[oiciano

HP 48SX
Scientific Expandable

L 2
(2
®
@
-
L 2
‘_
®
L g

B4

(ol .

L

HP 48SX Scientific Expandable
Calculator

Owner’s Manual
Volume I

HEWLETT
(i/] PACKARD
Edition4 July 1990
Reorder Number 00048-90003

Notice

For warranty and regulatory information for this calculator, see pages 673
and 676.

This manual and any examples contained herein are provided “as is” and
are subject to change without notice. Hewlett-Packard Company makes
no warranty of any kind with regard to this manual, including, but not
limited to, the implied warranties of merchantability and fitness for a
particular purpose. Hewlett-Packard Co. shall not be liable for any errors
or for incidental or consequential damages in connection with the
furnishing, performance, or use of this manual or the examples herein.

o Hewlett-Packard Co. 1990. All rights reserved. Reproduction,
adaptation, or translation of this manual is prohibited without prior
written permission of Hewlett-Packard Company, except as allowed under
the copyright laws.

The programs that control your calculator are copyrighted and all rights
are reserved. Reproduction, adaptation, or translation of those programs
without prior written permission of Hewlett-Packard Co. is also
prohibited.

o Trustees of Columbia University in the City of New York, 1989.
Permission is granted to any individual or institution to usc, copy, or
redistribute Kermit software so long as it is not sold for profit, provided
this copyright notice is retained.

Corvallis Division
1000 N.E. Circle Blvd.
Corvallis, OR 97330, U.S.A.

Printing History

Edition 1 January 1990 Mfg. No. 00048-50004
Edition 2 April 1990 Mfg. No. 00048-90059
Edition 3 May 1990 Mfg. No. 00048-90062

Edition 4 July 1990 Mfg. No. 00048-90078

Contents

Part4: Programming

25 468 Programming Fundamentals
470 Entering and Executing a Program
470 Entering a Program
472 Executing a Program

472 Editing a Program

473 Using Local Variables

479 Programs That Manipulate Data on the Stack
480 Using Subroutines

483 Single-Step Execution of a Program

484 Single-Step Execution from the Start of the Program
486 Single-Step Exccution from the Middle of
the Program
486 Single-Step Execution of Subroutines
26 488 Tests and Conditional Structures
490 Program Tests
491 Comparison Functions
493 Logical Functions
494 Testing Object Types
494 Conditional Structures
494 The IF.. THEN.. .END Structure
496 The IF.. THEN.. ELSE.. .END Structure
498 The CASE...END Structure
499 Conditional Commands
500 The IFT (If-Then-End) Command
500 The IFTE Function

Contents 461

27

28

29

462

501
501
502
504
506
508
510
510
512
513

515
515
516
518
518
518

519
520
521
523
523
524
531
532
533
534
534
534
535
539
539
539
539
540
540

Contents

Loop Structures
Definite Loop Structures
The START. . NEXT Structure
The START. . .STEP Structure
The FOR.. NEXT Structure
The FOR.. .STEP Structure
Indefinite Loop Structures
The DO...UNTIL...END Structure
The WHILE. . REPEAT. . .END Structure
Loop Counters (INCR and DECR)

Flags
Flag Types
Setting, Clearing, and Testing Flags
Recalling and Storing the Flag States
Recalling the Flag States
Storing the Flag States

Interactive Programs

Suspending Program Execution for Data Input
The PROMPT Command
The BEEP Command
The DISP, HALT and FREEZE Commands
The INPUT Command

Labeling Program Output
Using Tagged Objects as Data Output
Using String Commands to Label Data Output
Pausing to Display Data Output

Using Menus in Programs
Displaying a Built-In Menu
Custom Menus in Programs
Building a Temporary Menu

Commands That Return a Key Location
The WAIT Command with Argument 0
The WAIT Command with Argument -1
The KEY Command

Turning the HP 48 Off from a Program

a0

31

sai
543
844
546

547
548
548
550
551
554
554
555
557
560
561
563
565
568
569
570
572

573

576

579
580

582
585
588
588

589
591

Eevor Teappind o

The IFERR.. THEMN.. xno ‘:-'uu‘cl‘u.rcﬁ .
The IFERR.. THEN.. .ELSE.. END Structurd
User-De fined Errors

More Programming Examples
Fibonacci Numbers

FIB1 (Fibonacci Numbers, Recursive Version)

FIB2 (Fibonacci Numbers, Loop Version)

FIBT (Comparing Program-Execution Time)
Displaying a Binary Integer

PAD (Pad with Leading Spaces)

PRESERVE (Save and Restore Previous Status)

BDISP (Binary Display)

Median of Statistics Data

SORT (Sort a List)

LMED (Median of a List)

MEDIAN (Median of Statistics Data)
Expanding and Collecting Completely

MULTI (Multiple Execution)

EXCO (Expand and Collect Completely)
Finding the Minimum or Maximum Element of
an Array

MNX (Finding the Minimum or Maximum Element

of an Array— Technique 1)

MNX2 (Finding the Minimum or Maximum Element

of an Array— Technique 2)

Verification of Program Arguments

NAMES (Does the List Contain Exactly Two

Names?)

VFY (Verify Program Argument)

Bessel Functions
Animation of Successive Taylor’s Polynomials

Drawing a Sine Curve and Converting It to a

Graphics Object

Superposition of Successive Taylor’s Polynomials

Animation of Taylor’s Polynomials

Contents 463

592
597

Programmatic Use of Statistics and Plotting
Animation of a Graphical Image

Part 5: Printing, Data Transf;r, én;l

32

33

464

Plug-Ins
602 Printing
602 Printing with an HP 82240B Printer
604 Print Formats
605 Basic Printing Commands
606 Printing a Text String
606 Printing a Graphics Object
607 Double Space Printing
607 Setting the Delay
607 The HP 48 Character Set
608 Sending Escape Sequences and Control Codes
608 Accumulating Data in the Printer Buffer
609 Printing with an HP 82240A Infrared Printer
610 Printing to the Serial Port
611 The PRTPAR Variable
612 Transferring Data to and from the HP 48
613 Types of Data You Can Transfer
614 The I/O Menu
616 Local and Server Modes
617 Setting the 1/O Parameters
617 The SETUP Menu
618 The IOPAR Variable
619 Transferring Data between Two HP 48’s
621 Transferring Data between a Computer and the HP 48
621 Cable Connection
622 Transferring Data
624 Backing Up All of HP 48 Memory
626 Character Translations (TRANSIO)
628 More About File Names
629 Errors
629 ASCII and Binary Transmission Modes

Contents

631 Sending Commands to a Server (PKT)

632 Serial Commands

635 Using Plug-in Cards and Libraries

635 Types of Memory

636 Installing and Removing Plug-In Cards

639 RAM Cards

639 Preparing the Card for Installation

642 Uses for RAM Cards

643 Using RAM Cards to Expand User Memory (Merged
Memory)

644 Using RAM Cards for Backup (Independent Memory)

645 Backing Up Objects into Independent Memory

646 Accessing Backup Objects

647 Backing Up Objects into User Memory (Port 0)

648 Backing Up All of Memory

649 Freeing Merged Memory

651 Using Application Cards and Libraries

651 Attaching a Library to a Directory

652 Accessing Library Operations (The LIBRARY

Menu)
653 Additional Commands That Access Libraries
Appendixes and Indexes

656 Support, Batteries, and Service

656 Calculator Support

656 Answers to Common Questions

660 Environmental Limits

660 When to Replace Batteries

661 Changing Batteries

661 Battery Types

661 Changing Calculator Batteries

663 Changing a RAM Card Battery

665 Testing Calculator Operation

667 Self-Test

Contents 465

667 Keyboard Test

669 Port RAM Test

670 IR Loop-Back Test

671 Serial Loop-Back Test

673 Limited One-Year Warranty

674 If the Calculator Requires Service
878 Regulatory Information

677 Messages
694 HP 48 Character Codes

697 Menu Numbers

m o O @

699 Listing of HP 48 System Flags
707 Operation Index

823 Iindex

466 Contents

Part 4

Programming

25

Programming Fundamentals

A program is an object defined by « » delimiters. A program is itself
composed of objects and commands whose execution is delayed until the
program is executed. Because a program is an object, it can be:

= Placed on the stack.

m Stored in a variable.

m Executed repeatedly.

m Exccuted by another program.

The following example calculates the volume of a sphere, first using
keystrokes and then using a program.

Example: Calculations with Keystrokes and with a Program.
The volume of a sphere of radius r is calculated by:

V = iwr3

3

To do one calculation, you can use the following keystrokes. (Assume you
have already placed the radius on the stack.)

30 @E X 4 X 3 E [)ENM)

468 25: Programming Fundamentals

Each time you press a command key, it is immediately executed, leaving
an intermediate result on the stack.

If you want to calculate the volumes of many spheres, you can create a
program, The following program assumes the radius is on the stack at the
start of program execution:

€« 3 ~m* 4% 3 HIM »

After keying in the « » delimiters (by pressing [H](« »]), you use the
same keystrokes to enter the subsequent objects and commands as you
did before. However, the objects and commands that you type are simply
listed in the command line — their execution is delayed until you execute
the program itself.

Because the program is an object, you can place it on the stack and save it
in a variable. To place the program on the stack, press [ENTER]. To store
the program in a variable named VOL, type [] VOL [STOJ. Now you can
calculate the volume of any sphere simply by placing the radius on the
stack and executing VOL (select the VAR menu and press ¥0L). You
can execute VOL as many times as you want; it acts like a built-in
command.

VOL is a program of the simplest form; a series of objects and commands,
written in the same order as you would type them from the keyboard. In
following chapters, you'll learn about more advanced HP 48 programming
features:

m Conditional expressions (chapter 26).
m Looping structures (chapter 27).

m Flags (chapter 28).

® Interactive programs (chapter 29).

» Error trapping (chapter 30).

This chapter covers basic HP 48 programming concepts:
® Entering and executing programs.
= Editing programs.
Using local variables in programs.
m Stack manipulation of data in programs.

25: Programming Fundamentals 469

m Using subroutines.
m Single-step execution of programs.
The Programmer’s Reference Manual for the HP 48 (part number 00048-

90054) contains useful programming information, including complete
syntax information for all HP 48 commands.

Entering and Executing a Program

Entering a Program

To define the beginning of a program, press (€] [« »). The FRG
annunciator appears, indicating Program-entry mode. In this mode,
pressing the key for any command now writes the command’s name in the
command line. (You can also type the command name into the command
line with alpha characters.) Only nonprogrammable operations such as

(«] and are executed.

The following program, SPH, calculates the volume of a spherical cap of
radius r and height 4.

The volume is calculated by V' = %rhz (3 -h).

470 25: Programming Fundamentals

In this and following chapters on programming, “stack diagrams” are used
as appropriate to show what arguments must be on the stack before a
program is executed and what results the program leaves on the stack.
Here is the stack diagram for SPH.

Arguments Resulits

o .

1: volume

= M
e

The diagram indicates that SPH takes no arguments from the stack and
returns the volume of the spherical cap to level 1. (SPH assumes that you
have stored the numerical value for the radius in variable R and the
numerical value for the height in variable H.)

Program listings are shown with program steps in the left column and
associated comments in the right column. Remember, you can either
press the command keys or type in the command names to key in the
program. In this first listing, the keystrokes are also shown.

Program: Keys: Comments:
% ([q)«»] Begins the program.
13 0D1E=3 Begins the algebraic expression to
calculate the volume.
FMWEHA2 x Q=) Multiplies by 7h2,
xIHD2
#{3*R-H)>"' x] QY Multiplies by 3r — h, completing
3xJR[) the calculation and ending the
H]] expression.
*HUH [»][=NUM] Converts 7 to a number.
® Ends the program.
Puts the program on the stack.
[] SPH {sTC) Stores the program in variable
SPH.

25: Programming Fundamentals 471

Executing a Program

There are several ways to execute SPH:
= Type SPH in the command line, then press [ENTER].
m Select the VAR menu, then press = $PH .
m If the program or the program name is already in level 1, press

(EVAL).

Example: Executing a Program from the VAR Menu. Use SPH
to calculate the volume of a spherical cap of radius 7 = 10 mm and height
h =3 mm.

First, store the data in the appropriate variables. Then select the VAR
menu and execute the program. The answer is returned to level 1 of the
stack.

10 (J R (sTO] 1: 294. 469084942
3 [l H[sTO) e S o) o [))) i)
HSPHE

Editing a Program

Follow the same rules to edit a program as you do to edit any other object
(see “Displaying Objects For Viewing or Editing” on page 66).

Example: Editing a Program. Edit SPH so that it stores the number
in level 1 into variable H and the number in level 2 into variable R.

Use the VAR menu and to call SPH to the command line for
editing.

¢ '1/3%yxH" 2% (3%R-H
0 spH)" SNUM
() ViSIT] >

(ETRIPITHIPS T €UEL [UELS [INT o[oTH]

Move the cursor past the first program delimiter and insert the new
program steps.

) O H) G570 «'H' STO 'R' STO 41-3..
0 R &) ET0))t N

CEIES

472 25: Programming Fundamentals

Save the edited version of SPH in the variable. To verify that the changes
were saved, recall SPH to the command line.

« 'H' STO 'R' STO '
0 sp 1/3%wxH 2% (3*R-H) "
Vs el

[$sKip[sKip>] €0EL |UELS [INS s BSTH]
No further changes need to be made, so press to abort the editing
session or to resave the program.

The edited version of SPH now takes two arguments from the stack, the
height from level 1 and the radius from level 2.

Using Local Variables

The program SPH in the previous section uses global variables for data
storage and recall. There are disadvantages to using global variables in
programs:

m After program execution, global variables that you no longer need to

use must be purged if you want to clear the VAR menu and free user
memory.

m You must explicitly store data in global variables prior to program
execution, or have the program execute STO.

In this section, you'll sec how local variables address the disadvantages of
global variables in programs. Local variables are temporary variables
created by a program. They exist only while the program is being executed
and cannot be used outside the program. They never appear in the VAR
menu.

To create local variables, you must use the following sequence of
command and objects, called a local variable structure:

1. The — command (press [](=]).

2. One or more variable names.

3. A procedure (an algebraic expression or a program) that includes
the names. This procedure is called the defining procedure.

25: Programming Fundamenitals 473

The structure looks like this:
« + name, name, ...name, < program % »
or
& + name, name, ...name, 'algebraic expression' »
When the — command is executed in a program, n values are taken from

the stack and assigned to variables name,, name,, ... name, . For
example, if the stack contains:

{ WOME }

4:

3: 18
Z: 6
13 2y
[FafiT5[PROE | HYP [HATR[VECTE] EASE]

then:
® 3 a creates local variable a = 20.
® » a b creates local variablesa = 6 and b = 20.
m > a b c creates local variablesa = 10,b = 6, and ¢ = 20.

The defining procedure then uses the local variables to do calculations.
(By convention, this manual uses lowercase names for local variables.)

The following program SPHLYV calculates the volume of a spherical cap
using local variables. The defining procedure is an algebraic expression.

Arguments Results

221
1t h 1: volume

474 25: Programming Fundamentals

Program: Comments:

&
+r h Creates local variables r and h for
the radius of the sphere and height
of the cap.
"1/3xwxh"2%(3%r~h>"' Expresses the defining procedure. In
this program, the defining procedure
for the local variable structure is an
algebraic expression.
+MNUM Converts x to a number.
%
(ENTER) [J SPHLV Stores the program in variable
SPHLYV.

Example: Executing a Program That Uses Local Variables.
Use SPHLYV to calculate the volume of a spherical cap of radius r = 10
mm and height A = 3 mm.

Place the data on the stack in the correct order, then select the VAR
menu and execute the program.

10 [ENTER) 3 1: 254.469084942
(VAR] SPHLY Imnnm——l

The preceding program and example demonstrate the advantages of local
variable structures:

m The — command stores the value(s) from the stack in the
corresponding variable(s) — you do not need to explicitly execute
STO.

m Local variables automatically disappear when the defining procedure
for which they are created has completed execution. Consequently,
local variables do not appear in the VAR menu and occupy user
memory only during program execution.

m Local variables exist only within their defining procedure — different
local variable structures can use the same variable names without

conflict.

25: Programming Fundamentals 475

Evaluation of Local Names. Local names are evaluated differently
than global names. When a global name is evaluated, the object stored in
the corresponding variable is itself evaluated. (You've seen how programs
stored in global variables are automatically evaluated when the name is
evaluated.)

When a local name is evaluated, the object stored in the corresponding
variable is returned to the stack but is not evaluated. When a local
variable contains a number, the effect is identical to evaluation of a global
name, since putting a number on the stack is equivalent to evaluating it.
However, if a local variable contains a program, algebraic expression, or
global variable name, that object must be explicitly evaluated (by executing
EVAL) after it is returned to the stack.

Scope of Local Variables. Local variables exist only in the procedure
for which they are defined. The following sample program illustrates the
availability of local variables in nested defining procedures (procedures
within procedures).

Program: Comments:
% Starts the outer program.
che e For these arbitrary program steps,
no local variables are available.
> abc Creates local variables g, b, and c.
% Starts the defining procedure (a

program) for local variables a, b, and
c. This procedure is nested in the
outer program. Local variables a, b,
and ¢ are available in this procedure.

>de f Defines local variables d, e, and f.

Starts the defining procedure (an
algebraic expression) for local
variables d, e, and f. This procedure
is nested in the defining procedure
for local variables a, b, and c. Local
variables a, b, ¢, d, e, and f are

476 25: Programming Fundamentals

as(d¥e+f)

ac -/ -

Y

available in this procedure.

Ends the defining procedure for
local variables d, e, f. Local variables
d, e, and f no longer exist.

Local variables a, b, and ¢ remain
available.

Ends the defining procedure for
local variables a4, b, and c. Local
variables a, b, and ¢ no longer exist.

For these arbitrary program steps,
no local variables are available.

Ends the outer program.

Since local variables &, b, and ¢ already exist when the defining procedure
for local variables d, e, and f is executed, they are available for use in that
procedure. However, suppose that the defining procedure for local
variables d, e, and f calls a program that you previously created and stored

in global variable P1.

Program:

Pl+a-s(d¥e+f>

Comments:

Defines local variables d, ¢, and f.

Starts the defining procedure for
local variables d, e, and f.

The defining procedure executes the
program stored in variable P1.

25: Programming Fundamentals 477

' Ends the defining procedure for
local variables d, e, and f.

»

The six local variables are not available in program PI because they did
not exist when you created P1. The objects stored in the local variables
are available to program PI only if you put those objects on the stack as
arguments for PI or store those objects in global variables.

Conversely, program PI can create its own local variable structure with
local variables g, c, and f, for example, without conflicting with the local
variables of the same name in the procedure that calls P1.

Programs That Act Like User-Defined Functions. In this chapter
youw've learned that the defining procedure for a local variable structure
can be either an algebraic expression or a program. In chapter 10, you
learned that a user-defined function is a program that consists solely of a
local variable structure whose defining procedure is an algebraic
expression.

A program that begins with a local variable structure whose defining
procedure is a program acts like a user-defined function in two ways: It
takes numeric or symbolic arguments, and takes those arguments either
from the stack or in algebraic syntax. However, it does not have a
derivative, (The defining program must, like algebraic defining
procedures, return only one result to the stack.)

The advantage of using a program as the defining procedure for a local
variable structure is that a program can contain commands not allowed in
algebraic expressions. For example, the loop structures described in
chapter 27 are not allowed in algebraic expressions. The program BER in
chapter 31 calculates a Bessel function approximation to 12-digit accuracy.
BER uses a local variable structure whose defining procedure is an RPN
program that contains a FOR. . .STEP structure and a nested

IF.. THEN.. .ELSE...END structure. BER is not differentiable, but the
example in chapter 31 demonstrates that it can take its arguments either
from the stack or in algebraic syntax.

478 25: Programming Fundamentals

Programs That Manipulate Data on the Stack

The programs SPH (page 471) and SPHLV (page 475) in this chapter use
variables for data storage and recall. An alternative programming method
manipulates numbers on the stack without storing them in variables. This
method usually results in faster program execution time. There are several
disadvantages of the stack manipulation method:

® As you write a program, the location of the data on the stack must be
tracked. For example, data arguments must be duplicated if used by
more than one command.

m A program that manipulates data on the stack is generally harder to
read and understand than a program that uses variables.

The following program SPHSTACK uses the stack-manipulation method
to calculate the volume of spherical cap. (SPH and SPHLV execute the
same calculation.)

Arguments Results
a2 r 2
1= h 1: volume
Program: Comments:
&
DuUP Makes a copy of the number in level
1 (the height).
ROT Rotates the number now ia level 3
(the radius) to level 1.
3 % Multiplies the radius by 3.
SWAF - Swaps the height into level 1 and

subtracts, calculating 3r — h.

25: Programming Fundamentals 479

SWAP SQ = Swaps the copy of the height into
level 1, squares it, and multiplies by

3r-h
m™* 3/ Multiplies by x and divides by 3,
completing the calculation.
>HUM Converts x to a number,
®
(] SPHSTACK Puts the program on the stack, then
stores it in SPHSTACK.

Using Subroutines

Remember that a program is composed of objects and commands that are
executed when the program is executed. Because a program is itself an
object, it can be used by another program. When program B is used by
program A, program A calls program B, and program B is a subroutine in
program A.

This section introduces two programs to illustrate the use of subroutines.
The first program, TORSA, calculates the surface area of a torus of inner
radius @ and outer radius b. TORSA is used as subroutine in the second
program.

The surface area is calculated by:

A =n*(b? - a?)

480 25: Programming Fundamentals

Here is the stack diagram and program listing for TORSA.

Argumentis HResuits
2: a a:
i: b 1: area
Program: Comments:
&
+ab Creates local variables @ and b.
'vr2%(b"2-a"2)> ! Expresses the defining procedure for
the local variable structure.
+HUM Converts = to a number.
»
[ENTER] Puts the program on the stack.
[] TORSA Stores the program in TORSA.

Program TORSYV calculates the volume of a torus. It calls TORSA to
execute part of the calculation.

The formula for the volume of a torus is:
1, 2
V=Z1r (a +b)(b -a)
This equation can be rewritten as:
1 5.2 _ 2
V=zar (b*-a*)}(b -a)

The quantity #* (b? - @?) in this equation is the surface area of a torus
and can be calculated by executing TORSA.

25: Programming Fundamentals 481

Here is a stack diagram for TORSV.

Arguments Resulis
2: a 2:
1: b 1: volume
Program: Comments:
&
2 ab Creates local variables a and b.
€ Starts the defining procedure (a
program) for the local variable
structure.
a b TORSA Puts the numbers stored in g and b
on the stack as arguments for
TORSA, then call TORSA to
calculate the area #2(b? ~ @?).
ba-%4.v~ Completes the volume calculation.
» Ends the defining procedure.
» Ends the program.
Puts the program on the stack.
] TORSV Stores the program in TORSV.

TORSYV calls program TORSA to execute part of the volume calculation.
TORSA is a subroutine in TORSV. In turn, another program can call
TORSYV.

Example: Executing a Program That Uses a Subroutine. Use
TORSYV to calculate the volume of a torus of inner radius @ = 6 inches
and outer radius b = 8 inches.

Place the data on the stack according to the stack diagram. Select the
VAR menu and execute the program.

6 [ENTER) 8 1: 138. 174461616
TORSY T) T i i

482 25: Programming Fundamentals

Single-Step Execution of a Program

It’s easier to understand how a program works if you execute it step by
step, observing the effect of each step. Doing this can help you “debug”
your own programs or understand programs written by others.

The operations for single-stepping through a program are contained in
the PRG CTRL menu.

Single-Step Operations

Keys Programmable Description
Command
[+7][CONT] CONT Resumes execution of a halted
program.
IR
DEUG Takes as its argument the program or

program name in level 1. Starts
program execution, then suspends it
as if HALT were the first program
command.

SST. Executes the next object or command
in the suspended program.

S&Tw Sameas @ SST except whenthe
next program step is a subroutine.

When the next step is a subroutine,
single-stepis to the first step in that
subroutine.

25: Programming Fundamentals 483

Single-Step Operations (continued)

Keys | Programmable Description
Command

NEXT Displays the next one or two objects,
but does not execute them,

HALT HALT Suspends program execution at the
location of the HALT command in the
program.

KILL KILL Cancels all suspended programs.

Single-Step Execution from the Start of the
Program

In many cases, you want to begin single-step execution at the beginning of
a program. The general procedure is:

1. Put the program or program name in the command line or level 1.

2. Press .CTRL DBUG .Program execution is started, then
suspended before execution of the first object or command. The
HALT annunciator is displayed in the status area.

3. Optional: Press :HEXT to display in the status area, but not
execute, the next one or two program steps. The display persists
until the next keystroke.

4. Press 88 nce to see the first program step displayed in the
status area and then executed.

5. You can now:
m Keep pressing

m Press ' HEXT at any time to display but not execute the next
one or two program steps.

® Press [€1][CONT] to continue normal execution.

m Press KILL-toabandon further program execution,

o display and execute sequential steps.

484 25: Programming Fundamentals

Example: Single-Step Program Execution. Execute program
TORSYV step by step. Use the torus from the previous example (@ = 6
inches, b = 8 inches).

Select the VAR menu and enter the data. Return the program name to
the command line. Select the PRG CTRL menu and execute DBUG .
The HALT annunciator turns on, indicating that program execution has
been started, then suspended.

VARI € WOME 3})

6 [ENTER] 8 [ENTER] re

() TORSY 3

CTRE DBUG % %

[DEUG | ST [S5T4|NERT [HALT [KILL |

Execute SST . The first program step is displayed in the status area,
then executed.

SS8T +ab

[UEUG] 551 15514 |NERT | HALT | KILL

You can see that the first program step took the two arguments from the
stack and stored them in local variables @ and b.

e PN i

Refer to the rules at the beginning of this section. You've executed the
first four steps and can now choose one of the four alternatives described
in step 5. For this example, continue single-step execution until the HALT
annunciator disappears. Watch the stack and status area as you single-step
through the program.

88T ... 88T 1: 138. 174461616

[BEUSS | 5T [EITUINENT THRLY FRILL

25: Programming Fundamentals 485

Single-Step Execution from the Middle of the
Program

You may want to start single-step execution at some point in the program
other than the first step. To do so:

1. Insert the HALT command in the program. Place it where you want
to begin single-step execution,

2. Execute the program. When the HALT command is executed, the
program stops and the HALT annunciator is displayed.

3. Follow steps 3—5 on page 484.

4. When you want the program to run normally again, remove the
HALT command from the program.

Single-Step Execution of Subroutines

ST executes the next step in a program. If the next step is a
subroutine, * S5T executes that subroutine in one step. In the previous
example, youused SST to execute subroutine TORSA in one step.
However, you may want to single-step through a subroutine, executing
each individual step rather than the program as a whole. To do so, use the
88714 operation. S8T¥ works just like S$ST , except when the
next program step is a subroutine. In this case, $&T+ single-steps to
the first step in the subroutine.

Example: Single-Step Execution of a Subroutine. Exccute
program TORSYV step by step to calculate the volume of a torus of radii a
= 10 inches and b = 20 inches. When you reach subroutine TORSA,
execute it step by step.

Select the VAR menu and key in the data. Return the program name to
the command line, select the PRG CTRL menu, and execute DBUG.
Execute the first four steps of the program, then check the next step.

VAR
10 [ENTER] 12

() TORSY

CTRL DEUG
S8T+:(Oor 837) 4times
HEXT

TORSA b

18
: 12

EUG | SIT [SSTH[NERT [HALT [KICL

—oU0—B&

=
Gy

486 25: Programming Fundamentals

88T, TORSA will be

The next step is TORSA. If you now execute
88Ty .

executed. Since you want to single-step through TORSA, execute
Then verify that you are now at the first step of TORSA, not the next step

of TORSV.

+ a

sz == =T ==

—rou

12
[DEUG | S5T [SST4|NEUT [HALT [KILL |

Execute - 88T or $8T+ repeatedly to single step through the
remainder of the program, or at any time, press [H] to resume

program execution.

25: Programming Fundamentals 487

26

Tests and Conditional Structures

9,

This chapter describes commands and program structures that, used
together, let programs ask questions and make decisions:

® Comparison functions and logical functions let a program test whether
or not a specified condition exists.

& Program structures called conditional structures use test results to
make decisions.

Example: Tests and Conditional Structures. The program in this
example uses a test inside a conditional structure to execute the following
task:

“If the two numbers on the stack have the same value, drop one of the
numbers from the stack and store the other in variable V1. If, however, the
numbers are not equal, store the number from level 1in VI and the number
from level 2 in V2.”

488 26: Tests and Conditional Structures

Program:

puP2
IF

SAME

THEN

DROP
'“1' STO

ELSE

'¥1' STO
‘Y2' STO

EHND

3

[ENTER] (0 TST

Commeants:

Starts the program.
Copies the numbers in levels 1 and 2.

Starts the test clause of the
conditional structure.

Tests if the numbers have the same
value.

Ends the test clause and starts the
true clause of the conditional
structure. The true clause is executed
only if the test is true.

If the test is true (if the numbers are
the same), then drops one of the
numbers from the stack and stores
the remaining number in V1.

Starts the false clause of the
conditional structure. The false
clause is exccuted only if the: test is
Jalse.

If the test is false, (if the nummbers
are not the same), then stores the
level 1 number in V1 and the level 2
number in V2.

Ends the conditional structure.
Ends the program.

Puts the program on the stack and
stores it in TST.

26: Tests and Conditional Structures 489

Enter the numbers 26 and 52, then execute TST to compare their values.

26 [ENTER] 52 | i e
18T

Since the two number were not equal, the VAR menu now contains two
new variables V1 and V2. You can verify that the variables contain the
numbers you entered by pressing both menu keys.

Program T;;i;

A test is an algebraic or a command sequence that returns a test result to
the stack. A test result is either a 1 —which means the test was true, or a
& — which means the test was false. For example, 'X<Y' is a test. The
same test could be executed as a command sequence: ¥ ¥ <. In either
case, if X contains 5 and Y contains 10, then the test is true, and 1 is
returned to the stack. Conditional structures (discussed later in the
chapter) use a test result to determine which clause of the structure to
execute.

The commands used in tests can be categorized as follows:
s Comparison functions.
® Logical functions.
8 Flag-testing commands. Flags and flag testing commands are
discussed in chapter 28, “Flags.”

These commands are located in the PRG TEST menu (press
TEST::-:_:)'

490 26: Tests and Conditional Structures

Comparison Functions

Comparison functions compare two objects.

Comparison Functions

Keys | Programmable Description
Command
TEST (pages 1and 2):
< < Less than.
> > Greater than.
£ < Less than or equal to.
= > Greater than or equal to.
== == Tests equality of two objects. For
algebraics or names, returns an
expression that can be evaluated to
produce a test result based on
numerical values.
Not equal. Like = =, but returns the
opposite test resuit.
SAME SAME Like = =, but does not allow a
compariscn between the numerical
value of an algebraic (or name) and a
number.

<, >, < and > compare two real numbers, two binary integers, or two
strings returning 1 (true) or 9 (false) based on the comparison. The
order of the comparison is level 2 test level 1, where test is the
comparison function. For example, if 6 is stored in X, ¥ 5 <{ removes &
and S from the stack and returns 8. If one object is an algebraic (or
name) and the other object is an algebraic (or name) or a number, <, >,
<, and > return an expression that must be evaluated to return a test
result. For strings, “less than” means alphabetically previous. For
example, "AAA" is less than "AARE".

26: Tests and Conditional Structures 491

= = takes two objects from the stack and:

m If either object is not an algebraic or a name, returns 1 if the two
objects are the same type and have the same value, or 9 otherwise.
Lists and programs are considered to have the same value if the
objects they contain are identical.

= If one object is an algebraic (or name) and the other object is an
algebraic (or name) or a number, returns an expression that must be
evaluated to return a test result.

(Note that = = is used for comparisons, while = separates two sides of an
equation.)

works just like = =, except that the test results are opposite.

SAME returns 1 (true) if two objects identical. For example, 'X+3' 4
SHME returns @ regardless of the value of X because the algebraic
'A+3' is not identical to the real number 4. For all object types other
than algebraics and names, SAME works just like = =.

Using Comparison Functions in Algebraics. Comparison
functions (except SAME) can be used in algebraics as infix functions. For
example, if 6 is stored in X, 'X<5' 3NUM returns @.

492 26: Tests and Conditional Structures

Logical Functions

Logical functions return a test result based on the outcomes of two
previously executed tests. Note that these four functions interpret any
non-zero argument as a true result.

Logical Functions

Keys | Programmable Description
Command

AND AND Returns 1 (true) if both arguments are
true.
OR OR Returns 1 (true) if either or both

arguments are true.

20R XOR Returns 1 (true) if either, but not both,
arguments are true.

MOT NOT Returns 1 (true) if the argument is &
(false); otherwise, returns @ (false).

AND, OR, and XOR are used to combine two test results. For example, if
4isstoredinY, ¥ 2 < 5 AMD returns 1. First, ¥ 8 < returns 1 to
the stack. AND removes 1 and S from the stack, interpreting both as
true results, and returns 1 to the stack.

NQT returns the logical inverse of a test result. For example, if 1 is stored
inXand2isstoredinY, X ¥ < HNOT returns 8.

Using Logical Functions in Algebraics. AND, OR, and XOR can
be used as infix functions in algebraics. For example, '3<35 XOR 47
+HUM returns 1.

NOT can be used as a prefix function in algebraics. For example, 'HOT
Z2£4' sNUMreturns 6if Z = 2.

26: Tests and Conditional Structures 493

Testing Object Types

The TYPE command ([PRG] TEST TYFE)takes any object as its
argument and returns the number that identifies that object type. The
table on page 97 in chapter 4 lists the HP 48 objects and their
corresponding type number.

Conditional Structures

The HP 48 conditional structures let a program make a decision based on
the result of a test or tests. Conditional structures are built with
commands that work only when used in proper combination with each
other. These commands are contained in the PRG BRCH menu ([PRG)
BRCH).

The conditional structures are:

m JF...THEN...END.

m IF... THEN...ELSE...END.

s CASE...END.

The IF...THEN...END Structure

IF.. . THEN.. . END executes a sequence of commands only if a test
evaluates to true. The syntax is:

IF test-clause THEH true-clause EHL:

The test-clause can be a command sequence (for example, A E £) or an
algebraic (for example, 'A<E"'). If the test-clause is an algebraic, it is
automatically evaluated to a number (-NUM or EVAL isn’t necessary).

As a typing aid, press (1) IF to key in:

IF
THEH
EHD

494 26: Tests and Conditional Structures

Example 1: IF.. .THEN. . .END. Both programs below test the value
in level 1. If the value is positive it is made negative. The first program
uses a command sequence as the test-clause:

« DUP IF 8 > THEN NEG END ¥
The value on the stack must be duplicated because the > command
removes two arguments from the stack (the copy of the value made by
DUP, and 0).

The next version uses an algebraic as the test clause:

€ % x &« IF 'x>8' THEM x NEG EHD » »

Example 2: IF.. .THEN. . .END. This program multiplies two
numbers together if both are non-zero.

Program: Comments:
€
+ Xy Creates local variables x and y
containing the two numbers from the
stack.
%
IF Starts the test-clause.
'x=8" Tests one of the numbers and leaves

a test result on the stack.

'y=@' Tests the other number, leaving
another test result on the stack.
AND Tests whether both tests were true.
THEN Ends the test-clause, starts the true-
clause.
Ky ¥ If AND returns true, multiplics the

two numbers together.

26: Tests and Conditional Structures 495

EHD Ends the true-clause.

The following program accomplishes the same task as the previous
program;

% owog % IF 'x AMD o' THEM = g % EHD #* »

The test-clause ': AML' u' returns “true” if both numbers are non-
Zero.

How IF. . .THEN. . .END Works. IF begins the test-clause, which
leaves a test result on the stack. THEN removes the test result from the
stack. If the value is non-zero, the true-clause is executed. Otherwise,
program execution resumes following END.

The IF.. . THEN.. .ELSE.. .END Structure
IF.. THEN.. .ELSE...END executes one sequence of commands if a test

is true, and another sequence of commands if that test is false. The syntax
is:

IF test-clause THEH true-clause ELSE false-clause EHD

If the test-clause is an algebraic, it is automatically evaluated to a number
(—NUM or EVAL isn’t necessary).

As a typing aid, press (] IF tokeyin:

IF
THEH
ELZE
EHD

496 26: Tests and Conditional Structures

Example 1: IF...THEN. . .ELSE. . .END. The following program
takes a value x from the stack and calculates sin x/x. Atx = 0 the division
would error, so the program returns the limit value 1 in this case:

« » x € IF 'x#@' THEN x SIN x ~ ELSE 1 END » »

Example 2: IF.. THEN.. .ELSE.. .END. This program, like example
2 for IF.. THEN. . .END, multiplies two numbers together if they are
both non-zero. However, the program returns the string "ZERO" if
either value is 0.

Program: Comments:
%
+ nl n2 Stores the values from levels 1 and 2
in local variables.
% Starts the defining procedure for the
local variable structure.
IF Starts the test clause.
'n1*8 AND n2=8' Tests nl and n2.
THEM If both numbers are non-zero ...
nl n2 % ... multiplies the two values.
ELSE If both numbers are not non-zero . ..
"ZERO" ... returns the string ZER0.
END Ends the conditional.
b4 Ends the defining procedure.
P

How IF.. . THEN. . .ELSE...END Works. IF begins the tesi-clause,
which leaves a test result on the stack. THEN removes the test result from
the stack. If the value is non-zero, the true-clanse is executed. Otherwise,
the false-clause is executed. After the appropriate clause is executed,
execution resumes following END.

26: Tests and Conditional Structures 497

The CASE.. .END Structure

The CASE.. END structure lets you execute a series of cases (tests). The
first test that returns a true result causes execution of the corresponding
true-clause, ending the CASE...END structure. Optionally, you can
include after the last test a default clause that is executed if all the tests
evaluate to false.

The CASE.. . END structure has the syntax:

CHSE
test-clause, THEN true-clause, END
test-clause, THEN true-clause, END
test-clause,, THEH true-clause, EHD
default-clause (optional)

EHD

As typing aids, press [#) CASE to key in:

CHRSE
THEH
END
EMD

and [®]) THSE to key in:

THEHM
EHD

Example: The CASE...END Structure. The following program
stores the level 1 argument in a variable if the argument is a string, list, or
program.

498 26: Tests and Conditional Structures

Program: Comments:

€
ry Stores the argument in local variable
y.
€ Starts the defining procedure.
CRSE Starts the case structure.
g TYPE 2 SAME Case 1: If the argument is a string,
THEN y 'STR' STO EHD stores it in STR.
gy TYPE 5 SAME Case 2: If the argument is a list,
THEN y 'LIST' STO END storesitin LIST.
4 TYPE 8 SAME Case 3: If the argument is a program,
THEN y 'PROG* STO END stores it in PROG.
END Ends the case structure.
* Ends the defining procedure.
»

How CASE.. END Works. When CASE is executed, test-clause; is
evaluated. If the test is true, true-clause, is executed, and execution skips
to END. If test-clause, is false, execution proceeds to test-clause;.
Execution within the CASE structure continues until a true-clause is
executed, or until all the test-clauses evaluate to false. Optionally, a
default clause can be included. In this case, the default-clause is executed
if all the test-clauses evaluate to false.

Conditional Corhmands

The IF.. THEN.. END and IF.. THEN. . ELSE structures are useful for
situations where the true-clause and false-clause are sequences of
commands and objects. Two commands, IFT (If.. Then) and IFTE

(If.. Then.. .Else), let you easily execute the same decision-making
process if the true- and false-clauses are each a single command or object.

26: Tests and Conditional Structures 499

The IFT (H-Then-End) Command

The IFT command takes two arguments: a test result in level 2 and an
object in level 1 (the “true clause”). The object in level 1 is executed if the
test result is true.

Example: The IFT Command. The following program removes a
number from the stack and displays POSITIVE if the number is positive.

€« @ > "POSITIVE" IFT »

The IFTE Function

The IFTE function takes three arguments: a test result in level 3, and
objects in levels 2 and 1. The level-2 object (the “true-clause”) is executed
if the test result is true. Otherwise, the level-1 object (the “false-clause”)
is executed.

Example: The IFTE Command. This program takes a value from
level 1 and displays POSITIVE if it is positive or zero, and NEGATIVE
otherwise:

€ @ > "POSITIVE" “"NEGATIVYE" IFTE »
Using IFTE in Algebraics. The IFTE function can also be used asa
function in algebraics. It has the syntax:

IFTE (test, true-clause, false-clause

Example: The IFTE Function. This program is a user-defined

function that takes a number (x) from the stack and calculates sin(x) /x if x
is non-zero. If x is 0, the program returns 1:

® » X '"IFTE(x#8, SIN(x)/xs1)"' »

500 26: Tests and Conditional Structures

Loop Structures

Loop structures execute a part of a program repeatedly. There are two
fundamental types of loops:

m For a definite loop, the program specifies in advance how many times
the loop clause will be executed.

m In an indefinite loop, the program uses a test to determine whether to
exccute the loop-clause again.

Like the conditional structures described in chapter 26, looping structures
are built with commands that work only when used in proper combination
with each other. These commands are contained in the PRG BRCH menu

(PFRG] BRCH).

_Definite Loop stTuc_tures

There are two definite loop structures. Each has two variations:
m START.. NEXT and START.. .STEP.
u FOR.. NEXT and FOR.. STEP.

27: Loop Structures 501

The START...NEXT Structure

START. . .NEXT executes a portion of a program a specified number of
times. The syntax is:

start finish START loop-clause HEXT

As a typing aid, press [Q]JSTHRT to key in:

START
NEXT

Example: A START...NEXT Loop. The following program creates a
list containing ten copies of the string "ABC":

€« 1 1@ START "ABC" HEXT 18 *LIST »

How START. ..NEXT Works. START takes two numbers (start and
tinish) from the stack and stores them as the starting and ending values
for a loop counter. Then, the loop-clause is executed. NEXT increments

the counter by 1 and tests to see if its value is less than or equal to finish.
If so, the loop-clause is executed again.

502 27: Loop Structures

Syntax Flowchart

start 1: start
finish 2: finish

counter=siart
Store finish

v

loop-clause Body of loop [

Y

counter=
counter+1

NEXT ° 'L

START

yes

Is
counter <
finish?

Notice that the loop-clause is always executed at least once.

27: Loop Structures 503

The START...STEP Structure

START.. .STEP works just like START.. NEXT, except that it lets you
specify an increment value other than 1. The syntax is:

start finish START loop-clause increment STEP

As a typing aid, press []JSTART to key in:

START
STEP

Example: A START...STEP Loop. The following program takes a
number x from the stack and calculates the square of that number x/3
times:

€ DUP » x #« x 1 STRART x S& -3 STEP »

How START...STEP Works. START takes two numbers (sfart and
finish) from the stack and stores them as the starting and ending values of
the loop counter. Then, the loop-clause is executed. STEP takes the
increment value from the stack and increments the counter by that value.
If the argument of STEP is an algebraic or a name, it is automatically
evaluated to a number.

The increment value can be positive or negative. If it is positive, the loop
is executed again when the counter is less than or equal to final. If the
increment value is negative, the loop is executed when the counter is
greater than or equal to final. In the following flowchart, the increment
value is positive.

504 27: Loop Structures

Syntax Flowchart

zﬁgh 1: start
2: finish
START counter=start
Store finish
loop-clause Body of loop
increment . +
1: increment yes
(
counter=counter+
increment
STEP ¢ +
Is
\

counter <
finish?

27: Loop Structures

The FOR...NEXT Structure

A FOR. . NEXT loop executes a program segment a specified number of
times using a local variable as the loop counter. You can use this variable
within the loop. The syntax is:

start finish FORr counter loop-clause HEXT

As a typing aid, press [(q) FOR - to key in:

FOF
HE=T

Example 1: A FOR...NEXT Loop. The following program places the
squares of the integers 1 through 5 on the stack:

€ 1 5 FOR j J S0 HEST =

Example 2: A FOR.. .NEXT Loop. The following program takes the
value x from the stack and computes the integer powers i of x. For
example, when x = 12 and start and finish are 3 and 5 respectively, the
program returns 123, 124, and 12°. It requires as inputs start and finish in
levels 3 and 2, and x in level 1:

£ % % # FOR n 'x*n' EVAL HEXT » =

+ « removes x from the stack, leaving start and finish there as arguments
for FOR.

How FOR. . .NEXT Works. FOR takes start and finish from the stack
as the beginning and ending values for the loop counter, then creates the
local variable counter as a loop counter. Then, the loop-clause is
executed; counter can appear within the loop clause. NEXT increments
counter by one, and then tests whether counter is less than or equal to
finish. If so, the loop-clause is repeated (with the new value of counter).

When the loop is exited, counter is purged.

506 27: Loop Structures

Syntax

start
finish

FOR

loop-clause

NEXT ¢

Flowchart

1: skart
2: finish

counter=start
Store finish

v

Body of loop

nE

v

counter=
counter +1

yes

Y

Is
counter <
finish?

27: Loop Struciures 507

The FOR...STEP Structure

FOR.. STEP works just like FOR.. NEXT, except that it lets you specify
an increment value other than 1. The syntax is:

start finish FOR counter loop-clause increment STEF

As a typing aid, press [*] FOR:" to key in:

FOR
STEP

Example 1: A FOR...STEP Loop. The following program places the
squares of the integers 1, 3, 5, 7, and 9 on the stack:

% 1 9 FOR x x S0 2 STEP =»

Example 2: A FOR...STEP Loop. The following program takes n
from the stack, and returns the series of numbers 1,2, 4, 8,16, ...n. If n
isn’t in the series, the program stops at the last value less than n:

« SWAF FOR n o STEF =

How FOR...STEP Works. FOR takes start and finish from the stack
as the beginning and ending values for the loop counter, then creates the
local variable counter as a loop counter. Next, the loop-clause is executed;
counter can appear within the loop clause. STEP takes the increment
value from the stack and increments counter by that value.

The increment value can be positive or negative. If the increment is
positive, the loop is executed again when counter is less than or equal to
final. If the increment is negative, the loop is executed when counter is
greater than or equal to final.

When the loop is exited, counter is purged.

(In the following flowchart, the increment value is positive.)

508 27: Loop Structures

Syntax

slart
finish

loop-clause

increment

STEP ¢

Flowchart

1: siart
2: finish

v

counter=start
Store finish

v

Body of loop €

v

1: increment

counter=counter+
increment

Y

Is
counter <

finish?

27: Loop Structures

yes

508

-Indefinite Loop Structures

The DO...UNTIL...END Structure

DO...UNTIL...END... exccutes a loop repeatedly until a test returns a
true (non-zero) result. Since the test-clause is executed after the loop-
clause, the loop is always executed at least once. The syntax is:

00 Joop-clause UNTIL test-clause END

As a typing aid, press () D

~to keyin:

Do
UHMTIL
EHD

Example: A DO...UNTIL...END Loop. The following program
calculatesn + 2n + 3n + ... for a value of n. The program stops when the
sum exceeds 1000, and returns the sum and the coefficient of n.

Program: Comments:

&«

DUP 1 2 n 5 Duplicates n and stores the value
into n and s; initializes counter ¢ to 1.

« Starts the defining procedure, in this
case a program, for the local variable
structure.

oo Starts the loop-clause.

c' INCR Increments the counter by 1. (INCR
is discussed on page 513.)

n % 's' STO+ Calculates ¢ x n, and adds the
product to s.

510 27: Loop Structures

UNTIL Starts the test clause.

s 1666 > Repeats loop until s> 1000.
END Ends the test-clause.
s cC Puts s and ¢ on the stack.
» Ends the defining procedure.

*

How DO...UNTIL...END Worlks. DO starts execution of the loop-
clause. UNTIL ends the loop clause and begins the test-clause. The test-
clause leaves a test result on the stack. END removes the test result from
the stack. If its value is zero, the loop-clause is executed again; otherwise,
execution resumes following END.

Syntax Flowchart
DO
loop-clause Body of loop &
UNTIL ¢
Test
test-clause ¢ no
1: test result
END test result

non-zero?

27: Loop Structures 511

The WHILE.. .REPEAT.. .END Structure

WHILE. . REPEAT...END repeatedly evaluates a test and executes a
loop-clause if the test is true. Since the test-clause occurs before the
loop-clause, the loop-clause is never executed if the test is initially false.
The syntax is:

WHILE test-clause REPEAT loop-clause EHND

As a typing aid, press [QJWHILE to key in:

WHILE
REPERT
EMD

Example 1: A WHILE.. .REPEAT...END Loop. The following
program starts with a number on the stack, and repeatedly performs a
division by 2 as long as the result is evenly divisible. For example, starting
with the number 24, the program computes 12, then 6, then 3:

« WHILE DUF 2 MOD @ == REPERT & ~ DUF EHND DREOF =

Example 2: A WHILE.. .REPEAT...END Loop. The following
program takes any number of vectors or arrays from the stack and adds
them to the statistics matrix. (The vectors and arrays must have the same
number of columns.) WHILE. ..REPEAT.. .END is used instead of
DO...UNTIL...END because the test must be done before the addition.
(If only vectors or arrays with the same number of columns are on the
stack, the program errors after the last vector or array is added to the
statistics matrix.)

% WHILE DUP TYPE 2 == REPERT =+ EHD =»
How WHILE. . .REPEAT...END Works. The test-clause is executed
and returns a test result to the stack. REPEAT takes the value from the

stack. If the value is non-zero, execution continues with the loop-clause;
otherwise, execution resumes following END.

512 27: Loop Structures

Syntax Flowchart

WHILE
—3s- Test
test-clause ‘L
1: test result
REPEAT
Is
test result
non-zero?
Ioop-(l:Iause —1 Body of loop
END \

Loop Counters (INCR and DECR)

The INCR (increment) command ([*][MEMORY] IHNCR)takes a global
or local variable name as its argument. The variable must contain a real
number. The command:

a Returns the new value of the variable.
= Increments by 1 the value stored in the variable.

For example, if ¢ contains the value 5, 'c' IHCR returns 6 to the stack
and stores 6 in c.

The DECR (decrement) command is analogous to INCR, except that it
subtracts 1 from the specified variable.

27: Loop Structures 513

Example: Using a Loop Counter with an Indefinite Loop. The
following program takes a maximum of five vectors from the stack and
adds them to the current statistics matrix.

Program:

&«

B3 c

WHILE

DUF TYFE 3 ==

c' IHCR

AHD

REFERT
Z+
END

514 27: Loop Structures

Comments:

Stores 0 in local variable c.

Starts the defining procedure for the
local variable structure.

Starts the test clause.

Returns true if level 1 contains a
vector.

Increments the value in ¢ and puts
the incremented value in level 1.

Returns true if the incremented
value of ¢ < 5.

Returns true if the two previous test
results are true.

Adds the vector to ZDAT.

Ends the WHILE. . REPEAT
structure.

Ends the defining procedure.

Flags are an important programming tool in the HP 48. You can think of
a flag as a switch that is either on (sef) or off (clear). A program can test a
flag’s state within a conditional or looping structure (described in the
previous chapters) to make a decision. Since flags have unique meanings
for the calculator, flag tests expand a program’s decision-making
capabilities beyond that available with comparison and logical functions.

Flag Types

There are two types of flags in the HP 48: system flags, numbered -1
through —64; and user flags, numbered 1 through 64. System flags have a
predefined meaning for the calculator. For example, system flag —40
controls the clock display — when this flag is clear (the default state), the
clock is displayed only when the TIME menu is selected; when this flag is
set, the clock is displayed at all times. (Actually, when you press -~ CLK
in the MODES menu, you set or clear flag —40.) Appendix E lists the 64
system flags and their definitions.

28: Flags 515

User flags are not used by any built-in operations; what they mean
depends entirely on how you define them. When you set a user flag 1
through 5, the corresponding annunciator is activated. (Note that plug-in
cards, described in chapter 34, may affect the settings of user-flags
31—64)

Setting, Clearing, and Testing Flags

The following commands take as their argument a flag number — an
integer 1 through 64 (for user flags), or —1 through —64 (for system

flags).

Flag Commands

Keys | Programmable Description
Command

TEST (page 3) (or [][MODES] pages 2 and 3):

k-] SF Sets the flag.
CE CF Clears the flag.
Fg? FS? Returns true (1) if the flag is set, or

false (9) if the flag Is clear.

FC? FC? Returns true (1) if the flag is clear, or
false (8) if the flag Is set.

FS2C FS?C Tests the flag (returns true if the flag is
set), then clears the flag.

EC?ZC FC?C Tests the flag (returns true if the flag is
clear), then clears the flag.

Example: Testing a System Flag. The following program sets an
alarm for June 6, 1991 at 5:05 PM. It first tests the status of system flag
—42 (the Date Format flag) in a conditional structure and then supplics
the alarm date in the current date format, based on the test result.

516 28: Flags

Program:

&«

IF
-42 FC?

THEN
6£.151991

ELSE
15.861991

EMD

17.85 "TEST COMFLETE"
3 2LIST STOALARM

b4

Comments:

Tests the status of flag —42, the Date
Format flag.

If flag — 42 is clear, supplies the date
in month/day/y/ear format.

If flag —42 is set, supplies the date in
day.month.year format.

Ends the conditional.

Completes the set-alarm command
sequence. (17. @5 is the alarm time
and "TEST COMPLETE" is the
alarm message.)

Example: User Flags in Programs. The following program returns
either the fractional or integer part of the level 1 argument, depending on

the state of user flag 10.

Program:

%

IF

1@ FS?
THEN

IP
ELSE

Fp

END

Comments:

Starts the conditional.

Tests the status of user flag 10.
If flag 10is set ...

... returns the integer part.

If flag 10 is clear ...

... returns the fractional part.

Ends the conditional.

28: Flags 517

Before you execute this program, you set flag 10 if you want to return the
integer part of the argument, or you clear flag 10 if you want to return the
fractional part of the argument. Flag 10 is defined to have a unique
meaning in the program; its status determines which part of the level 1
argument is returned to the stack.

Recalling and Storing the Flag States

The RCLF (recall flag status) and STOF (store flag status) commands let
you recall and then store the status of the HP 48 flags. The commands let
a program that alters the status of a flag or flags during execution
preserve the pre-program-execution flag status.

Recalling the Flag States

RCLF returns a list containing two 64-bit binary integers that represent
the current status of the system flags and user flags respectively:

£ #n, #n, >

The rightmost (least significant) bits of #n, and #n, represent the states
of system flag ~1 and user flag +1 respectively.

Storing the Flag States

STOF sets the current states of the system flags, or the states of both the
system and user flags. It takes as its argument either:

m A single binary integer (#n,), in which case only the corresponding
system flags are set or cleared.

m A list containing two binary integers (¢ #n, #n, 3), in which case
the corresponding system and user flags are set or cleared.

A bit with value 1 sets the corresponding flag; a bit with value 0 clears the
corresponding flag. The rightmost (least significant) bits of #n, and #n,
set the states of system flag — 1 and user flag +1 respectively.

The program PRESERVE on page 555 in chapter 31 uses RCLF and
STOF.

518 28: Flags

29

Interactive Programs

Simple programs like those in chapter 25 use data that is supplied before
program execution and return results as unlabeled numbers. Such
programs may be difficult to use, particularly if you are not the program
author. You must know what arguments to enter on the stack and in what
order to enter them, and you must know how to interpret the results
returned to the stack.

Interactive programs do any of the following:
= Stop during execution to prompt you for data.

s Display program results with explanatory messages or tags.

m Stop during execution so that you can make a choice about how you
want the program to proceed.

29: Interactive Programs 519

Suspending Program Execution for Data

Input
Data Input Commands
Keys Programmable Description
Command
[*)(CONT] CONT Restarts a halted program.
CTRE (pages 1, 2 and 3):
HALT HALT Halts program execution.

INFUT INPUT Suspends program execution for data
input. Prevents stack operations while
the program Is paused.

PROM PROMPT Halts program execution for data input.

DISF DISP Displays an object in the specified line
of the display.

HALT WAIT Suspends program execution for x
seconds, where x Is a number from
level 1.

—KET— KEY Returns a test result to level 1 and, if a

key is pressed, the location of that key.
BEEFE BEEP Sounds a beep at a specified
frequency for a specified duration.
DSPL (page 4):

CLLCD CLLCD Blanks the display.

FREEZ FREEZE “Freezes" a specified area of the
display so that it is not updated until a
key press.

520 29: Interactive Programs

The PROMPT Command

PROMPT takes a string argument from level 1, displays the string
(witbout the " delimiters) in the status area, and halts program
execution. Calculator control is returned to the keyboard. Program
execution is resumed by executing CONT. For example, when you execute
the program segment:

« "ABC?" PROMPT »

the display looks like this:
ABC?
4:
3:
et
[PaiT:[PROE | VP | MATR]VECTR] BASE |

The message is displayed until you press [ENTER] or {ATTN] or until you
update the status area (for example, by pressing [+3][REVIEW]).

The following program, TPROMPT, prompts you for the dimensions of a
torus, then calls program TORSA (chapter 25, page 481) to calculate its
surface area. You don’t have to enter data on the stack prior to program
execution.

Arguments Results

1: 1: area

Program: Comments:

%«

"ENTER a, b IN ORDER:" Puts the prompting string on the
stack.

29: Interactive Programs 521

PROMPT Displays the string in the status area,
halts program execution, and returns
calculator control to the keyboard.

TORSA Executes TORSA, using the just-
entered stack arguments.

*
[ENTER]) [] TPROMPT Stores the program in TPROMPT.

Example: Prompting for Data Input in a Program. Execute
TPROMPT to calculate the volume of a torus with inner radiusa = 8
inches and outer radius b = 10 inches.

Select the VAR menu and start TPROMPT.
TPRO ENTER as b IN ORDER:

The program prompts you for data. Enter the inner and outer radii. Note
that after you press [ENTER], the prompt message is cleared from the
status area.

8 [ENTER] 10 e 5 T
3:
23
12 8
104
rorswlvernfenanl] T)

Continue the program.

Qo 1: 355. 395758439
) A T T S e

The answer is returned to level 1 of the stack.

Note that when program execution is suspended by PROMPT, you can
exccure calculator operations just as you did before you started the
program. Suppose the outer radius b of the torus in the previous example
is measured as 0.83 feet. You can convert that value to inches while the
program is suspended for data input by pressing .83 12 [x].

522 29: Interactive Programs

The BEEP Command

The BEEP command lets you enhance an interactive program with
audible prompting. BEEP takes two arguments from the stack: the tone
frequency from level 2 and the tone duration from level 1. The following
edited version of TPROMPT sounds a 440-hertz, one-half-second tone at
the prompt for data input.

Program: Comments:

&

b4

“"ENTER ay, b IN ORDER:"

448 .S BEEP Sounds a tone to audibly supplement
the prompt for data input.

PROMPT

TORSAH

The DISP, HALT and FREEZE Commands

DISP, HALT, and FREEZE can be used together to prompt for data
input:

m DISP displays an object in a specified line of the display. DISP takes

two arguments from the stack: an object from level 2, and a display-
line number 1 through 7 from level 1. To facilitate the display of
messages, DISP displays string objects without the surrounding "
delimiters.

Note that the display created by DISP persists only as long as the
program continues execution. When the program ends, or when it is
suspended by the HALT command, the calculator returns to the
normal stack environment, and the display is automatically updated.

FREEZE “freczes” one or more display areas so they are not
updated until a key press. Argument n in level 1 is the sum of the
value codes for the areas (o be frozen. The valug codes are: 1 for the
status area; 2 for the stack/command line area; 4 for the menu area.

29: Interactive Programs 523

m HALT suspends program execution at the location of the HALT
command and turns on the HALT annunciator. Calculator control is
returned to the keyboard for normal operations. Program execution is
resumed by executing CONT (or SST).

For example, when you execute the following program:
« "ABCwDEFwGHI" CLLCD 1 DISP 3 FREEZE HALT »

the display looks like this:

OHoD
~TIO

B
E
H

[PriTs] PROE] HYP [MATH[VECTR] ERZE]

(The = in the previous program is the calculator’s representation for the
« (newline) character once a program has been entered on the stack.)

The INPUT Command

INPUT is used to prompt for data input when the programmer does not
want the user to have access to stack operations. Consider the following
program:

€ "Variable name?" ":VAR:" INPUT »

When this program is executed, the display looks like:

[PRG |
[£ HOME 3

Variable name?

: VAR: 4
[PrrT<] PROE | NVP | HRTR [VECTE] EASE |

1. The stack area is blanked, and the contents of the string from
level 2, Variable name?, are displayed at the top of the stack
area. The string from level 2 is called the prompt string.

524 29: Interactive Programs

2. The contents of the string from level 1, :%AR:, are displayed in the
command line. The string from level 1 is called the command-line
string. Program-entry mode is activated and the insert cursor is
positioned after the string. The program is now suspended for data

input.

3. Program execution is continued by pressing [ENTER], which returns
the contents of the command line to the stack as a string, called the

result string.

The following program, VSPH, calculates the volume of a sphere. VSPH
first calculates 4/ x, then prompts for the radius of the sphere and
completes the calculation. Because a partial calculation is already on the
stack, VSPH protects the stack by executing INPUT to prompt for the
radius. INPUT sets Program-entry mode when program execution pauses
for data entry. Subsequent commands are not executed immediately —
instead, they are listed in the command line until the user presses [ENTER].

Arguments Results
1: 1: volume
Program: Comments:
X

4 3 7/ w ¥ sHUM

njps

INFUT

ey in radigs"

Starts the calculation.

Builds the prompt string, displayed
at the top of the stack area.

Builds the command-line string. In
this case, the string is empty, so the
command line will be empty.

Displays the stack-area prompt,
positions the cursor at the start of
the command line, and suspends the
program for data input (the radius of
the sphere).

29: Interactive Programs 525

OBJ>» Converts the result string into its
component object —a real number.

3~ o+ Cubes the radius and completes the
calculation.
»
[} VSPH Stores the program in VSPH.

Example: Prompting for Data with INPUT. Execute VSPH to
calculate the volume of a sphere of radius 2.5 meters.

Select the VAR menu and start the program.

1 "
VSPH —
Key in radius
4
[VsPH|TORSA[TPEDJCH30] |]
To show how INPUT protects the stack, press [¢3][DROP).
(«2) (ORGP iy

{ HOME 3}
Keuy in radius

OROP ¢
| Y D T (T M —

DROP is listed in the command line, but is not executed, so the partial
calculation in level 1 is protected.

Press [ATTN] to restore the command line. Then key in the radius and
continue program execution.

ATIN 1: £5. 4493469497|
2.5 [ENTER] [VsPHTORSnl TREO N30T T |

Options for the INPUT Command. In its general form, the level 1
argument for INPUT is a list that specifics the content and interpretation
of the command line. The list can contain one or more of the following
parameters, in any order:

® The command-line string, whosc contents arc placed in the command
line for prompting when the program pauses.

526 29: Interactive Programs

» Either a real number, or a list containing two real numbers, that
specifies the initial cursor position in the command line:

® A real number n at the nth character from the left end of the first
row (line) of the command line. A positive n specifies the insert
cursor; a negative n specifies the replace cursor. 0 specifies the
end of the command-line string.

m A list that specifies the initial row and column position of the
cursor: the first number in the list specifies a row in the
command line (1 specifies the first row of the command line); the
second number counts by characters from the left end of the
specified line. 0 specifies the end of the command-line string in
the specified row. A positive row number specifies the insert
cursor; a negative row number specifies the replace cursor.

» One or more of the parameters ALG, a, or V, entered as unquoted
names:

® ALG activates Algebraic/Program-entry mode.

= a ([a] [)(A)) specifies alpha lock.

m V verifies if the characters in the result string, without the *
delimiters, compose a valid object or objects. If the result-string
characters do not compose a valid object or objects, INPUT
displays the Irnwalid Swunt ax warning and prompts again for
data.

The INPUT Default State. You can choose to specify as few as one of
the level 1 list parameters. The default states for these parameters are:

m Blank command line.

m Insert cursor placed at the end of the initial command line string.

s Program-entry mode.

m Command-line string not checked for invalid syntax.
If you specify only a command-line string for the level 1 argument, you do

not need to put it in a list. For example, the previous program, VSPH,
specifies an empty command-line string for the level 1 argument.

29: Interactive Programs 527

Building the Command-Line String. After the user inputs data to
the command line and presses to resume program execution, the
contents of the command line are returned to level 1 as the result string.
To process the input, the program may at some point execute OBJ— to
convert the result string to a valid object or objects. The program can
accomplish this by specifying a command-line string of known form and
then taking appropriate action after the result string is returned to level 1:

» The program can specify an empty command-line string. In this case,
the result string consists only of the input. The program VSPH on
page 525 uses this method.

m The program can specify a command-line string whose characters
form the tag and delimiters for a tagged object. (See page 87 for a
discussion of tagged objects.) In this case, the input completes the
tagged object. The program TINPUT on page 529 uses this method.

® The program can specify a command-line string whose characters
form a message. In this case, the program subtracts those characters
from the result string to leave only the input in the string in string
form. The program SSEC on page 531 uses this method.

In the first two cases, the V parameter can also be specified as part of the
level 1 argument to specify that INPUT reprompt for data if the contents
of the result string are not valid objects.

The following program, TINPUT, executes INPUT to prompt for the
inner and outer radii of a torus, then calls TORSA (chapter 25, page 481)
to calculate its surface area. TINPUT prompts for @ and b in a two-row
command line; the level 1 argument for INPUT is list that contains:

& The command-line string.

m An imbedded list specifying the initial cursor position.

® The V parameter to check for invalid syntax in the result string.
The command-line string forms the tags and delimiters for two tagged

objects. The list does not specify the entry mode, so Program-entry mode
is selected by default.

528 29: Interactive Programs

Arguments Results
i: 1: area
Program: Comments:
L4

"Key in a, b"

"iatmibi" {1 B3 WV

INPUT

ogJ-»

Builds the level 2 string, displayed at
the top of the stack area.

Starts the level 1 list argument.

The level 1 list contains a command-
line string, a list, and the verify-
syntax specification. (To key in the
string, press ["] [2 a]
(][] (]2 b. After you press
to put the finished program
on the stack, the string will be shown
on one line, with the = character
indicating the newline character.)
The imbedded list positions the
insert cursor in row 1 just after :a:.
V specifies to check for invalid
syntax in the result string.

Ends the level 1 list argument.

Displays the stack string and
command-line string, positions the
cursor as specified by the list in the
level 1 argument, and, by default,
sets Program-entry mode. Then
suspends program execution for
data. Checks the resultant string for
syntax errors.

Converts the string into its
component objects (in this case, two
tagged objects).

29: Interactive Programs 529

TORSA Calls TORSA to calculate the surface
area.

»
(] TINPUT Stores the program in TINPUT.

Example: Prompting for Data with Input. Execute TINPUT to
calculate the surface area of a torus of inner radius ¢ = 10 cm and outer
radius b = 20 cm.

Select the VAR menu and start the program.
TINPU PhG

{ HOME }
Keg in ay b

HELR

:h:
[TiNPUL VP8 T0ksR) TPRO[CHI0]]

Key in the value for a and press [¥] to move the cursor to the next prompt
in the command line. Then key in the value for b.

10[(¥20 { WOME } FRS
Key in a, b
ta:18
thiZhe
JITINPUT YSPH JTORSH] TRRO [CH30] |
Continue program execution.
1: 2960.88132833
ITINPUL VPN [TORSR] TRRD JCH.30] |

The following program executes INPUT to prompt for a social security
number, then extracts in string form the first three digits and last four
digits from the result string. The level-1 argument for INPUT specifies:

m A command-line string.

m The replace cursor positioned at the start of the prompt string (- 1).
The replace cursor lets the user “fill in” the command line string,
using (] to skip over the dashes in the social-security number.

m By default, Program-entry mode.

m By default, no verification of object syntax— the dashes in the social-
security number are not valid characters outside the string delimiters.

530 29: Interactive Programs

Arguments Results
2: 2: " first three digits"
1: 1: "“last four digits"
Program: Comments:

&«

"Key in 5.5. #"

I - - (LR

IMPUT

obUP 1 3 SUB
SWAP
g 11 SUB

b4

[ENTER]) [J SSEC

Builds the level 2 string, displayed at
the top of the stack area.

Builds the level 1 argument for
INPUT. (Key in 3 spaces between
the first " delimiter and the first —,
two spaces between the two -’s, and
4 spaces between the last - and the
ending " delimiter.)

Suspends the program for data.

Copies the result string, then extracts
the first three and last four digits in
string form.

Stores the program in SSEC.

Labeling Program Output

A descriptive tag or message can make program output more

recognizable.

29: Interactive Programs 531

Using Tagged Objects as Data Output

You can label a program result using the #TAG command. =TAG
(FRG] 0BJ +TRG)takes two arguments: any object from level 2,
and a name, string, or real number (the tag) from level 1.

The following program TTAG is identical to TINPUT, except that it tags
the result.

Program: Comments:
kS
"Kewy in a, b"

£ "rgteibs® {1 B2 Y 2

INFUT 0BJ+
TORSA
'AREA" Builds the tag, in this case a name.
+THG Joins the tag to the object in level 2,
the program result, to create the
tagged object.
*
[ENTER] [] TTAG Stores the program in TTAG.

Example: Using a Tagged Object for Data Output. Execute
TTAG to calculate the area of a torus of inner radiusag = 1.5and b =
1.85.

Select the VAR menu and start the program. Supply the values for a and b
and continue program execution. The answer is returned as a tagged
object to the stack.

TTAG 1: AREAR: 11.5721111683
1.5[v) 1.85 (77w [7INPU] V55N |T0RSH] TRED [CH.30)
[ENTER]

532 29: Interactive Programs

Using String Commands to Label Data Output

You can use string commands and DISP to label and display an object

that has been returned to level 1 of the stack:

#B8TR).

2. Enter a labeling string on the stack.

3. Swap the two strings on the stack, then concatenate them (SWAP

+).

4. Display the resultant string (n DISP).

The following program TSTRING is identical to TINPUT, except that it
converts the program result to a string and appends a labeling string to it.

Program:
«
"Key in a, b"
{ "iatmib:" {1 B3 ¥V %
INPUT OEBJ>
TORSA
3STR

"Area =

SWAP +

CLLCD 1 DISF 1 FREEZE

&

[ENTER] [] TSTRING

Comments:

Converts the result to a string.
Enters the labeling string.

Swaps the positions of the two

strings on the stack and adds them.

Displays the resultant string, without
its delimiters, in line 1 of the display.

Stores the program in TSTRING.

29: Interactive Programs

533

Example: Labeling Data Output. Execute TSTRING to calculate
the area of the torus in the previous example (@ = 1.5,b = 1.85).

Select the VAR menu and start the program. Supply the values for @ and b
and continue program execution. The labeled answer is displayed in the
status area.

[VAR] TSTR1 Rrea = 11.5721111663
1.5 [¥] 1.85 4
J:

12
[TSTRI[TTAG [TINPU] VSPH [TORSA] TRRD ||

Pausing to Display Data Output

The WAIT command ([PRG] CTRL WAIT)suspends program
execution for x seconds, where x is a positive real number from level 1.
You can use WAIT with DISP to display messages during program
execution — for example, to display intermediate program results.

WAIT interprets arguments 0 and -1 differently—see “Commands That
Return a Key Location” on page 539.

Using Menus in Programs

Applications menus like the SOLVE and PLOT menus, as well as the
VAR and CST menus, can be activated and used in a program as they are
during normal keyboard operations.

Displaying a Built-In Menu

To display a built-in menu in a program, execute the MENU command
((PRG) CTRL MEHU)with the numeric argument that
corresponds to that built-in menu. The table in Appendix D lists all the
HP 48 menus and their corresponding menu numbers. For example, Z&
MEMU activates page 1 of the MODES menu. You can specify a particular
page of a menu by supplying the argument in the form xx.yy, where xx is
the menu number, and yy is the page number.

534 29: Interactive Programs

The following program activates the third page of the MODES menu and
asks you to set the angle mode.

%« 28.83 MEHMU "Select Angle Mode" PROMPT »

RCLMENU ([])(MODES) RCLM)returns the menu number of
the currently displayed menu.

Custom Menus in Programs
In chapter 15 you learned how to build a custom menu by supplying a list
argument for MENU. In programs, you can construct custom menus to:
m Emulate built-in applications like the HP Solve application.
= Prompt you to make decisions.
Emulating Built-In Applications. The following program, EIZ,

constructs a custom menu to emulate the HP Solve application for
capacitive electrical circuits.

A
/|

Application of Ohm’s law to this circuit results in the following expression:
E =1Z
where

E is the circuit voltage.
1 is the circuit current.
Z is the circuit impedance.

Because the voltage, current, and impedance are complex numbers, you
cannot use the HP Solve application to find solutions. The custom menu
in EIZ assigns a direct solution to the left-shifted menu key for each
variable, and assigns store and recall functionality to the unshifted and
right-shifted keys — the key actions are analogous to the HP Solve
application.

29: Interactive Programs 535

Program:

&«

3

D

-
+

I

EG

15 SF -16 SF 2 FIX

{ "e" { « 'E' STO »
« I Z * DUP 'E' STO
“E" »TAG

CLLCD 1 DISF

1 FREEZE »

« E®» >3

S LRGN &
« E Z 7 DUP
"I" +TAG
CLLCD 1 DISP
1 FREEZE »

€ 1% 30

STD »
'I' 570

orzr Lok 2 sTO »
« EI ~ DUP '2' STO
"Z" +TAG

CLLCD 1 DISP

1 FREEZE =

€« 2% 33

EHU

[ENTER) (] EIZ [STO)

536 29: Interactive Programs

Comments:

Sets Degrees mode. Sets flags — 15
and - 16 to display complex numbers
in polar form. Sets the display mode
to 2 Fix.

Starts the list for the custom menu.

Builds menu key 1, labeled =
When you press : ¢ E, the Ob]CCt
in level 1 is stored in vanable E.
When you press (1) E., the
product of I and Z is calculated,
stored in variable E, and displayed as
a tagged ob]ect When you press

returned to level 1.

Builds menu key 2.

Builds menu key 3.

Ends the list.

Displays the custom menu.

Stores the program in EIZ,

Example: Emulating a Built-In Application. A 10-volt power
supply at phase angle 0° drives an RC circuit. A current of .37 A at phase
angle 68° is measured. What is the impedance of the circuit?

Select the VAR menu and start EIZ.
(VAR] EIZ |) A |

Key in the value for the voltage.

<) 10 [*)(&] 0 Ilaaao |
2T A 5 O S

Store the value for the voltage. Then key in and store the value for the
current. Solve for the impedance.

M

(27.03, £<-68.00)
37 ()& 68

=PI =P

If the current amplitude is doubled and the impedance remains constant,
what is the complex voltage?

Q)] .74 [)(2) 68 TEt (20.00,4-1.36E-10)
1

Recall the value of Z to the stack.

e z 1: (27.83, <-68.008)
0t L S

Prompting for a Choice. A custom menu can prompt the user to
make a decision during program execution.

The program WGT in this section calculates the weight of an object in
either English or SI units. WGT builds a custom menu that prompts the
user to select the desired unit system. Here is the defining list for the
custom menu:

29: Interactive Programs 537

"EMGL" « "EHMTER Mass
in LB" PROMPT

222 % 2 03

£ "5I" « “"EHTER HMas=s
in KG" FROMPT

.81 % » 3

If you store this list in variable LST, program WGT is simply:

Program: Comments:
LET MEHMU Displays the custom menu stored in
LIST.
(1 WGT Stores the program in WGT.

The custom menu defined by WGT remains active until you select a new
menu, so you can do as many calculations as you want.

Note that the custom menu defined by WGT (and the custom menu
defined by EIZ) is automatically stored in variable CST, replacing the
previous custom menu— when you press after the program ends,
the menu defined by WGT is displayed.

Example: Using a Custom Menu to Make a Choice. Use WGT
to calculate the weight of an object of mass 12.5 kg.

Select the menu and start the program.
VAR| HGT | CETE T O I —
Select the SI unit system.

I [ENTER Mass in KG

538 29: Interactive Programs

Key in the mass and continue program execution.

12.5 [«7)[CONT] I: 122.63
EnGL] st | [[[|

Building a Temporary Menu

The TMENU command ([*](MODES] TMEN)works just like
MENU, except that list arguments do not replace the contents of CST and
so leave the current custom menu unchanged. Note that the temporary
menu remains active until a new menu is selected, even after the program
ends. To programmatically restore the previous menu, execute @ MEHMU,

The program « LIST THEHU = is similar to WGT, except that it builds
a temporary menu to prompt for the unit-system choice.

Commands That Return a Key Location

The WAIT Command with Argument 0

If you supply 0 as the argument for WAIT, the command suspends
program execution until a valid keystroke is executed. It then returns the
three-digit location number that defines where the key is on the keyboard
and restarts program execution. (See section “Making User-Key
Assignments” on page 217 in chapter 15.)

(Note that [#1], (], (2], [@][€), or [@]{*] do not by themselves

constitute a valid keystroke.)

The WAIT Command with Argument -1

The WAIT command with argument -1 works just like it does with
argument , except that the currently specified menu is also displayed.
This lets you build and display a prompting menu while the program is
paused. (Note that a menu built with MENU or TMENU is not normally
displayed until the program ends or is kalted with HALT.)

29: Interactive Programs 539

The KEY Command

A program can prompt for a simple “yes-no” decision using the KEY
command in an indefinite loop, and a comparison test. (Indefinite looping
structures are covered in chapter 27. Tests are covered in chapter 26.)
When the loop begins, KEY simply returns a false result () to level 1
until a key is pressed. Once a key is pressed, KEY returns the two-digit
location number that defines where the key is on the keyboard and
returns a true result (1) to level 1. For example, when you use KEY in an
indefinite loop and press [ENTER), KEY returns 51 to level 2 and true
result 1 tolevel 1.

The following program segment returns 1 to level 1if (+] is pressed, or 8
to level 1 if any other key is pressed:

€« ... DO UNTIL KEY END 95 SAME ... #*

(Note that KEY returns only a two-digit location number RowColumn,
unlike WAIT, which returns a three-digit location number that identifies
shifted and alpha keys. Thus, if you press the (] key, KEY returns 71,
while WAIT does not interpret (4] itself as a valid keystroke.)

Turning the HP 48 Off from a Program

The OFF command turns the HP 48 off. If executed from a program, the
program will resume when the calculator is turned back on.

540 29: Interactive Programs

e L el s e 0 el lafo

30

Error Trapping

When you attempt an invalid operation from the keyboard, the operation
is not executed and an error message is displayed. For example, if you
execute + with a vector and a real number on the stack, the HP 48 returns
the message:

+ Error:
Bad Argument Type

and, assuming that Last Arguments is enabled, returns the arguments to
the stack. In a program, the same thing happens, but program execution is
also aborted. Consider the following program:

« "KEY IM a AHMD b" "" IWPUT OBJ+ + %

If you execute this program and supply a vector and a real number at the
prompt, the program displays the Ead Argumeznt Tupe error message
and aborts execution at the + command. To supply new arguments, you
must restart the program. For a short program like the one above, this
method of error recovery presents little problem. However, when
executing a program that performs time consuming calculations, or that
has numerous stops for intermediate data entry, it may be inconvenient to
restart the program at the beginning each time an error occurs.

30: Error Trapping 541

You can enable a program to continue execution after an error has
occurred by building an error trap. You can construct an error trap with
one of the following conditional structures:

s JFERR...THEN...END.
m IFERR...THEN.. ELSE.. .END.

The IFERR command is located on page 3 of the PRG BRCH menu.

The following commands enhance error-trap structures:

Error Trapping Commands

Keys

Programmable
Command

Description

PRG] CT

RL. (page 3):

DOERR

ERRHN

ERRM:

ERRG

DOERR

ERRN

ERRM

ERRO

Executes a user-specified error. The
calculator behaves just as if an
ordinary error has occurred —if the
error is not trapped in an IFFER
structure, DOERR displays a message
and abandons program execution.

Returns the error number, as a binary
integer, of the most recent error.
Returns #a if the error number was
cleared by ERRO.

Returns the error message (a string)
for the most recent error. Returns
empty string if the error number was
cleared by ERRO.

Clears the last error number, so that a
subsequent execution of ERRN
returns #4a. Also clears the last error
message.

542 30: Error Trapping

The IFERR. . . THEN. . .END Structure

The syntax of IFERR... THEN.. . END is
IFERR trap-clause THEN error-clause END

If an error occurs during execution of the trap-clause, the error is ignored,
the remainder of the trap-clause is discarded and program execution
jumps to the error-clause. The commands in the error-clause are executed
only if an error is generated during execution of the trap-clause.

As a typing aid, press [(Q] IFERR to key in:

IFERR
THEN
EHD

Example: An IFERR...THEN. . .END Structure. Recall the
following program from chapter 27, page 512.

« WHILE DUP TYPE 3 == REFEAT Z+ EHD =

The program takes any number of vectors or arrays from the stack and
adds them to the statistics matrix. However, the program errors if a vector
or array with a different number of columns is encountered. In addition, if
only vectors or arrays with the same number of columns are on the stack,
the program errors after the last vector or array has been removed from
the stack.

In the following version, the program simply attempts to add the level 1

object to the statistics matrix until an error occurs. At that point, it
“gracefully” ends by displaying the message COHE.

30: Error Trapping 543

Program: Comments:

€
IFERR Starts the trap-clause.
WHILE Starts the test-clause of the nested
loop.
1 11is a true result, so executes the
loop-clause until an error occurs.
REPERT Starts the loop clause.
Z+ Adds the vector or array to the
statistics matrix.
END Ends the nested loop.
THEN If an error does occur on execution
of L+ ...
"DOME" 1 DISP ... displays the message DOHE in the
1 FREEZE status area.
EHD Ends the error trap.
»

The IFERR...THEN. . .ELSE...END Structure

The syntax of IFERR.. THEN.. ELSE...END is:

IFERR trap-clause THEH error-clause ELSE normal-clause EHD
If an error occurs during execution of the trap-clause, the error is ignored,
the remainder of the trap-clause is discarded and program execution

jumps to the error-clause. If no error occurs, exccution jumps to the
normal-clause at the completion of the trap-clause.

544 30: Error Trapping

As a typing aid, press [PJIFERR to key in:

IFERR
THEHN
ELSE
EHD

Example: An IFERR...THEN. . .ELSE.. .END Structure. The
following program prompts for two numbers, then adds them. If only one
number is supplied, the program displays an error message and prompts

again.
Program:

&«

oo

"KEY IM a AND b"

INPUT OE.J>
UMTIL
IFERR
+

THEH

ERRM 5 DISF

2 WARIT
(2

END

Comments:

Begins the outer loop.

Prompts for two numbers.

Starts the test clause
Starts the error trap.
Adds the contents of levels 1 and 2.
If an error occurs ...

... executes ERRM to display the
Too Few Arguments error
message for two seconds, then leaves
@ (false) on the stack for the outer-
loop END.

If an error does not occur ...

...leaves 1 (true) on the stack for
the outer-loop END.

Ends the error trap.

30: Error Trapping 545

END Ends the outer loop. If the error trap
left © on the stack, this END returns
program execution to the prompt for
numbers. Otherwise, the program
ends.

User-Defined Errors

You may want to generate an error in a program when an error would not
normally occur. For example, you might want an error to occur if the sum
of the two numbers on the stack is greater than 10. You can do this with
the DOERR command. DOERR causes a program to behave exactly as if
a normal error has occurred during execution. The DOERR error can be
trapped in an IFERR structure; if it is not, program execution is
abandoned at the location of the DOERR command. DOERR takes one
argument from the stack, either:

m A string, in which case the string is used as the message. (ERRM
returns this string, and ERRN returns #78000H.)

u A real number or binary integer, in which case the corresponding
built-in error message is displayed. (ERRM and ERRN return the
corresponding error message and number, respectively.) 0 DOERR is
equivalent to [ATTNJ; that is, program execution is aborted and no
message is displayed. (In this case, the values returned by ERRM and
ERRN are unchanged from their previous values.)

The following program aborts execution if there are three objects in the
level 1 list.

OEJ»

IF 2 SAME

THEHW "3 OBJECTS IM LIST" DOEER
EMD

»

In this program, DOERR abandons program execution. Alternatively, you
can execute DOERR in the trap-clause of an error trap to enable
program execution to continue.

546 30: Error Trapping

ﬂ_-!! A dl 1

31

More Programming Examples

The programs in this chapter demonstrate programming concepts
introduced in the previous chapters. Some new concepts are also
introduced. The programs are intended to both improve your
programming skills and provide supplementary functions for your
calculator.

At the end of each program, the checksum and the program size in bytes
are listed. The checksum is a binary integer that uniquely identifics the
program based on its contents. To verify that you've keyed the program in
correctly, execute the BYTES command ([«q}[MEMORY] E* TEZ) with
the program name in level 1. The checksum for the program is returned
to level 2, and its size in bytes is returned to level 1. (If you execute
BYTES with the program object in level 1, before storing the program in
its name, you'll get a different byte count returned to level 1.)

v

31: More Programming Examples 547

Fibonacci Numbers

This section includes three programs — two demonstrate an approach to
the following problem:

Given an integer n, calculate the nth Fibonacci number F,, where:
Fg=0,F =1 F, = n-1+Fpop

m FIB1 is a user-defined function that is defined recursively —its
defining procedure contains its own name. FIB1 is short.

m FIB2 is a user-defined function with a definite loop. It’s longer and
more complicated than FIBI, but it’s faster.

The third program, FIBT, calls both FIBI and FIB2, and calculates the
execution time of each subprogram.

FIB1 (Fibonacci Numbers, Recursive Version)

Arguments Resulis

Techniques.

m IFTE (If-Then-Else function). The defining procedure for FIBI
contains the conditional function IFTE, which can take its argument
either from the stack or in algebraic syntax. (FIB2 uses the
conditional structure IF ... THEN ... ELSE ... END.)

m Recursion. The defining procedure for FIB1 is written in terms of
FIB1, just as F,, is defined in terms of F, _; and F , _,.

548 31: More Programming Examples

Program: Comments:

%
+n Defines local variable 7.
' Begins the defining procedure, an
algebraic expression.
IFTEC(Nn£L, Ifn<t...
Ny ...thenF, =n...
FIB1(n-1)+FIB1¢n-23) ...else F, = F,_; + F, 5.
' Ends the defining procedure.
»
(ENTER] [] FIB1 Enters the program, then stores it in
FIB1.

Checksum: # 41467d
Bytes: 1135

Example. Calculate Fg. Calculate Fyq using algebraic syntax.

First calculate F.
(VAR] 1: 8
6 FIB! (Emse] FIEL | Fik2 | FIET | PoD [RRESE]

Next calculate Fq using algebraic syntax.
O 181 @) 10 EVAD 2: i

: J
[eniip] FIEL | FiE2 | FIET | Pall [PREZE)

31: More Programming Examples 549

FIB2 (Fibonacci Numbers, Loop Version)

Argumentis

Results

Techniques.

m [F.. THEN.. .ELSE...END. FIB2 uses the program-structure form
of the conditional. (FIB1 uses IFTE.)

s START.. NEXT (definite loop). To calculate F,, FIB2 starts with Fy
and F; and repeats a loop to calculate successive F;’s.

Program:

&«

bl
mn
5

—
I~

Comments:

Creates a local variable.

Begins the defining procedure, a
program.

Ifn<1...
...then F, =n.
Begins the ELSE clause.

Puts F, and F, on the stack.
From 2ton...
... does the following loop:

Makes a copy of the latest F (initially
F)).

Moves the previous F (initially Fy) to
level 1.

Calculates the next F (initially F,).

550 31: More Programming Examples

NEXT Repeats the loop.

SWAP DROP Drops F, _;.
EHD Ends the ELSE clause.
» Ends the defining procedure.
3 Ends the program.
fENTER) [] FIB2 Enters the program, then stores it in
FIB2,

Checksum: # 51820d
Bytes: 89

Example. Calculate F; and Fy,. Note that FIB2 is faster than FIB].

Calculate F.

(VAR] 1: 8

6 FIBZ [EDISR] FIEL | FIB2 | FIET | PAD |PRESE]

Calculate Fy,.

10 F1B2 2t 8
1: 99
[E0ISE] FIEL | FIE2 | FIET | Pab |RRESE]

FIBT (Comparing Program-Execution Time)

FIB1 calculates intermediate values F; more than once, while FIB2
calculates each intermediate F; only once. Consequently, FIB2 is faster.
The difference in speed increases with the size of n because the time
rcquired for FIB1 grows exponentially with n, while the time required for
FIB2 grows only linearly with n.

The diagram below shows the beginning steps of FIBI calculating F .

Note the number of intermediate calculations: 1 in the first row, 2 in the
second row, 4 in the third row, and 8 in the fourth row.

31: More Programming Examples 551

Fg/ \Fs
e \F7 KON
F/ \F F/ \F F/ \F F/ F

FIBT executes the TICKS command to record the execution time of FIBI
and FIB2 for a given value of n.

Arguments Results
3t F,
2: FIB1 execution time: z
1t n 1: FIB2 execution time:z
Techniques.

m Structured programming, FIBT calls both FIB1 and FIB2.

m Programmatic use of calculator clock. FIBT executes the TICKS
command to record the start and finish of each subprogram.

» Interactive programming. FIBT tags each execution time with a
descriptive message.

Program: Comments:
T3
CUFP TICKS SHAFP FIB! Copies n, then executes FIBI,
SWAP TICKS SWAF recording the start and stop time.
- B+*R 5192 ~ Calculates the elapsed time, converts

it to a real number, and converts that
number to seconds. Leaves the

5§52 31: More Programming Examples

"FIB1 TIME"
3TRG

ROT TICKS SWARP FIB2
TICKS

SWAP DROP SWAP
- B#R 8192 -~

"FIB2 TIME"
*TRG

%

[ENTER] (FIBT (sTO

Checksum: # 22248d
Bytes: 135

answer returned by FIBI in level 2.

Tags the execution time.

Executes FIB2, recording the start
and stop time.

Drops the answer returned by FIB2
(FIBI returned the same answer).
Calculates the elapsed time for F152
and converts to seconds.

Tags the execution time.

Stores the program in FIBT.

Example. Calculate F; and compare the execution time for the two

mcthods.

Select the VAR menu and do the calculation.

13 FIBT

{ HOME CH.30 }

3t ¢33
2: FIBI TIME: 33.8876..
1: FIBZ TIME:

. 127875195312
(EPIZR] FIEL | Fike | FIET] Pab [PRESE

Fy3 is 233. FIB2 takes 0.13 seconds to execute. FIBI takes 33.9 seconds.
(Your results may differ depending on the contents of memory in your

calculator.)

31: More Programming Examples 5§53

Displaying a Binary Integer

This section contains three programs:

® PAD is a utility program that converts an object to a string for right-
justified display.

m PRESERVE is a utility program for use in programs that change the
calculator’s status (angle mode, binary base, and so on).

m BDISP displays a binary integer in HEX, DEC, OCT, and BIN bases.
1t calls PAD to show the displayed numbers right-justified, and it calls
PRESERVE to preserve the binary base.

PAD (Pad with Leading Spaces)

PAD converts an object to a string and, if the string contains fewer than 23
characters, adds spaces to the beginning,

When a short string is displayed with DISP, it appears left-justified, its first
character appears at the left end of the display. The position of the last
character is determined by the length of the string. By adding spaces to
the beginning of a short string, PAD moves the position of the last
character to the right. When the string (including leading spaces) is 23
characters long, it appears right-justified, its last character appears at the
right end of the display. PAD has no effect on strings that are longer than
22 characters.

Arguments Results
1: object 1: "“object"
Techniques.

m WHILE... REPEAT ... END (indefinite loop). The WHILE clause
contains a test that determines whether to execute the REPEAT
clause and test again (if true) or to skip the REPEAT clause and exit
(if false).

® String operations. PAD demonstrates how to convert an object to
string form, count the number of characters, and concatenate two
strings.

554 31: More Programming Examples

Program:

WHILE

DUP SIZE 22 <

REPEAT

" " SHWAP +
EHD
&

[ENTER]) (J PAD

Checksum: # 38912d
Bytes: 61.5

Comments:

Makes sure the object is in string
form. (Strings are unaffected by this
command.)

Begins WHILE clause.

Doces the string contain fewer than
23 characters?

Begins REPEAT clause.
Adds a leading space.
Ends REPEAT clause.

Enters the program, then stores it in
PAD.

PAD is demonstrated in the program BDISP.

PRESERVE (Save and Restore Previous Status)

Given a program on the stack, PRESERVE stores the current calculator
(flag) status, executes the program, and then restores the previous status.

Argumentis

Resulis

1: « program %

1: (result of program)

1: ‘'program name'

1: (result of program)

31: More Programming Examples 555

Techniques.

® RCLF and STOF. PRESERVE uses RCLF (recall flags) to record the
current status of the calculator in a binary integer and STOF (store
flags) to restore the status from that binary integer.

m Local-variable structure. PRESERVE creates a local variable
structure to remove the binary integer from the stack briefly; its

defining procedure simply evaluates the program argument, then puts
the binary integer back on the stack and executes STOF.

Program: Comments:
&
RCLF Recalls the list of two 64-bit binary

integers representing the status of
the 64 system flags and 64 user flags.

+ f Stores the list in local variable f.
% Begins the defining procedure.
EVAL Executes the program placed on the
stack as the level 1 argument.
f STOF Puts the list back on the stack, then
restores the status of all flags.
® Ends the defining procedure.
»
[] PRESERVE Enters the program, then stores it in
PRESERVE.

Checksum: # 21528d
Bytes: 46.5

PRESERVE is demonstrated in the program BDISP.

556 31: More Programming Examples

BDISP (Binary Display)

BDISP displays a (real or binary) number in HEX, DEC, OCT, and BIN
bases.

Argumentis Results
1: &n 11 & n
1+ n 1
Techniques.

m IFERR ... THEN... END (error trap). To accommodate real-
number arguments, BDISP includes the command R—B (real-to-
binary). However, this command causes an error if the argument is
already a binary integer. To maintain execution if an error occurs, the
R—B command is placed inside an IFERR clause. No action is
required when an error occurs (since a binary number is an
acceptable argument), so the THEN clause contains no commands.

® Enabling LASTARG. In case an error occurs, LASTARG must be
enabled to return the argument (the binary number) to the stack.
BDISP clears flag - 55 to enable the LASTARG recovery feature.

= FOR ... NEXT loop (definite loop with counter). BDISP executes a
loop from 1 to 4, each time displaying n (the number) in a different
base on a different line. The loop counter (named j in this program) is
a local variable. It is created by the FOR ... NEXT program structure
(rather than by a + command) and it is automatically incremented by
NEXT.

= Unnamed programs as arguments. A program defined only by its «
and » delimiters (not stored in a variable) is not automatically
evaluated; it is simply placed on the stack and may be used as an
argument for a subroutine. BDISP demonstrates two uses for
unnamed program arguments.

1. BDISP contains a main program argument and a call to
PRESERVE. This program argument goes on the stack and is
executed by PRESERVE.

31: More Programming Examples 557

2. There are four program arguments that “customize” the action
of the loop. Each program argument contains a command to
change the binary base, and each iteration of the loop evaluates

one of these arguments.

When BDISP creates a local variable for n, the defining procedure is
an unnamed program. However, since this program is a defining
procedure for a local variable structure, it is automatically executed.

Required Programs.

® PAD (page 555) expands a string to 23 characters so that DISP shows

it right-justified.

B PRESERVE (page 556) stores the current status, executes the main
nested program and restores the status.

Program:

%«
«
bup
-55 CF

IFERR
R+B

THEM

EMD

CLLCD
« BEIN »

Comments:

Begins the main nested program.
Makes a copy of n.

Clears flag - 55 to enable
LASTARG.

Begins error trap.
Converts n to a binary integer.
If an error occurred ...

... do nothing (there are no
commands in the THEN clause).

Creates a local variable n.

Begins the defining program for the
local variable structure.

Clears the display.
Writes the nested program for BIN.

558 31: More Programming Examples

&« QCT =»
« DEC »

R

HEX *

FOR J

EVAL

n *STR

PAD
j DISP
MEXT

*

& FREEZE

b4

PRESERVE

®

[ENTER] (] BDISP [STO]

Checksum:
Bytes:

18055d
191

Writes the nested program for OCT.

Writes the nested program for DEC.

Writes the nested program for HEX.

Sets the first and last counter values.

Starts the loop with counter j.

Executes one of the nested base
programs (initially the one for
HEX).

Makes a string showing 7 in the
current base.

Pads the string to 23 characters.

Displays the string in the jth line.

Increments j and repeats the loop.

Ends the defining procedure.

Freezes the status and stack areas.

Ends the main nested program.

Stores the current status, executes

the main nested program, and
restores the status.

Enters the program, then stores it in

BDISP.

31: More Programming Examples

559

Example. Switch to DEC base, display # 100 in all bases, and check that
BDISP restored the base to DEC.

Clear the stack and select the MTH BASE menu. Make sure the current
base is DEC and enter # 100.

(][CLR] 1: # 1084
‘BRASE. [HEX | DEC #] CT | BIN [3This [fchds)

DEC
(*](#] 100
Execute BDISP.

BDISP

Return to the normal stack display and check the current base.

L HE: [bEC [00T | EIN_JiThz[Ribs]
BASE

Although the main nested program left the calculator in BIN base,
PRESERVE restored DEC base.
To check that BDISP also works for real numbers, try 144.

144 BD ISP

Median of St:tist_ics_ Dat.a” _

This section contains three programs:
® SORT orders the elements of a list.
8 LMED calculates the median of a sorted list.

m MEDIAN uses SORT and LMED to calculate the median of the
current statistics data.

560 31: More Programming Examples

SORT (Sort a List)

SORT sorts a list of real numbers into ascending order.

Arguments Results
13 { list 2 1: { sorted list >
Techniques.

Bubble sort. Starting with the first and second numbers in the list,
SORT compares adjacent numbers and moves the larger number
toward the end of the list. This process is done once to move the
largest number to the last position in list, then again to move the next
largest to the next-to-last position, and so on.

Nested definite loops. The outer loop controls the stopping position
each time the process is done; the inner loop runs from 1 to the
stopping position each time the process is done.

Nested local-variable structures. SORT contains two local-variable
structures, the second inside the defining procedure (a program) of
the first. This nesting is done for convenience; it’s easier to create the
first local variable as soon as its value is computed, thereby removing
its value from the stack, rather than computing both values and
creating both local variables at once.

FOR ... STEP and FOR ... NEXT (definite loops). SORT uses two
counters: — 1 STEP decrements the counter for the outer loop each
iteration; NEXT increments the counter for the inner loop by 1 each
iteration.

31: More Programming Examples 561

Program:

&«

DUP SICE 1 - 1

FOR J

FOR k

k GETI » nl

GETI 3 n2

DROP
IF n1 n2 >

THEH
k n2 PUTI

nl FUT

EHD

Comments:

From the next-to-last position to the
first position ...

... begins the outer loop with
counter j.

From the first position to the jth
position ...

... begins the inner loop with
counter k.

Gets the kth number in the list and
stores it in a local variable n;.

Begins the defining procedure (a
program) for the outer local variable
structure.

Gets the next number in the list and
stores it in a local variable n,.

Begins the defining procedure (a
program) for the inner local variable
structure.

Drops the index returned by GETI.

If the two numbers are in the wrong
order...

... then does the following:

... puts the second one back in the
kth position;

... puts the kth one back in the next
position.

Ends THEN clause.

562 31: More Programming Examples

» Ends inner defining procedure.

Ends outer defining procedure.
HEXT Increments k and repeats the inner
loop.
-1 STEP Decrements j and repeats the outer
loop.
(ENTER]) [] SORT Enters the program, then stores it in
SORT.

Checksum: # 15011d
Bytes: 144

Example. Sort the list { 83125 }.

Select the VAR menu, key in the list, and execute SORT.

(VAR] 1: $1235%8)
(«)([{1) 8 [SPC) 3 [SPC] [205T] LMED [MEDIA]0OVN [MULTI] ExCD
1 [SPC) 2 [E§PC] 5 [ENTER)

SORT

LMED (Median of a List)

Given a sorted list, LMED returns the median. If the list contains an odd
number of elements, the median is the value of the center element. If the
list contains an even number of elements, the median is the average value
of the elements just above and below the center.

Arguments Results

1: { sorted list > 1: median of sorted list

31: More Programming Examples 563

Techniques.

® FLOOR and CEIL. For an integer, FLOOR and CEIL both return
that integer; for a noninteger, FLOOR and CEIL return successive
integers that bracket the non- integer.

Program:
%

DUP SIZE

1 +2 7

DUP
p FLOOR GET

SWARP
P CEIL GET

+ 2 7

%

b4

0 LMED

Comments:

Copies the list, then finds its size.

Calculates the center position in the
list (fractional for even-sized lists).

Stores the center position in local
variable p.

Begins the defining procedure (a
program) for the local variable
structure.

Makes a copy of the list.

Gets the number at or below the
center position.

Moves the list to level 1.

Gets the number at or above the
center position.

Calculates the average of the two
numbers at or near the center
position.

Ends the defining procedure.

Enters the program, then stores it in
LMED.

564 31: More Programming Examples

Checksum: # 3682d
Bytes: 77
Example. Calculate the median of the list you sorted using SORT.

Put the list on the stack if necessary, select the VAR menu, and execute
LMED.

(@7 12358 [ENTER) 12 3
(VAR) "LHED | SORT [LHECMERIADOLIN[MULTI] EXCO |

MEDIAN (Median of Statistics Data)

MEDIAN returns a vector representing the medians of the columns of the
statistics data.

Arguments Resuits

13 18 DX X%5...%,]

Techniques.

® Arrays, lists, and stack elements. MEDIAN extracts a column of data
from XDAT in vector form. To convert the vector to a list, MEDIAN
puts the vector elements on the stack and then combines them into a
list. From this list the median is calculated using SORT and LMED.

The median for the mth column is calculated first, and the median for
the first column is calculated last, so as each median is calculated, it is
moved to the stack level above the previously calculated medians.

After all medians are calculated and positioned correctly on the stack,
they’re combined into a vector.

m FOR ... NEXT (definite loop with counter). MEDIAN uses a loop to
calculate the median of each column. Because the medians are
calculated in reverse order (last column first), the counter is used to
reverse the order of the medians.

31: More Programming Examples 565

Required Programs.
m SORT (page 562) arranges a list in ascending order.
® LMED (page 564) calculates the median of a sorted list.

Program: Comments:
&

RCLZE Puts a copy of the current statistics
matrix ZDAT on the stack for
safekeeping.

DUP SIZE Puts the list { n m } on the stack,

where n is the number of rows in
¥£DAT and m is the number of
columns.

0OBJ» DROP Puts n and m on the stack. Drops the
list size.

*nm Creates local variables for n and m.

€ Begins the defining procedure (a
program) for the local variable

structure.

'EDAT' TRH Transposes LDAT. Now n is the
number of columns in ZDAT and m
is the number of rows. (To key in the
Z character, press [(*](Z], then delete
the parentheses.)

1m Specifies the first and last rows.
FOR Jj For each row, does the following:
z- Extracts the last row in 2DAT.

Initially this is the mth row, which
corresponds to the mth column in
the original ZDAT. (To key in the ¥ -

command, press [«}(STAT]
@ 2+)

566 31: More Programming Examples

nBJ+» DROP

n *LIST
S0RT
LMED

J ROLLD

NEXT

m *ARRY

SHAP
STOZ

»

[ENTER) [] MEDIAN

Checksum: # 19502d
Bytes: 129.5

Puts the row elements on the stack.
Drops the index list { n }, since n is
already stored in a local variable.
Makes an n-clement list.

Sorts the list.

Calculates the median of the list.

Moves the median to the proper
stack level.

Increments j and repeats the loop.

Combines all the medians into an
m-element vector.

Ends the defining procedure.
Moves the original ZDAT to level 1.

Restores EDAT to its previous value.

Enters the program, then stores it in
MEDIAN.

Example. Calculate the median of the following data.

18 12]
4 7
3 2
1 1
31 48

[20 17]

There are two columns of data, so MEDIAN will return a two-element

vector.

31: More Programming Examples 567

Enter the matrix.

(] MATRIX]

18 [ENTER) 12 [ENTER] (V)
4 [ENTER] 7 [ENTER]

3 [ENTER] 2 [ENTER)

11 [ENTER] 1 [ENTER)

31 [ENTER] 48 (ENTER]

20 [ENTER] 17 (ENTER)

Store the matrix in EDAT,

Calculate the median.

MEDIR

1: [T 1812]
{47
{321
L1111
[SOKT [LHED [MERIAIDOLINHULTI] EXCO]

1: [14.5 9.5 1]
PLEZE] SORT [LIED [MEDIRJODIINHULT]

The medians are 14.5 for the first column and 9.5 for the second column.

Expanding and Collecting Completely

This section contains two programs:

w MULTI repeats a program until the program has no effect on its

argument.

8 EXCO calls MULTI to completely expand and collect an algebraic.

568 31: More Programming Examples

MULTI (Multiple Execution)

Given an object and a program that acts on the object, MULTI applies the
program to the object repeatedly until the object is unchanged.

Argumenis Results
2: object 2:
1: « program * 1: resulting object

Techniques.
m DO... UNTIL ... END (indefinite loop). The DO clause contains

the steps to be repeated; the UNTIL clause contains the test that
determines whether to repeat both clauses again (if false) or to exit (if
true).

Programs as arguments. Although programs are commonly named
and then executed by calling their names, programs can also be put
on the stack and used as arguments to other programs.

Evaluation of local variables. The program argument to be executed
repeatedly is stored in a local variable. It’s convenient to store an
object in a local variable when you don’t know beforehand how many
copies you'll need.

Recall from page 98 that an object stored in a local variable is simply
put on the stack when the local variable is evaluated. MULTI uses the
local variable name to put the program argument on the stack and
then executes EVAL to execute the program.

Program: Comments:

&

<>

P Creates a local variable p containing
the program from level 1.

Begins the defining procedure (a
program) for the local variable
structure.

31: More Programming Examples 569

DO Begins the DO clause.

DUF Makes a copy of the object, now in
level 1.
p EVAL Applies the program to the object,
returning a new version.
DUF Makes a copy of the new version of
the object.
ROT Moves the old version to level 1.
UNTIL Begins the UNTIL clause.
SAME Tests whether the old version and the
new version are the same.
END Ends the UNTIL clause.
» Ends the defining program.
% Ends the program.
) MULTI Puts the program on the stack, then
stores it in MULTI.

Checksum: # 34314d
Bytes: 56

MULTI is demonstrated in the next programming example.

EXCO (Expand and Coliect Completely)
Given an algebraic object, EXCO executes EXPAN repeatedly until the

algebraic doesn’t change, then executes COLCT repeatedly until the
algebraic doesn’t change. In some cases the result will be a number.

570 31: More Programming Examples

Arguments Resulis

1: ‘'algebraic' 1: ‘'algebraic'
1: 'algebraic' it z
Techniques.

® Subroutines. EXCO calls the program MULTI twice. It is more
efficient to create program MULTI and simply call its name twice
than write each step in MULTI two times.

Required Programs.

m MULTI (page 569) repeatedly executes the programs that EXCO
provides as arguments.

Program: Comments:
€
« EXPAH » Puts a program on the stack as the
level 1 argument for MULTI. The
program executes the EXPAN
command.
MULTI Executes EXPAN until the algebraic
object doesn’t change.
€« COLCT =» Puts another program on the stack
for MULTI. The program executes
the COLCT command.
MULTI Executes COLCT until the algebraic
object doesn’t change.
b
[ENTER] (] EXCO Puts the program on the stack, then

stores it in EXCO.

31: More Programming Examples 571

Checksum: # 48008d
Bytes: 65.5

Example. Expand and collect completely the expression:

v (dy +z)+(8 - 52)?

Enter the expression.

0@3 (x] X E]E] 9z 8 |1= ;%;ﬁ;g‘i*WZ)*«(B*X-S\
@EIRREPA
@O s X056 2 I W T T S W

) (72
Select the VAR menu and start the program.
EXCO 13 '64=X"2+]12%K*Y-77%K
*¥Z425%L"2 "
[LOLIN [FAULTI] EHCO [LINT N2 [NAIE]

Expressions with many products of sums or with powers can take many
iterations of EXPAN to expand completely, resulting in a long execution
time for EXCO.

Finding the Minimum or Maximum Element
of an Array

This section contains two programs that find the minimum or maximum
element of an array:

® MNX uses a DO ... UNTIL ... END (indefinite) loop.
® MNX2 uses a FOR ... NEXT (definite) loop.

572 31: More Programming Examples

MNX (Finding the Minimum or Maximum Element of
an Array— Technique 1)

Given an array on the stack, MNX finds the minimum or maximum
element in the array.

Arguments Resulis

2t [larrayl]
1: z (maximum element of array)

[Carrayl]
: Z (minimum element of array)

1: ([[Larrayl]

R

1: [Larrayl]

Techniques.

m DO ... UNTIL ... END (indefinite loop). The DO clause contains
the sort instructions. The UNTIL clause contains the system-flag test
that determines whether to repeat the sort instructions.

® User and system flags for logic control:

m User flag 10 defines the sort: When flag 10 is set, MNX finds the
maximum element; when flag 10 is clear, it finds the minimum
element. You determine the status of flag 10 at the beginning of
the program.

u System flag - 64, the Index Wrap Indicator flag, determines when
to end the sort. While flag — 64 is clear, the sort loop continues.
When the index invoked by GETI wraps back to the first array
element, flag — 64 is automatically set, and the sort loop ends.

m Nested conditional. An IF ... THEN ... END conditional is nested in
the DO ... UNTIL ... END conditional — it determines:

m Whether to maintain the current minimum or maximum element,
or make the current element the new minimum or maximum.

w The sense of the comparison of elements (either < or >) based
on the status of flag 10.

s Custom menu for making a choice. MNX builds a custom menu that
lets you choose whether to sort for the minimum or maximum

clement. Key 1, labeled MAX -, sets flag 10. Key 2, labeled
MIN", clears flag 10.

31: More Programming Examples 573

® Logical function. MNX executes XOR (exclusive OR) to test the
combined state of the relative value of the two elements and the

status of flag 10.

Program:

&«

{

"MAX"
18 SF CONT » 3
"MIN

18 CF CONT » 3

R MR M

THENU
"Sort for MAX or MIN?"
FPROMPT

1 GETI
Co

ROT ROT

GETI 4 ROLL DUP2

IF
> 18 FS? XOR

THEN

Comments:

Begins the defining list for the option

menu.,

Builds menu keys = MAX. to set flag
10 and continue program execution,
and "MIH to clear flag 10 and
continue program execution.

Ends the defining list for the
temporary option menu.

Displays the temporary menu and a
prompt message.

Gets the first element of the array.
Begins the DO loop.

Puts the index and the array in levels
1and2.

Gets the new array element, moves
the current minimum or maximum
array element from level 4 to level 1.
Then copies both elements.

Begins the conditional.

Tests the combined state of the
relative value of the two elements
and the status of flag 10.

If the new element is either less than
the current maximum or greater than
the current minimum ...

574 31: More Programming Examples

SWAP ... swaps the new element into level

1.
END Ends the conditional.
DROP Saves the current minimum or

maximum and drops the other
element off the stack.

UMTIL Begins the UNTIL clause.
-64 FS? Tests if flag — 64 is set. If flag —64 is
clear, executes the DO clause again.
END If flag - 64 is set, ends the loop.
SWAP DROP @ MENU Swaps the index to level 1, then
drops it off the stack. Restores the
last menu.
»
[ENTER] [] MNX Enters the program, then stores it in
MNX.

Checksum: # 57179d
Bytes: 210.5

Example. Find the maximum element of the following matrix:

12 56
4 1
9 14

Enter the matrix.

(] (MATRIX]

12 (ENTER] 56 [ENTER] (V)
45 [ENTER] 1 (ENTER]

9 [ENTER) 14 [ENTER
(ENTER)

31: More Programming Examples 575

Select the VAR menu and execute MNX.

MHR

Find the maximum clement.
MAX

[Sort for MAX or MIN?

[
1451]
L 914 1]

2s I 12561 [15 L.
1 26

[t [€57 1 01 TZ0AT [#015P] FIEL |

MNX2 (Finding the Minimum or Maximum Element

of an Array — Technique 2)

Given an array on the stack, MNX2 finds the minimum or maximum
element in the array. MNX2 uses a different approach than MNX; it
executes OBJ— to break up the array into individual elements on the
stack for testing, rather than executing GETI to index through the array.

Arguments Results
2: [CLarrayl]
1: (larrayl] 1: z (maximum element of array)
2: [larrayl]
1: [larrayll 1t z (minimum element of array)
Techniques.

m FOR ... NEXT (definite loop). The initial counter value is 1. The

final counter value is nm - 1 where nm is the number of elements in
the array. The loop-clause contains the sort instructions.

m User flag for logic control. User flag 10 defines the sort: When flag 10

is set, MNX2 finds the maximum element; when flag 10 is clear, it
finds the minimum element. You determine the status of flag 10 at the
beginning of the program.

m Nested conditional. An IF ... THEN ... END conditional is nested in

576

the FOR ... NEXT loop — it determines:

31: More Programming Examples

s Whether to maintain the current minimum or maximum element,
or make the current element the new minimum or maximum.

m The sense of the comparison of elements (either < or >) based

on the status of flag 10.

m Logical function. MNX2 executes XOR (exclusive OR) to test the
combined state of the relative value of the two elements and the

status of flag 10.

s Custom menu for making a choice. MNX2 builds a custom menu that

lets you choose whether to sort for the minimum or maximum
element. Key 1, labeled ::MAX , sets flag 10. Key 2, labeled

MIN , clears flag 10.
Program:

«

{

"MAK"
18 SF CONT » 3
"MIN
16 CF CONT » 3

R Mok M

THMENU
"Sort for MRAX or MIN?"
PROMPT

DuUP

OEJ~»

1
SWAP 0BJ%

Comments:

Begins the defining list for the
temporary option menu.

Builds menu keys - MRX: to set flag
10 and continue program execution,
and MIHN: to clear flag 10 and
continue program execution.

Ends the defining list for the option
menu.

Displays the temporary menu and a
prompting message.

Copies the array.

Returns the individual array
elements to levels 2 through nm +1,
and returns the list containing # and
m to level 1.

Sets the initial counter value.

Converts the list to individual
elements on the stack.

31: More Programming Examples 577

DROP * 1 -

FOR n
DUP2

IF
> 18 FS? XOR

THEHN

SWAP

EMD

DrROP

HEXT
@ MENU

*

[ENTER] (J MNX2 (STO)

Checksum: # 12277d
Bytes: 200.5

Drops the list size, then calculates
the final counter value (nm - 1).

Starts the FOR ... NEXT loop.

Saves the array elements to be tested
(initially the last two elements).
Establishes the last array element as
the current minimum or maximum.

Begins the conditional.

Tests the combined state of the
relative value of the two elements
and the status of flag 10.

If the new element is either less than
the current maximum or greater than
the current minimum ...

... swaps the new element into level
1.

Ends the conditional.

Saves the current minimum or
maximum (and drops the other
element off the stack).

Ends the FOR ... NEXT loop.

Restores the last menu.

Enters the program, then stores it in
MNX2,

578 31: More Programming Examples

Example. Use MNX2 to find the minimum element of the matrix from
the previous example:

12 56
45 1
9 14

Enter the matrix.

() [MATRIX]
12 [ENTER] 56 [ENTER] (V]
45 [ENTER] 1 [ENTER]

9 [ENTER] 14 [ENTER)
[ENTER)

Select the VAR menu and execute MNX2.
MHR2

Find the minimum element.

MIN 2: [0 12561 [45 1,
[FAEDIADOLIN[FULTI E4E0 G2 INAME]

Verification of Program Arguments

The two utility programs in this section verify that the argument to a
program is the correct object type.

m NAMES verifies that a list argument contains exactly two names.

m VFY verifies that the argument is either a name or a list containing
exactly two names. It calls NAMES if the argument is a list.

You can modify these utilities to verify other object types and object
content.

31: More Programming Examples 579

NAMES (Does the List Contain Exactly Two
Names?)

If the argument for a program is a list (as determined by VFY), NAMES
verifies that the list contains exactly two names. If the list does not contain
exactly two names, an error message is displayed in the status area and
program execution is aborted.

Arguments Results
1: { valid list > -
status—area error messagqe
1: { invalid list > 1:
Techniques.

® Nested conditionals. The outer conditional verifies that there are two
objects in the list. If there are two objects, the inner loop verifies that
they are both names.

® Logical functions. NAMES uses the AND command in the inner
conditional to determine if both objects are names and the NOT
command to display the error message if they are not both names.

Program: Comments:
€
IF Starts the outer
IF... THEN.. ELSE...END
structure.
0B~ Returns the n objects in the list to

levels 2 through (n + 1), and returns
the list size n to level 1.

DUF Copies the list size.
2 SAME Tests if the list size is 2.

580 31: More Programming Examples

THEN

DROP

IF

TYPE & SAME

SHWAP TYFPE & SAME

AND

NOT

THEHN

"lList needs two names"

DOERR
EHND
ELSE

DROFPH
"Illegal list size"
DOERR

EHD

»

[ENTER] [] NAMES

If the list size is 2 ...

... moves the objects to levels 1 and
2,

Begins the inner IF.. THEN...END
structure.

Tests if the first object is a name. If
so, returns a true result (1). If not,
returas a false result (0).

Moves the second object to level 1,
then tests if it is a name.

If both results are true, returns a
true result (1). If either or both
results are false, returns a false result

).

Returns the opposite result.

If the opposite result is true (if the
objects are not both names) ...

... displays an error message and
aborts program execution.

Ends the inner conditional.
If the list size isnot 2 ...

... drops the list size, displays an
error message, and aborts program
execution.

Ends the outer conditional.

Enters the program and stores it in
NAMES.

1: More Programming Examples 581

Checksum: # 40666d
Bytes: 141.5

NAMES is demonstrated in program VFY.

VFY (Verify Program Argument)

Given an argument on the stack, VFY verifies that the argument is either
a name or a list that contains exactly two names.

Arguments Results
1: 'name' 1t '‘name'
1: Cvalid list 1: {validlist >
status—area error message
1: < invalid list » t: € invalid list 3
status—-area error message
1: invalid object 1: invalid object
Techniques.

s Utility programs. VFY by itself has little use. However, it can be used
(with minor modifications) by other programs to verify that specific
object types are valid arguments.

m CASE. ... END (case structure). VFY uses a case structure to
determine if the argument is a list or a name.

® Structured programming,. If the argument is a list, VFY calls NAMES
to verify that the list is valid.

® Local variable structure. VFY stores its argument in a local variable
so that it may be passed to NAMES if necessary.

m Logical operator. VFY uses NOT to display an error message.

Required Programs.

s NAMES (page 580) verifies that a list argument contains exactly two
names.

582 31: More Programming Examples

Program: Comments:

%
DUP Saves the original argument.
DTAG Removes any tags from the
argument for subsequent testing.
3 arg Stores the argument in local variable
arg.
€ Begins the defining procedure (a
program) for the local variable
structure.
CASE Begins the case structure.
arg TYPE S5 SAME Tests if the argument is a list.
THEN If the argument is a list ...
arg NAMES ... puts the argument back on the
stack, and calls NAMES to verify that
the list is valid.

END Ends the first case. (If the first case
was true, leaves the case structure. If
the first case was false, goes to the
next case.)

arg TYPE & SAME NOT Tests if the argument is a name, then
inverts the test result.

THEN If the argument is not a name (and
not a list) ...

"Not nmame or list" ... displays an error message and
DODERR aborts program execution.
END Ends the second case.
END Ends the case structure.

31: More Programming Examples 583

» Ends the defining procedure.

b

[ENTER] [J VFY Enters the program, then stores it in
VFY.

Checksum: # 14621d
Bytes: 1355

Example. Part 1. Exccute VFY to test the validity of the name
argument PAT,

Put the name PAT on the stack. Select the VAR menu and execute VFY,

[] PAT 1: 'PAT!
VFEY [W7y | BER [SINTPISETTS] TSk | PIE |

The argument is valid and is simply returned to the stack.

Part 2. Execute VFY to test the validity of the list argument { PAT
DIANA TED }.

Put the names DL4NA and TED on the stack. Convert the three names
now on the stack to a list.

(] DIANA (ENTER] 1: { PAT DIANA TED 3}
() TED [0E43 | Ec> J5akk [S0ST]>5Th [3Th)

3[PRG] 0BJ #LIST

Execute VFY. Since the list contains too many names, the error message is
displayed and program execution is aborted.

YFY

Illegal list size

21
1: { PAT DIANA TED 3
(UL T EXCD [FINFIFNEEINGME] VEY)

584 31: More Programming Examples

Bessel Functions
3
The real and imaginary parts of the Bessel function J, (xe *

) are denoted
Ber, (x) and Bei, (x). Whenn = 0,

- /3 M 77
Ber(x) =1 - < 5 + x4!2 -

2!

i
L LS B S U S S R

-10

User-defined function BER calculates Ber(x) to 12 significant digits.

Arguments Resulis

13z 1: Ber(z)

Techniques.

m Local variable structure. BER consists solely of a local variable
structure and so has two properties of a user-defined function; it
takes numeric or symbolic arguments from the stack or in algebraic
syntax. Because BER uses a FOR ... STEP loop, its defining
procedure is a program. (Loop structures are not allowed in algebraic
expressions.) Therefore, unlike a user-defined function, BER is not
differeatiable.

31: More Programming Examples 585

» FOR ... STEP loop (definite loop with counter). Successive terms in
the series are calculated with a counter-controlled loop. When the
new term does not change the series value within the 12-digit
precision of the calculator, the loop ends. The final counter value
(9.0 x 10*”) ensures that enough terms will be calculated.

8 Nested conditional. The IF ... THEN ... ELSE... END conditional
within the definite loop sets the step value n for the loop counter. As
long as the newly calculated series value does not equal the old series
value, the step value 2 is set to 2. When the new series value does
equal the old series value, the step value is set to a number larger
than the final value of the counter, ending the definite loop. In
essence, the nested conditional makes the outer loop work like a
DO ... UNTIL ... END (indefinite) loop.

Program: Comments:
P
> X Creates local variable x.
€ Begins the defining procedure (a
program) for the local variable
structure.
1 Writes the first term of the series.
2 9.E499 Sets the counter for the
FOR ... STEP loop.
FOR j Begins the loop.
DuUP Saves the current value of the series
(initially 1).
e B Ial R Ped T Calculates the next term of the
(72X (2%3) series.

sSRCITYY EVAL

+ Adds the next term to the current
value of the series to calculate the
new value of the series.

586 31: More Programming Examples

IF
DUP ROT =

THEHN

2

ELSE

9.1E499
EHD

STEP

b3

2

[ENTER] (J BER

872d
148

Checksum:
Bytes:

Example. Calculate Ber(3).

(VAR]
3 -BER
Calculate Ber(2) in algebraic syntax.

0 BER @[Y2
[EVAL)

31:

Begins the conditional.

Tests if the new series value is not
equal to the old series value.

If the new and old values are not
equal...

.. specifiesn = 2

If the new and old terms are equal
(to 12-digit precision) ...

.. specifies n = 9.1E499
Ends the conditional.

Specifies the step value based on the
conditional.

Ends the defining procedure.

Enters the program, then stores it in
BER.

13 -. 2213802436
LBER JSINTRISETTS] ¥on | PIE]]

1: .091734182714
L¥ER JSINTRISETTS] vsn | PIE |]

More Programming Examples

587

Animation of Successive Taylor’s
Polynomials

This section contains three programs that manipulate graphics objects to
display a sequence of Taylor’s polynomials for the sine function.
& SINTP draws a sine curve, and saves the plot in a variable.

® SETTS superimposes plots of successive Taylor’s polynomials on the
sine curve plot from SINTP, and saves each graphics object in a list.

a TSA displays in succession each graphics object from the list built in
SETTS.

Drawing a Sine Curve and Converting It to a
Graphics Object

SINTP draws a sine curve, returns the plot to the stack as a graphics
object, and stores that graphics object in a variable.

Arguments Results

Techniques.

m Programmatic use of PLOT commands to build and display a
graphics object.

Program: Comments:
%
'¥' PURGE Makes X a formal variable, then
'SIHCK)' STER stores the expression for sinx in EQ.
-2 2 YRNG Sets the y-axis display range.
ERASE DRAMW Erases PICT, then plots the
expression.

588 31: More Programming Examples

FICT RCL 'SINT' STO Returns the resultant graphics object
to the stack and stores it in SINT.

=

(ENTER] [] SINTP Stores the program in SINTP.

Checksum: # 61373d
Bytes: 78.5

Superposition of Successive Taylor’s Polynomials

SETTS superimposes successive Taylor’s polynomials on a sine curve and
stores each graphics object in a list.

Arguments Results

Techniques.

8 Structured programming. SETTS calls SINTP to build a sine curve
and convert it to a graphics object.

m FOR ... STEP (definite) loop. SETTS calculates successive Taylor’s
polynomials for the sine function in a definite loop. The loop counter
serves as the value of the order of each polynomial.

® Programmatic use of PLOT commands. SETTS draws a plot of each
Taylor’s polynomial.

m Manipulation of graphics objects. SETTS converts each Taylor’s
polynomial plot into a graphics object. Then it executes + to combine
each graphics object with the sine curve stored in SINT, creating nine
new graphics objects, each the superposition of a Taylor’s polynomial
on a sine curve. SETTS then puts the nine new graphics objects, and
the sine curve graphics object itself, in a list.

31: More Programming Examples 589

Program:

&«

SINTP

17 1 FOR x

x '®' DUP

SIN SWAF ROT TAYLR
STEQ ERASE DRAMW

PICT RCL SINT +

-2 STEP

SINT 18 »LIST
'TSL' STO

*

[ENTER]) (] SETTS [STOJ

Checksum: # 5841d
Bytes: 136.5

Comments:

Plots a sine curve and stores the
graphics object in SINT.

For each value of local variable x ...

... plots the Taylor’s polynomial for
the sine curve (where x is the order

of the polynomial).

Returns the plot to the stack as a
graphics object and executes + to
superimpose the Taylor series on the
sine curve stored in SINT.

Decrements the loop counter (the
order of the Taylor’s polynomial) by
2 and repeats the loop.

Puts the sine curve graphics object
on the stack, then builds a list that
contains that graphics object and the
nine graphics objects created in the
FOR ... STEP loop. Stores the list in
TSL.

Stores the program in SETTS.

590 31: More Programming Examples

Animation of Taylor's Polynomials

TSA displays in succession each graphics object created in SETTS.

Arguments Results

Techniques.

m Passing a global variable. Because SETTS takes a long time to
execute (approximately six minutes), 754 does not call SETTS.
Instead, you must first execute SETTS to create the global variable
TSL containing the list of graphics objects. TSA4 simply executes that
global variable to put the list on the stack.

m FOR ... NEXT (definite loop). T7SA executes a definite loop to
display in succession each graphics object from the list.

Program: Comments:
%
TSL Puts the list 7SL on the stack.
0BJ» Puts the 10 graphics objects from the
list and the list count on the stack.
1 SHAP FOR = For s from 1to 10...
ERASE »LCD ... clears the display, converts the
1 WAIT level-1 graphics object to a display
image, and shows it for one second.
HEXT
»
[ENTER] [] TSA Stores the program in T.SA.

31; More Programming Examples 591

Checksum: # 39562d
Bytes: 51

Example. Execute SETTS and TSA to build and display in succession a
series of Taylor’s polynomial approximations of the sin function.

Set Radians mode. Exccute SETTS to build the list of graphics objects.

SETTS takes about six minutes to execute. Execute TSA4 to display each
plot ia succession. The display shows TSA in progress.

[«a)(RAD] (if necessary)

SETTS
TSH /
p
SINTRZETTS] T5n [PIE | ' JLISTD

Programmatic Use of Statistics and Plotting

Program PIE prompts for single variable data, stores that data in the
statistics matrix XDAT, then draws a labeled pie chart that shows each
data point as a percentage of the total.

Arguments Results

Techniques.

® Programmatic use of PLOT commands. P/E executes XRNG and
YRNG to define x- and y-axis display ranges in user units, executes
ARC to draw the circle, and LINE to draw individual slices.

8 Programmatic use of matrices and statistics commands.

m Manipulation of graphics objects. PIE recalls PICT to the stack and
executes GOR to merge the label for each slice with the plot.

= FOR ... NEXT (definite) loop. Each slice is calculated, drawn and
labeled in a definite loop.

$92 31: More Programming Examples

a CASE ... END structure. To avoid overwriting the circle, each label
is offset from the midpoint of the arc of the slice. The offset for each
label depends on the position of the slice in the circle. The CASE ...
END structure assigns an offset to the label based on the position of

the slice.

» Preservation of current calculator flag status. Before specifying
Radians mode, PIE saves the current flag status in a local variable,
then restores that status at the end of the program.

® Temporary meau for data input.

Program:

&«

RCLF » flag=

FAD

{ "SLICE" =+ =

L

{ "CLERR" CLZ

L >L43
{ "DRAW" CONT 3

k]

THENU

"Key values into
SLICE, wDRAKW

restarts program."”
PROMPT

Comments:

Recalls the current flag status and
stores it in variable flags.

Sets Radians mode.

Begins the defining list for the input
menu.

Defines key 1. Key 1 executes + to
store each data point in EDAT.

Defines keys 2 and 3. Key 3 clears
EDAT.

Defines keys 4, 5, and 6. Key 6,
labeled DRRAW continues program
execution after data entry.

Ends the defining list.
Displays the temporary menu.

Prompts for inputs. The = is the
calculator’s representation of the «
character ([][<]) after the
program has been entered on the
stack.

31: More Programming Examples 593

ERASE 1 131 XRMG
1 64 YRHG CLLCD

"Please wait.n
Drawing Pie Chart"
1 DISP

(66,32) 28 B 6.28
ARC

PICT RCL =»LCD

RCLZ TOT ~

DUF 1ap *

% prcnts

&

2w »HUM ¥ ¥ @

¥ prop angle

&

prop SIZE OBJ>»
DROP SHAP

FOR x

(664322 prop x GET

'angle' STO+

angle COS LASTARG
SIN R+C 28 # OVER +
LINE

Erases the current PICT and sets
plot parameters.

Displays “drawing” message.

Executes ARC to draw the circle.

Displays the empty circle.

Recalls the statistics data matrix,
computes totals, and calculates the
proportions.

Converts the proportions to
percentages.

Stores the percentage matrix in
prents.

Multiplies the proportion matrix by
2x.

Stores the proportions in prop and
initializes angle to 0.

Sets up start and finish for
FOR...NEXT loop.

Begin FOR clause.

Puts the center of the circle on the
stack and gets the xth value from the
proportion matrix.

Computes the endpoint and draws
the line for the xth slice.

31: More Programming Examples

PICT RCL

angle prop x GET

2 v - DUF

CO5 LASTARG SIH R2C
26 ¥ (86,320 +

SWAF DUF
CHSE

1.5 £
THEM

DROP

EMHD

DUP 4.4 £
THEHN

DROP 15 -
EHD

5 <

THEH

END
END

prcnts x GET

1 RHD

3STR "' +

Recalls PICT to the stack.

For labeling the slice, computes the
midpoint of the arc of the slice.

Starts the CASE. . .END structure to
determine the offset value for the

label.

From 0 to 1.5 radians ...

... doesn’t offset the label.

From 1.5 to 4.4 radians ...

... offsets the label 15 user units left.

From 4.4 to 5 radians ...

... offsets the label 3 units right and
2 units up.

Gets the xth value from the
percentage matrix.

Rounds the percentage to one
decimal place.

Converts the percentage to a string
and adds * to the string.

31: More Programming Examples 595

1 *GROE

GOR DUP PICT STO

+LCD

NEXT
{ 3 PYIEN

flaas STOF

= 2 MEHU

[ENTER] [} PIE [(STO]

Checksum: # 8706d
Bytes: 758.5

Converts the string to a graphics
object.

Adds the label to the plot and stores
the new plot.

Displays the plot with the new slice
and label.

Displays the finished plot.

Restores the original flag status.

Displays the VAR menu. (Note that
the user must first press to
clear the plot.)

Enters the program and stores it in
PIE.

Example. The fruit inventory at Joe’s grocery includes 983 oranges, 416
apples, and 85 bananas. Draw a pic chart to show each fruit’s percentage

of total inventory.

Start PIE.
PIE

eH values into SLICE
RAW restarts program.

K
D
4
J:
]
1

596 31: More Programming Examples

Clear the current statistics data. (The prompt is removed from the
display.) Key in the new data and draw the pie chart.

CLEAR
983 L ICE
416 SLICE
85 SIU'ICE
DRAW

86.2%

28

Animation of a Graphical Image

Program WALK shows a man walking across the display. It animates this
custom graphical image by incrementing the image position in a loop

structure.

Arguments

Results

Techniques.

m Use of a custom graphical image in a program. (Note that the
programmer derives the full information content of the graphical
image before writing the program by building the image interactively
in the Graphics environment and then returning it to the command

line.)

= FOR...STEP definite loop to animate the graphical image. The
ending value for the loop is MAXR. Since the counter value cannot
exceed MAXR, the loop executes indefinitely.

31: More Programming Examples 597

Program:

&

GROB 9 15 E30@
1480156081C8814686E300
SpBaC1 18AABN4BH9000
4100220014102300

3 man

ERASE ¢ # Ad # Bd >
PYIEW

{ # 6d # 25d >
PICT OVER man GRXOR

2 MAXR FOR i

i 131 MOD R2B

25d 2 »LIST

PICT OVER man GXOR

PICT ROT man GXOR

Comments:

Puts the graphical image of the man
in the command line. (Note that the
hexadecimal portion of the graphics
object is a continuous integer
Ez@0. . . 2500, The linebreaks do
not represent spaces.)

Creates local variable man
containing the graphics object.

Clears PICT, then displays it.

Puts the first position on the stack
and turns on the first image. This
readies the stack and PICT for the
loop.

Starts FOR. . .STEP loop to generate
horizontal coordinates indefinitely.

Computes the horizontal coordinate
for the next image.

Specifies a fixed vertical coordinate.
Puts the two coordinates in a list.

Displays the new image, leaving its
coordinates on the stack.

Turns off the old image, removing its
coordinates from the stack.

598 31: More Programming Examples

S STEP Increments the horizonlal coordinate
by S.

g

»

(] WALK Stores the program in WALK,

Checksum: # 4342d
Bytes: 236.5
Example. Sead the man oul for a long walk.

Select the VAR menu and execute WALK.
WARLK

&

When he tires, press to take him home (and end the program).

31: More Programming Examples 599

Part 5

Printing, Data Transfer, and
Plug-ins

32

Printing

This chapter describes how to use your HP 48 with an HP 822408
Infrared Printer, with an HP 82240A infrared printer, and with printers
that connect to the serial port.

Printing with an HP 82240B Printer

You can send information from your HP 438 to an HP 82240B Infrared
Printer via the infrared port. Refer to the printer manual for instructions
about how to operate the printer and how to position the printer relative
to the HP 48.

602 32: Printing

PRINT Commands

Keys Programmable Description
Command
When and are pressed
simultaneously and then released, the
current display is printed.
[*][PRINT) PR1 Prints the object in level 1.
(*2][PRINT]:
PR1 PR1 Prints the object in level 1.
FRST PRST Prints all objects on the stack starting
with the object in the highest level.

PRETC PRSTC Prints all objects on the stack in
compact form, starting with the object
in the highest level.

PRLCD PRLCD Prints the current display.

PRVYAR PRVAR Searches the current path for the
specified variables, and prints the name
and contents of each variable. The
variables are specified either by name
orinalistin level 1.

CR CR Causes printer to do a carriage-
return/line-feed, printing the contents, if
any, of the printer buffer.

DELAY DELAY Sets the delay time, < 6.9 seconds,
between sending lines of information to
the printer.

OLDPR OLDPRT Remaps the HP 48 character set to the

HP 82240A Infrared Printer.

32: Printing 603

Print Formats

Multiline objects can be printed in multiline format or compact format.
Multiline printer format is similar to multiline display format, with the
following exceptions:
® Strings and names that are more than 24 characters long are
continued on the next printer line.

u The real and imaginary parts of complex numbers are printed on
separate lines if they don’t fit on the same line.

m Arrays are printed with a numbered heading for each row and with a
column number before each element. For example, the 2 x 3 array

123
456
would be printed like this:
Array dimensions
Row Array { 2 3 3
number - Row 1
111
Column 2] 2
number | 37 2
Row 2
11 4
21 S
31 6

Compact printer format is the same as compact display format: Multiline
objects are truncated and appear on one line only.

The PRSTC command prints the stack in compact form. All other print
commands print in multiline format.

604 32: Printing

Basic Printing Commands
Printing the Display. To print an image of the display under any
condition without using the PRINT menu: *
1. Press and hold [ON].
2. Press and release (the key with “PRINT” written above it).
3. Release [ON].

ﬂ A low-battery condition may result in consistent failure of
the printing procedure. If you notice consistent
Note failure, replace your calculator batteries to remedy the
situation.

The PRLCD command ([[PRINT] PRECD) also prints an image of the
display.

* These keystrokes use the current DELAY setting, Alsa, if you are printing to the serial
port to capture graphics data on your printer, the serial port must be open (the
OPENIO command) before these keystrokes are executed.

32: Printing 605

Printing the Contents of Level 1 of the Stack. PR1 ([«][PRINT)

PR1) prints the contents of level 1 in multiline printer format. All
objects except strings are printed with their identifying delimiters. Strings
are printed without their " delimiters. PR1 can be executed also by
pressing (] [PRINT].

Printing the Stack. PRST ([«Q)[PRINT] PRST)prints all objects on
the stack, starting with the object in the highest level, in multiline printer

format (except for graphics objects, which print the same as they are
displayed).

the object in the highest level, in compact printer format.

Printing Variables. PRVAR ([€][PRINT] PRVAR) searches the
current path for the variables that you have specified, and prints the name
and contents of each variable in multiline printer format. PRVAR takes
one argument from the stack: either one name or a list containing one or
more names. (PRVAR also prints backup objects.)

Printing a Text String

You can print any sequence of characters by entering a string object that
contains the characters and executing PR1. The printer prints the
characters without the quotation marks and leaves the print head at the
end of the print line. Subsequent printing begins on the next line.

Printing a Graphics Object

Like other objects, you can print a graphics object either by putting the
graphics object in level 1 and executing PR1, or, if the graphics object is
stored in a variable, by entering the variable name and executing PRVAR.
Graphics objects wider than 166 dot columns are printed in 166-column
wide segments down the paper, separated by a dashed line. For example,
a 350-column wide graphics object would be printed in two 166-column
segments and one 18-column segment.

606 32: Printing

Double Space Printing

To select double-space printing (one blank line between lines), set flag
~37. To return to single-space printing, clear flag —37.

Setting the Delay

The DELAY command lets you specify how long the HP 48 waits between
sending lines of information to the HP 82240B Infrared Printer. DELAY
takes a real number from level 1 that specifies the delay time in seconds.
If you do not specify a delay, it is automatically set to 1.8 seconds. The
maximum delay is 6.9 seconds.

A shorter delay setting can be useful when the HP 48 sends multiple lines
of information to your printer (for example, when printing a program).
To optimize printing efficiency, set the delay just longer than the time the
printhead requires to print one line of information.

If you set the delay shorter than the time to print one line, you may lose
information. Also, as the batteries in the printer lose their charge, the
printhead slows down, and, if you have previously decreased the delay, you
may have to increase it to avoid losing information. (Battery discharge
will not cause the printhead to slow to more than the 1.8 second default
delay setting.)

The HP 48 Character Set

The table in appendix C lists each HP 48 character and its corresponding
character code. Most of the characters in the table can be directly typed
into the display from the Alpha keyboard. For example, to display %,
type [a] [(1a)[4). (The Alpha keyboard is presented in chapter 2.) Any
character in the table can be displayed by typing its corresponding
character code and then executing the CHR command. The syntax is
char# CHR. Certain characters in the table in appendix C are not on the
Alpha keyboard. To display one of these characters, you must type its
character code and execute CHR.

The HP 82240B Infrared Printer can prinl any character from the HP 48
character set.

32: Printing 607

Sending Escape Sequences and Control Codes

You can select various printer modes by sending escape sequences to the
printer. An escape sequence consists of the escape character — character
27— followed by additional characters. When the printer receives an
escape sequence, it switches into the selected mode. The escape sequence
itself isn’t printed.

Printer owner’s manuals generally describe the escape sequences and
control codes recognized by the printer.

Use CHR and + to create escape sequences and use PR1 to send them to
the printer.

Example. These characters send information to the HP 82240B printer
to turn on Underline mode, underline the string HELLO, and then turn
off Underline mode:

27 CHR 251 CHR + "HELLO" +
27 CHR + 2358 CHR + PR1

Accumulating Data in the Printer Buffer

You can print any combination of text, graphics, and objects on a single
print line by accumulating data in the printer’s buffer.

Normally, each print command completes data transmission by
automatically executing the CR (carriage right) command, which tells the
printer to do a carriage-return/line-feed. Then the printer prints the data
currently in its buffer and leaves the print head at the right end of the
print line.

You can disable the automatic execution of the CR command by setting
flag —38, the Line-feed flag. Data from subsequent print commands is
accumulated in the printer buffer and is printed only when you manually
execute CR. When flag —38 is set, follow these three rules:

= Execute CR ([€)[FRINT] | .CR)to print the accumulated data.
(Alternately, send character 4 or character 10.)

® Print the data in the buffer before you accumulate more than 200
characters. Otherwise, the buffer fills up and subsequent characters
are lost.

608 32: Printing

= Allow time for the printer to print a line before sending more data.
The printer requires about 1.8 seconds per line.

Clear flag - 38 to restore normal operation of the print commands.

Printing with an HP 82240A Infrared Printer

You can use your HP 48 calculator with an HP 82240A Infrared Printer,
executing the same print commands that you would use for an

HP 82240B. However, the character set in the HP 82240A Infrared
Printer does not match the HP 48 character set:h

m 24 characters in the HP 48 character set are not available in the
HP 82240A Infrared Printer. (From the table in appendix C, these
characters are numbers 129, 130, 143-157, 159, 166, 169, 172, 174, 184,
and 185.) The HP 82240A prints a ¥ in substitution.

@ Many characters in the extended character table (character codes 128
through 255) do not have the same character code. For example, the
« character has code 171 in the HP 48 and code 146 in the
HP 82240A Infrared Printer. If you want to use the CHR command
to print extended characters with an HP 82240A Infrared Printer, first
execute OLDPRT. OLDPRT adds a remap string to the PRTPAR
variable, which changes the character code of each byte to match the
codes in the HP 82240A Infrared Printer character table. (If you
want to print a string containing graphics data, OLDPRT must not be
in effect.)

If you executed OLDPRT to print with an HP 82240A Infrared Printer,
and then want to print to an HP 82240B Infrared Printer, you should first
purge the reserved variable PRTPAR. (You can first copy its contents to
another variable if you want to save the settings for later use.) This resets
the print parameters so that the character set matches the HP 82240B.
(PRTPAR is described on page 611.)

32: Printing 609

Printing to the Serial Port

You can print to a serial printer via the HP 48 serial port. Once the
HP 48 is connected to the printer:

1. Set flag - 34, the Printing Device flag,

2. Check that flag —33, the I/O Device flag is clear. (The default is
clear.)”

3. Set the HP 48 baud rate, parity, and translation code appropriately

for your printer. These can be set using the I/O SETUP menu,
described on page 617.

4. If your printer uses XON/XOFF handshaking, edit (or create)
IOPAR to set transmit pacing # 0. The reserved variable JOPAR is
described on page 618.

5. If the number of characters that fit on one line on your printer is
not 80, edit PRTPAR to contain the correct number as the third
element in its list. (See the next section for information on
PRTPAR.)

6. If your printer requires a line termination sequence other than
carriage-return/line-feed, edit PRTPAR to contain that sequence as
the fourth element in its list. The reserved variable PRTPAR is
described in the following section.

You can execute any of the print commands described in this chapter with
a serial printer. However, note that:

® The maximum line length to print is specified in the reserved variable
PRTPAR (described next).

® You cannot print a graphics object.

* Setting both flags -33 and -34 would enable infrared serial data transmission. Printing
with an HP 82240B Infrared Printer when these flags are set will not work—the
HP 82240B would likely print blots.

610 32: Printing

The PRTPAR Variable

When you first print information with a command from the PRINT menu,
the HP 48 automatically creates the PRTPAR variable. PRTPAR is a
reserved variable containing a list that specifies how the HP 48 works with
the printer. The list contains, in order, the following objects:

m A real number that specifics the delay time, in seconds. If you have
not previously executed DELAY, the delay time is automatically set to
1.8 seconds in PRTPAR.

® A string that represents the current remapping of the HP 48 extended
character set. The string can contain as many characters as you want
to remap, with the first character in the string being the new
character 128, the second being the new character 129, and so on.
(Any characters outside the string length will not be remapped.) If
you have not previously executed OLDPRT, the string is empty; if you
have executed OLDPRT, the string contains the character remapping
for the HP 82240A Infrared Printer.

® A real number that specifies the line length, in number of characters,
for serial printing. This parameter does not affect infrared printing.
The default is 80 characters.

m A string that represents the line termination method for serial
printing. This parameter does not affect infrared printing. The
default is carriage-return fline-feed (control characters 13 and 10).

You can edit any parameter in the list. The delay time, however, can be
set more easily using the DELAY command: Enter the delay number (6.9
or less) on the stack and execute DELAY ([¥q] (PRINT) DELAY).

32: Printing 611

33

Transferring Data to and from the
HP 48

[T

This chapter covers:
m Transferring data from one HP 48 to another using the infrared port.

m Transferring data between the HP 48 and a computer using the serial
port. (For this operation, you need the Serial Interface Kit
appropriate for your computer. For more information, see your
Hewlett-Packard dealer.)

m Other serial I/O operations.

The HP 48 uses Kermit file transfer protocol to transfer data and to
correct transmission errors between two HP 48 calculators, or between an
HP 48 and a computer. Kermit protocol was developed at the Columbia
University Center for Computing Activities.

The calculator commands needed to accomplish Kermit data transfer are
built into the HP 48. Therefore, you can transfer data from one HP 48 to
another by simply lining up the two infrared ports and executing the
proper commands, which are described in this chapter.

To transfer data to and from a computer, the computer must be running a
program that implements Kermit protocol. Also, there must be a cable
connecting the HP 48 and the computer. Details about the cable
connection are covered later in this chapter. (Kermit protocol and a

612 33: Transferring Data to and from the HP 48

special serial cable are required for this operation and are available from
your Hewlett-Packard dealer as part of a Serial Interface Kit to match
your computer.)

If you want additional information on Kermit protocol, a book by Frank
da Cruz, KERMIT, A File Transfer Protocol, is available in many
bookstores or can be ordered. "

The HP 48 provides additional serial I/O commands for non-Kermit data
transfers. These commands are for specialized I/O operations — for
example, printing directly from the HP 48 to a serial printer.

Types of Data You Can Transfer

The unit of information that is transferred using Kermit protocol is called
afile. In the HP 48 world, a file can consist of:

® A named object (variable, backup object, etc.).

® An entire directory. When you transfer a directory, the contents of all
the subdirectories under that directory are also transferred.

® All of user memory—all the variables you've created, the user-key
assignments, and the Alarm Catalog,

In all cases, a copy of the data is sent to the receiving device and stored as
a file (variable) in the current directory.

When you transfer a directory or all of user memory between an HP 48
and a computer, the data is sent as a single file, and you cannot
conveniently access the contents of the individual variables in that file.
For this reason, a directory transfer to a computer should be done mainly
for archiving purposes. When the purpose of a file transfer is to use the
file at its destination (for example, to edit a program on your computer),
you should transfer the contents of the individual variable. If you put the
variable names in a list and use the SEND command to transfer the data,
the variables can then be accessed individually.

* da Cruz, Frank. 1987. KERMIT, A File Transfer Protocol. Bedford, MA: Digital Press.

33: Transferring Data to and from the HP 48 613

When you transfer a directory from one HP 48 to another, it is installed in
the destination machine as a normal directory. This means that it can be
manipulated just like other directories and its variables are all accessible.
Transferring a directory from one HP 48 to another is a good way to
transfer a set of related objects — for instance, a set of programs,
variables, printer configurations, etc. — all ready to be used together by
the destination HP 48.

The 1/0 Menu

The commands for Kermit protocol and serial operations are contained in
the I/O menu. The serial commands are covered at the end of the
chapter.

Kermit Protocol Commands

Keys | Programmable Description
Command

[%2](/0] (pages 1 and 2):

SEND SEND Sends the contents of one or more
variables to another device. SEND
takes an argument from level 1 —the
variable name, or a list of names

{ name, name, ... 2. (Seethe
paragraph immediately following this
table for more information.)

RECY RECV Tells the HP 48 to wait to receive a
variable from another Kermit protocol
device.

SERVE SERVER Puts the HP 48 into Kermit Server
mode. (Also executed by pressing

(*10/3].)

614 33: Transferring Data to and from the HP 48

Kermit Protocol Commands (continued)

Keys

Programmable
Command

Description

KGET

EINIS

SETUR

RECH

PKT=

‘KERR:

ORENT

CEOSE

KGET

FINISH

RECN

PKT

KERRM

OPENIO

CLOSEIO

Gets one or more variables from a
server device. KGET takes an
argument from level 1 —the name of
the requested variable, or a list of
names {name,name,... 3. (See
the paragraph immediately following
this table for more information.)

Issues the Kermit FINISH command to
a server device to terminate Server
mode.

Displays the SETUP menu for setting
1/O parameters.

Same as 'RECV ,except that it takes
a name argument. The received file is
stored using that name.

Provides the ability to send a Kermit
command "packet” to a server. It
takes the packet data field as a string
in level 2 and the packet type as a
string in level 1. For example,
"DYonE" PKT sends a “generic
directory” command.

Returns the text of the most recent
Kermit error.

Opens the serial port using the /0O
parameters in JOPAR.

Closes the serial port, clears KERRM,
and clears the input buffer.

33: Transferring Data to and from the HP 48 615

You can also use SEND and KGET to rename a variable when it’s
transferred by including a sublist for that variable in the main list. The
first element in the sublist is the existing variable name and the second
element is the new name. For example, executing the SEND command
with the list { {name, name,} name; name, } as an argument would
result in name; and name, being sent under their own names and name,
being sent under the new name of name,.

Local and Server Modes

There are two Kermit protocol configurations for transferring data from
an HP 48 to another HP 48 or computer:

m Local/Local. Both machines are controlled locally from their own
keyboards, and Kermit commands can be issued by either machine.
Data is transmitted by issuing a SEND command from the sender’s
keyboard and a RECV or RECN command from the receiver’s
keyboard.

m Local/Server. One machine is controlled locally and the other
machine is a server. The server passively waits for instructions or data
from the sender. A server:

m Receives data when a sender executes a SEND command.
8 Transmits data when it receives a KGET command.

m Ceases to be a server when it receives a FINISH command.

Local/Server mode is most useful when you wish to transfer a number of
variables from different directories; the local device can issue repeated
“send” or “get” commands to which the server responds.

616 33: Transferring Data to and from the HP 48

Setting the 1/0O Parameters

The SETUP Menu

Pressing SETUP displays the current I/O parameter settings and a menu
for changing them. If the displayed settings are overwritten by the stack
or other information, press [€q)(REVIEW] to redisplay them.

SETUP Menu
Keys | Programmable Description
Command
(*1](i/C) SETUP:

IR Switches between IR (infrared) and
Wire (serial) modes. In IR mode, I/0
output is directed to the infrared port.
In Wire mode, /0O output goes to the
serial port.

HECTI Switches between ASCII and binary
transmission modes (see page 629).

BAUD BAUD Steps through 1200, 2400, 4800, and
9600 baud. The default transfer rate is
9600 baud.

PARIT PARITY Steps through odd (1), even (2), mark
(3), space (4), and no (0) parity. The
default is no parity.

33: Transferring Data to and from the HP 48 617

SETUP Menu (continued)

Keys | Programmable Description
Command
CKSHM CKSM Steps through checksum (error

detection) options. The CKSM set is
the type of checksum requested when
initiating a SEND. Choicesare 1 (1-
digit arithmetic checksum), 2 (2-digit
arithmetic checksum), and 3 (3-digit
cyclic redundancy check, or CRC).
The default is 3; IR transmissions
should use 3.

TRAN TRANSIO Steps through the character translate
code options. Choices are 0 (no
translation), 1 (translate character 10
to characters 13 and 10), 2 (translate
characters 128 through 159), or 3
(translate characters 128 through
255). The default is 1. (See page 626
for more information.)

The BAUD, PARITY, CKSM, and TRANSIO commands can be used in
programs by preceding the command with the number representing the
appropriate choice.

The IOPAR Variable

The reserved variable JOPAR stores the 1/O parameters needed to
establish a communications link with a computer. JOPAR contains a list
consisting of these elements:

{ baud parity receive-pacing transmit-pacing checksum
translate-code

618 33: Transferring Data to and from the HP 48

IOPAR is created in the HOME directory the first time you transfer data
or open the serial port (JFENT). It is automatically updated whenever
you change the settings using the commands in the I/O SETUP menu.

The Parity Setting. If the parity setting is positive, it is used on both
transmit and receive. If it is negative, it is used only on transmit, and
parity is not checked during receive. The menu key PARIT steps
through only positive choices, but you can make the parity negative by
putting the negative parity number on the stack, keying in the command
PARITY, and pressing [ENTER]. You can also edit JOPAR, which contains
the current I/O parameter settings, to make the parity element negative.

Receive Pacing and Transmit Pacing. Reccive pacing and transmit
pacing are not used by Kermit protocol. They can, however, be used in
other serial I/O transfers— for instance, printing with a serial printer. A
non-zero value for receive pacing causes the HP 48 to send an XOFF
signal when its receive buffer is getting full, and then an XON signal when
it can take more data. A non-zero value for transmit pacing causes the
HP 48 to stop transmitting if it receives an XOFF signal and wait for an
XON signal to continue. The default settings for both these JOPAR
elements is 0, which means “don’t send XON/XOFF signals, and ignore
any that are received.”

Transferring Data between Two HP 48’s

Before beginning the transfer:

1. On the sender, switch to the directory where the variables are
located. Use the I0 SETUP menu to set IR and binary transfer
modes and to set the CKSM to 3.

2. On the receiver, use the IO SETUP menu to set IR transfer mode.
Then, switch to the directory to which you want the data sent.

33: Transferring Data to and from the HP 48 619

3. Line up the infrared ports by lining up the A marks (near the
Hewlett-Packard logo just above the display). The calculators
should be no farther apart than 2 inches.

il

\H_i.

D W S - -)
DOO0O0O
é
.

To transfer data using the local/local configuration:
1. On the receiver, do either of the following;

s Execute RECV ([\q][i/0) 'RECY")to store the variable under
the name given by the sender.

s If you want to change the variable name, enter a new name and

execute RECN ([(«q](1/0] RECHN). When the object is

received, it will be stored using that name.

2. On the sender, enter the name of the variable or directory to be

same directory, you can enter a list of variables and SEND them all
at once.)

3. To transfer additional variables or lists of variables, repeat the
previous two steps.
To transfer data using the local/server configuration:

1. On the HP 48 that will be the server, execute SERVER ([*]{i/0] or
(€70 SERVE).

620 33: Transferring Data to and from the HP 48

2. On the other, “locally controlled” HP 48:

m To send a file to the server, enter the variable name and
execute SEND ([«q]{I/0)] SEND). (To send the variable using
a different name, or to send several variables from the same
directory, use a list argument as described on page 616.)

® To receive a file from the server, enter the variable name and
execute KGET ([9)(1I/0) KGET). (To have the variable
stored locally using a different name, or to receive several
variables together, use a list argument as described on page
616.)

3. To transfer additional variables or lists of variables, repeat step 2.

4. To end the session, execute FINISH ([€q)(I/0) FINIS) onthe
locally controlled machine.

Transferring Data between a Computer and
the HP 48

There are many reasons to transfer information between a computer and
your HP 48 — you might want to back up all of your calculator’s user
memory; you might want to edit a calculator program on your computer;
or you might want to write a program on your computer and then run it
on your calculator. Whatever the reason, the first step involves making a
physical connection.

Cable Connection

Before transferring data between a computer and your calculator, you
must connect the HP 48 to the computer via the serial cable in the Serial
Interface Kit for your computer. (If you need information on what Serial
Interface Kit is right for your computer, or if you don’t have an Interface
Kit, see your HP dealer.)

1. Connect the computer end of the serial cable to the serial port on
the computer. (If you need instructions for this, consult your
computer documentation.)

33: Transferring Data to and from the HP 48 621

2. With the calculator right-side up and the HP logo on the cable
connector facing up, connect the cable to your calculator. You
should feel the connector lightly snap into place.

Not quite flush

Note that when the cable is fully connected, the case around the
connector is not quite flush with the calculator case.

Transferring Data

Before beginning the transfer:

1. On the HP 48, display the I/O SETUP menu ((()(i/0)] SETUF)
and read the status message. If necessary:

= Select ASCII or Binary transmission mode by pressing
ASCII. (See page 629 for guidelines on selecting the mode to
use.)

= Set the HP 48 transfer rate by pressing BRUD until it
matches the rate expected by the Kermit program running on
the computer.

a Sct the HP 48 parity by pressing FARIT until it matches the
parity expected by the Kermit program running on the
computer.

» Set the checksum (CKSM) —type 1 is the fastest —and set the

character translate code (TRAN). (See page 618 for
guidelines on what translate code settings to use.)

622 33: Transferring Data to and from the HP 48

2. On both the HP 48 and the computer, switch to the directory where
the variables (files) are located and to the directory to which you
want the variables (files) sent.

3. Open the HP 48 serial port by executing OPENIO ([«1](1/0]
QPENI). This step is not necessary for most connections, but it will
prevent difficulties caused by the inability of certain devices to
communicate with a closed port.

4. Run the program on the computer that implements Kermit
protocol. If you are transferring data in binary mode, and if the
Kermit program on the computer has a binary mode setting
command, you should execute it on the computer.

To transfer data using the local/local configuration:
1. On the receiver, issue the “receive” command:

m If the HP 48 is the receiver, execute RECV ([«q][1/0]
RECY¥.),or enter a variable name and execute RECN

(L0 RECH).

m If the computer is the receiver, issue the command on the
computer to receive a file.

2. On the sender, issue the “send” command:

= If the HP 48 is the sender, key in the argument (variable name
or variable list as described on page 616) and execute SEND

(/8] SEND).

m If the computer is the sender, issue the command on the
computer to send a file.

3. To transfer additional variables or variable lists, repeat steps 1 and

2,
4. Optional: To conserve battery power, execute CLOSEIO ([(9)(1/0)
CLOSE) when finished.

33: Transferring Data to and from the HP 48 623

To transfer data using local/server configuration:

1.

2.

If your computer will be the server, make sure it is able to execute
the Kermit “server” command.

Set server operation on the device that will act as server:

m If the HP 48 is to act as server, execute SERVER ([*]{1/0] or
(«l(I/0]) SERV).

= If the computer is to act as server, exccute the command on the
computer to make it the server.

. On the locally controlled device:

m To send a file to the server, issue the appropriate “send”
command. (See SEMND on page 614 if the HP 48 is the
sender.)

m To receive a file from the server, issue the appropriate “get”
command. (See “KGET on page 615 if the HP 48 is the
receiver.)

To transfer additional variables, repeat step 3.

. To end the session, execute the “finish” command on the locally

controlled machine. (If the HP 48 is locally controlled, press
(«] FINIS)

. Optional: To conserve battery power, execute CLOSEIO ([43](i/0]

CLEUSE) on the HP 48 when finished.

Backing Up All of HP 48 Memory

The ARCHIVE and RESTORE commands provide the ability to back up
all variables, user key assignments, and alarms in calculator memory onto
your computer.

624

33: Transferring Data to and from the HP 48

To backup all of user memory:

1. Follow the instructions in “Before Beginning the Transfer” on page
622.

2. Enter the object : 10:name, where name is the file name that will
contain backed up memory. For example, : I0:AUG1 will back up
memory into a file named AUG 1.

3. Issue the Kermit RECEIVE command on the computer.

4. Execute ARCHIVE ((+q](MEMORY] (NXT] [NXT] BRCHI) to send
the data to the PC. (Regardless of the ASCII/binary setting,
ARCHIVE uses binary transmission.)

To copy backed up user memory into the HP 48:

w Use the RESTORE command with care; restoring backed
: up user memory completely erases current user memory
Caution and replaces it with the backup copy.

1. Follow the instructions in “Before Beginning the Transfer” on page
622,

2. Transfer the computer file to the HP 48 the same way you transfer
any other file.

3. Place the name of the file on the stack (for example, 'ALG1') and
press [)[RCL). This recalls Backup HOMEDIR to level 1.

4. Exccute RESTORE ([#q][MEMORY] [NXT] [NXT] RESTO).

If you want your current flag settings archived when you back up all of
memory, execute RCLF and store the result in a variable before you
archive memory. Then, after you archive and restore memory, you can
recall the contents of the variable and execute STOF to make the flag
settings active again.

33: Transferring Data to and from the HP 48 625

Character Translations (TRANSIO)

The HP 48 character set contains certain characters that cannot be
displayed using most computer software packages. These characters fall
into two groups:

m Characters with “character numbers” in the range 128 through 159

cannot be displayed without special software designed to support the
HP 48.

m Characters with character numbers in the range 160 through 255 can
be displayed by computer software that supports the ISO 8859
character set.

The translate code lets you choose what happens to these characters when
they are transmitted from the HP 48 to a computer. You set the translate
code using the TRANSIO command. (See :TRAN. in the table on page
618 for a description of the four translate codes.)

The following table shows the conversions for many of the characters with
numbers above 127. For characters not in the table, the conversion is to
90X, where X0« is the three-digit character number.* This conversion
makes it possible for you to use your computer editor to type and display
these characters.

* You can also use this conversion for characters in the table and for characters O through

127, making it easier to edit in control characters or in an escape sequence on your
computer. The HP 48 will not gencrate the xx sequences, but it will recognize them.

626 23: Transferring Data to and from the HP 48

1/0 Character Translations

Char. HP 48 PC Char. HP 48 PC
Number | Char. Char. Number | Char. Char.
128 A \<) 147 € \Ge
129 x \x- 148 n \Gn
130 v \\V 149 g \Gh
131 Vv \v/ 150 A \GI
132 f \.S 151 P \Gr
133 B \GS 152 o \Gs
134 » \|> 153 T \Gt
135 ™ \pi 154 w \Gw
136 a \.d 155 A \GD
137 < \<= 156 1 \PI
138 > \x= 157 N \GW
139 # \=/ 158 &) \[J
140 a \Ga 159 o0 \oo
141 s \-> 171 “ \<<
142 — \<- 176 ’ \"o
143] \|v 181 I \Gm
144 1 2 187 » \>>
145 ¥ \Gg 215 X \.x
146) \Gd 216 @ \O/
247 + \ss

To avoid any ambiguity during translation and reverse translation:

a When data is transferred from the HP 48 with a translate code of 2 or
3, any occurrence of the . character is replaced by . For example,
A~->B is translated to A~~>E. This prevents the reverse
translation to A+E when the data is transmitted back to the HP 48.

33: Transferring Data to and from the HP 48 627

m When data is transferred fo the HP 48 with a translate code of 2 or 3,
character sequences beginning with * are unchanged unless any of
the following:

m They match a sequence in the table.

m The ™ is followed by three decimal digits in the range 000
through 159 for translate code 2.

m The is followed by three decimal digits in the range 000
through 255 for translate code 3.

For example, “Gaand \215 are translated to « and x,
respectively, but “Gx and ~267 are not translated.

More About File Names

In general, the file naming conventions for computers are different than
the name requirements for HP 48 variables. When a file is transferred
from a computer to the HP 48, the following difficulties may arise due to
the computer file name:

s The file name contains characters not allowed in a variable name —
for example, AB# or {AECZ. In this case, the HP 48 terminates the
transfer and sends an error message to the computer.

m The file name matches a built-in command — for example, SIH or
DUP. In this case, the HP 48 appends a number extension to the
name — for example, SIN. 1.

m The name matches a variable name in the current directory. In this
case, to avoid overwriting your variable a number extension is added
to the name. (However, if flag —36 is set, the variable will be
overwritten.)

Also, an HP 48 file can have a name that is incompatible with the name
requirements of the computer software. Transferring such a file can
result in a transfer error.

Always check the filenames before a transfer to make sure they are

compatible with the receiving system’s requirements. If they are not
compatible, change the names appropriately.

628 33: Transferring Data to and from the HP 48

Errors

Executing the KERRM command ([4q](I/0] _KERR)displays the
text of the most recent Kermit error packet.

ASCII and Binary Transmission Modes

The HP 48 Kermit protocol provides two transfer modes — ASCII and
Binary. To get the fastest transfers, you generally should use Binary mode
to transfer data from one HP 48 to another, and ASCII mode to transfer
data between the HP 48 and a computer.

A receiving HP 48 treats all files as ASCII unless they match the special
encoding generated for HP 48 binary files. The calculator will
automatically switch to binary receive mode for files with this encoding.

ASCII Mode. You must use ASCII mode if you want to display, edit, or
print your HP 48 file using a computer.

When data is sent from the HP 48 to a computer in ASCII mode:

® The data is converted from its internal HP 48 format to a sequence of
characters.

= If the translate code is set to 1, 2, or 3, all line-feed (LF) characters
are converted to carriage-return/line feed sequences (CR/LF).

m If the translate code is set to 2 or 3, some or all of the characters with
character numbers greater than 127 are translated into displayable
character sequences.

® The character sequence **HP: modes ; is added at the beginning
of the data, where modes is a series of characters that describes
certain calculator mode settings — the translate, angle, and fraction-
mark settings — when the transfer occurred. When this sequence is
present, you don’t have to set the corresponding modes on the
receiving HP 48 when you send the data back.

When data is received by the HP 48 using ASCII mode:
m The data is translated (compiled) into the HP 48 internal format.

» If the translate code is set to 1, 2, or 3, all CR/LFs are converted to
LFs.

33: Transferring Data to and from the HP 48 629

» So that the receiving calculator can accurately reconstruct the object
being sent by the computer, any modes specified at the beginning of
the data are set temporarily in the calculator for the duration of the
transfer. If a mode is not specified, the receiving calculator uses its
current mode setting.

If you created data (a program, for instance) on your computer, or if
you substantially changed data that originally came from your
calculator, you may need to include at the beginning of the data the
characters **HP: modes j, where modes is a series of
characters — T(), A(), and/or F() —representing the translate code,
angle mode, and/or fraction mark. Inside the parentheses are the
characters you choose:

m T (translate code) can be followed by 0 (no translation), 1
(translate CR/LF to LF and vice versa), 2 (translate CR /LFs and
character numbers 128 through 159), or 3 (translate CR/LFs and
character numbers 128 through 255).

® A (angle mode) can be followed by D (degrees), R (radians), or
G (grads). If the data contains an angle in degrees, radians, or
grads, you should include A(D), A(R), or A(G), respectively.

m F (fraction mark) can be followed by . (period) or , (comma). If
it differs from your calculator’s setting, the fraction mark used in
the data being sent should be included by F(.) or F(,).

For example, at the beginning of the data the sequence *%xHP:A(D)
will cause the angle mode to be set to degrees during the transfer;
%%HP: TC¢2>A{GYF ¢, > will cause the translate code to be set to 2,
the angle mode to be set to grads, and the fraction mark to be set to
comma.

A translate code of T(1) is the normal requirement (and also the
system default). You should use T(2) or T(3) only when characters in
their respective ranges are being translated according to the table on
page 618. You should use T(0) only for string objects, or objects
containing string objects, where the string contains binary data.

630 33: Transferring Data to and from the HP 48

Binary Mode. In Binary mode, no character conversions are performed.
Therefore, the files received from the HP 48 cannot be displayed by the
computer. However, if data is being transferred for backup purposes
only, Binary mode may be preferable because it is faster, since the data
does not require as much processing.

The HP 48 automatically uses Binary mode when transferring libraries,
transferring backup objects, or archiving all of user memory.

Sending Commands to a Server (PKT)

The PKT command ([«](i/0] TPKT) provides the ability to send
and receive data other than HP 48 objects to a remote server. It is
particularly useful for sending Kermit commands — for example,
Directory (D) or Erase (E).

The PKT command takes two string arguments from the stack —the data
field of the packet in level 2, and the packet type in level 1. For example,
executing the sequence "D" "G" FKT sends a request for a directory
listing.

A server issues one of the following responses to the PKT command:

m An acknowledging message, which is returned to stack level 1.

m An error packet. The HP 48 briefly displays the contents of the error
packet. It can be retrieved by executing KERRM ([«q)(1i/0] (NXT)
KERR).

33: Transferring Data to and from the HP 48 631

Serial Commands

' When using the commands described below to transfer
data to or from an HP 48 at 9600 baud, make sure the
Caution ticking clock is not in the display. If the clock is in the
display, it may interrupt a transfer or corrupt the data
being transferred. The clock display is described on page 439 in
chapter 24, “Time, Alarms, and Date Arithmetic.”

Serial 1/0 Commands

Keys | Programmable Description
Command
(%](i/9] (page 3):
AMIT XMIT Sends a string in level 1 without Kermit

protocol. Once the entire string is
sent, a 1 is returned to level 1; if the
entire string failed to transmit, a @ is
returned to level 1 and the unsent part
of the Input string Is returned to level
2. Execute ERRM to see the error
message.

632 33: Transferring Data to and from the HP 48

Serial 1/0 Commands (continued)

Keys | Programmable Description
Command
SRECY SRECV Recelves x characters (argument x is

taken from level 1). The characters
are returned as a string to level 2,
along with a 1 (successful receive) or
@ (unsuccessful receive) to level 1. If
the input buffer contains fewer than x
characters, the HP 48 will wait the
number of seconds specified by the
STIME command (the default is 10
seconds). (If the level 2 number
returned by the BUFLEN command
(see BUFLE below) is used as the
argument for SRECV, no waiting will
occur because x will exactly match the
number of characters in the input
buffer.) Inthe event of an
unsuccessful receive, executing
ERRM returns the error message
assoclated with the failure.

STIME STIME Sets the serial transmit/receive
timeout to x seconds (argument x is
taken from level 1). The value forx
can range from 0 to 25.4 seconds. If 0
is used, no timeout will occur (which
could result in excessive battery
drain).

SBRK SBRK Sends a serial BREAK.

33: Transferring Data to and from the HP 48 633

Serial I/0 Commands (continued)

Keys | Programmable Description
Command
BUELE BUFLEN Returns the number of characters in

the HP 48 input buffer to level 2, along
witha 1 (no framing error or UART
overrun) ora @ (framing error or
UART overrun) tolevel 1. Ifa @ ls
returned, the number of characters
returned to level 2 represents the part
of the data received before the error.
Therefore, that number can be used to
determine where the error occurred.

Even though XMIT, SRECV, and BUFLEN check the send
and receive mechanisms, the integrity of the data is not
Note checked. One method to insure that the data sent is the
same as the data received involves appending a checksum
to the end of the data being sent, and then verifying that checksum at the
receiving end.

XMIT, SRECYV, and SBRK automatically open the IR /serial port using
the current values of the first four JOPAR parameters (baud, parity,
receive pacing, and transmit pacing) and the current IR /wire setting (set
using IRZHW in the I/O SETUP menu).

634 33: Transferring Data to and from the HP 48

34

Using Plug-in Cards and Libraries

This chapter covers:
® The types of memory and plug-in cards.
m Installing and removing plug-in cards.
® Using RAM cards to expand user memory or to back up data.

= Using application cards and libraries.

Types of Memory

Plug-in cards increase the amount of HP 48 memory. The HP 48 has two
types of memory:

® Read-only memory, or ROM, is memory that cannot be altered. The
HP 48 has 256K bytes of built-in ROM that contains its command set.
You can expand the amount of ROM by installing plug-in application
cards.

® Random-access memory, or RAM, is memory you can change. You
can store data into RAM, modify its contents, and purge data. The
HP 48 contains 32K bytes of built-in RAM. You can increase the
amount of RAM by adding plug-in RAM cards.

34: Using Plug-in Cards and Libraries 635

Installing and Removing Plug-In Cards

The HP 48 has two ports for installing plug-in cards, designated port 1 and
port 2. Port 1is closest to the front of the calculator; port 2 is closest to
the back. Cards can be installed in either port.

< ———>
.J \
<«——1 >

—©0 = |

“ The calculator must be turned off while you are installing
: or removing plug-in cards. Otherwise, all of user
Caution memory could be erased.

Also, whenever a card is installed or removed, the HP 48 executes a
system halt, causing the contents of the stack to be lost.

To install a plug-in card:

1. If you are installing a new RAM card, first install its battery (see
“Installing the Battery in a New RAM Card,” page 639) and set the
write-protect switch to the desired position (see “Setting the Write-
Protect Switch” on page 641).

2. Turn off the calculator. Do not press until you’ve completed the
installation procedures.

636 34: Using Plug-in Cards and Libraries

3. Remove the port cover at the top of the calculator by pressing down
against the grip area and then pushing in the direction shown.
Removing the cover exposes the two plug-in ports.

@

4. Select an empty port for the card — either port may be used.

5. Position the plug-in card as shown. The triangular arrow on the
card must point down, toward the calculator. Make sure the card is
lined up properly with a port opening and not positioned half in one
port and half in the other.

6. Slide the card firmly into the port until it stops. When you first feel
resistance, the card has about !/,” to go to be fully seated.

7. If desired, repeat steps 4 through 6 for another card.
8. Replace the port cover by sliding it on until the latch engages.

34: Using Plug-in Cards and Libraries 637

9. If the card is a RAM card, you must decide how you want to use it
(see page 642):

® If you want to use the RAM card to increase user memory,
execute the MERGE command as described on page 643.

u If you want to use the RAM card as independent memory,
execute the MERGE command as described on page 643 and
then the FREE command as described on page 649.

To remove a plug-in card:

“ If the plug-in card you want to remove is a RAM card that
contains merged memory, you must free the merged
Caution memory before removal. Failure to do so would
probably result in loss of data stored in user memory.
See “Freeing Merged Memory’’ on page 649 for instructions.

1. Turn off the calculator. Do not press until you've completed the
removal process.

2. Remove the port cover.

3. To remove a card, press against the grip as shown and slide the card
out of the port.

4. Replace the port cover.

638 34: Using Plug-in Cards and Libraries

RAM Cards

RAM cards let you increase the amount of RAM in your HP 48. Each
card contains a battery that preserves its contents when the calculator is
off or when the card has been properly removed from the calculator.

RAM cards are good tools for:
= Expanding user memory.
m Backing up or hiding important data.
m Exchanging data between two HP 48 calculators.
= Storing prototype application programs that will eventually be made
into ROMs.

“Uses for RAM Cards” on page 642 covers these tasks.

Preparing the Card for Installation

Installing the Battery in a New RAM Card. Before a new RAM
card is installed, the battery that came with it must be installed in the
card.

“ Do not use this procedure for replacing a battery in a
: RAM card — it could cause loss of memory in the RAM
Caution card. Appendix A contains instructions for replacing
RAM card batteries on page 663.

34: Using Plug-in Cards and Libraries 639

To install the battery in a new RAM card:
1. Remove the battery holder from the card by inserting a thumbnail
or small screwdriver into the groove and pulling in the direction
shown.

2. The grooved side of the battery holder is marked with the + symbol
and the word UP. Insert the battery into the holder with its + side
up, and then slide the holder into the card.

840 324: Using Plug-in Cards and Libraries

3. Write the date of installation on the card using a fine-point,
permanent marker. The date is important for determining when to
replace the battery.

Battery orientation
symbol

[1] ya
@ @ Write installation
I~ date here

Wirite contents
— here

& A

4. Set an alarm in the calculator for 1 year from the date of installation
to remind you to replace the battery. (Depending on the use, the
battery should last between 1 and 3 years. When the battery needs
replacing, a display message will appear if the card is in the
calculator. You are setting this alarm in case the card is not in the
calculator when the battery gets low.) Setting alarms is covered in
chapter 24, and replacing RAM-card batteries is covered in
appendix A.

Setting the Write-Protect Switch. The write-protect switch lets you
protect the contents of the RAM card from being accidentally overwritten
or erased. The switch has two positions:

m Rcad-only. The coatents of the RAM card can be read, but cannot
be changed or erased.

m Read/write. You can write information to the RAM card and erase
its contents.

34: Using Plug-in Cards and Libraries 641

“ To avoid loss of user memory:

m Always turn off the calculator before changing the

Caution write-protect switch on an installed card.

= Do not write protect a RAM card containing merged
memory; the memory should be freed first (see page 649).

You can operate the write-protect switch while the card is installed;
however, the switch labels are not visible.

Read only setting
Read / Write setting

/
/Y

Back side of card

Uses for RAM Cards

A RAM card can be used in one of two ways:

m It can be merged with built-in memory. This enables you to expand
the amount of user memory available (up to 288K bytes) for creating
variables and directories, putting objects on the stack, etc.

m It can provide a place independent of user memory in which to back
up important data. You can copy individual objects or entire
directories to a RAM card in much the same way as you would back
up computer files to a disk. After you've copied the data, you can
remove the card and store it in a safe place, or, as a way of
transferring data, install the card in another HP 48.

642 34: Using Plug-in Cards and Libraries

You can install one or two RAM cards, and you can use either or both of
them for either purpose. However, you cannot use a single card for both
merged and independent memory at the same time.

The following diagram illustrates a system containing two RAM cards —
one containing merged memory arid the other containing independent
memory.

‘ Built-in
memory
User

memory

Plug-in Merged
RAM card memory

thr:g‘m Independent
card | memory

Using RAM Cards to Expand User Memory
(Merged Memory)

Before you can use an installed RAM card to expand user memory, you
must execute the MERGE command to merge its memory with built-in
memory.

Before you execute the MERGE command, the write-protect switch on
the RAM card must be in the read/write position. (See page 641 for how
to set the write-protect switch.)

MERGE takes a port number as its argument. For example, the
keystrokes 1 [€q][MEMORY] (NXT) [NXT] MERG merge the plug-in
memory installed in port 1 with built-in memory.

34: Using Plug-in Cards and Libraries 643

\
Total Built-in Built-in
user user user
memory memory | MERGE | memory
e Total
ki user
Inde- memory
pendent
memory Merged
of memory
new
card }

When you merge a RAM card that contains backup objects, those objects
are moved to a special port, called port 0. (See page 647 for a description
of port 0.)

w You should never remove a RAM card that contains

merged memory. Doing so will cause loss of data stored

Caution jn user memory. Before you can remove the RAM card,
you must free the merged memory. (See “Freeing

Merged Memory” on page 649 for instructions.) If you accidentally

remove a card with merged memory and see the message

Replace RAM, Press ON, you can minimize memory loss by

leaving the calculator on, reinserting the card in the same port, and

then pressing [ON].

Using RAM Cards for Backup (Independent
Memory)

The HP 48 uses a special object type, the backup object, to store backed-
up data. A backup object contains another object, its name, and its
checksum. Simply put, a backup object contains a variable or directory
and its checksum.

644 34: Using Plug-in Cards and Libraries

An independent-memory RAM card that contains the backup objects can
be removed from the HP 48 and either stored for later use or transferred
to another HP 48.

Backing Up Objects into Independent Memory

Backup objects can exist:

» In independent memory (port 1 and/or port 2).

» In a portion of user memory called port 0 (see page 647).
To create a backup object, execute the STO command with two

arguments — the object to be backed up in level 2, and a backup identifier
in level 1. A backup identifier has this form:

s port#:name

where port# is the port number (0, 1, or 2) and name is the name under
which the backup copy will be stored.

Example: Backing Up a Program. To back up a program named
PG into independent memory in port 1, recall the program to the stack
by evaluating the sequence 'FG1' RCL, and then store the object as a
backup object in port 1 by evaluating ¢1:PG1 STO.

User Jr PG1 'PG1' RCL PG1 ‘PGL!
memory 4 1:PG1 STO PURGE
L
e — };, S » -
Independent 1: PG1 . R
memory 4
(port 1) .

The backup object in the previous example happens to have the same
name as the original object, but the two names could be different.

Note that a directory and its subdirectories can be backed up in a single
backup object.

34: Using Plug-in Cards and Librarles 645

Example: Backing Up a Directory and its Subdirectories.
Suppose your HOME directory contains a subdirectory named CHEM,
which in turn contains several subdirectories. To back up the entire
directory structure of CHEM in a backup object named BCHEM, recall
the directory to the stack by evaluating the sequence 'CHEM' RCL, and
then store it in the backup object by evaluating ¢ 1:BCHEM STO.

Accessing Backup Objects

You can recall, evaluate, and purge the contents of backup objects. You
can also obtain a listing of all the backup objects in a given port.

Recalling Backup Objects. The LIBRARY menu can be used to
recall the contents of backup objects. Pressing (\3](CIBRARY] followed by
PORTG, PORTY, or PORT2 displays a menu of backup objects and
libraries in that port. To recall the contents of a backup object to the
stack, simply press (] and then the menu key for the desired backup
object.

The RCL command can also be used to recall the contents of a backup
object to the stack. For example, evaluating the sequence
:1:BPG1 RCL recalls the object stored in 1:BPG 1.

Evaluating Backup Objects. To use the LIBRARY menu to
evaluate the contents of a backup object, press (¢][LIBRARY] followed by
PORT@, PORTI, or PORTZ. Then, simply press the menu key for the
desired backup object.

Also, when the argument of EVAL is a backup name, the contents of the
backup object is evaluated. For example, executing the sequence
:1:BPG1 EVAL evaluates the program stored in backup object 1:BPG1.
(EVAL also takes a list of backup objects as its argument to evaluate
more than one at a time.)

Purging Backup Objects. To purge a backup object, use the backup
name as the argument of PURGE. For example, executing the sequence
:1:BPG1 PURGE purges the backup object. (PURGE can take a list of
backup objects as its argument to purge more than one at a time.)

646 34: Using Plug-in Cards and Libraries

Using Wildcards to RCL, EVAL, and PURGE. The character %
can be used as a wildcard to replace the port number in the arguments
used by RCL, EVAL, and PURGE. (% is the left-shifted alpha key above
([ENTER].) When the HP 48 encounters the wildcard with these
commands, it searches port 2, 1, 0, and then main memory for the
accompanying backup object (the first occurrence of the name is used).
For example, evaluating the sequence :&:BPG1 PURGE causes the HP
48 to search port 2, 1, 0, and then main memory for the first occurrence of
BPG]1 and then delete it.

Listing Backup Objects. The PVARS command ([+9](MEMORY]
PYARS) can be used to display a list of objects in the specified
port. It takes as its argument a port number 0, 1, or 2. It returns to level
1 the type of memory contained in the port ("ROM", "SYSRAM", or a
number representing the amount of free independent RAM); and to level
2 it returns a list of backup objects and library identification numbers
(both tagged with the port number).

Also, you can use the LIBRARY menu to display a menu of backup
objects and libraries in a given port. Simply press (€] [LIBRARY] followed
by PORT®, PORTI, or PORTZ to see the desired menu.

Backing Up Objects into User Memory (Port 0)

The HP 48 lets you create backup objects in user memory. The portion of
user memory used for backup objects and libraries is called “port 0.”
There are several reasons you might want to back up data into user
memory:

= You want to “hide” data; that is, you want certain data to be in user
memory, but you don’t want the variable(s) to appear in any
directory.

m You want to “free” a RAM card being used for merged memory, and
instead use it for independent memory. (See “Freeing Merged
Memory” on page 649).

You create a backup object in user memory the same way you create
other backup objects, except you specify port 0 as the port number.

34: Using Plug-in Cards and Libraries 647

NUM1 | 'qUML® RCL NUM1
User B: NUM1 STO 'NUM1 ' PURGE
memory E 5
Port 0 0:NUM1 0:NUM1

The size of port 0 is dynamic — it grows and shrinks to accommodate its
contents.

Backing Up All of Memory

The ARCHIVE command ([+3](MEMORY] [NXT) ARCHI) creates a
backup object named :port#: name in independent memory containing
a copy of:

m The entire HOME directory.
m User key assignments.

® The alarm catalog.

It takes a name tagged by a port number (0, 1, or 2) as its argument. For
example, executing the sequence :2: JUH12 ARCHIVE creates backup
object =2:JUN12.

The RESTORE command ([49](MEMORY] [NXT] [NXT] RESTO) retrieves
the data backed up by the ARCHIVE command. It, too, takes a name
(where the corresponding object is a directory) tagged by a port number
as its argument. For example, executing the sequence

:2: JUN12 RESTORE retrieves the HOME directory backed up above.

w Executing RESTORE overwrites the entire contents of

user memory with the contents of the backup object.
Caution

648 34: Using Plug-in Cards and Libraries

If you want your flag settings to be saved when you back up all of memory,
recall them to the stack (using RCLF) and store them in a variable before
executing ARCHIVE. After you RESTORE memory, you can reactivate
the flag settings by recalling the contents of that variable to the stack and
executing STOF (store flags).

Freeing Merged Memory

Freeing merged memory converts it to independent memory. Merged
memory must be freed if:

» You want to remove the RAM card from its port.

® You want to use the RAM card as independent memory, rather than
user memaory.

The FREE command ([¥q) FREE)frees the
merged memory in a specified port. It takes two arguments — a list in
level 2, and the port number in level 1.

The list can be empty, in which case the merged memory is simply freed,
or it can contain one or more names or library identifiers. If the list is not
empty, FREE moves the named backup objects and libraries from port 0
into the newly-freed card. For example, executing the sequence

{ HUM1 ADD3 » 1 FREE frees the merged memory in port 1 and
makes it independent memory. At the same time, the backup objects
NUM1 and ADD3 in port 0 are moved to port 1.

{HuM1 ADD33 1 FREE

i w | 1T:NUM1
1:ADD3

0:NUM1
0:ADD3

34: Using Plug-in Cards and Libraries 649

To free merged memory, first execute MEM to determine the amount of
available memory (press [()[MEMORY] = MEM). If the amount of
available memory is greater than or equal to the amount of memory on
the card you are going to free, you are ready to execute the FREE
command.

If MEM returns a value less than the amount of memory on the card,
executing FREE without any preparation would return an error, since
your stored data would not fit into the amount of user memory remaining
after the merged memory was freed. To avoid an error, you can do any of
the following:

m Purge unneeded variables from user memory.

= Back up data into another RAM card installed in the other port and
then purge the original variables.

s Back up data into port 0 (built-in memory) and then use the level-2
argument of the FREE command to move that data into the freed
memory. Here’s a step-wise procedure for doing this:

1.

Determine the amount of data that must be moved into the
memory that you'll be freeing. For example, if you'll be
removing a 128K RAM card, and the amount of user memory
available is 126K, you must move at least 2K of variables.

Back up the variable in port 0. For example, to back up CALCI
into port 0, recall its contents to the stack and execute
:8:CALC1 STO.

Purge the variable from user memory (for example,
'CALC' PURGE).

If necessary, back up and purge additional variables and
directories.

When you've backed up enough data, you are ready to execute
the FREE command. The level-2 argument must be a list
containing the names of the variables and directories you've
backed up into port 0.

850 34: Using Plug-in Cards and Libraries

‘l:lsing Applicatio;_Cards and Libraries

A library is an object that contains named objects that can act as an
extension to the built-in command set. You cannot view or change the
contents of a library. Libraries can exist in application cards, or they may
be copied into RAM. However, libraries cannot be created by the HP 48.

Libraries are identified by:

u A library identifier, which has the form :port#:library#. The
library# (library number) is a unique number associated with the
library. The library identifier is used as the argument of commands
that work with library objects.

u The library name, which is a sequence of characters. The library
name appears in the LIBRARY menu when the library is attached to
a directory on the current path.

Attaching a Library to a Directory

To use a library, it must be attached to a directory in user memory. The
attachment may happen automatically when you install an application
card, or you may have to do it yourself. Consult the owner’s
documentation accompanying your application card (or RAM-based
library) for information about attaching the library.

If the library is not attached automatically, you must use the ATTACH
command ([«q)(MEMORY] HATTAC) to attach it. ATTACH requires
a library number as its argument.

This is no limit on the number of libraries that can be attached to the
HOME directory. Only one library at a time can be attached to a
particular subdirectory.

34: Using Plug-in Cards and Libraries 651

Accessing Library Operations (The LIBRARY Menu)

The LIBRARY Menu. Pressing (€)[CIBRARY] displays the LIBRARY
menu, which contains the names of the libraries on the current directory
path. To display a menu of the operations in a library, press the
appropriate key. For example, if you have the HP Solve Equation Library
installed in your calculator, pressing [(()[LIBRARY] EQLIE displays a
menu of all the operations in that library.

Accessing Libraries Attached to Subdirectories. The rules for
accessing libraries attached to various subdirectories are the same as the
rules for accessing variables in those directories. For example, suppose
your HP 48 has the following directory structure and attached libraries:

| I | A *
HOME PROG M EQUN G Library A Library B
| ________
{ | | i
PROG FNCT MATH STAK Library C

I | | i
MATH ARAY TRG A Library D

When HOME is the current directory, pressing (€] [(IBRARY] displays the
menu of its attached libraries— 'H B When PROG is the
current directory, pressing (9] [LIBRARY] displays a menu of its attached
library, as well as the other libraries on the current path,

“and

Like variables, library operations can be accessed if the library is attached
to the current directory or to a directory in the current path. For
example, since libraries A and B are attached to HOME, their operations
can be accessed from any directory. You can access the operations in
library C when PROG or MATH are the current directory. However, you
cannot access the operations in library D when PROG is the current
directory.

652 34: Using Plug-in Cards and Libraries

Additional Commands That Access Libraries

Library Commands

Keys Programmable Description
Command

STO Stores a library object from level 2 into
independent memory in the port
specified in level 1.

[][RCL RCL Takes a library identifier

(: port#: library#) as its argument and
recalls the specified library to the stack.

[¥1](PURGE] PURGE Takes a library identifier
(: port#: library#) as its argument and
purges the specified RAM-based
library.

[+3](MEMORY] (page 2):

PYARS PVARS Takes a port number as its argument
and displays a list of the backup
identifiers and library identifiers in the
specified port.

LIBS LIBS Displays a list containing the names,
library number, and port number of all
the libraries attached to the current
directory.

ATTAC ATTACH Takes a library number as its argument
and attaches the specified library to the
current directory.

DETRC DETACH Takes a library number as its argument
and detaches the specified library from
the current directory.

34: Using Plug-in Cards and Libraries 653

Appendixes and Indexes

Support, Batteries, and Service

Calculator Support

You can obtain answers to questions about using your calculator from our
Calculator Support department. Our experience has shown that many
customers have similar questions about our products, so we have provided
the following section, “Answers to Common Questions.” If you don’t find
the answer to your question there, contact us at the address or phone
number on the inside back cover.

Answers to Common Questions

Q: The calculator doesn’t turn on when I press (ON). What’s wrong?

A: There may be a simple problem that you can solve immediately, or the
calculator may require service. See “Testing Calculator Operation” on
page 665.

Q: I’m not sure whether the calculator is malfunctioning or if 'm doing
something incorrectly. How can I verify that the calculator is operating
properly?

A: Refer to “Testing Calculator Operation” on page 665 in this appendix.

Q: The () annunciator stays on even when the calculator is tumed off. Is
anything wrong?

A: This indicates a low-battery condition in the calculator or a RAM card,
or an alarm that is past due. To determine what is causing the ¢+)
annunciator to stay on, turn the calculator off and then on. A message in
the display will identify the problem. Refer to “Changing Batteries” in
this appendix (page 661) or to “Setting Alarms” in chapter 24 (page 443).

656 A: Support, Batteries, and Service

Q: How can I determine how much memory is left in the calculator?

A: Press [(][MEMORY]) MEM . The number of bytes of available
memory will appear at the lower right corner of the display. An empty

memory should show approximately 38808 (bytes of internal RAM).
Q: How do I clear everything from the calculator’s memory?
A: Perform the following steps:

1. Press and hold [ON].

2. Simultaneously press and release both of the outer keys in the top
row (the menu keys with A and F next to them).

3. Release [ON].
The calculator will beep and the Try To Recover Memory? prompt

will be displayed. Press . N0 to clear user memory; the Memory
Clear message will appear in the display.

d This procedure will not clear the contents of a plug-in
RAM card unless that RAM is merged with the calculator’s
Note main memory.

Q: How do I change the number of decimal places the HP 48 displays?
A: Perform the following steps:

1. Go to page 1 of the MODES menu: press () [MODES].
2. Press the number of decimal places you want (0 — 11).

“8C€I ,or ENG).
Refer to “Display Modes” in chapter 2 (page 57).

A: Support, Batteries, and Service 657

Q: My numbers contain commas as decimal points. How do I restore
periods?
A: Perform the following steps:

1. Go to page 4 of the MODES menu (press
[¥3)(MODES] (NXT] (NXT] [NXT)).

2. Press the ‘FMi¥ radix toggle menu key. (The = should disappear
from the menu key.)

Q: What does an “E” in a number (for example, 2.51E — 13) mean?

A: Exponent of 10 (for example, 2.51 x 107%). Refer to “Display Modes”
(page 57) in chapter 2.

Q: When I take the sine of = in Degrees mode, why do I get 'SINCw) !
instead of a number?

A: The calculator is in Symbolic Result mode; 'SINCw) ' is the
symbolic answer. Press [](=NUM] to convert 'SINCm) ' toits
numerical equivalent of .0548. .. up to 11 decimal places. You can also
press [S¥M# on page 1 of the MODES menu to change to Numerical
Results mode and prevent symbolic evaluation.

Q: What does “object” mean?

A: “Object” is the general term for all elements of data the HP 48 works
with. Numbers, expressions, arrays, programs, and so on, are all types of
objects. Refer to chapter 4, “Objects,” for a description of the object
types accepted by the calculator.

Q: What do three dots (...) mean at either end of a display line?

A: The three dots (called an ellipsis) indicate that the displayed object is
too long to display on one line. To view undisplayed portions of the
object, use the [« or (] cursor keys.

658 A: Support, Batterlies, and Service

Q: The calculator beeps and displays Bad Argument Tupe. What's
wrong?

A: The objects on the stack aren’t the corrcct type | for the command you
are attempting. For example, executing .
OBJ menu) with a number in stack levels 1 and 2 causes this error,

Q: The calculator beeps and displays Too Few Rrguments. What's
wrong?
A: There are fewer arguments on the stack than required by the

command you are attempting. For example, executing [+] with only one
argument or number on the stack causes this error.

Q: The calculator beeps and displays a message different from the two listed
above. How do I find out what’s wrong?

A: Refer to “Messages” in appendix B.

Q: 1 can’t find some variables that I used earlier. Where did they go?

A: You may have been using the variables in a different directory. If you
can’t remember which directory you were using, yow'll need to check all
the directories in your calculator.

Q: Sometimes my HP 48 seems to pause for a few seconds during a
calculation. Is anything wrong?

A: Nothing is wrong. The calculator does some system cleanup from time
to time to eliminate temporary objects created from normal operation.
This cleanup process frees memory for current operations.

Q: During normal operation, the printer prints several lines quickly, then
slows down. Why?

A: The calculator quickly transmits a certain amount of data to the
printer, then slows its transmission rate to ensure that the printer can
keep up.

Q: How can I increase the printing speed of my HP 82240B Infrared
Thermal Printer?

A: Use an agc adapter with your HP 82240B printer so that the printer
can print faster. Also, set the calculator delay to match the print speed
(see “Setting the Delay” on page 607).

A: Support, Batteries, and Service 659

I_Environmental Limits

Calculator. To maintain product reliability, avoid getting the calculator
wet and observe the following temperature and humidity limits:

m Operating temperature: 0° to 45°C (32° to 113°F).

» Storage temperature: —20° to 65°C (- 4° to 149°F).

m Operating and storage humidity: 90% relative humidity at 40°C

(104°F) maximum.

Plug-In Cards. The environmental limits for Hewlett Packard plug-in
cards are:

» Operating temperature: 0° to 45°C (32° to 113°F).

m Storage temperature: —20° to 60°C (- 4° to 140°F).

s Storage temperature for RAM card data retention: 0° to 60°C (32° to
140°F).

= Operating and storage humidity: 90% relative humidity at 40°C
(104°F) maximum.

When to Replace Batteries

When a low-battery condition exists, the (+) annunciator remains on, even
when the calculator is turned off. When the calculator is turned on during
a low-battery condition, Warning: LowBat¢ Dis displayed for
approximately 3 seconds. LowBat (P1) refers to port 1, LouwBat (P2
refers to port 2, and LowBat (S) refers to the calculator (system)
batteries.

Replace the RAM card battery or the calculator batteries as soon as
possible after the () low-battery annunciator and warning message
appear. If you continue to use the calculator while the ¢+) annunciator is
on, the display will eventually dim and you may lose calculator and RAM
card data.

660 A: Support, Batteries, and Service

Under typical use, a RAM card’s battery should last between 1 and 3
years. Be sure to mark the card with the battery-installation date, and, in
case the RAM card is not in the calculator when the battery needs
replacement, set an alarm for 1 year from that date to remind you to
install a fresh battery. RAM cards do not come with a battery installed.

Changing Batteries

Battery Types

Calculator Batteries. Any brand of size AAA batteries. Be sure that
all three batteries are of the same brand and type.

The use of rechargeable batteries is not recommended because of their
lower capacity.

Plug-in RAM Card Batteries. 3-Volt 2016 coin cell.

Changing Calculator Batteries

These instructions are for changing calculator batteries. The instructions
for replacing RAM card batteries start on page 663.

“ Whenever you remove batteries from the calculator, be
sure the calculator is off and do not press the key
Caution yntjl the new batteries are installed. If you press
when batteries are not in the calculator, you may lose all
of calculator memory.

1. Turn the calculator off. You may lose memory in the calculator and
plug-in RAM cards if the calculator batteries are removed when the
calculator is on.

A: Support, Batteries, and Service 661

2. Have three, fresh batteries (of the same brand and type) at hand.
Wipe off both ends of each battery with a clean, dry cloth.

3. Remove the calculator battery-compartment door by pressing down
and sliding it off away from the calculator. Be careful not to press
the calculator’s key. Refer to the following illustration:

4. Turn the calculator over and shake the batteries out. Once the
batteries are out, you should replace them with fresh batteries
within 2 minutes to protect against memory loss.

e Do not mutilate, puncture, or dispose of batteries in
fire. The batteries can burst or explode, releasing
Warning hazardous chemicals. Discard used batteries
according to the manufacturer’s instructions.

662 A: Support, Batteries, and Service

S. Avoid touching the battery terminals. Batterics are easier to install if
the negative (plain) ends are inserted first, and if the center battery
is installed last.

Position the batteries according to the outlines in the bottom of the
battery compartment. Refer to the following illustration:

6. Replace the battery-compartment door by sliding the tabs on the
door into the slots in the calculator case.

7. Press to turn the calculator on.

Changing a RAM Card Battery

1. Turn the calculator over and remove the plastic cover over the
plug-in card ports (on the display-end of the calculator).

R

Q

A: Support, Batteries, and Service 663

2. With the RAM card in port 1 or 2, turn the calculator on.

ﬂ Since RAM cards run off the calculator batteries when
the calculator is [ON], you should replace a card’s battery
Caution only when the card is in the calculator and the calculator
is turned on. RAM memory may be lost if you remove a
RAM card battery when the calculator is off, or when the card is not
installed in the calculator.

3. Place your index finger in the recess near the exposed end of the
RAM card — this prevents removal of the card from the calculator
when you remove the card’s battery holder. Now insert the
thumbnail of your free hand into the nail grip in the black plastic at
the left side of the end of the card and pull the battery holder out of
the card.

Nail grip

664 A: Support, Batteries, and Service

4. Remove the old battery from the plastic battery holder.

q Do not mutilate, puncture, or dispose of batteries in
tire. The batteries can burst or explode, releasing
Warning hazardous chemicals. Discard used batteries
according to the manufacturer’s instructions.

§. Install a fresh, 3-Volt 2016 coin cell in the plastic battery holder and
reinsert the battery holder (with battery) into the RAM card. Be
sure to install the battery with the side marked “+” toward the front of
the card.

6. Mark the card with the battery-installation date, and, in case the
RAM card is not in the calculator when its battery needs replacing,
set an alarm for 1 year from that date to remind you to change it.

7. Replace the plug-in port cover.

Testing Calculator Operation

Use the following guidelines to determine whether the calculator is
functioning properly. Test the calculator after every step to see if
operation has been restored. If your calculator requires service, refer to
page 674.

The calculator won’t turn on or doesn’t respond when you
press the keys.

1. Make sure that three fresh batteries are correctly installed in the
calculator.

2. If the display is blank, press and hold [ONJ; press and release
several times until characters become visible; then release [ON). If
no characters appear in the display, the calculator requires service.

3. If a halted program won’t respond when you press [ATTN), try
pressing again,

A: Support, Batteries, and Service 665

4. If the keyboard is “locked,” perform a system halt as follows:
a. Press and hold [ON].

b. Press and release the third key from the left in the top row
(the menu key with C next to it).

©. Rclease [ON].

The empty stack display should appear.
5. If the display appears garbled, perform a memory reset as follows:
a. Press and hold [ON).

b. Press and hold both of the outer keys in the top row (the
menu keys with A and F next to them).

¢. Release all three keys.

The calculator will beep and display the message Tru To
Recover Memory? at the top of the display. Press " YES " to
recover as much memory as possible.

If these steps fail to restore operation, the calculator requires service.

The calculator responds to keystrokes, but you suspect it’s
malfunctioning.

1. Run the self-test described in the next section. If the calculator fails
the self-test, it requires service.

2. If the calculator passes the self-test, you may have made a mistake
operating the calculator. Reread appropriate portions of the
manual and check “Answers to Common Questions” (page 656).

3. Contact the Calculator Support department. The address and
phone number are listed on the inside back cover.

666 A: Support, Batteries, and Service

Self-Test
If the display turns on, but the calculator does not seem to be operating
properly, run the diagnostic self-test :

1. Press and hold [ON].

2. Press and release the second key from the right in the top row (the
menu key with E next to it).

3. Release [ON).

The diagnostic self-test tests the internal ROM and RAM, and
generates various patterns in the display. The test repeats
continuously until it is halted.

4. To halt the self-test, perform a system halt as follows:
a. Press and hold [ON].

b. Press and release the third key from the left in the top row
(the menu key with C next to it).

¢. Release [ON).
The empty stack display should appear.

The diagnostic self-test should be successfully completed before running
any of the tests described in the following sections.

If the self-test indicates an internal ROM or RAM failure (if IROM 0K
and IRAM OK are not displayed), the calculator requires service.

Kéysoard Test_

This test checks all of the calculator’s keys for proper operation.

To run the interactive keyboard test:
1. Press and hold [ON].

2. Press and release the third key from the right in the top row (the
menu key with D next to it).

3. Release [ON].

A: Support, Batteries, and Service 667

4. Press and release the second key from the right in the top row (the
menu key with E next to it). KBD1 will appear in the upper left
corner of the display.

5. Starting at the upper left corner and moving left to right, press each
of the 49 keys on the keyboard. If you press the keys in the proper
order and they are functioning properly, the calculator emits a
high-pitch beep at each press of a key. When the 49th key ([+})
has been pressed, the displayed message should change to KBD'1
oK.

If you press a key out of sequence, a five-digit hexadecimal number
will appear next to KBD1. Reset the keyboard test (do steps 1
through 3 above), and rerun the test.

If a key isn’t functioning properly, the next keystroke displays the
hex location of the expected and the received location. If you
pressed the keys in order and got this message, the calculator
requires service. Be sure to include a copy of the error message
when you ship the calculator for service.

6. To exit the keyboard test, perform a system halt as follows:
a. Press and hold [ON].

b. Press and release the third key from the left in the top row
(the menu key with C next to it).

c. Release [ON].
The empty stack display should appear.

668 A: Support, Batteries, and Service

Port RAM Test

The port RAM test non-destructively tests the ports and the installed
plug-in RAM cards. (Plug-in RAM-card memory is preserved.)

To run the port RAM test:

1.

2.

[

Check that a plug-in RAM card is properly installed in port 1
and/or port 2.

Verify that the switch on each card is set to the “read /write”
position:

Read only setting

ead / Write setting

Back side of card

. Turn the calculator on.
. Press and hold [ON].
. Press and release the fourth key from the left in the top row (the

menu key with D next to it).

. Release [ON].

A vertical line will appear at both sides and at the center of the
display.

A: Support, Batteries, and Service 669

7.

Press and release [4)].

RAM1 and/or RAM2 will appear at the top left corner of the display
and the size of the corresponding plug-in RAM card (32K or

128K) will appear at the top right corner of the display. 0K will
appear to the right of RAM1 and/or RAMZ2 when the port RAM
test has been successfully completed. A failure message (for
example, RAM1 886862) will be displayed for each port that does
not contain a plug-in RAM card or if a card’s read /write switch is in
the “write-protect” position. This message should be ignored.

If OK does not appear for a RAM card set to read/write, the card
should be moved to the other port and the test rerun. IF 0K still
doesn’t appear, the RAM card should be replaced with a new one.

To return to normal calculator operation, perform a system halt as
follows:

a. Press and hold [ON).

b. Press and release the third key from the left in the top row
(the menu key with C next to it).

¢. Release {ON].
The empty stack display should appear.

IR Loop-Babmk Test

This test checks the operation of the send and receive infrared sensors
and their associated circuits.

To run the IR Loop-Back test:

670

. Press and hold (ON].

Press and release the fourth key from the left in the top row (the
menu key with D next to it).

. Release [ON]; a vertical line will appear at both sides, and at the

center of the display.

Be sure that the plastic plug-in card cover is in place and that it
covers the clear lamp bulbs in the top end of the calculator.

A: Support, Batteries, and Service

5. Press [EVAL].
IRLE will appear at the top left corner of the display.
0K will appear to the right of IRLB if the calculator passes this test.

If OK does not appear, the calculator requires service.

8. To return to normal calculator operation, perform a system halt as
follows:

a. Press and hold [ON).

b. Press and release the third key from the left in the top row
(the menu key with C next to it).

c. Release [ON].
The empty stack display should appear.

Serial Loop-Back Test

This test checks the operation of the send and receive circuits of the serial
interface at the top of the calculator.

To run the Serial Loop-Back test:
1. Press and hold [ON].

2. Press and release the fourth key from the left in the top row (the
menu key with D next to it).

3. Release [ON]; a vertical line will appear at both sides, and at the
center of the display.

4. Temporarily connect (short) the middle two pins (pins 2 and 3) of
the 4-pin serial connector at the top end of the calculator. Be
careful not to bend or severely jar the pins.

A: Support, Batteries, and Service 671

S. Press [PRG).
U_LB will appear at the top left corner of the display.
OK will appear to the right of U_LB if the calculator passes this test.

If OK does not appear, the calculator requires service.

i If you inadvertently short pins 1 and 2 or pins 3 and 4 of the
serial connector, the loop-back test will return
Note U_LB 98081 or U_LB 800862 (test-failed message), but
you will not damage the calculator.

6. To return to normal calculator operation, perform a system halt as
follows:

a. Press and hold [ON].

b. Press and release the third key from the left in the top row
(the menu key with C next to it).

€. Release [ON].
The empty stack display should appear.

672 A: Support, Batteries, and Service

Limited One-Year Warranty

What Is Covered. The calculator (except for the batteries, or damage
caused by the batteries) and calculator accessories are warranted by
Hewlett-Packard against defects in materials and workmanship for one year
from the date of original purchase. If you sell your unit or give it as a gift,
the warranty is automatically transferred to the new owner and remains in
effect for the original one-year period. During the warranty period, we
will repair or, at our option, replace at no charge a product that proves to
be defective, provided you return the product, shipping prepaid, to a
Hewlett-Packard service center. (Replacement may be made with a
newer model of equal or better functionality.)

This warranty gives you specific legal rights, and you may also have other
rights that vary from state to state, province to province, or country to
country.

What Is Not Covered. Batteries, and damage caused by the batteries,
are not covered by the Hewlett-Packard warranty. Check with the battery
manufacturer about battery and battery leakage warranties.

This warranty does not apply if the product has been damaged by accident
or misuse or as the result of service or modification by other than an
authorized Hewlett-Packard service center.

No other express warranty is given. The repair or replacement of a
product is your exclusive remedy. ANY OTHER IMPLIED
WARRANTY OF MERCHANTABILITY OR FITNESS IS LIMITED
TO THE ONE-YEAR DURATION OF THIS WRITTEN
WARRANTY. Some states, provinces, or countries do not allow
limitations on how long an implied warranty lasts, so the above limitation
may not apply to you. IN NO EVENT SHALL HEWLETT-PACKARD
COMPANY BE LIABLE FOR CONSEQUENTIAL DAMAGES.
Some states, provinces, or countries do not allow the exclusion or
limitation of incidental or consequential damages, so the above limitation
or exclusion may not apply to you.

Products are sold on the basis of specifications applicable at the time of
manufacture. Hewlett-Packard shall have no obligation to modify or
update products, once sold.

A: Support, Batteries, and Service 673

Consumer Transactions in the United Kingdom. This warranty
shall not apply to consumer transactions and shall not affect the statutory
rights of a consumer. In relation to such transactions, the rights and
obligations of Seller and Buyer shall be determined by statute.

If the Calculator Requires Service

d If the contents of your calculator’s memory are important,
you should back up the memory on a plug-in RAM card,
Note another HP 48, or a computer before sending in the

calculator for repair.

Hewlett-Packard maintains service centers in many countries. These
centers will repair a calculator, or replace it with the same model or one
of equal or better functionality, whether it is under warranty or not.
There is a service charge for service after the warranty period.
Calculators normally are serviced and reshipped within 5§ working days.

= In the United States: Send the calculator to the Corvallis Service
Center listed on the inside of the back cover.

n In Europe: Contact your Hewlett-Packard sales office or dealer, or
Hewlett-Packard’s European headquarters (address below) for the
location of the nearest service center. Do not ship the calculator for
service without first contacting a Hewlett-Packard office.

Hewlett-Packard S.A.
150, Route du Nant-d’Avril
P.O. Box CH 1217 Meyrin 2
Geneva, Switzerland
Telephone: 022 780.81.11

u In other countries: Contact your Hewlett-Packard sales office or
dealer or write to the Corvallis Service Center (listed on the inside of
the back cover) for the location of other service centers. If local
service is unavailable, you can ship the calculator to the Corvallis
Service Center for repair.

674 A: Support, Batteries, and Service

Regulatory Information

U.S.A. The HP 48 generates and uses radio frequency energy and may
interfere with radio and television reception. The calculator complies
with the limits for a Class B computing device as specified in Subpart J of
Part 15 of FCC Rules, which provide reasonable protection against such
interference in a residential installation. In the unlikely event that there is
interference to radio or television reception (which can be determined by
turning the HP 48 off and on or by removing the batteries), try the
following;

® Reorienting the receiving antenna.

= Relocating the calculator with respect to the receiver.

For more information, consult your dealer, an experienced
radio/television technician, or the following booklet, prepared by the
Federal Communications Commission: How to Identify and Resolve
Radio-TV Interference Problems. This booklet is available from the U.S.
Government Printing Office, Washington, D.C. 20402, Stock Number
004-000-00345-4. At the first printing of this manual, the telephone
number was (202) 783-3238,.

West Germany. This is to certify that this equipment is in accordance
with the Radio Interference Requirements of Directive FTZ 1046/84. The
German Bundespost was notified that this equipment was put into
circulation, the right to check the serie for compliance with the
requirements was granted.

6768 A: Support, Batteries, and Service

All shipping, reimportation arrangements, and customs costs are your
responsibility.

Service Charge. Contact the Corvallis Service Center (inside back
cover) for the standard out-of-warranty repair charges. This charge is
subject to the customer’s local sales or value-added tax wherever
applicable.

Calculator products damaged by accident or misuse are not covered by
the fixed charges. These charges are individually determined based on
time and material.

Shipping Instructions. If your calculator requires service, ship it to
the nearest authorized service center or collection point.

® Include your return address and a description of the problem.
m Include proof of purchase date if the warranty has not expired,

» Include a purchase order, check, or credit card number plus
expiration date (VISA or MasterCard) to cover the standard repair
charge.

m Ship your calculator postage prepaid in adequate protective packaging
to prevent damage. Shipping damage is not covered by the warranty,
so we recommend that you insure the shipment.

Warranty on Service. Service is warranted against defects in materials
and workmanship for 90 days from the date of service.

Service Agreements. In the U.S,, a support agreement is available for
repair and service. For additional information, contact the Corvallis
Service Center (see the inside of the back cover).

A: Support, Batteries, and Service 675

Messages

This appendix lists selected HP 48 messages.

In the following tables, messages are first arranged alphabetically by name
and then numerically by message number.

Messages Listed Alphabetically

Message Meaning # (hex)
Acknowledged Alarm acknowledged. 619
Autoscaling Calculator is autoscaling x- 610

and for y- axis.
Awaitina Server Indicates Server mode active. coC
Cmd.
Bad Araument Tupe | One or more stack arguments 202
were incorrect type for
operation.
Bad Araument Yalue | Argument value out of 203
operation’s range.
Bad Guess(es) Guess(es) supplied to HP AO1
Solve application or ROOT lie
outside domain of equation.

677

Messages Listed Alphabetically (continued)

(Equation, Statistics, Alarm)

Message Meaning # (hex)

Bad Packet Block Computed packet checksum cot

check doesn't match checksum in
packet.

Can't Edit Mull Attempted to edit a string 102

Char. containing character “0".

Circular Reference | Attempted to store a variable 129
name into itself.

Connecting Indicates verifying IR or serial COA
connection.

Constant? HP Solve application or AD2
ROOT returned same value at
every sample point of current
equation.

Copied to stack +STEK copied selected 623
equation to stack.

Current equation: | ldentifies current equation. 608

Peleting Column MatrixWriter application is 504
deleting a column.

Deletina Row MatrixWriter application is 503
deleting a row.

Directory Not Name of existing directory 12A

Allowed varlable used as argument.

Directory Attempted to store a directory 002

Recursion into itself.

Emptu cataloag No data in current catalog 60D

678 B: Messages

Messages Listed Alphabetically (continued)

Message Meaning # (hex)
Enter alarm, Alarm entry prompt. 61A
press SET
Enter eans press Store new equation in EQ. 60A
NEH
Enter value (zoom | Zoom operations prompt. 622
out if >1), press
ENTER
Extremum Result returned by HP Solve A06

application or ROOT is an
extremum rather than a root.

HALT HNot Allowed A program containing HALT 126
executed while MatrixWriter
application, DRAW, or HP
Solve application active.

140 setup menu Identifies 1/0 setup menu. 61C

Implicit () off Implicit parentheses off. 207

Implicit <) on Implicit parentheses on. 208

Incomplete [»], [¥], or [ENTER] pressed 206

Subexpression before all function arguments
supplied.

Inconsistent Units | Attempted unit conversion B02
with incompatible units.

Infinite Result Math exception: Calculation 305
such as 1/0 infinite resuit.

Inserting Column MatrixWriter application is 504
inserting a column.

679

Messages Listed Alphabetically (continued)

dimensions.

Message Meaning # (hex)
Inserting Row MatrixWriter application is 503
inserting a row.
Insufficient Not enough free memory to 001
Memotryd execute operation.
Insufficient = A Statistics command was 603
Data executed when ZDAT did not
contain enough data points
for calculation.
Interrupted The HP Solve application or AD3
ROOT was interrupted by
(ATTN].
Invalid Array returned object of 502
Element wrong type for current matrix.
Invalid Card Data | HP 48 does not recognize 008
data on plug-in card.
Invalid Date Date argument not real Dot
number in correct format, or
was out of range.
Invalid Definition | Incorrect structure of 12C
equation argument for
DEFINE.
Invalid Dimension | Array argument had wrong 501

Messages Listed Alphabetically (continued)

(hex)

Invalid

Invalid

Invalid

Invalid

Invalid

Invalid

Invalid

Invalid

Cmd.

Invalid

EQ

I0PAR

Names

PPAR

PRTPAR

PTYPE

Repeat

Server

Sunt ax

Attempted operation from
GRAPHICS FCN menu when
£Q did not contain algebraic,
or, attempted DRAW with
CONIC plot type when EQ did
not contain algebraic.

IOPAR not a list, or one or
more objects in list missing or
invalid.

Received illegal filename, or

server asked to send lllegal
filename.

PPAR not a list, or one or
more objects in list missing or
invalid.

PRTPAR not a list, or one or
more objects in list missing or
invalid.

Plot type invalid for current
equation.

Alarm repeat interval out of
range.

Invalid command received
while in Server mode.

HP 48 unable execute
or STR— due to invalid object
syntax.

607

C12

C17

12E

C13

620

Do3

Cos

106

B: Messages

681

Messages Listed Alphabetically (continued)

Message Meaning # (hex)
Invalid Time Time argument not real D02
number in correct format, or
out of range.
Invalid Unit Unit operation attempted with BO1
invalid or undefined user unit.
Invalid User Type or structure of object 103
Function executed as user-defined
function was incorrect.
Invalid £ Data Statistics command executed 601
with invalid object stored in
LDAT.
Invalid Z Data Non-linear curve fit attempted 605
LH(Neg) when ZDAT matrix contained
a negative element.
Invalid Z Data Non-linear curve fit attempted 606
LH¢a) when LDAT matrix contained
a 0 element.
Invalid ZPAR TPAR not list, or one or more 604
objects in list missing or
invalid.
LAST CMD Disabled pressed while 125
that recovery feature
disabled.
LAST STACK pressed while 124
Disabled that recovery feature
disabled.
LASTARG Disabled LASTARG executed while that 205
recovery feature disabled.

682 B: Messages

Messages Listed Alphabetically (continued)

Message Meaning # (hex)
Low Battery System batteries too low to C14
safely print or perform |/0.
Memory Clear HP 48 memory was cleared. 005
Hame Conflict Execution of | (where) 13C
attempted to assign value to
variable of integration or
summation index.
Hame the equation, | Name equation and store it in 60B
press EMTER EQ.
Hame the stat Name statistics data and 621
data, press ENTER | store it in SDAT.
Hegat ive Underflow | Math exception: Calculation 302
returned negative, non-zero
result greater than —MINR.
Ho Current S0LYR, DRAW, or RCEQ 104
Equation executed with nonexistent
EQ.
Ho current Plot and HP Solve application 609
equation status message.
Ho Room in Part Insufficient free memory in 00B

Ho Room to Saus
S5t ack

specified RAM port.

Not enough free memory to
save copy of the stack. LAST
STACK is automatically
disabled.

101

B: Messages 683

Messages Listed Alphabetically (continued)

Message Meaning # {hex)
No Room to Shouw Stack objects displayed by 131
Stack type only due to low memory
condition.
No stat data to No data stored in ZDAT. 60F
plot
Non-Empty Attempted to purge non- 12B
Directory empty directory.
Hon-Feal Result Execution of HP Solve 12F
application, ROOT, DRAW, or
f returned result other than
real number or unit.
Monexistent Alarm | Alarm list did not contain D04
alarm specified by alarm
command.
Honexistent ZDAT Statistics command executed 602
when EDAT did not exist.
Object Discarded Sender sent an EOF (2) COF
packet with a “D” in the data
field.
Object In Use Attempted PURGE or STO 009
into a backup object when its
stored object was in use.
Object Mot in Port | Attempted to access a 00C
nonexistent backup object or
library.
(OFF SCREEH) Function value, root, 61F

extremum, or intersection was
not visible in current display.

B: Messages

Messages Listed Alphabetically (continued)

(hex)

Out of Memorwu

Overflow

FPacket #

Parity Error

Port Closed

Port Not Available

Positive Underflow

Power Lost

One or more objects must be
purged to continue calculator
operation,

Math exception: Calculation
returned result greater in
absolute value than MAXR.

Indicates packet number
during send or receive.

Received bytes' parity bit
doesn't match current parity
setting.

Possible | /R or serial
hardware failure. Run self-test.

Used a port command on an
empty port, or one containing
ROM instead of RAM.

Attempted to execute a server
command that itself uses the

1/0 port.

Math exception: Calculation
returned positive, non-zero
result less than MINR.

Calculator turned on following
a power loss. Memory may
have been corrupted.

135

303

C10

Co5

Co9

00A

301

006

Messages Listed Alphabetically (continued)

Message

Meaning

(hex)

Protocol Error

Receive Buffer
Querrun

Receive Error

Receivina

Retry #

Select a model

Select plot tupe

Select repeat
interval

Processing Command

Indicates processing of host
command packet.

Received a packet whose
length was shorter than a null
packet.

Maximum packet length
parameter from other
machine is illegal.

Kermit: More than 255 bytes
of retries sent before HP 48
received another packet.

SRECV: Incoming data
overflowed the buffer.

UART overrun or framing
error.

Identifies object name while
receiving.

Indicates number of retries
while retrying packet
exchange.

Select statistics curve fitting
model.

Select plot type.

Select alarm repeat interval.

Ci1

co7

Co3

COE

coB

614

60C
61B

Messages Listed Alphabetically (continued)

(hex)

Sendinag

Sign Reversal

Timeout

Too Few Arguments

Transter Failed

Unable to Isolate

Undefined Local
Hame

Identifies object name while
sending.

HP Solve application or
ROOT unable to find point at
which current equation
evaluates to zero, but did find
two neighboring points at
which equation changed sign.

Printing to serial port:
Received XOFF and timed out
walting for XON.

Kermit: Timed out waiting for
packet to arrive.

Command required more
arguments than were
available on stack.

10 successive attempts to
receive a good packet were
unsuccessful.

ISOL failed because specified
name absent or contained in
argument of function with no
inverse.

Executed or recalled local
name for which
corresponding local variable
did not exist.

CoD

AD5

Co2

201

Co6

130

003

687

Messages Listed Alphabetically (continued)

Message Meaning # (hex)
Undefined Hame Executed or recalled global 204
name for which
corresponding variable does
not exist.
Undefined Result Calculation such as 0/0 304

generated mathematically
undefined result.

ndefined XLIE Executed an XLIB name when 004
Hame specified library absent.
Wrona Argument User-defined function 128
Count evaluated with an incorrect

number of parenthetical

arguments.
¢ and y-axis zoom. | |dentifies zoom aption. 627
® axis zoom. Identifies zoom option. 625
® axis zZoom Identifies zoom option. 624
wWAAUTO.
Y axis zoom, Identifies zoom option. 626
ZEROD Result returned by the HP AD4

Solve application or ROOT Is
a root (a point at which
current equation evaluates to
zero).

"t Identifies no execution action 61E
when EXECS pressed.

Messages Listed Numerically

(hex) Message
General Messages

001 Insufficient Memory
002 Directoruy Recursion
003 Undefined Local Name
004 Undef ined XLIB Mame
005 Memory Clear
006 Power Lost
008 Invalid Card Data
009 Object In use
00A Port Not available
00B No Room in Port
00C Object Mot in Port
101 No Room to Save Stack
102 Can't Edit Null Char.
103 Invalid User Function
104 Mo Current Equation
106 Invalid Suntax
124 LAST STRCK Disabled
125 LAST CMD Disabled
126 HALT Hot Allowed
128 Wrona Argument Count
129 Circular Reference
12A Directory Not Allowed
12B Non-Empty Directory
12C Invalid Definition
12E Invalid PPAR
12F Non-Real Result

B: Messages

Messages Listed Numerically (continued)

(hex) Message

General Messages (continued)

130 Unable to Isolate
131 Ho Room to Show Stack

Out-of-Memory Prompts

135 Out of Memory
13C Name Conflict

Stack Errors

201 Too Few Arguments
202 Bad Argument Tupe
203 Bad Argument Yalue
204 Undefined Mame

205 LASTARG Disabled

EquationWriter Application Messages

206 Incomplete Subexpression

207 Implicit () off

208 Implicit <) on
Floating-Point Errors

301 FPositive Underflow

302 Negat ive Underflow

303 Overflow
304 Undefined Result

305 Infinite Result

Array Messages
501 Invalid Dimension
502 Invalid Array Element

503 Deletina Row
504 Deleting Column
505 Inserting Row

Messages Listed Numerically (continued)

(hex) Message
Array Messages (continued)
506 |Inserting Column
Statistics Messages
601 Invalid Z Data
602 Monexistent ZDAT
603 Insufficient Z Data
604 Invalid ZPAR
605 Invalid £ Data LN<{Neg)
606 Invalid Z Data LHNCG)
Plot, 1/0, Time and HP Solve Application Messages
607 Invalid E@
608 Current equation:
609 Ho current equation.
60A Enter eqns press NEMW
60B Name the equation,; press ENTER
60C Select plot tuype
60D Empty catalog
60F Ho Statistics data to plot
610 Autoscaling
614 Select a model
619 Acknowledasd
B1A Enter alarm, press SET
61B Select repeat interval
61C 10 setup menu
61D Plot type:
61E e
61F (OFF SCREEN>
620 Invalid PTYFE
621 Name the stat datas press ENTER

B: Messages

Messages Listed Numerically (continued)

(hex) Message

Application Messages (continued)

622 Enter value (zoom out if >1), press
ENTER

623 Copied to stack

624 ® axis zoom w/AUTO.

625 X axis zoom.

626 Y axis zoom.

627 ¥ and y-axis zoom.

AD1 Bad Guessies)

A02 Constant?

AD3 Interrupted

AD4 Zero

ADS Sian Reversal

AD6 Extremumn

Unit Management
BO1 Invalid Unit
B02 Inconsistent Units

692 B: Messages

Messages Listed Numerically (continued)

(hex) Message

1/O and Printing

Co1 Bad Packet Block check

Coz Timeout

Co3 Receive Error

Co4 Receive Buffer Overrun

Co5 Parity Error

Co6 Transfer Failed

co7 Protocol Error

Co8 Invalid Server Cnd

Co9 Port Closed

COA Connecting

coB Retry #

coC Awaiting Server Cmnd.

coD Sending

COE Receiving

COF Object Discarded

c10 Facket #

Ci1 Processing Command

Ci12 Invalid IOFPAR

C13 Invalid PRTPAR

Ci4 1-0: Batt Too Low

C15 Empty Stack

c17 Invalid Name
Time Messages

Do1 Invalid Date

Do2 Invalid Time

D03 Invalid Repeat

D04 Honexistent Alarm

693

C

HP 48 Character Codes

Most of the characters in the HP 48 character set can be directly typed
into the display from the Alpha keyboard. For example, to display %,
type [a] [\1)(a). (The Alpha keyboard is presented in chapter 2.) Any
character in the set can be displayed by typing its corresponding character
code and then executing the CHR command. The syntax is char# CHE.
Certain characters in the set are not on the Alpha keyboard. To display
one of these characters, you must type its character code and execute
CHR.

The character tables on the following pages show the HP 48 characters
and their corresponding character codes. (This set, except for character
numbers 128 through 159, is based on the ISO 8859 Latin 1 character set.)

If you find that a character you frequently use is not
available on the primary or alpha keyboards (see chapter 2
Note for all the available characters), you can assign that

character to the user keyboard for easy access. See
“Making User Key Assignments” on page 217 for more information.

694 C: HP 48 Character Codes

Character Codes (128 — 255)

NUM CHR | NUM CHR | NUM CHR | NUM CHR

[N
O
on &

= 3 M
I

L
£

: Je In
ae O» (v

ar I
i3

\D '..I:' e
()
O AR I =

Al e O
DRI S o I S o L
A Lo e

=

N B fdo— WO 00

ST L R SO
X

LV R R ¥ R B ¢

LT}

1
4

U]

T T T R
"L}
wn
I

o O 0 T e T R T T L Y
L R |

o g Vi S S5

[nat

o0y 00 G0 00 00 0 0 D MM
M v W)

o e S e el e

1
1
1
|
1
1
1
1
1 E
7 £ 169 g E 3
g8 L 178 2 £ 3 =
a * 171 4 E 35 =
5] x 172 - 1 SE i
141 * 173 = f i
142 € 174 2] b 1
143 v 175 - i 1
144 + 176 " P d
145 ¢ 177 s 2BES i i
146 A 178 e 218 (] >
147 £ 179 B 211 & =
142 i 126 212 & 3
1432 f 121 K 213 [} &
154 132 i 214 I} =
151 F 122 . Z15 # z +
152 7 184 216 o 248 @
153 T 185 1 217 i 243 ¥
154 126 2 215 0 250 g
S5) 127 251 b
155 T 128 % 0 25z g
157 189 ¥ 253
155 [128a A E 25¢:]
153 “ 131 i E 255 vl

696 C: HP 48 Character Codes

Character Codes (0 — 127)

NUM CHR | NUM CHR | NUM CHR | NUM CHR

a w 32 &4 @ 96 !
1 = 33 ! 65 A a7 a
2 = 24 . £ E 98 b
3 = 35 # 67 C 99 C
B n 36 ¥ 68 D 168 d
5 it 37 % 69 E 181 -
& w 88 & 78 F 162 f
I w 39 ; 71 G 163 =
L & 44 £ e H 164 h
e n 41 p) 73 I 185 i
1@ . 2 35 * 74 J laes J
11 . 3 + (=] K 187 k
1z - 44 ' 76 i 182 1
] = 45 - Fa'd M 189 r
14 = £ 13 . 78 H 114 Iy
15 L 37 - T] 111 o
16 - a 5} 35| P i1z F
17 . 49 1 21 8] 113 9
1a - b 5] 2 2z [114 r
19 . a1 2 2z s 115 =
2 . S2 4 24 T 116 t
21 - az S as U 117 u
22 . 54 [86 v 118
23 L a5 7 87 W 119 W
24 = 56 = 83 pd 126 %
=5 [37 3 89 i 121 o
26 L] bt : =15 z 122 z
z . 59 ; 91 L 123 L
28 L] (=35 < 92 ~ 124 |
29] &1 = 93 J 125 ¥
26 n &z » 34 A 125 ~
31 &3 ? 95 127 [

C: HP 48 Character Codes 695

D

Menu Numbers

The following table lists the HP 48 built-in menus and the corresponding
menu numbers.

Menu # Menu Name Menu # Menu Name
0 Last Menu 19 I/O SETUP
1 CST 20 MODES
2 VAR 21 MODES Customization
3 MTH 22 MEMORY
4 MTH PARTS 23 MEMORY Arithmetic
5 MTH PROB 24 LIBRARY
6 MTH HYP 25 PORT 0
7 MTH MATR 26 PORT 1
8 MTH VECTR 27 PORT 2
9 MTH BASE 28 EDIT
10 PRG 29 SOLVE
11 PRG STK 30 SOLVE SOLVR
12 PRG OBJ 31 PLOT
13 PRG DISP 32 PLOT PTYPE
14 PRG CTRL 33 PLOT PLOTR
15 PRG BRCH 34 ALGEBRA
16 PRG TEST 35 TIME
17 PRINT 36 | TIME ADJST
18 1/O 37 | TIME ALRM

D: Menu Numbers

Menu # Menu Name Menu # Menu Name
38 TIME ALRM RPT 49 UNITS FORCE
39 TIME SET 50 UNITS ENRG
40 | STAT 51 UNITS POWR
41 STAT MODL 52 UNITS PRESS
42 UNITS Catalog 53 UNITS TEMP
43 UNITS LENG 54 UNITS ELEC
44 UNITS AREA 55 UNITS ANGL
a5 UNITS VOL 56 UNITS LIGHT
46 UNITS TIME 57 UNITS RAD
47 UNITS SPEED 58 UNITS VISC
48 UNITS MASS 59 UNITS Command

698 D: Menu Numbers

E

Listing of HP 48 System Flags

This appendix lists the HP 48 system flags in functional groups. All flags
can be set, cleared, and tested. The default state of the flags is clear,
except for the Binary Integer Wordsize flags (flags -5 through ~-10).

System Flags

Flag

Description

Symbolic Math Flags

=1

Principal Solution.

Clear: QUAD and ISOL return a result representing all
possible solutions.

Set: QUAD and ISOL return only the principal solution.

-2 | Symbolic Constants.
Clear: Symbolic constants (e, i, », MAXR, and MINR) retain
their symbolic form when evaluated, unless the Numerical
Results flag —3 is set.
Set: Symbolic constants evaluate to numbers, regardless of
the state of the Numerical Results flag - 3.

-3 | Numerical Results.
Clear: Functions with symbolic arguments, including
symbolic constants, evaluate to symbolic results.
Set: Functions with symbolic arguments, including symbolic
constants, evaluate to numbers.

-4 | Not used.

E: Listing of HP 48 System Flags 699

System Flags (continued)

Description

Binary Integer Math Flags

-10

Binary Integer Wordsize.

Combined states of flags —5 through - 10 set the wordsize
from 1 to 64 bits.

-11
and
-12

Binary Integer Base.

HEX: - 11 set, —12 set.
DEC: —11 clear, —12 clear.
OCT: —11 set, —12 clear.
BIN: —11 clear, - 12 set.

-13
and
-14

Not used.

Coordinate System Flags

-15
and
-16

Rectangular: —15 clear, —16 clear.
Polar/Cylindrical: - 15 clear, - 16 set.
Polar/Spherical: —15 set, —16 set.

Trigonometric Angle Mode Flags

-17
and
-18

Degrees: - 17 clear, — 18 clear.
Radians: —17 sef, —18 clear.
Grads: —17 clear, —18 set.

Complex Mode Flag

-19

Clear—V2 and [*][2D] create a 2-dimensional vector from
2 real numbers.

Set:—V2 and [*][2D] create a complex number from 2 real
numbers.

E: Listing of HP 48 System Flags

System Flags (continued)

Flag

Description

Math Exception-Handling Flags

-20

Underflow Exception.
Clear: Underflow exception returns 0.
Set: Underflow exception treated as an error.

-21 | Overflow Exception.
Clear: Overflow exception returns +9.99999999939E499.
Set: Overflow exception treated as an error.

-22 | Infinite Result Exception.
Clear: Infinite result exception treated as an error.
Set: Infinite result exception returns +9.99999999999E499.

-23 | Negative Underflow Indicator.

—24 | Positive Underflow Indicator.

—-25 | Overflow Indicator.

-26 | Infinite Result Indicator.
When an exception occurs, corresponding flag (-23
through —26) is set, regardless of whether or not the
exception Is treated as an error.

-27

thru | Not used.

-29

E: Listing of HP 48 System Flags

701

System Flags (continued)

Flag

Description

Plotting and Graphics Flags

Function Plotting.

Clear: For equations of form y = f(x), only f(x) is drawn.
Set: For equations of form y = f(x), separate plots of y and
f(x) are drawn,

-31

Curve Filling.
Clear: Curve filling between plotted points enabled.
Set: Curve filling between plotted points suppressed.

-32

Graphics Cursor.
Clear: Graphics cursor always dark.

Set: Graphics cursor dark on light background and light on
dark background.

I/0 and Printing Flags

-33

1/O Device.
Clear: | /O directed to serial port.
Set: 1/0O directed to IR port.

—34

Printing Device.
Clear: Printer output directed to IR printer.
Set: Printer output directed to serial port if flag —33 is clear.

-35

1/0 Data Format.
Clear: Objects transmitted in ASCII form.
Set: Objects transmitted in memory image form.

—-36

RECV Overwrite.

Clear: If file name received by HP 48 matches existing

HP 48 variable name, new variable name with number
extension is created to prevent overwrite.

Set: If file name received by HP 48 matches existing HP 48
variable name, existing variable is overwritten.

702

: Listing of HP 48 System Flags

System Flags (continued)

Flag

Description

1/0 and Printing Flags (continued)

-37

Double-Spaced Printing.
Clear: Single-spaced printing.
Set: Double-spaced printing.

Linefeed.
Clear: Linefeed added at end of each print line.
Set: No linefeed added at end of each print line.

-39

1/O Messages.
Clear: | /O messages displayed.
Set: |/O messages suppressed.

Time Management Flags

Clock Display.

Clear: Ticking clock displayed only when TIME menu
selected.

Set: Ticking clock displayed at all times.

-41

Clock Format.
Clear: 12-hour clock.
Set: 24-hour clock.

42

Date Format.
Clear: MM/DD/YY (month/day/year) format.
Set: DD.MM.YY (day.month.year) format.

Repeat Alarms Not Rescheduled.

Clear: Unacknowledged repeat appointment alarms
automatically rescheduled.

Set: Unacknowledged repeat appointment alarms not
rescheduled.

E: Listing of HP 48 System Flags

System Flags (continued)

Flag Description
Time Management Flags (continued)
—-44 | Acknowledged Alarms Saved.
Clear: Acknowledged appointment alarms deleted from
alarm list.
Set: Acknowledged appointment alarms saved in alarm list.
Display Format Flags
-45 | Number of Decimal Digits.
thru | Combined states of flags —45 through —48 sets number of
decimal digits in Fix, Scientific, and Engineering modes.
-48
Number Display Format.
-49 | Standard: —49 clear, —50 clear.
and | Fix: —49 set, -50 clear.
-50 | Scientific: —49 clear, —50 set.
Engineering: —49 set, -50 set.
-51 | Fraction Mark.
Clear: Fraction mark is . (period).
Set: Fraction mark is , (comma).
-52 | Single-Line Display.
Clear: Display gives preference to object in level 1, using up
to four lines of stack display.
Set: Display of object in level 1 restricted to one line.
-53 | Precedence.
Clear: Certain parentheses in algebraic expressions
suppressed to improve legibllity.
Set: All parentheses in algebraic expressions displayed.
-54 | Not used.
708 E: Listing of HP 48 System Flags

System Flags (continued)

Flag

Description

Miscellaneous Flags

Last Arguments.
Clear: Operation arguments saved.
Set: Operation arguments not saved.

-57

Error Beep.

Clear: Error and BEEP-command beeps enabled.
Set: Error and BEEP-command beeps suppressed.
Alarm Beep.

Clear: Alarm beep enabled.

Set: Alarm beep suppressed.

Verbose Messages.

Clear: Prompt messages and data automatically displayed.

Set: Automatic display of prompt messages and data
suppressed.

-59

Fast Catalog Display.

Clear: Equation Catalog (and messages in SOLVE, SOLVR,

PLOT, and PLOTR menus) show equation and equation
name.

Set: Equation Catalog (and messages in SOLVE, SOLVR,
PLOT, and PLOTR menus) show equation name only.

Alpha Lock.
Clear: Alpha lock activated by pressing [a] twice.
Set: Alpha lock activated by pressing [a] once.

-61

User-Mode Lock.

Clear: 1-User mode activated by pressing [+] once.
User mode activated by pressing [«3][USR] twice.
Set: User mode activated by pressing [#1][USR] once.

E: Listing of HP 48 System Flags

705

System Flags (continued)

Flag

Description

Miscellaneous Flags (continued)

User Mode.
Clear: User mode not active.
Set: User mode active.

Vectored [ENTER].
Clear: evaluates command line.
Set: User-defined activated.

Index Wrap Indicator.
Clear; Last execution of GETI or PUTI did not increment
index to first element.

Set: Last execution of GET! or PUTI did increment index to
first element.

706

E: Listing of HP 48 System Flags

Operation Index

This index contains reference information for all operations in the HP 48.
For each operation, this index shows:

Name, Key, or Label. The name, key, or menu label associated with
the operation. Operation names appear as keys or menu labels.

Description. What the operation does (or its value if a unit).

Type. The type of operation is given by one of the following codes.

Type Code Description

(0] Operation, An operation that cannot be included in
the command line, in a program, or in an algebraic.

C Command. An operation that can be included in
programs but not in algebraics.

F Function. A command that can be included in
algebraics.

A Analytic Function. A function for which the HP 48
provides an inverse and derivative.

U Unit.

Keys. The keys to access the operation. Keystroke sequences preceded
by “...” can be accessed through more than one menu—to see the
keystrokes represented by the ... ”, refer to the listing in this index for
the operation that immediately follows the “...”. Operations in multi-
page menus show the applicable menu page number. Operations that are
not key-accessible are identified by “Must be typed in.”

Operation Index 707

Page. Where the operation is described in this manual.
The entries in this index are arranged as follows:

Page where
What operation does operation described

| Keys 1o access operation

ATANH l_.). Arc hyperbolic tangent 137
A HYP ATAN «—

chain Chain, length (20.1168402337 m).
+ U LENG p3 CHAIHN

| t t |

Type code Menu page Value of a unit
Name of operation

Operations whose names contain both alpha and special characters are
listed alphabetically; operations whose names contain special characters
only are listed at the end of this index.

Name, Key Description Page
or Label Type, Keys

a Are, area (100).
U [$][UNITS] AREA p2 [0A

A Ampere, electric current (1 A).
U [)NTS) p.2 ELEC: =

A Angstrom, length (1 x 1071 m).
U [®][ONITS] ‘LENG p4 — H

708 Operation Index

Name, Key
or Label

Description
Type, Keys

Page

Associate left.
O [*)[EQUATION] (4] RULES “#R

Executes %A until no change_lr_l_
subexpression.
O [%][EQUATION] [(¢] RULES

3

405

410

Associate right.

Executes A+
subexpression.
O (F)[EQUATION] (4] RULES

r3 i

until no change in

405

410

ABS

Absolute value.
PARTS A
MATR-p.2

F YECTR RBSL

148

ACK

Acknowledges displayed past due alarm.
C [®IME] FACK

447

ACKALL

Acknowledges all past due alarms.
C [«JMME] ACKA

447

Operation Index 709

Name, Key Description Page
or Label Type, Keys
ACOS Arc cosine. 140
A [®](ACGS]
ACOSH Arc hyperbolic cosine. 137
A [MTH) 'HYP! RCOSH
acre Acre, area (4046.87260987 m?).
U [*)[UNITS] RREA p.2 ACRE
ADJST Selects TIME ADJST (adjust) menu.
O [w)(TIME] ADJST
=AF Add fractions. 409
O [*][EQUATION] («] RULES — AF
[+1][ALGEBRA] | Selects ALGEBRA menu.
O [%J(ALGEBRA]
] Selects Equation Catalog. 259
O [P)[ALGEBRA]
ALOG Common (base 10) antilogarithm. 137
A [«l{o7])

710 Operation Index

Name, Key
or Label

Description
Type, Keys

Page

Selects TIME ALRM (alarm) menu.
O [wJ[TIME] ‘RLRM

AND

Logical or binary AND.
"BASE p4 CAND
F TEST

210
493

ANGL

Selects UNITS ANGL menu.
0 [w][UNTS] p.3 “ANGL:

APPLY

Returns evaluated expression(s) as
argument(s) to unevaluated local name.

F [(ALGEBRA] p.2 APPLY

ARC

Draws arc in PICT from 6, to 8, with center
at (xy) and radius r.

c DSPL AR

339

ARCHIVE

Makes backup copy of HOME directory.
C [%][MEMORY] p.3 ARCHT

648

arcmin

Minute of arc, plane angle.
(4.62962962963 x 10~%)

U [«][ONTS] p.3 ANGL ARCHI

arcs

Second of arc, plane angle.
(7.71604938272 x 10~7)

U [©][UNTS] p.3 ANGL ‘ARCS

Operation Index 711

Name, Key Description Page
or Label Type, Keys

ARER Calculates and displays area under 308
function graph between two x-values
specified by the mark and cursor; returns
area to stack.
O ... /FCN_ -AREA

AREAR Selects UNITS AREA menu.
O [%][UNTS] ARER

ARG Returns polar angle 6. 166

F PARTS ARG

=ARG! Enables/disables LASTARG recovery. 221
O [%][MODES] p.2 = ARG

ARRY— Returns array elements to stack.
C Must be typed in.

—ARRY Combines numbers into array. 90
C 1o SARR

ASCIT Switches between ASCI| and binary mode. | 617
O [0 SETUP ASCIT

ASIN Arc sine. 140

A [=l][ASN]

ASINH Arc hyperbolic sine. 137
A “HYP~ ASTHH

712 Operation Index

Name, Key Description Page
or Label Type, Keys
ASN Makes a single user-key assignment. 217
C [c*]MODES] “ASHE
ASR 1-bit arithmetic shift right. 210
C “BASE p3 ASR
ATAN Arc tangent. 140
A [H](ATAN]
ATANH Arc hyperbolic tangent. 137
atm Atmosphere, pressure (101325 kg/m-s?)
U [«)[UNITS] p.2 PRESS .
ATTACH Attaches specified library to current 651
directory.
C [«][MEMORY] p.2 RTTAC
ATTN] ([ON]) | Aborts program execution, aborts 54
command line; exits special environments;
clears messages.
o)
AU Astronomical unit, length

(1.495979 x 10" m).
U [w)[UNTS] [LENG p2 —H

Operation index

713

Name, Key
or Label

Description
Type, Keys

Page

AUTO

Scales y-axis.
... PLOTR ‘RUTO
C [=IFLoT] RUTD!

Scales y-axis; then plots equation.
... PEOTR '"AUTO=
O [2)[FLOT] AUTO

Sets specified coordinates of axes
intersection; stores labels.

... PLOTR p.3 RARES
C [)[PLOT] p.3 ARES
Recalls axes intersection to stack.
... Bl p.3 [*] ARES
O [*)[PLOT] p.3) ARES

320

319

Switches clock between AM and PM.

Switches alarm time between AM and PM.

O [wJ[TME] ALRM AZPH

442

Barn, area (1 x 102 m7).
U [«][UNTS] ‘BREA B

Bar, pressure (100000 kg/m-s?).
U [®)[0NTS] p.2 PRESS “BAR

Selects BAR plot type.
C ... FIYFE =BAR

328

714 Operation Index

Name, Key Description Page
or Label Type, Keys
BARPLOT | Draws bar plot of data in ZDAT. 378
C [«)[STAT] p.3 BRRPL
BRSE Selects MTH BASE menu.
0 BASE
BAUD Sets one of four available baud rates. 617
C [«)i/0] SETUP BAUD
bbl Barrel, volume (.158987294928).
U [«][UNTS] ¥0L p4 BEL
BEEP Sounds beep. 523
C ICTRL p.3 EBEEF
BEEP Enables/disables error BEEP. 221
O [%](MODES] EBEEF
BESTFIT Selects statistics model yielding largest 377
correlation coefficient (absolute value) and
executes LR.
C [|)[ETAT) p4 HMODLE “BEST
BIN Sets binary base. 208
-BRSE- BIN-
C [+) MODES p4 BIN
BINS Sorts elements in independent variable 382
column of ZDAT into N + 2 bins (uptoa
maximum of 1048573 bins).
C [J[ETAT] p2 BINS

Operation Index

715

Name, Key
or Label

Description
Type, Keys

Page

BLANK

Creates blank graphics object.
c DSPL p3 BLAN

BOX

Draws box with opposite corners defined

by specified coordinates.
C -DEPL BOR

339

BOR=

Draws box with opposite corners defined

by mark and cursor.
... DRAWN p2 BOK
... AUTO p.2 BOX=
O [+][GRAPH] p.2 ‘“EBOX"

337

Bq

Becquerel, activity (1 1/s).
U [w[UNTS)p3 RAD — BE

BRCH

Selects PRG BRCH (program branch)
menu.

o] 'BRCH

Btu

International Table Btu, energy
(1055.05585262 kg-m?/s?)

U [«)[ONITS) p.2 ENRG “BTU.

bu

Bushel, volume (.03523907 m°).
U [S][ONTS] “¥oL p4 ©BU

BUFLEN

Returns number of characters in serial
buffer.

C [®I0/G] p.3 BUFLE

716 Operation Index

Name, Key Description Page
or Label Type, Keys
BYTES Returns object size (in bytes) and 101
checksum for object.
C [«][MEMORY] BYTES
B—R Binary-to-real conversion. 210
Cc ‘BRSE!p.2 “B*R—
c Speed of light (299792458 m/s).
U [«)[0NTS] SPEED p2 = C
C Coulomb, electric charge (1 A‘s).
U [|I[UNTS] p.2 ELEC —C
°C Degrees Celsius, temperature,
U [«®)[ONTS] p.2 'TEMPI °C
cal Calorie, energy (4.186 kg-m?/s%)
U [«][UNITS] p.2 ‘ENRG: CAL
CASE Begins CASE structure. 498
C ERCH 'CHSE
[«1] CASE | Types CASE THEN END END. 498
0 BRCH [«q] CASE
[®] CASE | Types THEN END. 498
0o “BRCH (] CASE

Operation Index 717

Name, Key
or Label

Description
Type, Keys

Page

WCRT!

Selects Equation Catalog.
[*)[FLOT) ~CcAT
[«-)(SOLVE] CAT

O [()(ALGEBRA]

Selects STAT Catalog.

O [*][ETAT) “CAT

Selects Alarm Catalog.
(wIME] CAT

O [>](TivE]

259

370

449

Candela, luminous intensity (1 cd).
U [«][UNITS] p.3 CIGHT p2 CD

CEIL

Returns next greater integer.
B PARTS p.3 CEIL

148

CENT

Redraws graph with center at cursor
position.

. DRAW- -CENT-
. THOTO= CENT=
O [w][GRAPH] TENT

302

718 Operation Index

Name, Key Description Page
or Label Type, Keys
CENTR Sets center of plot display at specified 295
(x, ¥) coordinates.
. PLOTR p.2 CENT
C [*)[PLOT] p2 CENT
[*] EENT | Recalls plot-center coordinates to stack. 293
... PEOTR p.2 [®) CENT
O [?)[PLOT] p.2 (] CENT
CF Clears specified flag. 516
[PRG] =TEST p.3 -=£:F==
C [P]MODES]p2 —CF
%CH Returns % change from uavel 2tolevel 1. 138
F [MTH] PARTS p.2 " %CH
chain Chain, length (20.1168402337 m).
U [«)[UNITS] LENG p.3 CHRIN
CHR Converts character code to one-character 90
string.
C [PRG) Z0BJ p.3 CHRE.
Ci Curie, activity (3.7 x 10” 1/5).

Operation Index 719

Name, Key
or Label

Description
Type, Keys

Page

CIRCL

Draws circle with center at the mark and

radius equal to the distance from cursor to

mark.
DRAW-p.2 CIRCL

O [*I([GRAPH] p.2 CIRCL

337

CKSM

Selects one of three available checksum
error-detect schemes.

C Ii/Q) SETUP CKSM

618

CLEAR

Clears stack.
C [J[CLR]

In EquationWriter entry mode, clears
screen.
O [+][EQUATION] [*][CLR]
Clears PICT.
DRAW [>][CLR]

O [%l(GRAPH] [*][CLA]

230

303

Switches ticking clock display on and off.

O [%][MODES] p.2 CLK

221

720 Operation Index

Name, Key Description Page
or Label Type, Keys
CLKADJ Adds specified number of clock ticks to 443
system time.
C [«][ME] ADJST p.2 CLKR
CLLCD Blanks stack display. 520
c DSPLp4 CLLED
CLOSEIO Cioses |/O port. 615
C [(/G] p.2 CLOSE
CL Purges statistical data in ZDAT. 368
C [«JETAT] CcL=
CLUSR Purges all user variables.
C Must be typed in.
CLVAR Purges all user variables. 115
C [][PURGE]
cm Centimeter, length (.01 m).
U [«)[UNITS] -LENG | CH
CHMD Enables/disables last command line 221
recovery.
O [%1](MODES] p.2 “CHD -
cm™2 Square centimeter, area (1 x 10~* m?).

u B ARER CH®z

Operation index 721

Name, Key
or Label

Description
Type, Keys

Page

cm”™3

Cubic centimeter, volume (1 x 107¢ m?).
U [«)UNITS] ¥YOL CH23

cm/s

Ceantimeters per second, speed (.01 m/s).
U [«][UNTS] SPEED (CMZ5!

Switches curve filling on and off.
O [%][MODES] p.2 “CHCT

221

Calculates column norm of array.
C MATR p.2 CHRM:

359

Inserts a row of zeros at current column in
MatrixWriter application.

O [P)MATRIX] p2 +COL

351

Deletes current column in MatrixWriter
application,

O [?][MATRIX] p.2 -COL

351

COLCT

Collects like terms in expression.
C [«)(ALGEBRA] COLCT

395

CoLCT

Collects like terms in specified
subexpression.

O [%][EQUATION] (4] RULES COLCT

402

CoLT

Specifies dependent and independent
columns in EDAT.

C Must be typed in.

22 Oparation Index

Name, Key Description Page
or Label Type, Keys
COMB Returns number of combinations of n items | 147
taken m at a time.
F PROE COME
CON Creates constant array. 359
& ‘MATR. CON
CONIC Selects CONIC plot type. 327
C ... PTYPE CONIC
CONJ Returns complex conjugate. 166
F PARTS COHJ
CONT Continues halted program. 520
C [%][cONnT]
CONVERT | Converts unit object to dimensions of 194
specified compatible unit.
C [][UNITS] CONY
COORD Displays cursor coordinates at bottom left 302

of display.
DRAW- COORD
.. AUTO" COORD
O [w][GRAPH] COORD

Operation Index 723

Name, Key Description Page
or Label Type, Keys
CORR Calculates correlation coefficient of 377
statistical data in ZDAT.
C [®I[ETAT) p4 CORR
COS Cosine. 140
A
COSH Hyperbolic cosine. 137
A =HYP- COSH
CcCov Calculates covariance of statistical data in 377
LDAT.
C [«][STAT)p4 COV
CR Causes printer to do carriage return/line 608
feed.
C [«[FRINT] =~ CR—
CRDIR Creates a directory. 120
C [%][MEMORY] CRDIR
CROSS Cross product of 2- or 3-element vector. 353
C [MTH] VECTR CROSS
Selects CST (custom) menu. 212
o
L8 Returns contents of CST variable. 213
O [](MODES] CST

724 Operation Index

Name, Key Description Page
or Label Type, Keys
ct Carat, mass (.0002 kg).
U [H)[NTS] MASS p2 © CT
CTRL Selects PRG CTRL (program control)
menu.
0 ICTRL
cu US cup, volume (2.365882365 x 10~* m°).
U [w)UNTS] %08 p3 CU—
C—PX Converts user-unit coordinates to pixel 324
coordinates.
(o} DSPL p.2 C3PX
C—R Separates complex number into two real 91
numbers.
c —0BU pg2 C3R
d Day, time (86400 s).
U [QJUNTS] TIME -
Assembles or takes apart a complex 160
number or 2D vector.
0 D]
Assembles or takes apart a 3D vector. 173
O [=2]ED]

Operation Index 725

Name, Key
or Label

Description
Type, Keys

Page

.?D__

Distribute left.

O [%)][EQUATION] («] RULES <D
Executes = «D until no change in
subexpression.

O [%][EQUATION] (€] RULES
[—«o—

406

410

Distribute right.
O [%][EQUATION] [«] RULES D%

Executes '/ D# ' until no change in
subexpression.

O [«)[EQUATION] (€] RULES
[]—D+

406

410

DATE

Returns system date.
C [«J[TME] p.2 DATE

455

DATE +

Returns new date from specified date and
number of days.

C [wI[ME] p.2 DRTE*

454

—DATE

Sets specified system date.
C [w)[TME] “SET SDAT

441

>DRATE

Sets specified alarm date.
O [wI(TME] ALRM >DATE

445

—DRY"

Sets alarm repeat interval to n days.
O [w][TIME] ALRM RPT DAY

445

726 Operation Index

Name, Key Description Page
or Label Type, Keys
DBUG Halts program execution before first 484
object.
0 CTRL. 'DBUG
DDAYS Returns number of days between two 455
dates.
C [«¥)[TIME] p.2 DDRYS
DEC Sets decimal base. 208
BASE- ' DEC
C (¢ MODES p4 —DEC
DECR Decrements value of specified variable. 513
C [][MEMORY] DECR
DEFINE Creates variable or user-defined function. 107
C [=l[CER] 151
+DEF Expands trigonometric and hyperbolic 409
functions In terms of EXP and LN.
O [«])[EQUATION] [«¢] RUCES =DEF
DEG Sets Degrees mode. 139
C [«][MODES] p.3 DEG
Deletes character under cursor. 75

O [DEL]

Operation Index 727

Name, Key
or Label

Description
Type, Keys

Page

“DEL

Erases area whose opposite corners are
defined by mark and cursor.
PRAW-p.3 —DEL_
... AUFO p3 DEE
O [«][GRAPH] p.3 DEL

337

«DEC

(] #DEL

Deletes all characters from cursor to start
of word.

[\)[EDIT] +DEC
O ... EDIT +#DEE
Deletes all characters from cursor to start
of line.

[«2])[EDIT] (] «DEL
O ... EDIT [P] €DEL

68

DEL=»

() DEL=>

Deletes all characters from cursor to start
of next word.

[(%2][EDIT) DEL=
O ... EUEE DEEE
Deletes all characters from cursor to end of
line.

(«](EDT] () DEL*
O ... 'EDIT [®] DELS

728 Operation Index

Name, Key Description Page
or Label Type, Keys
DELALARM | Deletes alarm from systemn alarm list. 453
C [w(TME) ‘ALRM p.2 DELAL
DELAY Sets delay time between lines sent to 607
printer.
C [«][PRINT] p.2 DELRY
DELKEYS Clears specified user-key assignment. 219
C [][MODES] -DELK
DEPND Specifies name of dependent plot variable. | 318
C [*][PLOT] p2 'DEFH
[r*] DEPH Recalls dependent plot variable to stack. 318
... PLOTR p.2 [*] DEPH
O [>])[PLOT] p.2 [*) DEPH
DEPTH Returns number of objects on stack. 78
c —STK- DEPTH
DET Determinant of a matrix. 360
C MATR- DET=
DETACH Detaches specified library from current 653

directory.
C [«1][MEMORY] p.2 DETRC

Operation Index 729

Name, Key Description Page
or Label Type, Keys
=DINY Double invert. 401
O [%][EQUATION] [¢] RULES DINY
DISP Displays object in specified display line. 523
DEPEp4 DISE
Cc LTRL-p2 DIESF
-DHEG Double negate. 400
O [%][EQUATION] («] RULES DHEG
DO Begins indefinite loop. 510
C /BRCH DO
(1) =00 Types DO UNTIL END. 510
o] “BRCH [\] DO
DOERR Aborts program execution and displays 546
specified message.
DOT Dot product of two vectors. 353
C VECTR DOT

730 Operation Index

Name, Key
or Label

Description
Type, Keys

Page

LOT+

Turns on pixels as cursor moves.

... DRAW p.2 DOT+
AUTO p2 DOT+
O [«J[GRAPH] p.2 DOT+

337

HE D D T—‘“

Turns off pixels as cursor moves.

. ‘DRAW p.2 DOT=
. AUTO p.2 DOT=
O [«][GRAPH] p.2 DOT=

337

DRAW

Plots equation without axes.
... PLOTR -DRAW
C [*][PLOT] DRAW

292

DRAW

Plots equation with axes.
... PEOTR =DRAW-
O [][FLOT] DRAW

296

DRAX

Draws axes.
... PLOTR p.3 DRAX
C [»)[PLOT] p.3 DRAX

319

Operation Index

731

Name, Key Description Page
or Label Type, Keys
DROP Drops object in level 1, moves all remaining | 64
objects down one level.
C [«][oroP)
DROPN Drops n objects from stack. 78
C “STK pg2 DRPN
DRPM- Drops all objects from stack at and below A
pointer.
O ... #STK p.2 -DRPH
DROP2 Drops first two objects from stack. 78
C STK pg2 DROR2
DSFL: Selects PRG DSPL (program display)
menu.
o DSPL
DTAG Removes all tags from object. 91
C =0BJ=pg.2 -DTAG
DUP Duplicates object in level 1. 65
o] “STK pg2 DUP
DUPN Duplicates n objects on stack. 78
C STK pg2 DUFH
DUPN- Duplicates all objects on stack from pointer | 71
through stack level 1,
O ... 8STK p.2 DUPN/
732 Operation Index

Name, Key Description Page
or Label Type, Keys

DUP2 Duplicates objects in level 1 and level 2. 78
C - STK pg2 DUP2

dyn Dyne, force (.00001 kg-m/s®).
U [\)[UNITS] p.2 FORCE DYHN

D—R Degrees-to-radians conversion. 142
I VECTR p2 D*R.

e Symbolic constant e (2.71828182846). 144

F e ®lE

ECHD Copies object in current level to command 71
line.
O ... *5TK= SECHO

EDE@ Returns contents of EQ to command line 256

for editing.
(\)[PLOT] EDEG
O [«][SOLVE] EDE®@

Operation Index 733

Name, Key
or Label

Description
Type, Keys

Page

EDIT

When command line not active, copies
level-1 object into command line and
selects EDIT menu.

When command line active, selects EDIT
menu.

0 [w]EDT]

Selects EDIT menu.

O [)MATRIX] [x]([EDIT]

Returns equation to command line and
selects EDIT menu.

O [«7)[EQUATION] (][EDIT]
Edits current stack level.
O ... #8TK []EDT]

350

242

72

EDIT

Copies selected equation into command
line and selects EDIT menu.
(\I[PLOT] “EATE EDIT
(*2)[SOLVE] 'CAT! EDIT
O [](ALGEBRA] EDIT

Coples subexpression into command line
and selects EDIT menu.

O [«)[EQUATION] (1] EDIT

Copies selected matrix to MatrixWriter
application.

O [®][STAT] CAT 'EDIT

Edits current matrix cell.

O [P]MATRIX] EDIT

Displays selected alarm and selects ALRM
(alarm) menu.

O [w][MME] CAT EDIT

259

244

371

450

734 Operation Index

Name, Key Description Page
or Label Type, Keys
EDITE Copies statistical data in ZDAT to 368
MatrixWriter application.
O [«)(STAT] EDITZ
EEX Types E or moves cursor to existing 47
exponent in command line.
O [EEX]
ECEE Selects UNITS ELEC (electrical) menu.
O [®JUNTS] p.2 “ELEC"
erg Erg, energy (.0000001 kg-m*/s?)
U [w][UNITS] p.2 “ENRG ERG
ELSE Begins ELSE clause. 496
Cc BRCH p.3 ELSE
END Ends program structures. 494
Cc BRCH p.2 "END//
ENG Sets display mode to Engineering. 58
C [«]MODES] ENG
“ENRG Selects UNITS ENRG (energy) menu.
O [$J(UNITS] p.2 ENRG
ENTER Enters contents of command line. If no 299
command line is present, executes DUP.
0

Operation Index 735

Name, Key
or Label

Description
Type, Keys

Page

ENTRY

Switches Algebraic- and Program-entry
modes.

0 [PJENTRY]

EQUATION

Selects EquationWriter application.
O [%](EQUATION]

HE Q-

[EG+

Adds selected equation to list in EQ.
[w][PLOT] ~CAT —EQ%*
[(%)[SOLVE] “CAT [EG%*

O [?)(ALGEBRA] “E@+*

Removes the last entry from the list in EQ.
[\I[PLOT] CAT [«x] EQ+
[(%](SOLVE] “CAT [«w] EG+

O [®][ALGEBRA] (] EG+

272

272

EQ—

Separates equation into left and right sides.

Cc 0BJ " EQs=

9N

ERASE

Erases PICT.
... PLOTR ERASE
C [>])[FLOT] ERASE

292

736 Operation Index

Name, Key Description Page
or Label Type, Keys
ERRM Returns last error message. 542
C LTRLC p3 "ERRM
ERRN Returns last error number. 542
C LTRIC-p.3 -ERRH
ERRO Clears last error number. 542
C CTRL p.3 'ERR@
eV Electron volt, energy
(1.60219 x 10~ kg-m?/s?)
U [«][UNITS] p.2 EHRG-p.2 —E¥—
EVAL Evaluates object. a8
C
EENEQ Sets alarm execution action. 444
O [w](TIME] ALRM EXEC
Recalls alarm execution action to stack. 444
O [@I[TIME] ‘ALRM (] EREC
ERECS Shows alarm-execution action. 450

(\)(TIME] CAT EXECS
O [*)[TIME] ERECS

Operation Index 737

power.,

O [%][EQUATION] (4] RULES
—EA.T

Name, Key Description Page
or Label Type, Keys
EXEE Exits Selection environment. 399
O [%1][EQUATION] [«] EXIT
Exits FCN (function) menu. 308
O ... SECHT [EXIT
Exits ZOOM menu. 305
O ... ZOOM EXIT
EXP Constant e raised to power of object in 137
level 1.
A =]
EXPAN Expands algebraic object. 396
C [«](ALGEBRA] EXP
EXPFIT Sets curve-fitting model to exponential. 377
C [«][STAT]p4 MODL -EXPH
EXPM Natural exponential minus 1 (e* - 1). 137
A HYP p2 EXPM
EXPR Highlights subexpression for which specified | 247
object is top level function.
O [%][EQUATION] (¢] EXFR 398
EXER= Returns expression value or equation values. | 265
O ... SOEYR EXFR=
EXTR Moves graphics cursor to nearest extremum, 308
displays coordinates, and returns them to
stack.
O ... SFCNI ERTR:
—EZ Replace power-product with power-of- 408

738

Operation Index

Name, Key Description Page
or Label Type, Keys
JECY Replace power-of-power with power- 408
product.
O [«\][EQUATION] (€] RULES EC2
F Farad, capacitance (1 A*s*/kg: mz)
U [«w][UNTS] p.2 ELEC = F
L Degrees Fahrenheit, temperature.
U [«)UNTS]) p.2 “TEME
EAST Switches displaying equation names only 260
and names plus contents of equations.
O ... =CAT p.2 'FAST
fath Fathom, length (1.82880365761 m).
U [J[UNITS] (LENG p.3 EATH
fom Board foot, volume (.002359737216 m),
U [\)[0NITS] 90 p4 FEM
fc Footcandle, illuminance
(.856564774909 cd/m?)
U [RJUNTS] p.3 EIGHT FC
=FCH

Selects GRAPHICS FCN (function) menu.

0 @m “FON-

Operation Index

739

Name, Key Description Page
or Label Type, Keys
FC? Tests if specified flag is clear. 516
SEEST - p3 (FC7E
C (P)MODES) p3 “FCZ
FC?C Tests if specified flag is clear, then clearsit. | 516
FFEST-p3 FC7C
C [>](MODES] p.3 FEZC
Fdy Faraday, electric charge (96487 A's).
U [(«][0NITS] p.2 [ELEC p.2 —EDY
fermi Fermi, length (1 x 1072 m).
U [«)[UNTS] LENG p4 FERMI
FINDALARM | Returns first alarm due after specified time. | 454
C [w)[TIME] ALRM p.2 FINDA
FINISH Terminates Kermit server mode. 615
C (/0] FINIS
FIX Selects Fix display mode. 58
C [«]MODES] FIX
flam Footlambert, luminance
(3.42625909964 cd/m?)
U [*)(ONITS] p.3 CIGHT FLAM

740 Operation Index

Name, Key Description Page
or Label Type, Keys
FLOOR Next smaller integer. 148
F PARTS p.3 FLOOR
FMe— Switches period and comma fraction mark. | 58
O [« MODES p4 —EMy
FOR Begins definite loop. 506
C ‘BRCH! FOR
[F|)-FoOR Types FOR NEXT. 506
o BRCH [q) FOR
[B)-FOR Types FOR STEP. 508
0o “BRCH [*] FOR
FORCE Selects UNITS FORCE menu.
O [%][UNTS] p.2 FORCE
FP Returns fractional part of a number. 148
F PHRTS p3 _ FP
FREE | Replaces object in RAM with new copy of | 649
object.
C [¥][MEMORY] p.3 FREE
FREEZE Freezes one or more of three display areas. | 344
c ‘DSPL p.4 FREEZ 523

Operation Index 741

Name, Key Description Page
or Label Type, Keys
FS? Tests if specified flag is set. 516
C [](MODES] p.3 “E&2
FS?C Tests if specified flag is set, then clears it. 516
ITESTip.3 :ES2C
C [*](MODES] p.3 'ES2C
ft International foot, length (.3048 m).
U [)[UNTS] LENG FT
ft"2 Square foot, area (.09290304 m?).
U [«\)[UNTS] ARER: FT=2
ft°3 Cubic foot, volume (.028316846592 m”).
U [«J[UNTS] ¥0L= FT"3
flus Survey foot, length (.304800609601 m).
U [«)[UNITS] EENG p3 FTUS
ft/s Feet/second, speed (.3048 m/s).
U [«][UNITS] SPEED FT/S
ft«lbf Foot-poundf, energy
(1.35581794833 kg-m?/s?).
U [®)[UNITS] p.2 ‘ENRG FT#LE

742 Operation Index

Name, Key
or Label

Description
Type, Keys

Page

FUNCTION

Selects FUNCTION plot type.
C ... PTYPE FUNC

327

ECR

Displays value of function at x-value
specified by cursor. Returns function value
1o stack.

O ... 'FCN! p.2 [FUR)

308

Plots first derivative of function, replots
function, and adds derivative to £Q.
O ... GECH=Ep2 =Rt

309

Gram, mass (.001 kg).
U [*][UNTS] MASS —G—

ga

Standard freefall, acceleration
(9.80665 m/s?).

U [«I[UNTS] SFEED p2 GA

gal

US gallon, volume (.003785411784 m’).
U [«]UNTS] Y0OL p2 GAE

galC

Canadian gallon, volume (.00454609m").
U [©JUNTS] YOL p2 GALE

galUK

UK gallon, volume (.004546092).
U [@UNTS VoL p2 GALU

GET

Gets element from array or list.
c _0BJ p4 BET

91

Operation Index

743

Name, Key
or Label

Description
Type, Keys

Page

GETI

Gets element from array or list and
increments index.

C 0BJ_ p4 GETI

92

Gram-force (.00980665 kg-m/s?).
U [«)[UNTS) p.2 FORCE ~ GF

Superposes graphics object onto
graphics object.
C DEPL p.3 GOR

343

Sets top-to-bottom entry mode.
O []MATRIX] GO+

357

GO+

Sets left-to-right entry mode.
O [P)MATRIX] GO+

351

GRAD

Selects Grads mode.
C [«][MODES] p.3 GRAD

139

grad

Grade, plane angle (.0025).
U [w][UNITS] p.3 AHGL GRAD

grain

Grain, mass (.00006479891 kg).
U [+)[UNITS] MASS p.2 GRAIMN

GRAPH

Enters Graphics environment.
C =

301

GRAPH

Invokes scrolling mode.
[*3][EQUATION] [+1)[GRAPH]
DRAW [$][GRAPH]
AUTO [S][GRAPH]
O [«J[GRAPH] [1][GRAPH]

229
303

744 Operation Index

Name, Key Description Page
or Label Type, Keys
—GROB Converts object into graphics object. 342
c DSPL p.3 =»GRO-
GXOR Superposes inverting graphics object onto | 343
graphics object.
C DSFL p.3 GEOR
Gy Gray, absorbed dose (1 m#/s?).
U [H)[NTS]p3 “RAB -~ GY
h Hour, time (3600 s).
U [©JONTS] ‘TIME = H
H Henry, inductance (1 kg-m*/A*s%).
U [E)UNITS] p.2 ELEC p2 H
*H Adjusts vertical plot scale. 319
C ... PEOTR p.3 =%H—
ha Hectare, area (10000 m*).
U [«][UNITS] AREA p.2 @ HA
HALT Halts program execution. 484
c CTRL HALT 523
HEX Sets hexadecimal base. 208

'BASE “HEX-
C [(+)(MODES) p.4 “HER

Operation Index

745

Name, Key Description Page
or Label Type, Keys
HISTPLOT | Draws histogram of data in ZDAT. 378
C [w][STAT] p.3 HISTP
HISTOGRAM | Selects HISTOGRAM plot type. 328
C ... PTYPE p2 HIST
HMS + Adds in HMS format. 142
C [V[TIME] p.3 HMS+ 457
HMS - Subtracts in HMS format. 142
C [«](TME] p.3 HMS= 457
HMS— Converts from HMS to decimal format. 142
C [«][TME] p.3 HMS» 456
—HMS Converts base 10 number to HMS 142
format.
C [\)(TIME] p.3 *HMS 456
HOME Selects HOME directory. 122
C [](HOME]
HOUR Sets alarm repeat interval to n hours. 445
O [«I[TIME] ALRM RPT
HOUR-
hp Horsepower, power
(745.699871582 kg-m?/s’).
U [I[UNTS] p2 POWR - HP
HE+ Increments time by one hour. 443
O [«][TIME] ADJSET HR+
HR- Oecrements time by one hour. 443
O [«)TIME] ADJYST HE-

746 Operation Index

Name, Key
or Label

Description
Type, Keys

_HYP

Selects MTH HYP (math hyperbolic) menu.

0 “HYP

Hz

Hertz, frequency (1/s).
U [IUNTS] TIME [/HZ!

Symbolic constant /.
F lal [«

144

Creates identity matrix of specified size.
C MATR IDN

Begins test clause.

C BRCH= =1F=
Types IF THEN END.

o) BRCH [\ IF
Types IF THEN ELSE END.
0 BRCH (] IF

494

494

496

Operation Index 747

Name, Key Description Page
or Label Type, Keys
IFERR Begins test clause. 543
o] BRCH p.3 IFERR
[(JIFERR | Types IFERR THEN END. 543
0 ‘BRCH p.3 [Q]IFERR
[JIFERR | TypesIFERR THEN ELSE END. 545
0 ‘BRCH p.3 [PJIFERR
IFT IF-THEN command. 500
C BRCH p3 IEE
IFTE IF-THEN-ELSE function. 500
F BRCH-p.3 IETE
IM Returns imaginary part of complex number | 166
or array.
F PARTS =IM
in Inch, length {.0254 m).
U [H)[UNTS] LENG = 1IN
in~2 Square inch, area (.00064516 m?).
U [\)[UNTS] RAREA IN22
in"3 Cubic inch, volume (.000016387064 m°).
U [UNTS] ¥O0L IN73
748 Operation Index

Name, Key Description Page
or Label Type, Keys
INCR Increments value of specified variable. 513
C [(PJ[MEMORY] INCR
INDEP Specifies Independent variable in a plot. 294
. PBEGTR INDEP
C [Em IHDEP
[IINDEP | Recalls independent variable to stack. 293
. PLOTR [*)INDER
O [*)[PLOT] [*]INDEP
inHg Inches of mercury, pressure
(3386.38815789 kg/m's?).
U [¥)[UNITS] p.2 PRESS p.2 “INHG
inH20 Inches of water, pressure (248.84 kg/m-s?).
U [«][UNITS] p.2 PRESS p.2 INHZ2O0
INPUT Suspends program execution, displays 524
message, and waits for data.
C CTRL p.2 THRUT
INS, Switches between insert/replace character. | 68

Operation Index

749

Name, Key Description Page
or Label Type, Keys
INV Reciprocal. 61
A
IP Integer part of real number. 148
F [MTH) PARTS p3 1P
IRZW Switches IR and Wire transmission modes. | 617
O [w]J(i/0] SETUR IRZW
ISECT Moves graphics cursor to closest 308
intersection in two-function plot, displays
intersection coordinates, and returns
coordinates to stack.
O ... fECN ISECE
ISOL Isolates variable on one side of equation. 389
C [(H)[ALGEBRA] ISOL
[%](1/0] Selects /0 (input/output) menu.
0 ®Ii/9
[*)0/9) Selects Kermit server. 624
O [=079]
J Joule, energy (1 kg:m#/s?).
U [J[UNTS] p2 ENRG U
K Kelvins, temperature (1 K).
U [«JUNTS]p2 TEMP — K

750 Operation Index

Name, Key Description Page
or Label Type, Keys
kcal Kilocalorie, energy (4186 kg-m?/s?)
U [®][0NTS] p.2 'ENRG: KCAL
IKEEP Clears all levels above current level. 72
KERRM Returns text of most recently-received 615
KERMIT error packet.
C /0 p2 KERR
KEY Returns number indicating last key 540
pressed.
Y CTRL p2 KEY.
KEXS Removes menu labels. 302
. [DRENE p.3 IKEYS,
ARUTO p.3 KEY¥YS
O [«][GRAPH] p.3 KEYS
kg Kilogram, mass (1 kg).
U [¢][UNITS] MASS —KG
KGET Gets data from another device. 615
C [«)i/Q) KGET
KILL Aborts all suspended programs. 484

(03 CTRL KIEL

Operation Index 751

Name, Key
or Label

Description
Type, Keys

Page

kip

Kilopound-force (4448.22161526 kg-m/s?).

U ([@)[NTS) p2 FORCE “KIP

km

Kilometer, length (1 km).
U [*)[UNTS] LENG p2 KM

km~2

Square kilometer, area (1 km?).

knot

Nautical miles per hour, speed
(514444444444 m/s).

U [«][UNITS] SPEED KHOT

kph

Kilometers per hour, speed
(277777777778 m/s).

U [w][0NTS] SPEED KPH

Liter, volume (.001 m?).
U [%][ONITS] @ VD 2

LABEL

Labels axes with variable names and
ranges.

... PLOTR p.3 LAEBEE
C [»][PLOT] p.3 LABEL

320

752 Operation index

O [«w][CAST STACK

Name, Key Description Page
or Label Type, Keys
LABEL Labels axes with variable names and 302
ranges.
DRAW LABEE
... RBUTO LABEL
O [%J[GRAPH] LABEL
lam Lambert, luminance
(3183.09886184 cd/m?).
U [%][ONITS] p.3 EIGHT p.2 ~ LAM
LAST Returns previous argument(s) to stack.
C Must be keyed in.
LASTARG Returns previous argument(s) to stack. 64
C [J[LAST ARG]
Displays previous contents of command 77
line.
O [%J[LAST cMD]
LAST MENU] | Selects last displayed page of previous 57
menu.
O [>][CAST MENU]
Restores previous stack. 74

Operation Index

753

Name, Key Description Page
or Label Type, Keys
Ib Avoirdupols pound, mass (45359237 kg).
U [«][UNTS] MASS LB,
Ibf Pound-force (4.44822161526 kg-m/s?).
U [%][UNITS] p.2 FORCE LBF
Ibt Troy pound, mass (3732417 kq).
U [«)[UNTS] MASS LET
LCD— Returns graphics object to stack 344
representing stack display.
C DEPE pd4 LCCD3
—-LCD Displays specified graphics object in stack | 343
display.
C DSPL p4 »LCD
LENG Selects UNITS LENG (length) menu.
O [«w)[ONITS] LENG
LEVEL Enters current level number into level 1. 72
O ... +5TK p.2 LEVEL
LIBRARY Selects LIBRARY menu.
O [«][CIBRARY]

754 Operation Index

Name, Key Description Page
or Label Type, Keys
LIBS Lists all libraries attached to current 653
directory.
C [+1][MEMORY] p.2 L£IBS
LIGHT Selects UNITS LIGHT menu.
O [«][UNITS] p.3 LIGHT
LINE Draws line between coordinates in levels 1 339
and 2.
C 'DSPL! LINE
LINE Draws line from mark to cursor. 337
. .DRAM_-p.2 LIHNE
. JAUTO p.2 LINE
O [w][GRAPH] p.2 LINE
TLINE Returns best-fit line for data in ZDAT 376
according to selected statistical model.
C [+)[STAT] p.3 ZLIHE
LINFIT Sets curve-fitting model to linear. 377
C [®][STAT] p.4 MODLE LCIN
LIST— Returns list elements to stack.
C Must be typed in.
—LIST Combines specified objects into list. 92
c ~0BJ #LIST

Operation Index 755

power.
O [+][EQUATION] [4] RULES L¢3

Name, Key Description Page
or Label Type, Keys
SLIST Combines objects from level 1 to current 71
level into a list.
O ... #8TK SLIST
Im Lumen, luminous flux
(7.95774715459 x 102 cd).
U [W)[UNTS] p.3 LIGHT LM
LN Natural (base e) logarithm. 61
A PN
LNP1 Natural logarithm of (argument + 1). 138
A HYP= p.2 LHNP1
LOG Common (base 10) logarithm. 137
A [)Log)
LOGFIT Set curve-fitting model to logarithmic. 377
C [«][ETAT]p4 MODL LOG
LR Calculates linear regression. 376
C [«][STAT]p4 LR
Ix Lux, lluminance
(7.95774715459 x 1072 cd /m?).
U [[UNTS] p.3 LIGHT LXK
lyr Light year, length
(9.46052840488 x 10" m).
U [w][UNITS] LENG p.2 LYR
L# Replace log-of-power with product-of- 408
log.
O [%)[EQUATION] (4] RULES L*
L¢D Replace product-of-log with log-of- 408

756 Operation Index

Name, Key
or Label

Description
Type, Keys

Page

=

Merge-factors-left.

O [«x][EQUATION] (€] RULES ¢M
Executes = «M— until no change in
subexpression.

0 % (<] RULES

410

Merge-factors-right.

O [S)EQUATION] [{) RULES M3

O [%][EQUATION] [«] RULES
e E=

407

410

Meter, length (1 m).
U [RI[ONTS] LENG — M

m™2

Square meter, area (1 m?).
U [*][UNITS) AREAR M22=

m~3

Cubic meter (Stere), volume (1 m°).
U [QIUNTS) “woL- iMns

MANT

Mantissa (decimal part) of number.
F FARTS p.3 MANT

148

Operation Index 757

F [MTH] PARTS p.2 MAX

Name, Key Description Page
or Label Type, Keys
(MARK_ Sets mark at cursor position. 302
... 'DRAW p.3 'MARK.
. 'ARUTO' p.3 'MARK
O [s])[GRAPH] p.3 MARK
-MASS Selects UNITS MASS menu.
O [©IUNTS) HMASS:
tMATCH Match-and-replace, beginning with 415
subexpressions.
C [«][ALGEBRA] p.2 #MAT
IMATCH Match-and-replace, beginning with top- 415
level expression.
C [%](ALGEBRA] p.2 <MAT
MATR: Selects MTH MATR (math matrices) menu.
(o) MATR
Selects MatrixWriter application.
0 [PIMATRIX]
MAX Maximum of two real numbers. 148

758 Operation Index

Name, Key Description Page
or Label Type, Keys

MAXR Maximum machine-representable real 144
number (9.99999999999E499).
F PARTS p4 MAXR

MAXE Maximum column values in statistics matrix | 374
in ZDAT.
C [®IETAT) p2 MAXE

MEAN Calculates mean of statistical data in ZDAT. | 374
C [w][ETATIp.2 MERN

MEM Bytes of available memory. 101
C [%][MEMORY] ' MEM

| [)[MEMORY] | Selects MEMORY menu.
O [«1][MEMORY]
[*][MEMORY] | Selects MEMORY Arithmetic menu.

O [*](MEMORY]

MENU Displays built-in or custom menu.

(*](MODES] "MENU- 213

C CTRL p.2 MENU 534

Operation index

759

Name, Key
or Label

Description
Type, Keys

Page

MERGE

Merges plug-in RAM card memory with
main memory.

C [w][MEMORY] p.3 MERG

643

Micron, length (1 x 10-¢ m).
U [w][ONITS] [LENG p4 — 5

MeV

Mega electron volt, energy
(1.60219 x 10~ kg-m?/s?).
U [®)[UNITS] p.2 |[ENRG p.2 MEV

mho

Mho, electric conductance (1 A*s’/kg-m?).

U [«][UNITS] p.2 ELEC p.2 MHO

mi

International mile, length (1609.344 m).
U [)UNTS] LENG p2 —HI

mi~2

International square mile, area
(2589988.11034 m?).

U [€)UNTS] AREA p.2 MI*z

mil

Mil, length (.0000254 m).
U [H)[ONITS] LENG p4 —MIE

min

Minute, time (60 s).
U [®)[ONTS] TIHE - MIN

MIN

Minimum of two real numbers.
F PARTS p.2 'MIN

148

760 Operation Index

Name, Key
or Label

Description
Type, Keys

«MIN

Sets alarm repeat interval in minutes.
O [wJ[TIME] ALRM "RPT MIN

Minimum machine-representable real
number (1.00000000000E ~*%%).

144

MIN+

Increments system time by one minute.
O [«J(TIME] ADJST MIN+

MIN=

Decrements system time by one minute,
O [«][TIME] ADJST MIN-

MINZ

Finds minimum column values in statistics
matrix in ZDAT.

C [®][STAT]p2 MINZ

374

miUs

US statute mile, length (1609.34721869 m).

U [«][ONITS] LENG p.3 MIUS

mius~2

US statute square mile, area
(258998.47032).
U [H][UNTS] HAREA p.2 MIUSS

mm

Millimeter, length (.001 m).
U [«][ONITS] LENG | MM

mmHg

Millimeter of mercury (torr), pressure
(133.322368421 kg/m-s?).

U [«][UNITS] p2 PRESS MHH

Operation Iindex 761

Name, Key Description Page
or Label Type, Keys
ml Milliliter (cubic centimeter), volume
(1% 107 m?).
U [®JUNTS] YOL p3 ML
M Switches muiti-line and single-line display. 221
O [+][MODES] p.2 - HL
MOD Modulo. 148
F PARTS p.2 I MOD
[)[MODES] | Selects MODES menu.
O [+](MODES)
[*][MODES] | Selects MODES Customization menu.
O [
MODL Selects STAT MODL (statistics model) 377
menu.
O [«w][ETAT] p4 MODL
mol Mole, mass (1 mol).
U [HJ[UNITS] MASS p3 MOL
Mpc Megaparsec, length
(3.08567818585 x 102 m).
U [®][UNTS) CENG p2 MPC
mph Miles per hour, speed (.44704 m/s).
U [«][UNITS] SPEED —HPH™

ré2 Operation Index

Name, Key
or Label

Description
Type, Keys

Page

MTH

Selects MTH (math) menu.
0

MsD

Switches date display format.
O [«w)[TME] “SET M7D

442

m/s

Meters per second, speed (1 m/s).
U [«][0NITS] SPEED ~M#S"

N

Newton, force (1 kg-m/s?).
U [«J[UNITS] p.2 FORCE N

NI

Returns number of rows in ZDAT.
C @ p_s T Hz

383

NEG

Negate.
A [A

134

HEW:

Takes algebraic or matrix from stack,
prompts for name, stores named algebraic
in EQ, or named matrix in TDAT.

[«][PLOT] HEW

[«2](SCLVE] HEW
O [wJ[ETAT] HEW

257

NEWOB

Decouples object from list or variable
name

C [%][MEMORY] p.2 HNEWO

NEXT

Ends a definite-loop structure.
o BRCH p.2 HEXT

502
506

Operation Index 763

Name, Key Description Page
or Label Type, Keys
“HEZT- Displays but does not execute next one or 484
two objects in suspended program.
(o) CIREE NERT
nmi Nautical mile, length (1852 m).
U [«)[UNITS] LENG/p.3 “HMI
HOHE Cancels alarm repeat interval and returns 445
to TIME ALRM menu.
O [WI[TIME] ALRM ~RPT" "HONE
NOT Logical or binary NOT.
TEST ~HOT 493
F TBASE=p.4 —NOT 210
NUM Returns character code of first characterin | 92
string.
Cc ~0Bd=p3 -NUH
[+NUM] Evaluates algebraic to number. 127
C [][=NUM]
“HHXEQ Rotates list of equations in EQ.
... SOEVR _NXEQ 272
O ... FCH p.2 HXEQ 309
NXT Selects next page of menu. 56
o

764 Operation Index

Name, Key Description Page
or Label Type, Keys
_______ 0BdJ Selects PRG OBJ (program object) menu.
0 “0BJ
OBJ— Returns object components to stack. a3
C —0BJ 0B
OCT 208
Turns calculator off. 25
O [*I[CFF
OFF Turns calculator off. 540
C CTRL p3 OFF
OLDPRT Remaps HP 48 character set to match HP 603
82240A Infrared Printer.
C [«][FRINT] p.2 OLDER
Turns calculator on. 25
0o

Operation Index 765

Name, Key
or Label

Description
Type, Keys

Page

OPENIO

Opens serial port.
C [&J(/9) p-2 OPENI

615

OR

Logical or binary OR.
[MTH] ‘BRSE p4 ~ OR
F “TEST OR

210
483

ORDER

Rearranges VAR menu In order specified in
list.
C [«]MEMORY] ORDER

113

ORDER

Puts selected equation at top of Equation
Catalog list.

(«I[FLOT] CAT p.2 ORDER
(+2)[SOLVE] ~€AT p.2 ORDER
O [»](ALGEBRA] p.2 ORDER
Puts selected statistical data at top of
Statistics Catalog list.

O [®J[ETAT] CAT p.2 ORDER

260

372

OVER

Duplicates object in level 2 in level 1.
c _STK- OVER

Ounce, mass (.028349523135 kg).
U [E)UNTS] mRSS 02

766 Operation Index

Name, Key Description Page
or Label Type, Keys
ozfl US fluid ounce, volume
(2.95735295625 x 10~* m?).
U [@IUNTS) —¥0E p3 OZFL
ozt Troy ounce, mass (.031103475 kg).
U [®]UNITS] MASS p2 ~0Z2T
ozUK UK fluid ounce, volume
(2.8413075 x 105 m?).
U [H][ONITS] %0 p.3 020K
P Poise, dynamic viscosity (.1 kg/m-s)
U [®R][UNITS] p3 VISC -~ P
Pa Pascal, pressure (1 kg/m-s?)
U [$][UNTS] p.2 PRESS = PR
 PARAMETRIC | Selects PARAMETRIC plot type. 327
C ... PIXYPE PHER
PARITY Selects one of 5 possible parity settings. 617
C [w](i/0] SETUP PRARIT
PHRTS Selects MTH PARTS menu.
o] PARTS
PATH Returns list containing path to current 120
directory.
C [®])MEMORY] PATH

Operation Index 767

Name, Key
or Label

Description
Type, Keys

‘ Page

pc

Parsec, length (3.08567818585 x 10'¢ m).
U [«][ONTS] ‘LENG p2 —FC

PDIM

() PDIM

Changes size of PICT.
... PLOTR p3 ROIM
C [)[FPLOT] p.3 'RDIM
Recalls size of PICT to stack.
... PLOTR p.3 [] PDIM
O [»)PLOT] p3] PDIH

325

319

pdl

Poundal, force (.138254954376 kg-m/s?).
U [H][UNTS] p.2 FORCE ~FDL

PERM

Permutations.
F ‘PROB PERM

147

PGDIR

Purges specified directory.
C [«][MEMORY] p.3 PGDIR

123

ph

Phot, illuminance (795.774715459 cd /m?)
U [®)[ONTS] p.3 CIGHT — PH

763 Operation index

Name, Key Description Page
or Label Type, Keys
PICK Coples object in level n to level 1. 79
C STK |PICK
PICK Copies object in current level to level 1. 71
O ... #8TK PICK
PICT Returns PICT to level 1. 341
C DSPE IPICT
PIXOFF | Turns off specified pixel in PICT. 339
C DSPL p.2 PIXOF
PIXON Turns on specified pixel in PICT. 339
Cc ‘DSPL p.2 PIXON
PIX? Tests whether specified pixel in PICT is on 339
or off.
C DSPEp.2 ‘RIX?
pk Peck, volume (.0088097675 m").
U [«w][UNTS] ~¥0L p4 = PK
PKT Sends KERMIT commands to a server. 615

C «i/Qp2 PKT

Operation Index

769

Name, Key
or Label

Description
Type, Keys

Page

Selects PLOT menu.

0 [wJrLET)
Selects PLOT PLOTR menu.

O [=IFLoT]

FLOT

Makes the selected entry the current
statistical matrix and displays the third
page of the STAT menu.

O [«)[STAT) CAT PLOT

37

PLOTE

Selects PLOT PLOTR menu.
[|I[FLOT] PLOTR
(\)[FLOT] CAT- PLOTR
(*][ALGEBRA] PLOTR

O [«QJ[SOLVE] CAT FLOTR

PMAX

Sets upper-right plot coordinates.
C Must be typed in.

PMIN

Sets lower-left plot coordinates.
C Must be typed in.

POLAR

Switches rectangular and polar
coordinates.

O [][POLAR)

158

POLAR

Selects POLAR plot type,
C ... PTYPE FPOLAR

327

770 Operation Index

Name, Key Description Page
or Label Type, Keys

POS Returns the position of substring in string 93
or object in list.

POUWR Selects UNITS POWR (power) menu.
O [«][UNITS] p.2 "POHR

PREDV Predicted value.
C Must be typed in.

PREDX Returns predicted value for independent 376
variable, given value of dependent variable.

C [«](STAT] p4 PREDX

PREDY Returns predicted value for dependent 377
variable, given value of independent
variable.

C [%][STAT] p.4 PREDY

PRESS Selects UNITS PRESS (pressure) menu.
O [®][UNTS] p.2 "PRES

Selects previous page of menu. 56
O [«][PREV]

(] Selects first page of menu. 56
O [J[PREY]

Operation Index 771

I

Name, Key Description
or Label Type, Keys
Selects PRG (program) menu.
o
Selects PRINT menu. |
0 [@QFRNT)
PRLCD Prints display. 603
C [@FRNT) PRLCD

O Simultaneously press
‘PROB Selects MATH PROB (probability) menu.
0 PROB

PROMPT Displays prompt string in status area and 521
halts program execution.

c "CTRL p2 PROM

PRST Prints all objects on stack. 603
C [@FRNT PRST
PRSTC Prints all objects on stack in compact 603
format.

C (@FANT) PRSTC

772 Operation Index

Name, Key
or Label

Description
Type, Keys

Page

PRVAR

Prints name and contents of one or more
variables (including port names).

603

PR1

Prints object in level 1.
[S)FRAT) “BRL-

C [>JPRINT]

603

Pounds per square inch, pressure
(6894.75729317 kg/m-s?).

U [|][UNITS] p.2 PRESS - FST

pt

Pint, volume (.000473176473 m°).
U [«w]ONTS] VOL p2 PT

Selects PLOT PTYPE menu.
[RIFLOT] FTYPE
... PLOTR p.2 BT¥PE

O [*][PLOT] p.2 PTYFE

PURGE

Purges one or more specified variables.
C [«][PURGE]

114

Purges one or more specified variables. If
only one untagged variable specified,
saves previous contents for recovery by
LASTARG.

O [«](PURGE]

114

Operation Index 773

Name, Key
or Label

Description
Type, Keys

Page

PURG

Purges selected equation.
(«1)(SOLVE] =CAT p.2 PURG
(*)[PLOT) “CAT p.2 ‘PURG"
O [?)(ALGEBRA] ~CAT p.2 PURG
Purges selected statistical matrix.
O [«ETAT] CAT= p.2 PURG
Purges selected alarm.
[RIME] “CAT FURG
O [>)[ME] ‘PURG

260

372

450

PUT

94

PUTI

Replaces element in array or list and
increments index.

C =0BJ p4 PUTL

94

PVARS

Returns list of current backup objects and
libraries within a port.
C [w][MEMORY] p.2 PVARS

647

PVIEW

Displays PICT with specified pixel at
upper-left corner of display.

Cc DSPL PVIEW

342

774 Operation Index

Name, Key
or Label

Description
Type, Keys

Page

PWRFIT

Set curve-fitting model to Power.
C [w)[STAT] p4 MODLE “PUR—

377

PX—C

Converts pixel coordinates to user-unit
coordinates.

C DSPL p.2 PRSC

324

Converts number to fractional equivalent.
C =g

134

QUAD

Finds solutions of first or second order
polynomial.

C [«](ALGEBRA] GQUARD

391

QUOTE

Returns argument expression unevaluated.

F [«)(ALGEBRA] p.2 "GUOT

Quart, volume (.000946352946 m’).
U [RIUNTS] ‘Yo p2 G1

Calculates and compares quotients of
number and number/x.

C [WI[ALGEBRA] p.2 *8m

134

Radian, plane angle (.1591549343092).
U [«®][0NITS] p.3 AHGE R

Roentgen, radiation exposure
(.000258 A-s/kg).
U [«]UNTS]p3 RAE p2 R

Operation Index 775

Name, Key Description Page
or Label Type, Keys
‘R Degrees Rankine, temperature.
U [*w]J[UNTS] p.2 TEMP — %R
rad Rad, absorbed dose (.01 m?/s®).
U [©J[UNTS] p3 RAD | RAD
RAD Sets Radians mode. 139
C [%](MODES] p.3 ~RAD
Switches Radians and Degrees mode. 30
O [*l[RAD]
RAD Selects UNITS RAD (radiation) menu.
O [w][UNITS] p.3 “RAD
RAND Returns random number. 147
C FROBE RAND
RATIO Prefix form of / used by EquationWriter

application.
F Must be typed in.

776 Operation Index

Name, Key
or Label

Description
Type, Keys

Page

RCEQ

Returns equation in EQ to level 1.
[$][PLOT] [*] STEG
(%](SOLVE] () STER
... PLOTR (] DRAW

C [J[PLOT] [>) DRAK

RCL

Recalls object stored in specified variable
to stack.

C [=RCY

110

RCL

Inserts algebraic from level 1 into
EquationWriter equation.

0 [*ECD

246

RCLALARM

Recalls specified alarm from system alarm
list.

C [)(TIME] ALRM p.2 RCLAL

453

RCLF

Returns binary integer representing states
of system flags.

C [»]MODES] p.2 RCLF

518

| RCLKEYS

Returns list of current user-key
assignments.

C [](MODES] RCLK

220

RCLMENU

Returns menu number of current menu.
C [*](MODES] p.2 RCLM

Operation Index 777

Name, Key Description Page

or Label Type, Keys
RCLZ Recalls current statistical matrix in ZDAT. 368
C [®J[ETAT] (] 'STOZ
RCWS Recalls binary integer wordsize. 207
C BASE |RCHS
rd Rod, length (5.0292100584 m).
U [«)[UNTS] LENG p.3
RDM Redimensions array. 360
C -MATR RDM
RDZ Sets random number seed. 147
Cc PROB- RDZ
RE Returns real part of complex number or 166
array.

F PARTS RE

RECN Waits for stack-specified data from remote | 615
source running Kermit software.

C [«llQlp2 RECH

RECV Waits for sender-specified data from 614
remote source running Kermit software.

C [wIi/Q RECY

778 Operation Index

Name, Key Description Page

or Label Type, Keys
rem Rem, dose equivalent (.01 m?/s?).
U [|)[UNTS]p.3 RAD. REM
REPEAT | Begins REPEAT clause. 512
C BRCH: p.2 REPER
REPL Replaces portion of object with another like
object.
0BJ p.3 [REPL 95
C DSPL p.3 REPL 343
REPL Replaces portion of PICT with level-1 341
graphics object.

DRAW p.3 REPLC
. ‘AUTD p.3 REPL
O [«][GRAPH] p.3 REFL

REPL Replaces specified subexpression with 247
algebraic from stack.
O [%][EQUATION] [¢] REPL 398

Operation Index 779

Name, Key
or Label

Description
Type, Keys

Page

RES

(] RES

Sets spacing between plotted points.
C [)PLOT] p2 “RES
Recalls spacing to stack.
... PLOTR p.2 [*) RES
O []FLoT) p2 [?*) RES

321

318

RESET

Resets plot parameters in PPAR in the
current directory to their default states and
erases and resizes PICT.

... PLOTR p.2 RESET
O [][PLOT] p.2 RESET

323

RESTORE

Replaces HOME directory with backup
copy.
C [«](MEMORY] p.3 RESTO

648

780 Operation Index

Name, Key
or Label

Description
Type, Keys

Page

REVIEW

Displays statistical data in EDAT.,

O [%[ETAT] [w][REVIEW]
Displays current equation and plot
parameters.
... PLOTR [©][REVIEW]
[][PLOT] (] [REVIEW]
... ‘DRAW [V][REVEEW]
... 'AUTD’ [K)[REVIEW]
O [%1][GRAPH] [©](REVIEW]
Displays current equation.
O [+1][SOLVE] [#1](REVIEW]
(%2](PLOT] (%] [REVIEW]

Displays current equation and values of
SOLVR variables.

O ... SOL¥R [V][REVEEW]

Displays unit names corresponding to
selected menu.

O [®)(UNITS] ... [w](REVIEW]

Displays pending alarm.

O [w][TIME] [«](REVIEW]

In other menus: Lists operation names and
types.

0 [w][REVEW]

294

303
256

290
265

191

439

112

Operation Index 781

Name, Key Description Page
or Label Type, Keys
RL Rotates left by one bit. 211
C ‘BASE p2 - RL
RLB Rotates left by one byte. 211
C “BASE p2 “RLB"
RND Rounds fractional part of number or name. | 148
F [MTH] PARTS p.4 "RND
RNRM Calculates row norm of array. 360
C [MTE] MATR p.2 RNRM-
ROLL Moves object in level (n + 1) to level 1. 79
ROLLE Rolls abject in current level to level 1. 71
O ... #5TK ROEE
ROLLD Moves object in level 2 to level n. 79
c “STK ROLLD
ROLLD Moves object in level 1 to current level. 71
O ... TaSTKs ROLLED
ROOT Solves for unknown variable in equation. 256
C [«][(SOLVE] ROOT

782 Operation Index

Name, Key Description Page
or Label Type, Keys
“ROOT Moves graphics cursor to intersection of 308
function plot and x-axis, displays value of
root, returns value to stack.
O [wJ[GRAPH] "FCH |ROOT
ROT Moves object in level 3 to level 1. 79
“4ROW= Inserts row of zeros at current row. 3s1
O [P)MATRIX] p.2 *+ROW
=ROMW Deletes current row. 351
0 [*)MATRX] p.2 =ROW
RPT Selects TIME ALRM RPT (alarm repeat)
menu.
O [«][fME] ALRM —RPT
RR Rotates right by one bit. 211
C ‘BASE-p.2 ERR=
RRB Rotates right by one byte, 211
C [MTH] BASE p.2 RRE-
RSD Calculates correction to solution of system | 362
of equations.
C [MTH] MATR RSD
RULES Activates RULES transformation menu for 398
specified object.

O [%][EQUATION] [«] RULES

Operation Index

783

Name, Key Description Page
or Label Type, Keys
R—B Real-to-binary conversion. 210
C BASE p.2 —R3B |
R—C Real-to-complex conversion. 95
Cc 0Bd- pg2 R3C
R—D Radians-to-degrees conversion, 142
F VECTR p.2 'R30-
“R&Z Selects Polar,/Cylindrical mode. 171
YECTR TRZEZ)
O [«) [MODES] p.3 R&Z
R«£ Selects Polar/Spherical mode. 171
YECTR R&<
0 [+ p3 R&<£
s Second, time (1 s).
U [«®][UNTS] TIME ~— S
S Siemens, electric conductance
(1 A%s*/kg'mP).
U [«][UNITS] p.2 ‘ELEC p.2

784 Operation Index

Name, Key Description Page
or Label Type, Keys
SAME Tests two objects for equality. 492
C TEST -SAME=
sb Stilb, luminance (10000 cd/m*)
U [*)(UNITS] p.3 LIGHT — SB
SBRK Sends serial break. 633
C [®i/Q) p.3 SBRK
SCALE Sets scale of PLOT axes. 295
... PEOTR p.2 SCAEE
C [)[PLOT] p.2 SCALE
[®JSCALE | Recalls scale to stack. 294
... PLOTR p.2 [*] SCALE
O [2][PLOT] p.2 [*] SCALE
SCATRPLOT | Draws scatter plot of statistical data in 379
TDAT.
C [%)[ETAT] p.3 SCATR
SCATTER Selects SCATTER plot type. 328
C ... PI¥PE p.2 SCATT

Operation Index 785

Name, Key
or Label

Description
Type, Keys

Page

SCI

Selects Scientific display mode.
C [(%]MODES] sCI

58

SCLE

Autoscales data in ZDAT for scatter plot.

C Must be typed in.

SCONJ

Conjugates contents of variable.

C ()(MEMORY]p.2 SCOH

116

SDEV

Calculates standard deviation.
C [«@)ETATp2 sLEY

374

(3]
m
L]

Sets alarm repeat interval to n seconds.
O [«w)[ME] ALEM RFT SEC

445

ix]
imi
)
+

Increments current time by 1 second.
O [¢W)[TME] ACJST SECH

443

Decrements current time by 1 second.
O [«)(TIME] ADJST SEC-

443

SEND

Sends contents of variable to another
device.

C /O] :ZEHD

614

SERVER

Puts HP 48 into Kermit Server mode.
[«]/0] =ZERY
C [#/9]

614

786 Operation Index

Name, Key Description Page
or Label Type, Keys
SSET Selects TIME SET menu.
O [J[ME] SET
=SET. Sets alarm. 445
O [(w)[MME] RLRM SET
SETUP Selects 1/0 SETUP menu.
0 M@II/G) seETUP
SF Sets specified flag. 516
=TEST p.3 =SF
C [P][MODES]p2 SF-
SHOW Reconstructs expression to resolve implicit | 394
variable name.
C [«J(ALGEBRA] sHOW
SIGN Returns sign of number. 149
F PARTS =SIoH
SIN Sine. 140
A [EN
SINH Hyperbolic sine. 137
A HYP SINH

Operation Index 787

Name, Key
or Label

Description
Type, Keys

Page

SINV

Replaces contents of variable with its
inverse.

C [*][MEMORY] p.2 'SINV

116

SIZE

Finds dimensions of list, array, string,

algebraic object, or graphics object.
UBd= pd BIZE

Cc DSPLIp.2 =SIZE

95
342

«SKIP

Moves cursor left to next logical break.

[*)EDT) «SKIP
O ... EEDET #SKIP

SKIP=»

Moves cursor right to next logical break.

[«2)[EDIT] SKIF»
O ... EDIT SKIP»

SL

Shifts left by one bit.
c BASE p3 SL

211

788 Operation Index

Name, Key Description Page
or Label Type, Keys
SLB Shifts left by one byte. 211
C 'BRSE p3 SLB-
SLOPE Calculates and displays slope of function at | 308
cursor position, returns slope to stack.
O ... EECHE SEOPE
slug Slug, mass (14.5939029372 kg).
U [«)[0NITS] MASS ‘SLUG
SNEG Negates contents of variable. 116
C [®][MEMORY] p.2 SHEG
[[SOLVE) Selects SOLVE menu.
O [«](SOLVE]
SOLYR Selects SOLVR menu.
[\)(SOLVE] SOLVR
[<J(SOLVE] -CAT SOLYR
[>](SOLVE]
[|J(PLOT] CAT SOLYR
O [*][ALGEERA] SOLV¥R
Types a blank space in command line.
0
SPEED Selects UNITS SPEED menu.

O [w][UNITS] SPEED

Operation Index 789

Name, Key Description Page
or Label Type, Keys
sQ Returns square of level-1 object. 134
A [«
SR Shifts right by one bit. 211
C [MTH] ‘BASE p3 - 8R
sr Steradian, solid angle
(7.95774715459 x 1073).
U [«][UNITS] p.3 ANGL
SRB Shifts right by one byte. 211
C “BASE p.3 SRB-
SRECV Reads specified number of characters from | 633
1/0 port.
C [«)i/Q) p.3 SRECY
SST Single-steps through suspended program. 484
o CTRLI =SST=
B8N Single-steps through suspended program 486
and its subroutines.
O [PRG) CTRL S5T+
st Stere, volume (1 m’).
U [w)[ONTS] voLl =87
St Stokes, kinematic viscosity (0001 m?/s)
U [®][ONTS]) p3 WISC ST

790

Operation Index

Name, Key Description Page
or Label Type, Keys
START Begins definite loop. 502
c BRCH START
[((ISTART | Types START NEXT. 502
o] ‘BRCH: [©JSTART
[ISTART | Types START STEP. 504
0 'BRCH [®]START
(«l] Selects STAT (statistics) menu.
0 ®JETAT)
(] Selects page 2 of STAT menu.
O [P)ETAT]
STD Selects Standard display mode. 58
C [%][MODES] ~STD
STEP Ends definite loop. 504
C BRCH p2 STEP 508

Operation Index 791

Name, Key
or Label

Description
Type, Keys

Page

STEQ

Stores level 1 equation in EQ.
[*I[FLOT) ‘STE@
... PLOTR [&) DRAN
(*](PLOT] [3] DRAW

C [%][SOLVE] STER

257

STIME

Sets serial transmit /receive timeout.
C [«]i/0] p.3 STIME

633

STK |

Selects PRG STK (program stack) menu.

O [RG 5Tk

STK

Switches Last Stack recovery on and off.

O [«][MODES] p.2 < STK

221

ASTK

Selects Interactive Stack.
... _EDIS= =SSTRE
[IEDT #sTK
[*][VISIT] #STK

O [*]MATRIX] p.2 #STK

70

351

792 Operation Index

Name, Key Description Page
or Label Type, Keys
+STK Copies selected equation to level 1. 260
. HCAT p2 #8TK
371
Copies selected alarm to level 1. 450
(\)(TIME] “CAT @ *5TK
0 [EITWE $5TH
Copies selected matrix element to level 1. 351
0 [>][MATRIX] p.2 »&TK
STO Stores object in variable. 107
C
Stores object in variable and saves 107
previous contents of variable for recovery
by LASTARG.
o
[3{e) Returns EquationWriter equation or PICT to 229
stack.
o] 303
STOALARM | Stores level 1 alarm in system alarm list. 453
C [«)[TIME] ALRM p.2 STORL
STOF Sets state of system and user flags. 518
C [](MODES] p-2
STOKEYS | Makes multiple user-key assignments. 217

C [>][MODES] -STOK

Operation Index 793

Name, Key
or Label

Description
Type, Keys

Page

STO+

Adds specified number or array to
contents of specified variable.

C [>][MEMORY] STO*

115

STO-

Subtracts specified number or array from
contents of specified variable.

C [*][MEMORY] STO-

116

STO«

Multiplies contents of specified variable by
specified number.

C [®)[MEMORY] STO%

116

STO/

Divides contents of specified variable by
specified number.

C [](MEMORY] sTO/

116

STOZ

Stores current statistics matrix in ZDAT.
C [«I[ETAT] stoz

368

STR—

Converts string to compaonent objects.
C Must be typed in.

—STR

Converts object into string.
C 0BJ— 3STR

95

STWS

Sets binary integer wordsize.
C [MTH] BHSE STHS

207

SuB

Extracts specified portion of list or string,
or graphics object

sup
~SUB

794 Operation Index

Name, Key
or Label

Description
Type, Keys

Page

suB

Returns specified portion of PICT to stack.

DRAW p.3 SUB
AUTO p3 SUB
O [%](GRAPH] p.3 ~SUB

341

SUE

Returns specified subexpression to stack.
O [+](EQUATION] (4] ' SUB

398

Sv

Sievert, dose equivalent (.01 m?/s?)
U [E)[UNTS] p.3 'RAD- — SV

SWAP

Exchanges objects inlevels 1 and 2.

C [IEWAR

63

Switches Symbolic and Numerical Results
mode.

O [«]MODES] 8YM

144

SYSEVAL

Evaluates system object. Use only as
specified by HP applications.
C Must be typed in.

Operation Index 795

Name, Key
or Label

Description
Type, Keys

Page

t

Metric ton, mass (1000 kg).
U [wIUNTS] MASS p2 T

T

Tesla, magnetic flux (1 kg/As®).
U [H)[UNTS] p2 ELEC P2~ T

Move term left.
O [«][EQUATION] (1] RULES T

Executes —=T— until no chang; in
subexpression.
O [%)[EQUATION] (€] RULES

] «T

402

410

Move term right.
O [«][EQUATION] [¢] RULES ~ T=
EXBCUIBS R ss'r:i'):_:;:;:;.;:;:;:;. Urllil no Change In

subexpression.
O [%)[EQUATION] (€] RULES
(]

= :*':'

402

410

%T

Returns percent fraction that level-1 is of
level-2.
F PARTS p.2 %1

138

—TAG

‘Combines objects in levels 1 and 2 to
create tagged object.

C OBJ- +TAG

TAN

Tangent.
A

140

796 Operation Index

Name, Key Description Page
or Label Type, Keys

TANH Hyperbolic tangent. 137
A HYP THHH

TAYLR Calculates Taylor's polynomial. 426
C [«](ALGEBRA] TAYLR

thsp Tablespoon, volume
(1.47867647813 x 1073 m?).
U [HR)[UNTS] “vOLC p3 TBSP

TEMP Selects UNITS TEMP (temperature) menu.
O [«)[UNTS] p.2 -TEMP-

TEST: Selects PRG TEST (program test) menu.
(o} TEBEE

TEXT Displays stack display. 344
c \DSPL p4 JTERT

THEN Begins THEN clause. 494
C ERCH p2 THEN

therm EEC therm, energy (105506000 kg-m?*/s%)
U [®J[UNTS] p.2 EHRG p.2 THER

TICKS Returns system time as binary integer in 456

units of clock ticks.
C I[TIME] p2 TICKS

Operation Index

797

Name, Key Description Page
or Label Type, Keys
TIME Returns current time as a number. 456
C [w){ME] p.2 ‘TIME
[«1])(TIME Selects TIME menu.
0 [«w][TiME]
[*](TIME) Selects Alarm Catalog. 449
O [)(TmE]
TIME Selects UNITS TIME menu.
O [w)[UNITS] [TIME
—TIME Sets system time. 442
C [w][TME] 'SETY STIM
>TIME Sets alarm time. 445
O [«I[TIME] ‘ALRM >TIME
TLINE Switches pixels on line defined by 339
coordinates in levels 1 and 2.
c DEPL TEINE

798 Operation Index

Name, Key
or Label

Description
Type, Keys

Page

TEINE

Switches pixels on and off on line between
mark and cursor.

DRAW p.2 TLINE
. AUTO p.2 TEINE
O [w(GRAPH] p-2 TLINE

337

TMENU

Displays list-defined menu but does not
change contents of CST.

C [](MODES] p.2 THMEHN

539

ton

Short ton, mass (907.18474 kg).
U [«9][ONITS] MRASS p.2 TONH

tonUK

Long (UK) ton, mass (1016.0469088 kg).
U [«][UNTS] MASS p.2 TONU

torr

Torr (mmHg), pressure
(133.322368421 kg/ms?).

U [®][UNITS] p.2 PRESS —F0ORR

TOT

Sums each column of matrix in ZDAT.
C [®][STAT]p.2 i TOT

374

TRANSIO

Selects one of three character translation
settings.

C [«Ji/0] SETUP TRAN

618

Operation Index 799

Description
Type, Keys

Expands trigonometric and hyperbolic
functions of sums and differences.

O [+)[EQUATION) (4] RULES TRG*

Transposes matrix.

Cc MW MATR TRH

Truncates (rounds down) number in level 2

as specified in level 1.

F (MTH PARTS p4 TRHC

Selects TRUTH plot type-

C ... PTYPE TRUTH

Teaspoon, volume

(4.92892159375 X 10-¢ md).

U ENTS voL p3 TSP

Converts date and time in number formto

string form.

C E] p.2 T8TR

Returns variables containing specified

object type.

C [@)[MEMORY] p.2 TVARS

Returns type-number of argument object.
oy p2 TYPE

C TEST TYPE

Unified atomic mass (1.66057 x 10~

U [«@UNTS) Mass p3 U

800 Operation index

Name, Key Description Page
or Label Type, Keys
UBASE Converts unit object to SI base units. 196
F [®)(UNTS) UBASE
UFACT Factors specified compound unit. 199
C [P]UNITS] UFACT
—UNIT Combines objects in levels 1 and 2 to 96
create unit object.
[PRG] " 0BJ p.2 +UNIT
C [*][UNITS) sUNTT
[«][UNITS] | Selects UNITS Catalog menu.
O [%]([UNTS)
[*][ONITS] | Selects UNITS Command menu.
O [*][ONTS)
UNTIL Beginis UNTIL clause. 510
C BRCH p.2 UNTIL
UPDIR Makes parent directory the current 122
directory.
C [P
USR Turns User mode on and off. 216
O [w])UsR)
UTPC Returns probability that chi-square random 384

variable is greater than x,
C PROB p.2 UtPC

Operation Index 801

Name, Key
or Label

Description
Type, Keys

Page

UTPF

Returns probability that Snedecor’s F
random variable is greater than x.

C FROE p.2 UTFF

384

UTPN

Returns probability that normal random
variable is greater than x.

C PROE p.2 UTFH

384

UTPT

Returns probability that Student’s t random
variable is greater than x.

C FROE p.2 UTPT

384

UVAL

Returns scalar of specified unit object.
F [][UNITS] UYAL

(]
(=
(#)]

Volt, electrical potential (1 kg-m*/A-s’).
U [«]NTS]p2 ELEC

VAR

Calculates variance of statistical data
columns in TDAT.

C Must be typed in.

(VAR]

Selects VAR (variables) menuy

o)

112

1-HE

Makes the selected entry the current
statistical matrix and displays the second
page of the STAT menu.

O [«W)STAT] CAT 1-¥ARE

371

-VAR

[ZX]

Makes the selected entry the current
statistical matrix and displays the fourth
page of the STAT menu.

O [€Q[STAT] ©CAT 2-YAR

371

VARS

Returns list of variables in current directory.

C [©](MEMORY] “ARE

113

802

Operation Index

Name, Key
or Label

Description
Type, Keys

Page

VEC

Switches vector and array modes.

O [P)MATRIX] VEC

351

VECTE

Selects MTH VECTR (math vector) menu.
O [MTH VECTR

YIEW

() vIEHW

Copies level 1 object into appropriate
environment for viewing.

oM™

Copies object in current level into
appropriate environment for viewing.
O ... 37K wi ENW

Displays selected equation.

O ... cnAT VIENW
Displays selected matrix.
0 [¢) CAT
Displays selected alarm.
0 @ CAT VIEW

Copies object stored in variable in the
current level into appropriate
environment for viewing.

O ... +3TK [VIEN

VIEW

67

73

260

372

450

71

=
—
w)
]

Selects UNITS VISC (viscosity) menu.
O [KWJUNTS)p3 vIsc

(VisIT)

If argument is name, copies contents of
associated variable into command line for
editing. If argument is a stack level
number, copies object in that level into
command line for editing.

O [e)Wvism)

Operation Index 803

(Name, Key
or Label

Description
Type, Keys

Page

VoL

Selects UNITS VOL (volume) menu.
O [wJUNTS] ~¥OLE

VTYPE

Returns type number of object stored in
local or global name.

Cc 0BJ p2 VIY¥PE

g7

—\V2

Combines two real numbers into a 2-D
vector or complex number.

G YECTR p2 - 2¥2

167

—\V3

Combines three real numbers into 3-D
vector.

C VECTR p.2 V&3

183

V—

Separates 2- or 3-element vector according
to current angle mode.

c YECTR p2 —¥3

167

Watt, power (1 kg-m?/s”)
[«)[UNITS] p.2 ‘POWR W
U [«][ONITS]p.2 ELEE — W

Adjusts horizontal plot scale.
C ... PLOTRp3 U

318

Halts program execution for specified
number of seconds or until key pressed.

C ICTRE p.2 “WAILT

534

Weber, magnetic flux (1 kg-m?/A-s?).
U [+J[UNITS] p.2 ELEC p2 . HWB

804 Operation Index

Name, Key Description Page
or Label Type, Keys
“WEEK Sets alarm repeat interval to n weeks. 445
O [wJ[TME] RLRM SRPT WEEK
WHILE Begins indefinite loop. 512
C [PRG] BRCH WHILE
(QIUHILE Types WHILE REPEAT END 512
o BRCH (MIWHILE
HID+ Increases column width and decrements 351
number of columns.
O [P)MATRIX) ‘WID+
«WID Decreases column width and increments 351
number of columns.
O [PJMATRIX) ‘¢WID
¥ Selects x-axis zoom. 305
O ... zoom w
X Returns sum of data in independent 383
column in ©DAT.
C CIETAY)ps 35
"2 Returns sum of squares of data in 383
independent column in £DAT.
C [NJETAT) p5 gxoe:
XAUTO Selects x-axis zoom with autoscaling. 305

O ... zooM ¥AUTO

Operation Index 805

Name, Key
or Label

Description
Type, Keys

Page

XCOL

(] ®CoL

Specifies independent-variable column in
matrix in ZDAT.

C = p.3 KCOL

Recalls independent-variable column
number to stack.

0 [S)ETAT) p3 (@) #COL.

376

376

XMIT

Without Kermit protocol, performs serial
send of string.

C Ji/Q)p3 &RMIT

632

XOR

Logical or binary exclusive OR.
EASE. p.4 .. BOR
F TEST ~XOR.

211
493

XPON

Returns exponent of number.
F PARTS p.3 XPOHN

149

XRNG

() BRNG

Specifies x-axis display range.
. PLOTR XRHG:
C (=iPLOT] XRHNG
Recalls x-axis display range to stack.

O [®JFLOT] [*) XRNG

295

293

806 Operation index

Name, Key
or Label

Description
Type, Keys

Page

XROOT

Returns level 1 root of the real number in
level 2.

A ()

134

Selects x- and y-axis zoom.
O ... Zoan ay

305

Selects Rectangular mode.
YECTR XY%¥2Z
0 = p3 vz

171

XxY

Returns sum of products of data in
independent and dependent columns in
TDAT.

C [CIETAT) p5 Exsy

383

Selects y-axis zoom.
O ... zooM Y

305

Y

Returns sum of data in dependent column
in 3DAT.

C [WIETATIps zv

383

Y2

Returns sum of squares of data in
dependent column in £DAT.

C @EHETps zv-z

383

Operation Index

807

Name, Key
or Label

Description
Type, Keys

Page

YCOL

(] ¥COL

Selects indicated column of ZDAT as
dependent-variable column for two-
variable statistics.

C [®[STAT] p.3 (YCOL

Recalls dependent-variable column number
to stack.

O [*IETAT] p.3 () ¥COL

376

376

yd

International yard, length (9144 m).
U [s][UNITS] LENG || ¥YB

yd"2

Square yard, area (83612736 nr’).
U [®)[ONTS] ‘AREA- YD 2

yd™3

Cubic yard, volume (.764554857984 nv').
U [E)ONTS] “¥OL YD23

yr

Year, time (31556925.9747 s).
U [R)[UNTS] TIME Y

808 Opeoration Index

Name, Key
or Label

Description
Type, Keys

Page

YRNG

(] YRNG

Specifies y-axis display range.
... PLOTR YRNG

C [E YRNG

Recalls y-axis display range to stack.
... PLOTR [») YRNG

O [)[PLOT) [®]) YRNG:

293

293

Z-B0O¥

[Q)z«Boxg

Zooms in to box whose opposite corners
are defined by mark and cursor.

DRAW. Z2~BOX
-.. ‘AUTO. 2-BOX
O [w)[GRAPH) z-BOY
Zooms to box, autoscaling y-axis.
- DRAN (\)2-BOY
... BUTO [«Q)z-BOXR
O [wI(GRAPH) [®)z-BOR

306

306

Operation Index 809

Name, Key
or Label

Description
Type, Keys

Page

Z00m

Selects GRAPHICS ZOOM menu.
DRAWN- 2001
. AUTO- _ZOOHM
O [w]([GRAPH] ZooM

304

Adds two objects.
A

+/_

If cursor is on a number, changes sign of
mantissa or exponent of that number.
Otherwise, acts as NEG key.

C A

a7

-

Switches cursor style between super-
imposing and inverting cross.

. DRAW p3 +/=
... AUTO p3 #7=
O [®][GRAPH] p3 #7=

302

Add and subtract 1.
O («)[EQUATION] [«] RULES +i-1

402

Subtracts two objects.

A B

134

810 Operation Index

Name, Key Description Page
or Lahe! Type, Keys
wLD Double negate and distribute. 407
O [«][EQUATION] (€] RULES ~¢>
* Multiplies two objects. 134
A [x
EhE Muitiply by 1. 401
O [«][EQUATION] (€] RULES %1
/ Divides two objects. 134
A [
e Divide by 1. 401
O [«)[EQUATION) (4] RULES - 21
~ Raises number to specified power. 134
A
~1 Raise to power 1. 401
O [\][EQUATION] (W] RULES = ~1t
< “"Less-than” comparison. 491
TEST p2 ¢
F ®=l2

Operation Index 811

“TEST p2 ==
F =0

Name, Key Description Page
or Label Type, Keys
< “t_pss-than-or-equal” comparison. 491
TEST p.2 |
F & ®lB
> "Greater-than" comparison. 491
TEST P2 i %
F &)@
> “Greater-than-or-equal” comparison, 491
TEST p.2 P
F [a*E)
= “Equals” function. 129
A [
== "Equality” comparison. 492

812 Operation Index

Name, Key
or Label

Description
Type, Keys

Page

f-

"Not-equal” comparison.
F [a) %] [0

492

Turns alpha-entry mode on and off.
O [

52

-
-

Switches implicit parentheses on and off.

O [%][EQUATION) [\){ 1)

237

[

Returns equation to stack as string.

O [%][EQUATION] (][]

230

Degree, plane angle
(.77777777778 X 1073).

U [wJUNTS) p.3 ANGE - 5

Factorial.
PROB. oite
F e«

147

Operation Index 813

Name, Key Description Page
or Label Type, Keys
/ Integral. 428
A 1
3 Derivative. 419
A 2B
n Ohm, electric resistance (1 kg:m?/A*s’).
U [+][UNITS] p.2 ELEC 0
% Returns level 2 percent of level 1. 138
A FARTS p.2 %
g Symbolic constant = (3.14159265359). 144
F =l
T Summation. 423
F =2
T+ Adds data point to matrix in £DAT. 368
C [« [ETAT] £+
X- Subtracts data point from matrix in ZDAT. 368
C BIETATI*®) =+
N4 Returns square root of level-1 object. 134
A
| Appends local name, or variable of 416
integration, and its value to evaluated
expression.
F [w){ALGEBRA]p.2 |

814 Operation Index

Name, Key
or Label

Description
Type, Keys

Page

170

Double-invert and distribute.
O [%][EQUATION] [€] RULES /¢

407

12724

Switches between 12-hour and 24-hour
display formats.

O [«w][TIME) “SET= 12724

442

(=2

Parenthesize neighbors.
O [%][EQUATION] (€] RULES €€)

403

== 2

Expand-subexpression-left.
O [«9][EQUATION] (€] RULES —¢+
Executes =<+ until no change in
subexpression.
o % (@) RULES

e

404

410

Distribute prefix function.
O [wJ[EQUATION] [4] RULES 5%

[l
iy

405

Expand-subexpression-right.

O [%][EQUATION] (W] RULES = 43
Executes = %% 7 until no change in
subexpression,

0 % [« RULES

404

410

E ‘-‘) S

Commute arguments.

O [w][EQUATION] (€] RULES ¢»

404

Operation Index

815

one object.
In catalogs: Moves pointer up one entry.

o @&

Name, Key Description Page
or Label Type, Keys

— Creates local variables. 473
C M

(«] Left shift key. 52
0 @l

] Right shift key. 52
0 [l

(#] In command line, deletes character to left 47
of cursor.
0 [
Deletes contents of current stack level. 72
O ... #87K [¢

(4] In multi-line command line: Moves cursor 75
up one line.
In Interactive Stack: Moves pointer up one 72
level.
In Graphics environment: Moves cursor up | 303
one pixel.
In scrolling mode: Moves window up one 229
pixel.
In MatrixWriter application: Moves cell 350
CUursor up one row.
in EquationWriter application: Starts 229
numerator.
In Selection environment: Moves cursorup | 399

816 Operation index

Name, Key
or Label

Description
Type, Keys

Page

ra(ry

In multi-line command line: Moves cursor
to top line.

In Interactive Stack: Moves pointer to
highest numbered stack level.

In Graphics environment: Moves cursor to
top edge of PICT.

In MatrixWriter application: Moves cell
cursor to top element of current column.

In Selection environment: Moves cursor to
topmost object.

In catalogs: Moves pointer to top of list.
0 ()&

75

72

303

350

399

(«2l(a)

In catalogs: Moves pointer up one page.

In Interactive Stack: Moves pointer up 4
levels.

O [w)a]

72

Operation Index 817

bottommost object.
In catalogs: Moves pointer to end of list.

0 [

Name, Key Description Page
or Label Type, Keys
™ In muiti-line command line: Moves cursor 75

down one line.
In Interactive Stack: Moves pointer down 72
one level.
In Graphics environment: Moves cursor 303
down one pixel.
In scrolling mode: Moves window down 229
one pixel.
In MatrixWriter application: Moves cell 350
cursor down one row.
In EquationWriter application: Ends 229
subexpression.
In Selection environment: Moves cursor 399
down one object.
In catalogs: Moves pointer down one
entry.
0

])(v) In multi-line command line: Moves cursor 75
to bottom line.
In Interactive Stack: Moves pointer to 72
level 1.
In Graphics environment: Moves cursorto | 303
bottom edge of PICT.
In MatrixWriter application: Moves cell 350
cursor to last element of current column.
In EquationWriter application: Ends all 229
subexpressions.
In Selection environment: Moves cursorto | 399

818 Operation Index

Name, Key Description Page
or Label Type, Keys
«\H™ In catalogs: Moves pointer down page.
In Interactive Stack: Moves pointer down 4 | 72
levels.
0 WMV
(« In command line: Moves cursor one 75
character left.
In Graphics environment: Moves cursor 303
one pixel left.
in scrolling mode: Moves window left one 229
pixel.
In MatrixWriter application: Moves cell 350
cursor one column left.
In EquationWriter application: Activates 398
Selection environment.
In Selection environment: Moves cursor 399
one object left.
0 [«
(Q)(«] In EquationWriter application and Graphics | 229
environments: Invokes scrolling mode.
(MJ[GRAPH)) | O [%][4] ([+1][GRAPH]) 303
Operation Index 819

one object right.
o B

Name, Key Description Page
or Label Type, Keys

=« In command line: Moves cursor to start of 75
current line.
In Graphics environment: Moves cursorto | 303
left edge of PICT.
In MatrixWriter application: Moves cell 350
cursor to first element of current row.
In Selection environment: Moves cursorto | 399
leftmost object.
0 [«

[»] In command line: Moves cursor one 75

character right.
In Graphics environment: Moves cursor 303
one pixel right.
In scrolling mode: Moves window right one | 229
pixel.
In MatrixWriter application: Moves cell 350
cursor one column right.
In EquationWriter application: Ends 229
subexpression.
In Selection environment: Moves cursor 399

820 Operation Index

Name, Key Description Page
or Label Type, Keys

3] In command line: Moves cursor to end of 75
current line.
In Graphics environment: Moves cursorto | 303
right edge of PICT.
In MatrixWriter application: Moves cell 350
cursor to last element of current row.
In EquationWriter application: Ends all 229
subexpressions.
In Selection environment: Moves cursorto | 399
rightmost object.
O [

Operation Index 821

Index

A

aborting with the attention key
command line, 54
environments, 54
programs, 54
absolute value
of a matrix, 360
of a number, 148
of complex numbers, 166
of vectors, 177
accented characters, generating,
53
accuracy
in solving systems of equations,
362
of fraction conversion, 136
of , 140
adding
a stack value to a variable, 115
in the EquationWriter
application, 231
numbers, 134
ADIJST menu, 443
Alarm Catalog, 449
operations, 450
alarms
acknowledging, 446
appointment, 445
commands, 450
control, 448

execution action, 444

lost after recovering memory,
102

past due, 447

recovery from short-interval
rcpeating alarms, 448

repeating, 444, 445

rescheduling, 447

reviewing and editing, 449

saving, 447

setting, 443

turning the beeper off, 447

unacknowledged, 447

used in programs, 453

alert annunciator, 48
algebra, 386-417

adding fractions, 409

building and moving
parentheses, 403

collecting terms, 395, 402

commutation, association, and
distribution, 404

comparing methods for isolating
a variable, 393

expanding products and powers,
396

cxpanding trigonometric
functions, 409

general and principal solutions,
393

Index 823

isolating a variable, 389
limitations, 390
moving terms, 402
multiple execution of Rules
transformations, 410
rearrangement of exponentials,
408
rearranging terms, 394
Rules transformations, 397
Selection environment, 398
showing hidden variables, 394
solving equations for a variable,
386
solving quadratic equations, 390
symbolic solutions, 388
universal transformations, 400
user-defined transformation,
414
ALGEBRA menu, 389, 395
Algebraic-entry mode, 76
annunciator, 48, 84
entering unit objects, 189, 191
Algebraic/Program-entry mode,
77
algebraics, 125-130
are mathematical expressions,
85
collecting terms, 571
compared to programs, 125
differentiation, 419
disassembling, 90
evaluation, 125
evaluation of terms, 128
mode for keying in, 76
mode for keying into programs,
77
nested parentheses in, 128
object type number, 97
parentheses are highest
precedence in, 128
precedence of operators, 128
rearranging terms, 397

824 Index

replacing in the EquationWriter
application, 248
short for algebraic objects, 85
simplification process, 128
stepwise evaluation, 126
using comparison functions in,
492
using complex numbers, 164
using complex numbers in, 161
using logical functions in, 493
using unit objects in, 191
viewing in the EquationWriter
application, 241
alpha key
activates alpha keyboard, 25
press twice for alpha lock, 53
alpha keyboard, 52
alpha keyboard annunciator, 48
alpha left-shift keyboard, 50
alpha lock, 53, 222
alpha right-shift keyboard, 50
Alpha-entry mode, 52, 53, 222
ALRM menu, 444
ALRMDAT reserved variable,
contains data for an alarm,
108
am/pm time format, 442
analytic functions, are a subset of
functions, 42
and
with binary integers, 210
with tests, 493
angle, in complex numbers, 157
angle conversion functions, 142
angle modes, 139, 170, 350
selecting, 139
angle units, 198
animation
of custom graphical image, 597
of Taylor’s polynomials, 588

annunciators
are displayed in status area, 48
complete list of, 48
share “territory” with messages,
48
answers to common questions, 656
antiderivative, 428
application cards, 651
appointment alarms
acknowledging, 446
unacknowledged, 447
approximation
of symbolic constants, 144
of the definite integral, 432
arc cosine, 140
arc hyperbolic cosine, 137
arc hyperbolic sine, 137
arc hyperbolic tangent, 137
arc sine, 140
arc tangent, 140
archiving memory, 624, 648
area, beneath a plotted curve, 308
arguments, on the stack, 61
arithmetic
with a matrix and a vector, 356
with complex arrays, 357
with complex numbers, 156
with dates, 454
with time, 456
with unit objects, 200
with variables, 115
with vectors, 353
arithmetic and general math
functions, 134-135
arrays, 83, 346-364
assembling, 90
commands for, 360
complex, 357
dimension (size), 90
entering using the command
line, 350
printing, 604

ASCII Transmission mode, 617,
629
assembling
complex numbers, 160, 166
unit objects, 206
vectors, 173, 183
assigning user keys, 217
association, algebra, 404
attention key, 25
halts current activity, 54
Automatic Alpha Lock mode, 222
automatic off, happens after 10
minutes, 25
autoscaling a plot, 295
available memory, number of
bytes of unused user
memory, 101
axes
labeling, 320
specifying coordinates of
intersection, 320

backing up directories, 645
backspace editing
in EquationWriter application,
241
in the command line, 75
backup objects, 645, 646
in custom menus, 213
object type number, 97
store objects in plug-in memory,
89
bar over menu label, indicates a
directory, 118
bar plot, 379
from Plot application, 336
from Statistics application, 379
base
binary integers, 207 .
selecting, 208
base 10 antilogarithm, 137

Index 825

base 10 logarithm, 137
base e (natural) antilogarithm, 137
base e (natural) logarithm, 137
base marker, 207
entering, 208
BASE menu, 82, 208, 210
batteries, 25, 660
changing, 661
for plug-in RAM, 638, 661
for the HP 48, 661
baud rate
during printing, 610
setting, 617
beeper, turning off for alarm, 447
beeping, from a program, 522
Bessel functions, 585
best fit line, 376
binary arithmetic, 207-211
binary base marker, 82
binary integers, 82, 207
base, 207
bits displayed, 208
calculations, 209
displaying, 208, 554
entering, 208
internal representation, 208
logic commands for, 210
object type number, 97
wordsize, 207
binary to real conversion, 210
Binary Transmission mode, 617,
629
Black Gold Ltd, 27
blue keys, 25, 50
boolean logic commands, 210
box, drawing, 337
brackets, used to enter vectors,
172
BRCH menu, 494, 501
bubble sort, 561
buffer length, serial 1/0, 632
buffered keystrokes, 48
buffered printing, 608

826 Index

built-in commands, 90
object type number, 97
use 2.5 bytes, 101

built-in constants, 144

built-in functions, 90
compared to user-defined

functions, 150
object type number, 97

built-in menu, displaying, 534

built-in unit objects, 193

busy annunciator, 48

bytes command, returns

checksum, 101

C

cable connection, PC to HP 48,
621
calculus, 418-436
complete differentiation, 421
differentiation, 419
differentiation of user-defined
functions, 422
how the HP 48 does symbolic
integration, 429
numerical integration, 432
summations, 423
symbolic integration, 428
Taylor’s polynomial
approximation, 431
capital letters, 50
carriage-return, dumping the print
buffer, 603
CASE. . .END program structure,
497
Catalogs
Alarm, 449
Equation, 253, 258
Review, 112
Statistics, 370
centering a plot, 295
chain calculations, using the stack,
62

changing sign
of a number, 47, 134
changing the contents of a
variable, 111
character codes, 694 - 696
character sets
printing the HP 48 character
set, 607
printing with the Infrared
Printer, 609
remapping the infrared printer,
603
translating during input/output,
626
characters
converting numbers to
characters, 90
determining their numeric
value, 90
entering special characters, 50
generating accents, 53
checksum, 547
used to verify objects, 101
with input/output, 617
chi-squared test, 384
circle, drawing, 337
clearing
alarms, 450
all variables in a directory, 115
flags, 222, 516
last error, 542
memory (press three keys), 101
messages from the display, 48
objects when out of memory,
103
the stack, 64
user key assignments, 219
using the attention key, 25
clock
adjusting, 443
commands, 441
recording execution time, 552
closing serial port, 614

collecting terms, 395
algebra, 402
column norm, of a matrix, 359
combinations, calculating, 147
comma, as fraction mark, 58
command arguments on the stack,
61
command line, 75-77
cancelling with the attention
key, 54
editing in the EquationWriter
application, 242
entering and editing text, 46, 75
entering arrays, 349
keying in numbers, 47
middle section of the display, 45
recovering previous command
lines, 77
scrolls after 21 characters, 46
command-line string, building, 528
commands
are a subset of operations, 42
as objects, 90
defined, 42
of one argument, 61
of two arguments, 62
common (base 10) antilogarithm,
137
common (base 10) logarithm, 137
common variables, 105
commutation, algebra, 404
compact format, of printed output,
604
comparison functions, 491
in algebraics, 492
complement, of a binary integer,
210
complex arrays
arithmetic with, 357
commands for, 357
object type number, 97

Index 827

complex numbers, 81, 156 - 168
allowed in algebraics, 161
arithmetic with, 156
arrays of, 357
as the result of real-number

operations, 163
assembling, 160, 166
changing angular modes, 157
commands, 166
compared to real numbers, 161
compared to veclors, 166, 167,

184
conjugating, 166
converting to real, 166
disassembling, 90, 160, 166
display form, 158
entering, 158
i (the imaginary number), 165
in expressions, 164
internal representation, 158
object type number, 97
printing, 604

complex to real, disassembling, 90

conditional structures
in programs, 494, 499

CONIC plot type, 327

conic plots, 329

conjugating
complex arrays, 357
complex numbers, 166
contents of a variable, 115

connected plotting, 299

constant matrix, calculating, 359

constants, symbolic, 144

consumer price index, 364

continuing program execution, 483
after error, 541

continuous memory, not affected

by [ON) / [OFF], 25

contrast, adjusting, 25

control alarms, setting, 448

control codes, printing, 607

convergence, testing a series, 424

conversion, temperature, 197
converting

binary to real, 210

complex array to real array, 357

complex to real, 90, 166

compound unit to SI base units,
196

date to number, 454

date to string, 454

degrees to radians, 142

HMS to number, 456

number to date, 454

number to HMS, 456

numbers to characters, 90

objects to a string, 554

objects to strings, 90

pixel coordinates to user-unit
coordinates, 324

radians to degrees, 142

real array to complex array, 357

real numbers to fractions, 136

real to binary, 210

real to complex, 90, 166

unit objects, 193, 194

units, 188, 195

coordinate mode, changing, 171
coordinate pairs, can be

represented by complex
numbers, 81

coordinate systems for plots, 323
correcting typing mistakes, 47
correlation, 377

cosine, 140

cotangent, creating a user-defined

function for, 151

counted strings, are counted

sequences of characters, 86

covariance, 375, 376
cross product, 176, 353
CST menu, 213

unit-object conversion in, 195

CST reserved variable
contains data for custom menus,
108, 213
CTRL menu, 483
current directory, 119
current directory path, is displayed
in status area, 48
current path, 119
cursor keys, 27
custom menus
conversion of units, 195
creating, 213
in programs, 535
menu labels, 213
shifted actions, 215
Customer Support, 656
customizing the calculator, 212 -
223
modifying the shift keys, 215
setting modes, 220
user key assignments, 216
using system flags, 222
Cylindrical mode, 170
annunciator, 170

D

darker contrast, 25
data output, 531
labeling with string commands,
532
dates
arithmetic with, 454
changing format, 442
commands, 441
converting to numbers, 454
converting to strings, 454
day/month /year date format,
442
month/day/year date format,
442
setting, 441
day/month/year date format, 442

days, between two dates, 455
debugging
programs, 483
subroutines, 486
decimal base marker, 82
decimal numbers, 82, 207
decimal places, number displayed,
58
decrementing
the program loop counter, 513
time, 443
defining
user-defined functions, 151
variables, 107
definite loops, 501
degrees, converting to radians, 142
Degrees mode, 139
delaying the print cycle, 603, 607
deleting
matrix row or column, 352
tag from tagged object, 90
user key assignments, 219
delimiters
' ' delimits algebraic objects,
85
1 delimits arrays, 83, 173, 347
» delimits complex numbers,
81, 158
¥ delimits lists, 86
delimits programs, 86, 468
' * delimits strings, 86
¢ delimits tagged objects, 87
' ' prevents evaluation of a
variable, 84, 112
delimits binary integers, 82,
207, 208
= delimits equations, 129
_ delimits unit objects, 88, 187
delta days, number of days
between dates, 454

PN e |

R

dependent variable
not used for function plots, 299
plotting range for, 319
used for conic plots, 329, 333
used in statistics, 376
depth of stack, determining, 78
derivatives
in the EquationWriter
application, 233
keying into the command line,
420
plotting, 308
user-defined, 422
user-defined prefix is “der”, 108
determinant, calculating, 359
differentiation
in one step, 421
of algebraic expressions, 419
of built-in functions, 150
of user-defined functions, 150
stepwise, 419
dimensionless units, 198
directories
concepts, 118
contained in a variable, 110
creating, 120, 123
current directory, 119
determining all variables of a
specific type in, 98
directory path, 119
HOME directory, 118
new variables are added to the
current directory, 121
object type number, 97
parent directory, 119
purging, 123
recalling, 123
searching directories for a
variable name during
evaluation, 121
switching up a level, 122
directory path, 119
is displayed in status area, 48

disassembling
complex numbers, 160, 166
objects, 90
unit objects, 206
vectors, 173, 184
disconnected plotting, 299
display
adjusting contrast, 25
clearing messages, 48
is divided into three sections, 45
status area, 48
display modes
changing, 59
control format used to display
numbers, 57
displaying an object, from a
program, 523
distribution, algebra, 404
dividing
a variable by a stack value, 115
a vector into a matrix, 355
in the EquationWriter
application, 231
numbers, 134
do error, error trapping, 542
dot product, 176, 353
double-space printing, 606
DO...UNTIL...END program
structure, 510
dropping
the stack, 64, 71, 78
duplicate variable names, allowed
in different directories, 121
duplicating
level 1 in the stack, 65, 71
objects on the stack, 78

E

e, is a built-in constant, 144
echoing stack contents, 71
EDIT menu, 68

cditing
equations in the EquationWriter
application, 240
in the command line, 75
elapsed time, calculating, 457
Engineering mode, 58
enter key, 25
duplicates level 1, 65
entry modes
for entering matrices, 351
four types, 76
environmental limits, plug-in
cards, 660
environments
Alarm Catalog, 449
are cancelled with the attention
key, 54
Equation Catalog, 258
Graphics, 286, 300
Interactive Stack, 70
Selection, 244, 398
Statistics Catalog, 371
EQ reserved variable
contains the current equation,
108, 253, 286
equal to, comparison test, 491
Equation Catalog, 253, 258
commands, 259
creating a list of equations, 274
exiting, 262
linking equations, 272
reordering, 259
equation to stack, disassembling,
90
equations
can be arguments to a function,
129
contain an “="" siga, 120
editing in the EquationWriter
application, 242
general and principal solutions,
393
linking, 272

solving for a variable, 386
solving quadratics, 389
solving with the Plot application,
266
used to create a user-defined
function, 151
EquationWriter application, 24,
227-250
addition, subtraction, and
multiplication, 230
backspace editing, 241
building unit objects, 204
command line editing, 242
creating equations, 230
derivatives, 233
division and fractions, 231
editing equations, 240
editing subexpressions, 243
exponents, 232
how it is organized, 228
implicit parentheses, 229
inserting objects from the stack,
246
integrals, 234
keyboard operation, 229
numbers and names, 230
powers of 10, 233
replacing subexpressions, 247
Selection environment, 243
square root and x-th root, 232
summations, 235
unit objects, 235
using parentheses, 233, 236
viewing algebraics and unit
objects, 240
where function, 236
erasing PICT, 292, 323
error messages, are displayed in
status area, 48
error recovery, from accidentally
purging a variable, 115

Index 831

crrors
clearing last, 542
continuing program execution
after, 541
error message, 542
error number, 542
error trapping commands, 542
returning most recent Kermit
error, 614
trapping, 541
user-defined, 546
escape sequences, printing, 607
ctcetera key
used to enter accented
characters, 53
used to enter special characters,
54
Euclidean norm, calculating, 359
evaluation
is affected by results mode, 127
of a variable, 109
of a variable containing a
program, 110
of algebraics, 125, 126
of local variables, 476, 569
of string contents, 90
of symbolic constants, 145
of variables prevented by
quoting, 84, 112
the precedence of operators
determines the order of
evaluation of terms, 128
evaluation of variables, searching
directories for the variable
name, 121
exclusive or
with binary integers, 210
with tests, 493
executing
commands and functions from
the stack, 61
programs, 472
user-defined functions, 152

832 Index

expanding products and powers,
3%
exponent
display format, 58
extracting from a number, 148
in the EquationWriter
application, 232
keying in, 47
exponential functions, 137
exponentials, rearrangement using
algebra, 408
expressions
do not contain an “=", 129
using complex numbers in, 164

F

F test, 385
factorial, 147
factoring unit expressions, 199
false, result of a test, 490
FCN menu, 308
Fibonacci numbers, 548
file names, PC versus HP 48, 628
files, sending and receiving, 614
finishing server mode, 614
finite series, 423
first order equation, solving for x,
392
Fix mode, 58
flags, 515
complete list of, 699
I/O Device, 610
Line-feed, 608
Printing Device, 610
recalling and storing, 518, 556
setting, clearing, and testing,
222, 516
that control the evaluation of
symbolic constants, 145
formal variable, does not contain
an object, 152

format
of numbers in the display, 57
of printed output, 604
FOR. . NEXT loop, 506
FOR.. .STEP loop, 508
fraction approximation, of a
number, 134
fraction conversion
accuracy of result, 136
functions, 136
fraction mark, 58
fractional part, math function, 148
fractions
adding using algebra, 409
in the EquationWriter
application, 231
free memory, number of bytes of
unused user memory, 101
freeing memory, 649
freezing part of the display, 523
frequencies, in statistical samples,
374
Frobenius norm, calculating, 359
function arguments on the stack,
61
FUNCTION plot type, 327
function plots, 328
functions
analyzing in the Graphics
environment, 306
angle conversion, 142
are a subset of commands, 42
as objects, 90
built-in, 150
creating user-defined functions,
151
defined, 42
math, 132-149
on the keyboard, 134-135
plotting, 328
user-defined, 150
using equations as arguments,
129

using symbolic arguments, 149
future date, calculating, 455

G

general solutions, of an equation,
393
geometric series, 424
getting files, input/output, 614
getting the n-th array element, 90
global names, object type number,
97
global variables, 105
Grads mode, 139
annunciator, 48
Graphics environment, 300
adding graphical elements to
PICT in, 337
analyzing p'-tted functions in,
306
introduced, 286
stack-related operations, 3412
zoom operations in, 304
GRAPHICS FCN menu, 308
graphics objects
in programs, 342
introduced, 287
manipulating on the stack, 342
object type number, 97
printing, 606, 610
size, 90
stack form, 340
store pictures, 87
GRAPHICS ZOOM menu, 305
greater than, comparison function,
491
greater than or equal to,
comparison function, 491
greatest integer, math function,
148
Greek letters, entering from the
keyboard, 50

Index 833

H

halt annunciator, 48
halting
programs with the attention key,
54
programs with the HALT
command, 483, 523
the root-finder, 277
hexadecimal base marker, 82
hexadecimal numbers, 82, 207
hidden variables, showing, 394
histogram plot
from Plot application, 336
from Statistics application, 378,
382
HMS format, 456
HOME, is power-on directory, 48
HOME directory, 118, 124
selecting, 122
HP Solve application, 24, 250-282
choosing guesses, 266
consists of two menus, 253
customizing the SOLVR menu,
269
editing equations, 256
entering a new equation, 257
finding solutions of programs,
275
how it works, 276
interpreting results, 279
multiple solutions, 266
no solution found, 282
plotting solutions, 266
recalling equations, 256
sign reversal, 280
solving equations, 254, 256
solving expressions, 254
solving programs, 254
specifying an equation from the
Equation Catalog, 258
specifying the current equation,
255

834 Index

storing equations, 256
used with Plot application, 252
using unit objects with, 267
verifying solutions, 265
humidity, effect on calculator, 660
HYP menu, 137
hyperbolic cosine, 137
hyperbolic functions, 137
hyperbolic sine, 137
hyperbolic tangent, 137

i (the imaginary number), 144, 165
ideal gas equation, 185
identity matrix, calculating, 359
IFERR.. . THEN.. ELSE...END
error trap for programs, 544
IFERR...THEN...END error
trap for programs, 542
IFT if-then-end function, 499
IFTE if-then-else function, 500
IF...THEN.. ELSE.. END
structure for programs, 496
IF.. . THEN.. .END structure for
programs, 494
imaginary part, 166
of a complex array, 357
immediate execution of variables,
112
Immediate-entry mode, 76
entering unit objects, 188
incrementing
the program loop counter, 513
time, 443
indefinite loops, 510
independent memory, 642
independent variable
plotting range for, 319
specifying for plots, 294
statistics, 376

Infrared Printer, 602, 609
character sets, 607, 609
testing, 670

Infrared Transmission mode, 617

input
options, 526
prompting for data input, 524

input /output, 612634
Binary/ASCII modes, 629
cable connection, 621
commands for, 614
downloading data, 612
HP 48 to HP 48, 613, 619
Kermit file transfer protocol,

612
local/local configuration, 620
local/server configuration, 620
PC to HP 48, 621, 623
serial commands for, 632
serial loop back test, 671
setting I/O parameters, 617
translating character codes, 626
types of data allowed, 613
inserting, matrix row or column,
351
insufficient memory, error
message, 103

integer part, math function, 148

integrals
in the EquationWriter

application, 234
keying into command line, 428

integrand, approximation, 431

integration
accuracy factor, 433
from the stack, 436
how the HP 48 does it, 429
numerical, 432
symbolic, 428

interactive programs, 519540
beeping, 522
building a temporary menu, 539

building the command-line
string, 528
displaying a built-in menu, 534
displaying objects, 523
freezing part of the display, 523
halting programs, 523
labeling program output, 531
options for the input command,
526
prompting for data input, 524
prompting for input, 520
returning a key location, 539
using custom menus, 535
using string commands to label
data output, 532
using tagged objects as data
output, 531
Interactive Stack, 70-75
activating, 70
exiting, 74
operations, 71
viewing objects in, 73
internal representation
binary integers, 208
vectors, 171
International System of Units (SI),
187
inverse
of a matrix, 354
of a number, 134
of a variable, 115
inverse hyperbolic cosine, 137
inverse hyperbolic sine, 137
inverse hyperbolic tangent, 137
I/0 Device flag, 610
I/O menu, 614, 632
I/O SETUP menu, 617
IOPAR reserved variable
stores I/O parameters, 108, 618
isolating a variable, algebra, 389
iterative refinement, solving
systems of equations, 362

Index 835

J
Joe’s grocery, 596

K

keeping the stack, 71
Kermit file transfer protocol, 612
Kermit modes, server/local, 616
Kermit protocol commands, 614
key assignments, user keyboard,
217
key location, returning, 539
keyboard
blue keys, 50
clearing key assignments, 219
entering letters, 52
entering special characters, 54
Greek letters, 50
has six levels, 25, 50
keying in a program, 470
keying in accented characters,
53
keying in dates, 441
keying in delimiters, 55
keying in numbers, 47
keying in statistics data, 369
keying in time, 442
keying in vectors, 172
lowercase letters, 50, 52
number pad, 50
orange keys, 50
queues 15 keystrokes, 48
redefining, 216
shift keys, 52
special characters, 50
uppercase letters, 50, 52
using backspace to erase
mistakes, 47
keyboard functions, 134-135
keyboard layout, 26
keystroke queue, 48

836 index

L

labeling
data output with string
commands, 532
plot axes, 320
program output, 531
largest real number, 81
last argument
restores arguments after
insufficient memory
condition, 103
used to recover purged variable,
115
last argument key, 64
last command key, 77
last menu key, 57
Jeft-shift annunciator, 48,52
left-shift key, 52
activates left-shift keyboard, 25
length, of a vector, 353
less than, comparison function,
491
less than or equal to, comparison
function, 491
letters
entering, 52
generating accents, 53
lowercase, 52
uppercase, 52
levels of the stack, 46
returning current level number,
71
library commands, 653
LIBRARY menu, 651
library objects, 651
attaching to a directory, 651
contain commands and
operations, 89
object type number, 97
lighter contrast, 25
line, drawing, 337
line length, during printing, 610

line termination, during printing,
610
linear equations, 357
accuracy of solution, 362
linear regression, 377
line-feed, dumping the print
buffer, 603
Line-feed flag, 608
linking equations in the Equation
Catalog, 272
listing the stack, creates a list of
objects, 71
lists
are sequences of objects, 86
assembling, 90
creating a subset, 90
mode for keying in, 77
number of elements (size), 90
object type number, 97
position of an object in, 90
put replaces n-th element, 90
replace a sub-list, 90
Local mode, 616
local names, object type number,
97
local variables, 105
evaluation, 476
scope of definition, 476
used in programs, 473
local/local configuration
HP 48 to HP 48, 620
PC to HP 48, 623
local/server configuration
HP 48 to HP 48, 620
PC to HP 48, 624
logarithmic functions, 137
logic commands, 210
logical functions, 493
in algebraics, 493
loops, 501
decrement loop counter, 513
DO...UNTIL.. .END, 510
FOR...NEXT, 506

FOR...STEP, 508
increment loop counter, 513
START...NEXT, 501
START.. STEP, 504
WHILE.. REPEAT.. END,
511
low battery (alert) annunciator, 48
low memory, 102, 103
low-battery condition, replacing
batteries, 660
lowercase alpha lock, 53
lowercase letters, 50, 52

magnitude, of complex numbers,
157

mantissa
display format, 58
extracting from a number, 148
keying in, 47

mark, defines a position in PICT,

302

math functions, 132149
with vectors, 177

MATR menu, 359

matrices, 83
adding and subtracting, 354
are arrays, 345
arithmetic with vectors, 355
commands for, 359
complex, 357
determinant of, 359
dividing by a vector, 355
editing, 350
identity, 359
keying in, 346
norms of, 359
product of, 354
put replaces n-th element, 90
reciprocal, 354
redimensioning, 359

Index 837

scalar multiplication, 354
transposing, 359
MATRIX menu, 346
MatrixWriter application, 346
deleting row or column, 351
entering arrays, 350
entering statistical data, 370
entry modes for entering
matrices, 351
inserting row or column, 351
maximum, math function, 148
maximum value, of a sample, 374
MAXR, is a built-in constant, 144
mean, of a sample, 374
median
of a list, 563
of statistics data, 560
memory
amount used by objects, 101
archiving, 624, 648
backing up, 624
cancelling clearing operation,
102
checksum of an object, 101
clearing, 101, 102
expanding, 100
frecing merged memory, 649
insufficient memory, 103
low-memory conditions, 102
no room for last stack, 102
no room to show stack, 103
not affected by / [OFF), 25
number of bytes unused, 101
out of memory, 103
RAM and ROM, 100, 635
restoring backed up user
memory, 625
MEMORY Arithmetic menu, 115
MEMORY menu, 101
menu descriptions
ALGEBRA, 389, 395
CST, 213
EDIT, 68

838 Index

GRAPHICS FCN, 308
GRAPHICS ZOOM, 305
I/0, 614, 632
1/0 SETUP, 617
LIBRARY, 651
MATRIX, 347
MEMORY, 101
MEMORY Arithmetic, 115
MODES, 57
MODES Customization, 220
MTH, 133
MTH BASE, 82, 208, 210
MTH HYP, 137
MTH MATR, 359
MTH PARTS, 138
MTH PROB, 147, 383
MTH VECTR, 142, 172, 183
PLOT, 290
PLOTR, 292
PRG BRCH, 494, 501
PRG CTRL, 483
PRG OBJ, %0
PRG STK, 78
PRG TEST, 491
PRINT, 603
SOLVE, 253, 256
SOLVE SOLVR, 253, 263
STAT, 367
STAT MODL, 376
TIME, 440
TIME ADIJST, 443
TIME ALRM, 444
TIME RPT, 445
TIME SET, 441
UNITS Catalog, 187, 188, 193
UNITS Command, 187
VAR, 106, 112, 118

menu keys, 55

menu labels
bar indicates a directory, 118
describe menu keys, 45, 55
in custom menus, 213
variable names, 106, 108

menus
bar indicates sub-menu, 56
cycling multiple pages, 56
define menu keys, 55
leaving, 56
selecting, 56
selecting next and previous, 56
switching to last menu, 57
used in programs, 534
merged memory, 642
messages, 677 —693
are displayed in status area, 48
clearing from the display, 48
share “territory” with
annunciators, 48
minimum, math function, 148
minimum value, of a sample, 374
MINR, is a built-in constant, 144
mod (modulo), math function, 148
mode, changing, 77
mode types
Algebraic-entry, 76, 190
Algebraic/Program-entry, 77
Alpha-entry, 52, 53, 222
ASCII Transmission, 617, 629
Automatic Alpha Lock, 222
Binary Transmission, 617, 629
Cylindrical, 170
Degrees, 139
Engineering, 58
Fix, 58
Grads, 139
Immediate-entry, 76
Infrared Transmission, 617
Local, 616
Numerical Results, 127, 144
Polar, 81, 157, 170
Program-entry, 77, 470
Radians, 139
Rectangular, 81, 157, 170
Scientific, 58
Server, 614, 616
Spherical, 170

Standard, 58
Symbolic Evaluation, 223
Symbolic Results, 127, 144
User, 216, 223
Wire Transmission, 617
model, in Statistics application,
376
modes
changing, 554
changing coordinate mode, 171
for printing, 607
reset by clearing memory, 101
selecting, 220
setting, 57
using system flags to set, 222
MODES Customization menu,
220
MODES menu, 57
modes of entry, four types, 76
MODL menu, 376
month/day/year date format, 442
most significant bits, binary
integers, 208
moving, the stack pointer, 71
moving terms, algebra, 402
MTH BASE menu, 82, 208, 210
MTH HYP menu, 137
MTH MATR menu, 359
MTH menu, 133
MTH PARTS menu, 138
MTH PROB menu, 147, 384
MTH VECTR menu, 142, 171,
183
multiline format, of printed
output, 604
multiplying
a variable by a stack value, 115
in the EquationWriter
application, 230
numbers, 134

names
are used to identify variables, 84
contained in a variable, 110
in the EquationWriter
application, 230
reviewing unit names, 191
naming variables, 108
natural (base ¢) antilogarithm, 137
natural (base) logarithm, 137
negating
complex numbers, 166
contents of a variable, 115
negative numbers, keying in, 47
nested loops, 561
nested parentheses, in algebraics,
128
nesting, user-defined functions,
153
next key, selects next menu, 56
no room for last stack, error
message, 102
no room to show stack, error
message, 103
normal distribution, 385
not
with binary integers, 210
with tests, 493
number pad, of the keyboard, 50
numbers
converting to a character, 90
converting to date, 454
display modes, 57
in the EquationWriter
application, 230
internal representation, 57
keying into the command line,
47
numerator, in the EquationWriter
application, 229
numerical constants, 144
numerical integration, 432

accuracy factor, 433
Numerical Results mode, 127, 144
numerical value of a character, 90

(0

OBIJ menu, 90
object to string, converting, 90
object type number, 97
determining, 97
object types, 80, 97
arrays, 83
backup objects, 89
binary integers, 82
built-in commands, 90
built-in functions, 90
complex numbers, 81
counted strings, 86
directories, 89
graphics objects, 87
library objects, 89
lists, 86
matrices, 83
names, 84
programs, 85
real numbers, 81
strings, 86
tagged objects, 87
unit objects, 88
vectors, 83
XLIB names, 89
objects
are delimited by punctuation
characters, 55
checksum, 101
disassembling, 90
inserting from the stack into the
EquationWriter application,
246
manipulation commands for, 90
viewing and editing, 66, 67
viewing in the Interactive Stack,
73

octal base marker, 82
octal numbers, 82, 207
off key, 25
on key, 25
becomes the attention key, 54
one-argument commands, 61
one-dimensional vectors, 83
opening serial port, 614
operations, defined, 42
or
with binary integers, 210
with tests, 493
orange keys, 25, 50
out of memory, 103
output, 531
over-determined systems, 363
overflow, real numbers, 81

P

, is a built-in constant, 144
pacing (receive/transmit), setting,
619
packet, sending commands to a
server, 614
packets, sending commands to a
server, 631
paired-sample statistics, 375
PARAMETRIC plot type, 327
parametric plots, 331
parent directory, 119
parentheses
are¢ highest precedence in
algebraics, 128
delimit complex numbers, 81
used in algebra, 403
used to enter complex numbers,
158
using in the EquationWriter
application, 229, 233, 236
parity
during printing, 610
setting, 617, 619

PARTS menu, 138
past due alarms, 447
path, returning current directory
path, 120
PC file names versus HP 48 file
names, 628
PC to HP 48
cable connection, 621
Input/Output, 621
percent calculations, with unit
objects, 202
percent change, calculating, 138
percent of total, calculating, 138
period, as fraction mark, 58
permutations, calculating, 147
photometric units, 198
pi, 140
picking an object from stack, 78
picking stack contents, 71
PICT
adding graphical elements to,
336
changing the size of, 325
erasing, 292
erasing and restoring to its
default size, 323
stack manipulation of, 341
pixel coordinates in plots, 323
plane angles, 198
Plot application, 24, 283 -344
contains two menus and special
environment, 286
data elements in, 286
structure of, 286
used with HP Solve application,
252
PLOT menu, 290
PLOT PLOTR menu, 292
plot types, 327
BAR, 329, 336
CONIC, 327, 328
FUNCTION, 328, 329
HISTOGRAM, 328, 336

Index 841

PARAMETRIC, 327, 333

POLAR, 327,330

SCATTER, 328, 336

TRUTH, 327,333

plotting

analyzing plotted functions, 307

axes labels and intersection, 320

conic plots, 329

connected and disconnected
plotting, 300

coordinate systems for, 324

function plots, 328

how DRAW plots points, 298

paired-sample statistics, 375

parameters stored in PPAR, 322

parametric plots, 332

plotting range of independent
and dependent variables,
320

polar plots, 331

programs and user-defined
functions, 335

refinement options for, 318

resetting plot parameters, 292

resetting plot parameters and
erasing PICT, 323

resolution, 321

single-sample statistics, 374

size of PICT, changing, 325

specifying independent variable,
294

specifying plot parameters, 291

specifying the center and scale,
295

statistical data from the Plot
application, 335

statistics, 379

status message indicates plot
parameters, 291

the derivative of a plotted
function, 308

truth plots, 333

842 Index

two or more equations, 300
unit objects in, 335
user-unit and pixel coordinates,
323
what the HP 48 can plot, 283
with autoscaling, 295
with specified y-axis range, 295
working with difficult plots, 314
x-axis display range, 295
y-axis display range, 295
zoom operations, 304
zoom-to-box, 306
zoom-to-box with autoscaling,
306
plotting range
specifying, 319
valuable for parametric and
truth plots, 321
plug-in cards, 635
environmental limits, 660
installing and removing, 636
plug-in RAM, 100
plug-in RAM batteries, 661
plug-in ROM, 100
polar angle, 166
Polar mode, 81, 157,170
annunciator, 157, 170
POLAR plot type, 328
polar plots, 331
Polar /Cylindrical Coordinates
mode, annunciator, 48
Polar /Spherical Coordinates
mode, annunciator, 48
population statistics, 375
port RAM test, 669
position of object in list, 90
power conservation, automatic off
after 10 minutes, 25
power-on directory, is H OME, 48
powers of 10, in the
EquationWriter application,
233

PPAR reserved variable
contains Plot parameters, 108,
321
precedence of functions
in algebraics, 128
in unit objects, 191
precision, of displayed number, 58
predicted value, 376
prefixing user-defined units, 206
previous key
right-shift goes to first page, 56
selects previous menu, 56
previous results, used in chain
calculations, 62
PRG BRCH menu, 494, 501
PRG CTRL menu, 483
PRG OBIJ menu, 90
PRG STK menu, 78
PRG TEST menu, 491
primary (unshifted) keyboard, 25,
50
principal solutions, of an equation,
393
PRINT menu, 603
printing
accumulating data in the buffer,
608
and the HP 48 character set, 607
double spacing, 606
escape sequences and control
sequences, 607
graphics objects, 606, 610
modes, 607
PRTPAR contains printer
parameters, 610
setting the delay, 607
strings, 606
testing, 670
the display, 605
the stack, 606
to the serial port, 609
variables, 606
Printing Device flag, 610

printing, 602-611
PROB menu, 147, 383
probability, 147
producer price index, 364
product of matrices, 354
products and powers, expanding,
396 '
program execution, continuing
after error, 541
program-entry annunciator, 470
Program-entry mode, 77, 470
annunciator, 48
entering unit objects, 188
programming examples, 547 -599
programs
aborting with the attention key,
54
are sequences of commands, 85,
468
as arguments, 569
calculating execution time, 551
CASE.. .END structure, 497
compared to algebraics, 125
conditional structures, 494
continuing execution, 483
data input commands for, 520
DO...UNTIL.. .END structure,
510
editing, 472
evaluating variables containing
programs, 110
evaluation of local names, 476
executing, 472
finding solution with the HP
Solve application, 275
FOR. . .NEXT structure, 506
FOR.. .STEP structure, 508
halting, 483
IF.. THEN...ELSE.. . END
structure, 496
IF.. . THEN.. .END structure,
494
input/output, 519

Index 843

keying in, 470
loop structures, 501
mode for keying in, 77
object type number, 97
plotting, 334
scope of local variables, 476
single-step execution, 483
START.. .NEXT structure, 501
START.. .STEP structure, 504
suspending execution with the
WAIT command, 534
that act like user-defined
functions, 478
that manipulate data on the
stack, 479
used by other programs, 582
using alarms in, 453
using custom menus in, 535
using local variables in, 473
using subroutines in, 480
using tests in, 490
WHILE. . REPEAT...END
structure, 511
working with graphics objects,
342
prompting for input, 520
PRTPAR reserved variable
contains printer parameters, 610
contains printing parameters,
108
pseudo-random number, 147
punctuation characters, as
delimiters, 55
purging
alarms, 450
backup objects, 646
directories, 123
objects when out of memory,
103
variables, 114
put element into array, 90

844 Index

Q

quadratic equations
solving, 389, 390
queued keystrokes, 48
quotes, used to prevent evaluation
of a variable, 112

radians, converting to degrees, 142
Radians mode, 139
annunciator, 48
radix mark. See fraction mark
RAM
also known as user memory, 100
can be expanded with plug-in
cards, 100
memory which can be altered,
100
(random-access memory), 635
RAM cards, 638
batteries, 638
expanding user memory, 643
installing and removing, 636
used for backup, 644
write-protect switch, 641
random number, selecting, 147
range of values, real numbers, 81
real arrays, object type number, 97
real numbers, 81
compared to complex, 161
converting to complex, 166
converting to fractions, 136
display format, 58
MAXR and MINR, 144
object type number, 97
overflow, 81
range of values, 81
underflow, 81
real part
of a complex array, 357
of a complex number, 166
real to complex, assembling, 90

rearranging terms, the Rules
transformations, 397
recalli
contents of a variable, 110
flags, 518
user key assignments, 220
receive pacing, setting, 619
receiving data, serial 1/0, 614
receiving strings, serial 1/0, 632
reciprocal, of a unit object, 201
recover memory, cancelling
clearing operation, 102
recovering
last arguments, 64
previous command lines, 77
Rectangular mode, 81, 157, 170
annunciator, 158
recursion, calculating Fibonacci
numbers, 548
redefining the keyboard, 216
redimensioning a matrix, 359
registers, variables used instead of,
105
regulatory information, 676
reordering
Equation Catalog, 259
Statistics Catalog, 371
the VAR menuy, 113
repair, 674
replace part of a list or string, 90
replacing batteries, 660
rescheduling alarms, 447
reserved variables, 108
resetting
memory, 101
plot parameters, 292, 323
resolution
how it affects statistical plots,
321
specifying for plots, 320
speeding up plots by increasing,
321

restoring backed up user memory,
625
results, on the stack, 61
Review Catalog, 112
right-shift annunciator, 48, 52
right-shift key, 52
activates right-shift keyboard, 25
right-shift keyboard, 50
rolling the stack, 71, 78
ROM
can be expanded with plug-in
cards, 100
memory which cannot be
altered, 100
(read-only memory), 635
ROM cards, installing and
removing, 636
root
finding the square or x-th root
of a number, 134
of a plotted function, 308
root-finder
halting, 277
in the HP Solve application, 276
intermediate guesses, 278
using initial guesses, 277
rotate commands, with binary
integers, 210
rotating the stack, 78
rounding errors, solving systems of
equations, 361
rounding numbers, 148
row norm, calculating, 359
RPT menu, 445
rules of precedence, in algebraics,
128
Rules transformations, 397-417
examples, 400
executing a transformation, 399
exiting a RULES menu, 400
selecting, 399

Index 845

S

sample statistics, 374
scalar multiplication, matrices, 354
scaling a plot, 295
scatter plot
from Plot application, 336
from Statistics application, 378
Scientific mode, 58
scientific numbers, keying in
exponent and mantissa, 47
scope of local variables, 105, 476
scrolling
of the command line, 46
the stack, 66
EDAT reserved variable
contains current statistical
matrix, 108, 369
seed for random number, 147
Selection environment, 243, 398
editing subexpressions, 244
self-test, 667
sending a serial break, 632
sending data, serial /0, 614
separating variable names by type,
98
serial cable, PC to HP 48, 621
serial /O commands, 632
serial loop-back test, 671
serial port
configuring for printing, 610
opening and closing, 614
printing, 609
Server mode, 614, 616
starting and finishing, 614
Service, 674
testing calculator operation, 665
SET menu, 441
setting
display I/O parameters, 614
flags, 222
serial I/O timeout, 632
SETUP menu, 617

846 Iindex

shift commands, with binary
integers, 210
shift keys, 25, 52
in custom menus, 215
press twice to cancel, 52
short-interval repeating alarms,
448
showing hidden variables, 394
sign
changing the sign of a number,
47
determining, 148
of a unit object, 203
significant digits, 58
simplification of algebraics, 128
sine, 140
single-sample statistics, 374
single-step
execution of a program, 483
program operations, 483
size
of a graphics object, 90
of a list or string, 90
of an array (dimension), 90
of PICT, 325
slope, of a plotted function, 308
smallest integer, math function,
148
smallest real number, 81
Snedecor’s F test, 384
solid angles, 198
SOLVE menu, 253, 256
SOLVE SOLVR menu, 263
Solver-list, naming, 270
solving
for a variable, 388
quadratic equations, 389, 390
systems of equations, 356
SOLVR menu, 253, 263
customizing, 269
LPAR reserved variable
contains Statistical parameters,
108, 378

special characters
entering from the keyboard, 50
table of, 54
Spherical mode, 170
square matrix, inverting, 354
square root
in the EquationWriter
application, 232
of a number, 134
squaring a number, 134
stack
clearing, 64
commands, 78
dropping, 64
duplicating level 1, 65
Graphics environment
operations, 341
inserting level 1 into the
EquationWriter application,
246
is a sequence of storage
locations, 46, 60
levels, 46
lost after recovering memory,
102
no room to show, 103
one-argument commands, 61
ordinary calculations, 61
printing, 606
recovering last arguments, 64
splitting equations, 90
stores graphics objects, 87
swapping levels 1 and 2, 63
two-argument commands, 62
using previous results, 62
viewing and editing objects, 67
viewing and editing variables, 67
stack display, is divided into thres
sections, 45
stack pointer, moving, 71
stack to array, assembling, 90
stack to list, assembling, 90
stack to tag, assembling, 90

stack to unit, assembling, 90
standard deviation, 374, 375
Standard mode, 58
START.. NEXT definite loops,
501
START.. STEP definite loops,
504
STAT menu, 367
STAT MODL menu, 376
statistics
dependent variable, 376
designating the current matrix,
369
editing data, 370
entering data, 368, 369
independent variable, 376
manipulating data, 368
paired-sample statistics, 375
plotting samples, 378
population statistics, 375
sample statistics, 374
summation commands, 383
Statistics Catalog, 370
operations, 371
reordering, 371
statistics, 364~ 385
status area
displays current path, 119
of the display, 48
stepwise differentiation, 419
STK menu, 78
storage locations
the stack, 46, 60
storing
flags, 518
user keys, 217
variables, 107
strings
are sequences of characters, 86
combining, 90
counted strings, 86
executing contents of, 90
from an object, 90

Index 847

making a subset, 90
aumber of characters (size), 90
object type number, 97
position within another string,
90
printing, 604, 606
replacing a sub-list, 90
Student’s t test, 384
subdirectories, 118
can be manipulated like other
variables, 124
creating, 120
evaluating its name to switch to
it, 122
subexpressions
completed with cursor keys in
the EquationWriter
application, 229
defined, 243, 395
editing in the EquationWriter
application, 243

replacing in the EquationWriter

application, 247
the Selection environment, 398
subroutines, 480
single-step execution, 486
subset of a list or string, 90
subtracting
a stack value from variable, 115
in the EquationWriter
application, 230
numbers, 134
summation statistics, 383
summations, 423
calculated from the stack, 426
entering, 423
in the EquationWriter
application, 235
suspending a program, 534
swapping levels in the stack, 63
switching to the parent or HOME
directory, 122

848 Index

symbolic arguments, used in
functions, 149
symbolic constants, 144
converting to values, 144
e, 144
evaluation, 145
i (the imaginary number), 144,
165
x, 140, 144
Symbolic Evaluation mode, 223
symbolic integration, 428
symbolic math, 24
Symbolic Results mode, 127, 144
syntax
of an integral, 428
of variable names, 108
unit objects, 187
user-defined function, 154
system flags, 222, 515
complete list of, 699
systems of equations, 356
accuracy of solution, 361
over-determined, 362
under-determined, 362

T

t test, 384
tagged objects
are labeled objects, 87
as data output, 531
assembling from the stack, 90
deleting the tag, 90
disassembling, 90
object type number, 97
useful for labeling, 83
tangent, 140
Taylor’s polynomials
approximation of the integrand,
431
computing for an algebraic, 426
translating point of evaluation,
427

temperature, effect on calculator,
660

temperature conversion, 197

temporary menu, used in
interactive programs, 539

temporary variables, 105

used in programs, 473
TEST menu, 491
test statistics, 383

testing
calculator operation, 665

flags, 222, 516
Infrared Printer, 670
keyboard operation, 667
port RAM test, 669
sclf-test, 667
scrial loop back test, 671
text, entering and editing in the
command line, 46
ticks, 457
system time as a binary integer,
456
time
adjusting, 443
am/pm time format, 442
changing format, 442
commands, 441
required to execute a program,
551
setting, 442
twelve-hour time format, 442
twenty-four hour time format,
442
TIME ADIJST menu, 443
TIME ALRM menu, 444
time arithmetic, 456
TIME menu, 440
TIME RPT menu, 445
TIME SET menu, 441
timeout
automatic off after 10 minutes,
25
setting, 632

total, of a sample, 374
translating characters,
input/output, 626
translating input /output, 617
translation mode, during printing,
610
transmit pacing
during printing, 610
setting, 619
transmitting, serial 1/0O, 632
transmitting annunciztor, 48
transpose, calculating, 359
trigonometric functions, 140
expanding using algebra, 409
trigonometric operations, with unit
objects, 203
true, result of a test, 490
truncating numbers, 148
TRUTH plot type, 327
truth plots, 333
twelve-hour time format, 442
twenty-four hour time format, 442
two-dimensional points, can be
represented complex
numbers, 81
two-dimensional vectors, 83
type
returning object type number,
97, 493

U

under-determined systems, 363
underflow, real numbers, 81
unemployment rate, 364
unit objects
are numbers combined with
unit, 88
assembling from the stack, 90
disassembling, 90
in custom menus, 213
in HP Solve application, 267

Index 849

in the EquationWriter
application, 235

object type number, 97

plotting with, 335

syntax, 187

viewing in the EquationWriter
application, 240

unit vector, 176
for complex numbers, 166
Units application, 24, 185-206

arithmetic operations, 203

assembling unit objects, 206

building unit objects using the
EquationWriter application,
204

built-in units, 193

comparing unit objects, 202

conversion to SI base units, 196

creating unit objects, 188

creating unit objects in the
command line, 190

dimensionless units of angle,
198

disassembling unit objects, 206

entering and editing unit
objects, 188

factoring expressions, 199

ideal gas equation, 185

International System of Units
(SI), 187

percent calculations, 202

photometric units, 198

powers of ten prefixes, 192

precedence of functions, 191

prefixing user-defined units, 206

raising a unit object to a power,
201

reciprocal of a unit object, 201

reviewing unit names, 191

temperature conversion, 197

trigonometric operations, 203

unit conversion, 188

unit object arithmetic, 200

unit object conversion, 194
unit object conversion in the
CST menu, 195
unit-object conversion, 193
UNITS Catalog menu, 187, 188
user-defined units, 205
using unit objects in algebraics,
191
UNITS Catalog menu, 187, 188,
193
UNITS Command menu, 187
units of angle, 198
unused memory (free memory),
101
up one directory, 122
upper tail probabilities, 384
uppercase letters, 50, 52
user flags, 515
user flags annunciator, 48
user keyboard, 216
clearing key assignments, 219
customizing operations, 220
editing key assignments, 220
making key assignments, 217
reactivating a key, 219
user keyboard active annunciator,
48
user memory, 100
User mode, 216, 223
user-defined derivatives, 422
are prefixed by “der”, 108
user-defined errors, 546
user-defined functions, 150155
are actually programs, 154
compared to built-in functions,
150
creating, 151
executing, 152
nesting, 153
plotting, 334
user-defined menus, 213
user-defined transformations, 414
user-defined units, 205

user-key assignments, lost after
recovering memory, 102
user-unit coordinates in plots, 323

Vv

value of symbolic constants, 144
VAR menu, 106, 112, 118
reordering, 113
variable, menu labels give name,
108
variables, 105-117
are named storage locations,
105
arithmetic with, 115
can store directories, 118
changing the contents of a
variable, 111
common variables, 105
containing a directory object,
123
creating, 106, 107
defining, 107
duplicate names, 121

error recovery from accidentally

purging, 115

evaluating a variable’s name,
109

evaluating variables containing
programs, 110

global variables, 105

immediate execution, 112

in custom menus, 213

in other directories, 121

local variables, 105

memory used by, 101

menu labels, 106

names, 84, 108

necw variables are added to the
current directory, 121

printing, 606

purging, 114

purging all variables in a
directory, 115

recalling contents, 110

reordering the VAR menu, 113

reserved variables, 108

returning object type number of
object stored in a variable,
97

Review Catalog, 112

scope of local variables, 105

searching for variable name
during evaluation, 121

separating variable names by
object type, 98

stored in variables, 394

storing, 107

temporary variables, 105

that contain directories, 110

that contain names, 110

using global variables, 106

using its contents, 109

using quoted versus unquoted
variable names, 112

viewing and editing, 67

vectors, 83, 170185

absolute value, 176

are arrays, 345

arithmetic with, 353

arithmetic with matrices, 355

assembling, 173, 183

calculations, 176

commands, 183

compared to complex numbers,
166, 167, 184

complex, 357

cross product, 176, 353

disassembling, 173, 183

display modes, 350

dividing into a matrix, 355

dot product, 176, 353

getting the n-th vector element,
90

how they are displayed, 170

index 851

internal representation, 171
keying in, 172
length, 353
put replaces n-th element, 90
unit vector, 176

VECTR menuy, 142, 171, 183

viewing stack contents, 71

w
wait
suspending program execution,
534
using the argument 0, 539
Warranty, 673
where function, 416
in the EquationWriter
application, 236
WHILE.. REPEAT.. .END, 511
wildcards, with backup objects,
646
Wire Transmission mode, 617
word, certain operations use the
concept of, 68
wordsize, binary integers, 207
write-protect switch
in RAM cards, 641
installing plug-in cards, 636

X

x-axis display range, specifying,
295
XLIB names
are objects provided by plug-in
cards, 89
object type number, 97
XON/XOFF handshaking, during
printiag, 610
XON/XOFF pacing, 619
xor
with binary integers, 210
with tests, 493

»@ test, 384
x-th root, in the EquationWriter
application, 232

Y
y-axis display range, specifying,
295

y 4

ZOOM menu, 305

zoom operations, 304
zoom-to-box, 306

zoom-to-box with autoscaling, 306

e —

1))Y

)))

gl e e

A

1Y)

3

)

Content

S

Part 4:

Page 468

602
612
635

656
677
694 .
697
699
707
823

Programming

25: Programming Fuadamentals

26: Tests and Cor.ditional Structures
27: Loop Structures

28: Flags

29: Interactive Programs

30: Errer Trapping

31: More Programming Examples

Printing, Data Transfer, and Plug-Ins

32: Printing
33: Transferring Datz to and from the HP 48
34: Using Plug-in Cards and Libraries

Appendixes-and indexes

A: Support, Batteries, and Service
B: Messages

C: HP 48 Character Codes

D: Menu Numbers an:d Menu Maps
E: Listing of HP 48 System Flags
Operation Index

Index

) oickano

Recorder Number
00048-90003

00048-90078 English

Printed in Canada 7/90

