

000000000 00000110

can be used in many ways in your programs. It can be used
as a counter, as a flag (see page 9]) to repeat segments of
your program, or to repeat your whole program.

Writing a Program Using DSZ. To use as a counter in
your program, store zero in R. and include in the section

of your program that repeats. As your program runs, R, keeps
track of the number of repetitions (although the number is nega-
tive).

The following programs sum and average a group of numbers
using in this way. The key art will give you a good idea
as to how these programs work.

Surn and Avernge
iifa;ﬁl £+ I X];l

Switch to W/PRGM mode, press [f] [PRGM |, and key in these
programs now.

Keys Comments Keys Comments
LBL A P 1 And the value in Ry
Beginning of initial- 5 } decreases by 1 each
ization program. time.
s Clears all Display running
registers. RCL [1] total.
RTN
RTN .
of
LBL Beginning of LBL gs(%lgl:;]tl;:gthat
a ﬁtogdratm that sums averages.
e data.
sTO - Total is divided by
; Eas‘iln::]l;z;ri:f het. the positive value of
* ac CHS the number of
a R.. e
& petitions.

86 Programming

The first program, controlled by [}, simply clears the registers.
The second program, controlled by [BJ, accumulates each number
in R, and displays a running total. is used to count the num-
ber of repetitions in the group. Each time is encountered,
1 is subtracted from the value in R.. Since that value starts at
zero, the condition will always be met and the two steps will never

be skipped. The third program, controlled by [, takes the aver-

age of the numbers by dividing the total by the number of repeti-
tions. Since the value in R, is negative, its sign is changed before
computing the average.

Now switch back to RUN mode and try the following example.
Example. Find the total and average of the following group of
numbers:

65 78 908 345 23 98

Press See Displayed
A [0.00 | Initialize program.
[l & | [65.00 | Running total.

78 @ - Running total.
908 B3 BEEEEl Rumingtotal,
3458 [7396.00 | Running total.
238 | 1419.00 | Running total.

1 B | | 1517.00] Final total.
| 252.83 | Average.

Flags

Your HP-65 also contains two flags which act as invisible switches.
You can set each flag ON or OFF. You can also test each flag to
see if it is ON (flying), or test it to see if it is OFF (lowered). The

keystrokes to set and test these flags are listed below.

SRR DRI NRY Yy S

Keys

| JE&
4
[
©

W G
L JEH)
| [
M [

Programming 87

Result
Set flag one flying. F
Lower flag one. 1 &

Test flag one. Is it flying? These two pairs

of instructions

can be executed
from the keyboard or

from a program.

Test flag one. Is it lowered?

Set flag two flying. E
Lower flag two. 2
Test flag two. Is it flying?

Test flag two. Is it lowered?

For each test made, if the answer is YES, program execution con-
tinues sequentially. And if the answer if NO, the program pointer
skips two steps of memory before continuing.

Isflag 1 flying?

I YES (F)then@

NO (7) then divide

skip two steps.

Note that a flag retains its setting until an instruction to change it

is executed.

Writing a Program Using Flags. The relationships between
speed, time, and distance for a moving body are given by the
following formulas:

d=s-"t Distance — speed < time
d distance
§ =— S d = 0
t pee time
d .
=4 Time — distance
s speed

We’ll write a program to calculate any one of the above when the
other two values are given. The key art might look like this:

Distante. 5,64 4n4 Jime
Znit D = 7 Cale.

Now switch to W/PRGM mode, press [f and key in the
following list of keys.

Keys Comments Keys Comments
Beginning of ini- RCL [2]) Otherwise calculate
[tialization routine. REL [3) distance.
. Set flag 1 flyi *
= et flag 1 flying.
[| Beginning of speed
— Clear the stack. routine.
) [| Test flag 1.
[Cha.ngc display Is it flying?
setting.
(4] ¢ STO (2] | Ifitis, store speed
and.stop.
LBL Beginning of dis- RCL (1]
a tance routine. fet (3] Otherwise calculate
speed.
= Test flag 1. -
TF1 Is it flying? RTN

HMMMMMMM

89

Keys Comments Keys Comments
LBL Beginning of time RTN
0] routine.
& l Test flag 1. (1]
Is it flying? " Convert input
time to decimal
+D.MS
} If it is, branch hours.
to label 1.
[Il $70 (3] StoreinR.,
E] RTN and stop.
‘RCL .
et [2) Otherwise LBL Beginning of calcu-
» calculate time. a lation routine.
.] Then convert !F] Lower flag 1.
it to hours, 1
minutes, seconds. RTN

The time program is set up so that the time is input in hours,
minutes, and seconds, although for calculating purposes it will be
converted to decimal hours.

To calculate one of the three variables, press [J to initialize the
routines by setting flag 1. Then input a variable and press its
corresponding program control key. Because the flag is set, this
variable is stored away and a value is not calculated. Next, input
the second variable and press its corresponding program control
key. Again, the second variable is stored away and no calculation
is performed. The unknown value is calculated by pressing
(which clears flag one) and then pressing the corresponding pro-
gram control key. Because the flag is not set, the unknown value is
not stored but calculated. After each calculation press [} to
initialize the routines again. Try the following examples to see
how this works.

*

Example. Calculate s when t = 5 hours and 30 minutes and
d = 500.

Press See Displayed

I Runs initialization routine.

5308 _ Time is converted to decimal hours.
500 & IR Key in the distance.

a IEEEEE Units per hour.

Example. Calculate t when s — 700 and d = 5000.

Press See Displayed

A] IEEEEEE Runs initialization routine.
700 I Key in the speed in units per hour.

5000 B3 I ey in the distance
(e D] IEEEEEE 7 hours, 8 minutes, and 34 seconds.

Example. Calculate d whens = 60 and t = 74 hours, 42 minutes,
and 50 seconds.

See Displayed

Press
(A — Runs initialization routine.
60 EEEEEEE Key in the speed in units per hour.

Time is converted to decimal hours.

744250 @ EEEEEEN
an | 5229.9722 |

The answer.

Although flags require valuable memory for setting and unsetting
them, they are still handy for program decision making that isn’t
the result of a direct comparison of the X- and Y-registers.

1000000000000011

DSZ as aFlag

By setting the contents of R, equal to 1, you create your own self-
clearing flag using [552). When the program executes [0SZ], it
decrements the contents of R,, which sets it to zero. Then it tests
R, and, because it is zero, skips two steps before continuing execu-
tion (just as when testing a flag that is set). The second time the
program executes [D5z], the program pointer continues sequentially
(just as when testing a flag that is clear) because the number in R,
is no longer zero.

Interrupting Your Program

BB (run /stop) is a special program control key that operates
differently from the keyboard than as a program step. As a pro-
gram step interrupts program execution at an intermediate
point, allowing you to key in data, make additional calculations,
etc. From the keyboard, will start a program at the position
of the active pointer or halt a running program. [}, however, is

also used to control programs differently from what you have
learned thus far, so the following information should be studied
with care.

To Enter Data

The primary use for in a program (or subroutine) is to stop
the program in order to allow you to key in data. When a
program step is encountered in a running program, the program
halts, leaving the pointer at the [l . By pressing from the
keyboard, program execution will continue.

Writing a Program Using [[JfJ to Enter Data. To show you how

this works, let’s write a program to calculate the cumulative cost
of various quantities of differently priced items at a 15% discount.

92
Switch to W/PRGM mode and press] . Now key in
the following list of keys:

Keys Comments Comments

LBL

} Beginning of program. /s Stop to key in price.

Quantity < price.

} Initialize (]

routine.

™ B Calculate discounted
Identify place to price.

(3] start repetition. x

R/S Stop to key in quantity, ¥ Add to previous total.

[ENTER® Copy quantity to Y. S | Repeat, starting at

(3] label 3.

Notice in particular that there is no needed at the end of this
program. This is because the program is a never-ending loop.
And it already stops each time through the loop to let you key in
new data.

When the program stops the first time, you key in the quantity of
the item and press to start the program running again.
always starts a halted program at the current position of the acti-
vated pointer. When the program stops again, you key in the price
of the item and again press [J. It calculates the total and re-

turns to label 3 where it stops to receive the next quantity. A
running total is displayed. Switch back to RUN mode and try it
now.

Example. Assume that you get a 15% discount on the following
purchases:

Quantity Price of Each
5 $2.00
7 $4.00
8 $5.00
22 $6.00

00D

Calculate the cumulative cost.

Press See Displayed
[A] - The stack is cleared.

5 IR The first quantity.
2 I Ruoning total.
'

48 B Running total.

: oos

L RS | - Running total.
22 | 22.00 |

6 EEEEER Cumulative cost.

If a in a program is immediately preceded by a numerical
entry from the program, that number will be overwritten by an
entry from the keyboard. This feature allows a program to dis-
play prompting information that will not be lifted in the stack.
Except for this case, does not affect the stack lift.

Note: Digits occurring as program steps immediately
following a [} should be separated from the (&
by an [ENTER® *.

Controlling Your Program with R/S. Up to this point, each pro-
gram you have written has begun with a label and ended with a
return. We have taught you to program this way because it was
judged to be the most convenient for most people and the most
used in practice. However, the great versatility of the HP-65 does
not confine you to one method. can be used to advantage

to run initialization routines and even whole programs without
using labels and saving valuable memory steps in the process.

The rule for using is simple: Pair a with a [In
other words, if you plan to initate execution of your program
with [, a must be used as a program step to halt the
* The reasons for this are discussed on p. 100 under Execution.

94 Programming

program. Similarly, if your program begins with a label ([[§thru
@), and ends with a you must start it with the program
control key identified by the label.
Programs controlled by [[@8 should be at the top of memory so
that they can be easily accessed by pressing [Gill] 8.
Note: Generally [should not be used to start a
program beginning with a label.

Writing a Program Controlled by R/S. Switch to W/PRGM
mode and press il [PRGM]. Then key in the following program

which calculates \/x* | y°.

Keys Comments Keys Comments
ENTER® Save copy of x just keyed in. [
. Then calculate x2.

A Stoptokeyiny.

i [|

Then calculate y*.
= ' #
| E])

R/S Stop the program.
Notice, in particular, that the program does not begin with [IZ§
or end with [GI0].
To run the program switch to RUN mode and press to move
the program pointer to the top of memory. Then key in a value
for x and press Q). When the program stops again, key in a
value for y and again press [[@B. The program then stops again
to display the answer. Now switch to RUN mode and try the
following example.

Example. Calculate 1/ 7 1 92,
Press See Displayed

@ .
oA - The answer.

0000000000 01D

Program Stops

Blinking Display Stops. Errors that cause a blinking zero dis-
play, if executed in a program, also stop the program. Stop the
blinking by pressing any key ([6LX is recommended). You can
then identify the reason for the stop by switching momentarily to
W/PRGM mode to see the code of the offending operation. You
can also use |8 to recover the last value in the display.

Normal Stops. To confirm that a program stops normally (i.e.,
via a B0 or &), switch momentarily to W/PRGM mode and
observe the displayed code. It should be 24 or 84.

Accidental Stops. Remember, pressing any key will stop a pro-
gram. Be careful to avoid pressing keys during program operation.

Cued Stops. If memory permits, it is sometimes helpful to put a
familiar number into the X-register before stopping for data.
Thus when the program stops, the displayed number identifies
the desired input. For example, if your program requires eight
stops for input, it is helpful to have the numbers 1 thru 8 appear
so you know which input is needed.

If a cue number is created as a program step immediately preced-
ing the [, it is not lifted into the stack and the number is over-

written by the data you key in. Cue numbers generated by other
means (recalled from a register, or calculated) will be lifted.

Overflow Stops. If, during the course of a calculation, you ex-
ceed the dynamic range of the machine, a running program will be
halted. The display will show 9.999999999 99.

Underflow Stops. If, during the course of a calculation, you
calculate a number that is too small in magnitude (< 10-°%) to be
carried in a register, the register is set to zero and the program
stops, if running.

Writing Programs to Solve Your Problems

In reading this manual, we hope that you have learned from the
text and example programs how to program your HP-65. But you
may be asking yourself: How do I write a program to solve my
problem? It is the purpose of this section to briefly describe one
approach you might use.

96

In general, program writing is composed of three major steps:

1. Define the problem.
2. Decide how the problem is to be solved.

3. Write down the keystrokes that need to be repeated.

You have already learned how to do step 3. Now for steps 1 and 2.

Example of program writing:

1. Define the problem: What is the program supposed to do?

Write a program to solve the Pythagorean theorem:
c=Va®+4 b

2. Decide how the problem is to be solved: What steps would

r——

you take to solve the problem on paper?

For this you must decide what you want to solve for; what
inputs will be required for that solution; what program con-
trol keys you will use and how they will be used.

These questions are most easily decided by drawing the
key art for the magnetic cards. If you wanted to solve only
for ¢ your card might look like this:

E Fythaqorean 7h€orem l

If you write your program this way, you will have to key in
a value for g and [ENTER# it, then key in a value for » and

press [fJ. However, you could solve the same problem with
a card that looked like this:

Fythaqorean 74Eorem
a b

You would key in a value for @ and press [}, then key in
a value for b and press B} . This way would allow you to

store your a value so that you would not have to con-
tinually key it in for varying values of b. A third way to

100000 0ILTD

solve the same problem would have a card that looked like
this:

Pythaqoreqn THEarem]
7] b —=C

With this program, you would be able to store both your
a and b values so that either could vary without having
to key in the other again. You would key in a value for a
and press [[J, key in a value for b and press[, and then

press [to calculatec.
Or you might decide that you would like to be able to solve

for any variable given the other two. For this you would
have a card that looks like this:

This program would probably require setting a flag in an
initialization routine by pressing and @] Then you
would key in a value for one variable and press the cor-
responding program control key, key in a value for the
second variable and press its program control key, and
finally solving for the third variable by pressing [@ and
the corresponding program control key.

So you can see that deciding how the problem is to be
solved is a creative process. It depends heavily on your
needs and the data to be processed. The way you ap-
proach your problem will largely determine how your pro-
gram will be written.

. Write down the steps for the calculator. Often on the first

tries to write down keystrokes it is helpful to use the
COMMENTS column of the program forms supplied with
the calculator to keep track of the values in X, Y, Z, and T.
Later, when you record your final documentation, you can
replace those annotations with useful comments that will
help you remember what various parts of your program do.

98 Programming

The following program was written using the third approach.
Both a and & values are stored before ¢ is calculated. Switch to

W/PRGM mode, press [l and key in the following list
of keys to see how this program works.

Keys Comments Keys Comments

LBL Beginning of a et (1] Recall a.

(4] storage routine. |ENTER®I

Calculate a*.

B8 1] Storea. x

RTN Stop. el 2) Recall b.

LBL Beginning of b 'ENTER® Calculate b
a storage routine. x alculate b7
B 2] storesb. + a* 4 b*

HE Stop. [|

LA Beginning of ¢ The answer.
calculation. RTN

Now switch to RUN mode and see if the program works.

Example. Calculate ¢ for @ — 10 and b — 5. For a = 78 and
b—=22.Fora= 78 and b = 10.

Press See Displayed

g - Key in a value.

53 Bl Keyinb value.

- The answer.

0 A | Il Keyin avalue.

228 BRI Keyin b value.

- The answer.

1A - Key in new value only.
- The answer.

000D Y

Programming 99

Switch again to W/PRGM mode and record the program on an
unprotected magnetic card. Then mark the card as you had
originally planned.

Flowcharting

One way to help you with step 2 (deciding how the problem is to
be solved) is by means of a “flowchart.” Flowcharts logically
pictorialize the solution to a programming task. They are some-
times drawn long before the actual keystrokes are figured out.
While flowcharting your problem, you might change or simplify
your approach, see a flaw in your logic, etc. After several attempts
(even for experienced programmers) you should have a workable
flowchart and, once you do, your programming task is greatly
reduced.

Any flowchart that you draw is useful, but a few basic flowchart-
ing conventions are described briefly here. Terminal (that is,
starting or ending) activities are represented by ovals. Arrows
indicate the flow of operations between the terminals. Most cal-
culator operations are represented by rectangles. A diamond
represents a decision point. If the information within the diamond
is computed as “YES" (the condition is meI), the flow continues
sequentially; if it is computed as “NO” (the condition is not met),
the flow continues after skipping two steps.

The flowchart for our simple program is shown on the following
page. As you can see, once the flowchart is finalized, the program
can be written relatively easily.

A complete discussion of flowcharting isn’t possible here. It would
take many volumes. If you want to learn more about it, you should
consult a reference devoted to the subject.

Every program that you write, even the simplest, is written using

our three steps, though you may find that with practice you can
do much of the work in your head.

1. You must first define your problem.
2. Then you must decide how it is to be solved.
3. And finally you must write out the steps that the calculator
will use to solve it.
Good luck!

100 Programmir

-
@
e

-

1002000000000111

Debugging Your Program

Even the most experienced programmer finds “bugs” in his pro-
grams. These bugs range from mistakes in his flowchart to mis-
takes in keying in the program. Wherever they occur, they need to
!’e corrected and the HP-65 is designed to make this error-check-
Ing process as easy as possible.

Execution. In RUN mode, the key executes your pro-
gram one step at a time. This allows you to observe the effect of
your program in slow motion. If only a portion of your program
seems to have bugs, move the program pointer to the nearest label

and use from there.

executes your program step by step. However, if the program
step is a program control key ([}thru [@). pressing will
activate the second pointer and calculate that subroutine in its
entirety, finally returning to the step following the subroutine
call and stopping there.

does not terminate data entries. Therefore, an [ENTER#
should be used to separate digits immediately following a
from the itself. Otherwise the data entry from the keyboard
will run together with the digits following the if followed by

(which may well happen in debugging a program).

Cued Stops for Debugging. You have already read about cued
stops on page 95. Where space permits, it is helpful to include
additional cued stops to help you determine the position of the
program pointer. This may be particularly useful to force a stop
within a subroutine which otherwise would be exected in its en-
tirety with one touch of [EIJ. When the program is finally
checked out, the unwanted stops can easily be deleted.

Common Mistakes

The most common mistakes you are likely to make with your
HP-65 are listed here for your convenience.

Programming Errors

1. Having unwanted duplicate labels for program control
keys because [l was not pressed in W/PRGM
mode before keying in a program.

2. Inadvertently erasing a program in memory by inserting
a magnetic card when the W/PRGM-RUN switch was set
to RUN.

3. Inadvertently erasing a program on a magnetic card
by inserting an unprotected magnetic card when the
W/PRGM-RUN switch was set to W/PRGM.

4. Keying unwanted operations into program memory be-
cause the W/PRGM-RUN switch was set to W/PRGM
when the keys were pressed.

102 Programming

5. Seeing a dash in the display in W/PRGM mode for a pro-
gram known to be less than 100 steps because the default
programs were not first cleared by pressing [l [PRGM] .

6. Failing to take account of a merged code and provide a
Bl(noF as afiller in a two-step skip.

7. Mistakenly trying to use labels [0] thru [9] as subroutines.

Only Y thru [can be used to call a subroutine.

. Forgetting to clear flags before using them.

9. Expecting, the stack, or the registers to remain
unchanged during the execution of a subroutine from the
keyboard or from within a program.

10. Using in a program and forgetting to initialize R
to the proper value.

11. Forgetting R, does not have a merged code or that it is
used to store intermediate results for trigonometric func-
tion, polar/rectangular conversions, and the numerical
comparison tests.

12. Losing program and data by inadvertently switching the
calculator OFF or by unplugging the battery charger.

13. Trying to call a subroutine from a subroutine.

14, Forgetting to delete both steps of a non-merged key
sequence.

oo

Calculation Errors

1. Failing to shift up to a gold function (ji§ or) or down
to a blue function (@) because the prefix key was omitted.

2. Losing the T-register contents because the entry of a new
number or the recall of a new number lifted the stack.

3. Performing a trigonometric function in the wrong angular
mode.

4. Trying to do an operation involving the X- and Y-registers
with the numbers reversed because you did not press

| |EZIP

1002001000000011

Appendix A
General Information

Accessories

Please check to see that all the standard accessories listed below
have been included with your HP-65. Also, inspect the calcula-
tor for damage that may have occurred during shipment. If you
find any damage or if any standard accessories listed are missing,
you should file a claim with the carrier and contact the nearest
Hewlett-Packard Sales or Service Office.

Standard Accessories

Your HP-65 comes complete with one each of the following
standard accessories:

Accessory

Battery Pack

Battery Charger (115/230 Vac)

Travel Safety Case

Soft Case

HP-65 Owner’s Handbook

HP-65 Quick Reference Guide
Standard Pac including:

Instruction Book

Blank Pocket Instruction Cards (20)
Prerecorded Magnetic Cards (19)
Head Cleaning Card

Blank Magnetic Cards (20)
Programming Worksheet Pad

Optional Accessories
Other accessories, including software application pacs, are speci-
fied on the Accessory Order Form in the Important Information
Envelope. Optional accessories include:

103

104 General Information

Accessory

Reserve Power Pack

Security Cradle

Field Case

Blank Magnetic Cards with Case (40)
Blank Magnetic Cards—bulk (100)
Programming Worksheet Pad

Blank Pocket Instruction Cards (20)

The HP 82004A Reserve Power Pack consists of a charging
attachment and a spare battery pack so that one battery pack can
charge while the other is in use.

Additional software pacs may be announced from time to time.
Individual programs are available from the Users’ Library. Please
refer to the Users’ Library Subscription Card shipped with your
calculator (U.S. only).

Battery Operation

A rechargeable battery pack is provided with your calculator. Be
sure to charge the battery pack before portable use of your cal-
culator. A fully charged battery pack provides approximately 3
hours of continuous operation. By turning the power OFF when
the calculator is not in use, the HP-65’s battery pack should easily
last throughout a normal working day. You can extend battery
operation time by reducing the number of digits in the display.
Press[+] between calculations and € prior to starting a new cal-
culation if the wait between entries is extensive.

When 2 to 5 minutes of operating time remain in the battery pack,
all decimal points in the display light. Even when all the decimal
points are lit, the true decimal position is known because an entire
digit position is allocated to it.

Note: If you use your HP-65 extensively in field work
or during travel, you may want to order the HP 82004A
Reserve Power Pack, consisting of a battery charging
attachment and spare battery pack. This enables you
to charge one pack while using the other,

100000

General Information 105

Recharging and AC Line Operation

To avoid any transient voltage from the charger, the HP-65 should
be turned OFF before plugging it in. It can be turned ON again
after the charger is plugged into the power outlet and used during
the charging cycle.

A discharged battery will be fully charged after being connected
to the charger for a period of 14 hours; overnight charging is
recommended.

If desired, the HP-65 can be operated continuously from the ac
line. The battery pack is in no danger of becoming overcharged.
If a battery is fully discharged, it must be charged for at least 5
minutes before a card can be read or written. If the decimal points
light during card feed and then go out, your battery needs re-
charging.

CAUTION

Running the HP-65 from the ac line with the battery pack
removed may result in damage to your calculator.

The procedure for using the battery charger is as follows:

1. Make sure the line-voltage select switch on the battery
charger is set to the proper voltage. The two line voltage
ranges are 86 to 127 volts and 172 to 254 volts.

CAUTION

Your HP-65 may be damaged if it is connected to the
charger when the charger is not set for the correct line
voltage.

2. Set the HP-65 power switch to OFF.

3. Insert the battery charger plug into the rear connector of the
HP-65 and insert the power plug into a live power outlet.

4. Set the power switch to ON. If the W/PRGM-RUN switch is
set to RUN, you should see a display of 0.00.

5. Set the power switch to OFF if you don’t want to use the
calculator while it is charging.

6. At the end of the charging period, you may continue to use

your HP-65 with ac power or proceed to the next step for
battery-only operation.

. With the power switch set to OFF, disconnect the battery

charger from both the power receptable and the HP-65.

CAUTION

The use of a charger other than the HP 82002A Battery
Charger (or the equivalent number for operation outside
the U.S.) may result in damage to your calculator.

Maintenance
Battery Pack Replacement

To replace your battery pack use the following procedure:

1.

Set the power switch to OFF and disconnect the battery
charger,

. Slide the two battery-door latches toward the bottom of the
calculator,

3. Let the battery door and
battery pack fall into
the palm of your hand.

1020000000000000

4. See if the battery
connector springs have
been inadvertently flattened
inward, If so, bend them out
and try the battery again.

6. Insert the top of the
battery door behind
the retaining groove
and close the door.

. Insert the new battery pack

so that its contacts face
the calculator and contact
is made with the

battery connectors.

108 General Information

7. Secure the battery door
by pressing it gently
while sliding the two

battery-door latches upward.

Magnetic Card Maintenance

Try to keep your cards as clean and free of oil, grease, and dirt as
possible. Dirty cards can only degrade the performance of your
card reader. Cards may be cleaned with alcohol and a soft cloth.

Minimize the exposure of your calculator to dusty, dirty environ-
ments by storing it in the soft carrying case when not in use. Each
card pack contains one head cleaning card.

ABRASIVE CARD FOR CLEANING RECORDING HEAD

CONSULT MANUAL FOR RECOMMENDED USE
— THIS SIDE UP —

The magnetic recording head is similar to magnetic recording
equipment. As such, any collection of dirt or other foreign matter
on the head can prevent contact between the head and card, with
consequent failure to read or write. The head cleaning card con-
sists of an abrasive underlayer designed to remove such foreign
matter. However, the use of the card without the presence of a
foreign substance will remove a minute amount of the head itself.
Thus, extensive use of the cleaning card can reduce the life of the
card reader in your HP-65. If you suspect that the head is dirty,
or if you have trouble reading or recording cards, by all means use
the cleaning card; that’s what it is for. If one to five passes of the
cleaning card does not clear up the situation, refer to appendix C.

11210000001000110

Appendix B

Additional Operating Information

Automatic Stack Lift

In order to remember when a number is lifted in the stack fol-
lowing a new number entry and when it is not, we would like
to present a concept which, previous to this, has only been im-
plied: number termination.

The keys on your calculator can generally be divided into two
classes: the number building keys and the number terminating
keys. The number building keys are:

[[0]thru[s]]
L]

These keys are used to key in numbers.

Every other key is a number terminating key. What do we mean
by number terminating? Whenever you build a number, you must
somehow tell the calculator that you are through with the num-
ber — that the number is terminated. For example, if you key
in the number 123, the calculator does not know if the number
is terminated. If you key in the number 456, you would have
the number 123456. And if you then press EHS , you would
have the number —123456. However, if the first number had
been terminated, it would have been lifted in the stack and you
would have two numbers, 123 in the Y-register and —456 in
the X-register.

This feature enables us to make a simple rule for the automatic
stack lift:

If the number is terminated, the stack lifts it upon the entry
of a new number.

There are only two number terminating keys which are excep-

tions to this rule, BL¥ and |ENTERY .
109

I RN EREEEBEERRREREEER=

110 Additional Operating Information

€% replaces the number in the displayed X-register with zero

and prepares the X-register for a new number. The new number
then writes over the zero in X.

[ENTER#| also prepares the X-register for a new number by termi-
nating the old number and copying it into the Y-register. A new
number then writes over the number in the X-register without
lifting the stack.

Programming Tips

The following three programming tips should help the advanced
programmer:

1. If you press [§ or [¥ or have @ B in a running
program and there is no corresponding , the cal-
culator executes from the top of memory.

2. If [is pressed from the keyboard, the first en-
countered will be ignored. The program will stop at the

second .

3. If a subroutine call does not have a corresponding label,
the program will continue execution from the subroutine
call, not from the top of memory. The next @ encoun-
tered is ignored.

You can verify each of these tips with your calculator and make
use of them in a number of ways.

Calculating Range

The HP-65 performs all calculations by using a 10-digit number
and a power of 10. This abbreviated form of expressing numbers
using powers of 10 is called scientific notation; i.e., 23712.45 =
2.371245 » 10* in scientific notation. All calculation results are
rounded to 10 significant digits.

PRRDDRRNTIILIND

i

Underflow

If a result develops that is too small in magn_itude to be carried
in a register (0< result <10), the register is set to zero and a
running program stops.

Overflow

If a computation develops a magnitude that c:lfcecd.s the capacn’){
of a register (> 9.999999999 < 10°%), the register is set to al! 9‘5
(with appropriate sign), the largest magnitude expressible in a
register, and a running program stops.

Temperature Range

The operating temperature range for the HP-65, including charg-
ing, is 10° to 40°C (50° to 104°F).

Y

HMR

Appendix C
Calculator Service

CAUTION
Calculator can be damaged by strong static charge.
Blank Display
If the display blanks out, turn the HP-65 OFF, set the W/PRGM-
RUN switch to RUN, and turn the HP-65 back ON. If 0.00 does
not appear on the display, check the following:
1. Check the battery pack to see if it is discharged and
whether it is making proper contact with the calculator.
2. If the display is still blank, try operating the HP-65 from
the ac line.
3. With the battery charger connected to the HP-65, make
sure the charger is plugged into a live ac outlet.
4, If the display is still blank, the HP-65 is defective. (Refer
to the warranty information that follows.)

Low Power
All decimal points light to warn you that you have 2 to 5 minutes
of-operating time left on battery power. You must either:

1. Operate from ac power.

2. Charge the battery pack.

3. Insert a fully charged battery pack.

Improper Card Reader/Writer Operation

If your calculator appears to be operating properly except for the
reading or writing of program cards, check the following:

1. Make sure that the W/PRGM-RUN switch is in the cor-
rect position for desired operation: RUN position for read-
ing cards, W/PRGM for recording cards.

2. If the drive motor does not start when a card is inserted,
make sure the battery pack is making proper contact and
has ample charge. Remember that the battery charger alone
does not deliver enough current to operate the drive motor.

113

A charger must be used in conjunction with a partially
charged battery in order to drive the card reader motor.
If the battery has been completely discharged, plug in the
charger and wait 5 minutes before attempting to operate
the card reader/writer.

3. If the card drive mechanism functions correctly, but your
HP-65 will not read or write program cards, the trouble
may be due to dirty record/playback heads. Use the head-
cleaning card as directed. Then, test the calculator using
the two diagnostic program cards furnished with it, fol-
lowing the instructions provided. If difficulty persists your
HP-65 should be taken or sent to an authorized Hewlett-
Packard customer service facility.

4. Cards must move freely past the record/playback heads.
Holding a card back or bumping a card after the card drive
mechanism engages could cause a card to be misread.

CAUTION

Cards can be accidentally erased if subjected to strong |
magnetic fields. (Magnetometers at airports are in the safe

range.) J

5. Check the condition of your magnetic cards. Cards that
are dirty or that have deep scratches will oftentimes not
read properly.

6. If you are trying to operate the calculator outside the rec-
ommended temperature range, you may experience prob-
lems with the card reader. Low temperatures slow the card
reader down and often cause the drive rollers to slip.

Battery Failure

Temporary degradation, peculiar to nickel-cadmium batteries,
may cause a decrease in the operating period of the battery pack.
Should this happen, turn the HP-65 ON for at least 5 hours to
completely discharge the battery pack. Then, put it on charge
for at least 14 hours. This procedure should correct the tempo-
rary degradation.

HRNDDDIDDND

If the battery won’t hold a charge, it may be defective. If the
warranty is in effect, return the pack to Hewlett-Packard accord-
ing to the shipping instructions that follow. If the battery pack
is out of warranty, use the Accessory Order Form provided with
your HP-65 to order a replacement.

Warranty

The HP-65 is automatically warranted against defects in ma-
terials and workmanship for one (1) year from date of delivery
to original purchaser. During the warranty period, Hewlett-
Packard will repair or, at its option, replace components that
prove to be defective, when the calculator is returned, shipped
prepaid, to a Hewlett-Packard Customer Service Facility. (Refer
to Shipping Instructions.)

This warranty does not apply if the calculator has been damaged
by accident or through misuse or as a result of service or modi-
fication by any person other than at an authorized Hewlett-
Packard Customer Service Facility.

No other warranty is expressed or implied. Hewlett-Packard is
not liable for consequential damages.

Beyond the one-year warranty period, your HP-65 will be re-
paired for a moderate charge. Return the HP-65 along with
battery pack, recharger and travel case (Refer to Shipping In-
structions.) If only the battery pack is defective, simply order a
replacement on the Accessory Order Form provided.

Shipping Instructions
Malfunctions traced to the calculator or battery charger require
that you return:
1. Your HP-65 with battery pack, recharger and travel case.
2. A completed Service Card (from the back cover of this
handbook).
If a battery pack is defective and within warranty, return:
1. Only the defective battery pack.

2. A completed Service Card (from the back cover of this
handbook).

*

Calculator Service 116

Send items to be returned to the address nearest you shown on
the Service Card, after packaging them safely. Should other prob-
lems or questions arise regarding service, please call the appli-
cable service telephone number on the Service Card, or, if inside
the U.S.A., call Advanced Products Division, Customer Service
Department, at (408) 996-0100.

AN DIDAEY

Index

B .B. 5. B (arithmetic operations), 16
storage register arithmetic, 39

[*] (decimal), 12, 30, 109
truncating at, 48

[0] thru[9] (digits), 12, 57,71, 109

[T], 36

10 (common antilogarithm), 49

A
B thru @ keys, 9, 25, 54,75, 110
(absolute value), 48, 49
AC Line Operation, 105
Accessories, standard, 103
optional, 103
Accidental stops, 95
¥ (addition), 14
degrees, minutes, seconds, 43
in registers, 39
Addressable registers, 35
arithmetic in, 39
choosing, 38
recalling data, 36
storing data, 36
Alternate functions, inverses, 5
Angle
addition, 43
conversion, 41, 43
functions, 42
Angular mode functions, 41
Antilogarithms
10%, common, 49
€*, natural, 50
Arc cosine, 44
Arc sine, 44
Arc tangent, 45, 46
Arithmetic, 14
= addition, 14
and the stack, 16

17

118 Index

constant arithmetic, 22
= division, 16

in registers, 39

X multiplication, 15
simple rule, 15

[= subtraction, 15

Automatic stack drop, 18, 20, 43, 109
Automatic stack lift, 16, 18, 109

B
BScc@thru@ keys.

Backstepping, 68
Battery pack,
failure, 114
operation, 104
replacement, 106
warranty, 115
Blank display, 113
Blinking display, 7, 30, 31
Blue functions, 5
Bottom step of memory
and delete, 66, 67, 68
display, 60
and insert, 66
Branching, 70
direct, 71
subroutine, 75

C
Sece [thru @ keys.

Calculating range, 110
Calculation errors, 102
Cards, magnetic, 63
card reader operations, improper, 113
maintenance, 108
marking a, 64
protecting a, 64
(See magnetic cards)
[GHS (change sign), 33, 48, 109
Cleaning card. See Head cleaning card.

HHHH BT

—

Clear operations, 27
additional keys, 27
BB (clear X-reg.),12,13,30
OFF-0ON (clear entire calculator), 12, 28

(clear prefix), 27
(clear program memory), 28, 60
(clear storage registers), 28, 36
(clear stack), 16, 27
BEX (clear X), 12,13, 30,109
Common antilogarithm, 50
Common errors
calculation errors, 102
program errors, 101
Common logarithm, 49
Comparisons, numerical. See Numerical comparisons.
Compound interest program, 6
Conditional testing, 80
decrement and skip on zero, 84
flags, 86
numerical comparisons, 80
Control keys, program, See Program control keys.
Conversions,
decimal angle<sdegrees, minutes, seconds, 41, 43
octal<=decimal, 48
rectangularespolar, 45, 46
Coordinate conversion, 45
Correcting a program
debugging, 100-101
editing, 64-70
(cosine/arc cosine), 44
Customer service, 10, 116
Cued stops, 95, 101

D
B 25, 58. Sce also[[d thru @ keys.
Data entry, 91

See also Keying in numbers.

Debugging your program, 100
common mistakes, 107
cued stops, 101

120 Index

single-step execution, 100
Decimal—octal conversion, 48
[+](decimal point), 12, 30, 109

multiple, 30, 32, 104, 113

truncating at, 48
(decrement and skip on zero), 38, 84

as a flag, 91
Default programs, 25, 54
(set degree angular mode), 42
Degrees, minutes, seconds,

add/sub of, 43

conversion to/from, 41-43
Degrees to radians/grads,

conversion, 42
[BEC] (delete program step), 53, 66—68

backstepping, 68

deleting consecutive steps, 67

deleting the bottom step, 68
(0]thru[9](digit keys), 12, 57,71, 109
E=R (display), 27, 28, 29
Display

blank, 113

blinking, 7, 30

bottom memory, 60

fixed, 28

full memory, 60

illegible, 30

initial, 11

multiple decimal point, 30, 32, 106, 113

program operation, 54

rounding, 28

scientific, 29

setting, 28
B (division), 16

in registers, 39
(add/sub degrees, minutes, seconds), 43
(decimal angle<sdegrees, minutes, seconds), 42

=4
=
=—d
=d
=
e
=
=
=
=
e
S |
|
=
=
\

E
[.25. Seealso [thru @ keys.
Editing programs, 64-70
|ENTER® (enter up), 13,109
Entering numbers, 12
[EBX (enter exponent), 32,33, 109
Errors, common
blinking display, 31
calculation, 102
program, 101
e* (natural antilogarithm), 49
Exchanging X and Y, 25
Exponents
entering, 32, 33, 109
exact powers of ten, 33
exponential function, 50, 52
Exponential function (y*), 50, 52

F
B (prefix key), 5,15
@ (inverse prefix key), §
Factorial, 50, 52
Fixed display setting, 28
Flags
setting and testing, 86
Flashing display. See Blinking display.
Flowcharting, 99
Fraction part of a number, 47, 48
Full memory display, 60
Functions, 41
functions of x and the exponential function (y*), 49, 50
involving angles, 42

G

B (prefix key), 5, 67

Gold functions, 5

Gold inverse functions, 5

(go to a label), 27, 65,71, 110
conditional branching, 80

direct branching, 71

positioning the program pointer, 64—65
(set grad angular mode), 42

conversion to degrees/radians, 42

H
Head cleaning card, 108

I
Illegible display, 30
Insert operation, 65

main program pointer, 76
(integer/fraction part of a number), 47, 48
Interrupting your program, 91
Inverse trigonometric functions, 44, 45, 46
Inverses, alternate functions, 5

K
Keyboard layout, 4
Keycodes, 56
merged, 58
Keying in numbers, 12
exact powers of ten, 33
large and small numbers, 32
negative numbers, 32, 48, 49
small numbers (negative exponents), 33

L
(label), 27,71
(last X), 34

operations affected by, 35
Lift, stack. See Automatic stack lift.
Loading program cards, 7
(common logarithm), 49, 50
(natural logarithm), 50
Low power, 30,32, 104, 113

M
Magnetic cards, 60, 63

—d
=
=
_
=
—
="
ol
=
==
|

card reader operations, improper, 113

maintenance, 108

marking, 64

protecting, 64
Main program pointer, 56, 64
Maintenance, 106

magnetic card maintenance, 108
Malfunctions, 113-115
Memory, program

bottom display, 60

full display, 60

marker for top, 54
Merged keycodes, 58, 59
Multiple decimal point display, 30, 32, 104, 113
B multiplication, 15

in registers, 39

(=] (factoriar), 50, 52

Natural antilogarithms, 49
Natural logarithm, 50
Negative numbers, 32, 48, 49
Negative exponents, 33

(no operation), 59, 63
Nonprogrammable operations, 53
Number building keys, 109

Number entry. See Keying in numbers.
Number termination, 13, 109
Numerical comparisons, 80

0o

[=0CT J(decimat=octal), 47
OFF-ON switch, 11
and clearing, 28
and default programs, 54
and display, 28-29
and stack, 12
initial display, 11
Optional accessories, 103—-104
Overflow, 95, 111

123

124 Index

]
Pi, recalling, 35
Pointer, program, 55

main, 55, 76

positioning, 56, 64

secondary, 76
Polar to rectangular coordinate conversion, 45
Power

low, 30, 32,104, 113

ON, 11

three ways to use, 5
Power switch. See OFF-ON switch.
(clear prefix key), 27
Prefix keys

blue prefix key, §

clearing, 27

gold inverse prefix key, 5

gold prefix key, 5§
Prerecorded programs, 6-8, 63
Problem solving, 95

common errors, 101

debugging your program, 100

flowcharting, 99
(clear program), 28, 60
Program

control keys, 9, 25, 54, 75,91

default, 54

definition, 53

editing a, 64

errors, 101

interruption, 91

memory. See Program memory.

pointer. See Program pointer.

prerecorded, 6-8, 63

protecting a, 64

recording a, 10, 63

running a, 9, 62

stops, 95

subordinate, 75-79

tips, 100

writing a, 8-9, 61, 96-100

HHHEHHEEHFF -

125

Program memory, 54-55
bottom memory display, 60
full memory display, 60
top, 54-55

Program pointer
main, 55, 76
positioning the, 56, 64
secondary, 76

R

(set radian angular mode), 42
Radians to degrees/grads conversion, 42
Range
calculating, 110
temperature, 111
Read/write operations, 63
RCL! (recall), 27, 36
Recalling pi, 36
Recharging and AC line operation, 105
Reciprocals, 50, 51
(rectangular<—polar conversion), 45
(clear addressable registers), 28, 36
Registers, 11
arithmetic, 39
choosing, 38
operations using R;, 38, 84
operations using R,, 39, 59, 81
recalling, 36
storing, 36
(return), 54, 62, 65, 75-76
Revising programs, See Editing programs.
(roll down), 22, 28
(roll up), 22
Rotating the stack, 22, 23
RUN, 63
(run/stop), 54,91, 93,110

S
Scientific display setting, 29

126 Index

Scientific notation, 28, 29, 32, 110
Secondary pointer, 76
Service, 113-116
(set flag 1), 87
(set flag 2), 87
Shipping instructions, 115
Sign
of exponents, 33
of numbers, 32, 48, 49
(sine/arc sine), 44
(single step), 53, 56, 60, 65
execution, 100
Skip, two step, 80, 81, 84, 87
Small numbers (negative exponents), 33
Square, 50, 51
Square root, 50, 51
(clear stack), 16,27
Stack, operational, 12-25
advantages, 20
auto drop, 18, 43
auto lift, 16, 109
clearing, 16, 27
exchanging x and y, 25
rotating, 22
Step, program, 54, 55
Stepping through a program, 56—-60
Stops, program. See Program stops.

[8TO (store), 27, 36
storage register arithmetic, 39
Subroutine branching, 75-79
second subroutines, 79
secondary pointer, 76
= (subtraction), 15
degrees, minutes, seconds, 43
in registers, 39

T
T-register, 12, 13, 20, 22, 23
[72N] (tangent/arc tangent), 45

A

arc tangent of y/x, 46
Temperature Range, 111
Termination of numbers, 12-13, 109
(test flag 1), 87
(test flag 2), 87
Tests, conditional. See Conditional tests.
Top of memory marker, 54, 55
Top row keys, 7,9, 25, 54,75
Trigonometric functions. See also Angular mode.
cosine/arc cosine, 44
sine/arc sine, 44
tangent/arc tangent, 45
Truncating at decimal point, 48

U

Underflow, 95, 111

Warranty, 115
W/PRGM-RUN, 11, 28, 53, 63
Write operations. See Read/write operation.

X

X-register, 11, 40
clearing, 12,13, 30
preparation for a new number, 12, 13
storing, 36

(exchange x and y), 22, 25, 28

(reciprocal), 50, 51, 54

N <=y N x=y R (numerical comparisons of x and v), 80

(square root), 51, 54

Y .
Y-register, 12, 40
For functions that use the Y-register see

. 5.%.8.07], and [Dms+)
(exponential), 49, 50, 52

Z-register, 13

